

Tula Technology's Dynamic Skip Fire

September 28, 2016

Agenda

- What is Dynamic Skip Fire (DSF™)?
- Development Results
- Tula Delphi 4 Cylinder DSF™ Project
 - Initial test results and projections

Dynamic Skip Fire (DSF) Attributes

- 1. Decision to "Fire" or "Skip" is made before each cylinder event
 - Allows the most immediate response to driver torque request
- 2. Enabled by individual cylinder deactivation

Dynamic Skip Fire – Fuel Efficiency Benefit

How does DSF improve fuel efficiency?

- 1. Reduction of pumping losses
- 2. Higher thermodynamic efficiency
 - Optimum combustion conditions even at low loads
 - Low load IMEP COV improved
- 3. DCCO shuts off all cylinders during deceleration
 - Eliminates catalyst re-fueling penalty compared to fuel-only shutoff strategy
 - Reduces pumping compared to conventional strategies, enabling longer events
- 4. Fast torque control
 - Reduces or eliminates spark retard during trans shifts, etc

Tula V8 Test Vehicle

- Designed a unique cylinder deactivation system to allow control of all valves and cylinders
- Created a complete control system to operate in all-cylinder or DSF mode
- Invented a controls-based NVH management system

DSF Results – U.S. EPA Drive Cycles* Tula 6.2L Yukon Denali

Weighted Engine Out Emissions - Hot 18 Tula Yukon DSF 6.2L V8

...while improving CO₂ by 17%

Tula's NVH control approach

- ➤ Low frequencies and high peak amplitudes cause unacceptable vibration
- Frequency of excitation depends on engine speed and sequence of fires/skips
- Tula proactively manages the engine firing sequence
- Subjective and objective evaluations are used to deliver production benchmark NVH

Example: Driver's Seat Vibration

V8 engine, 3rd gear, 25% pedal acceleration, in z direction

Resonance Avoidance for Cabin Boom

V8 engine, 3rd gear, 14% pedal, constant road speed, driver's left ear

Tula & Delphi 4 Cylinder DSF Program

- Objective: Prove fuel economy benefits of DSF on smaller, boosted engines
- A collaborative effort with Delphi
 - VW Jetta 1.8L Turbocharged GDi engine
 - Delphi EMS with integrated Tula DSF controls
 - Delphi Cylinder Deactivation Hardware

2015 Volkswagen Jetta SEL 1.8L TC

EA888 - Generation 3

Specifications	
Engine Displacement	1.8L TSI®
Test Weight Class	3625 lb. (1644 kg)
Transmission	6 speed AT Tiptronic
Tailpipe Emissions	SULEV
Evaporative Emissions	Zero Evap
Projected DSF Fuel Economy Improvement	8 - 10%

DSF in action

4-Cylinder DSF Fuel Economy Improvement Projected with Optimized Passive NVH Mitigation HW

Fuel Economy improves substantially on all drive cycles, while maintaining production NVH

Impact of eDSF

- electric Dynamic Skip Fire couples DSF with vehicle electrification
- DSF flyzone is enhanced with P0/1/2 electric machine
- Synergies between electrification and DSF improve projected P0 system efficiency to 12% over baseline GTDI engine

DSF 4 Cylinder Value Propositions

Summary

- Significant fuel efficiency gains for spark ignited engines at a compelling cost
- Production level NVH, drivability and emissions
- Excellent potential for future efficiency gains
 - Electrification
 - Advanced combustion concepts
- Tula welcomes evaluation of our Technology!
 - Four-cylinder vehicle will be at the Aachen Colloquium on October 11th, 12th
 - Evaluation will also be possible in Plymouth, MI and/or San Jose, CA

A simple, unique and game changing technology

Contact

Tula Technology 2460 Zanker Road San Jose, CA

Matthew Younkins matthew@tulatech.com