California Biopower Impacts Project California Bioresources Economy Summit January 29th, 2019

Kevin Fingerman, Ph.D. Environmental Science & Management, Humboldt State University Schatz Energy Research Center

Background and Motivation

- California has a forest biomass problem
- Any solution of this problem should consider full impact
- California Biopower impacts Project addresses several considerations, including:
 - Total recoverable residue resource
 - Life Cycle emissions impacts
 - Wildfire effects of residue removal
 - Changes to soil emissions
- Significant spatial and supply-chain variability in the impacts of biomass energy
- Lack of transparency in Life-Cycle accounting
- The CBI Project aims to support policy makers and the private sector in shaping this industry

Large Wildfires Increasing Across the West

Number of fires larger than 1,000 acres per year on U.S. Forest Service land

Source: Climate Central analysis of U.S. Forest Service records

CLIMATE CO CENTRAL

LCA Conceptual Structure

HUMBOLDT STATE UNIVERSITY

LCA Conceptual Structure

HUMBOLDT STATE UNIVERSITY

Product Life

Use case emissions

Reference emissions

Cycle Mobilize for bioenergy Pile burn Der Wildfire **Reference** scenario

January 29th, 2019

LCA Framework

HUMBOLDT STATE UNIVERSITY

LCA Conceptual Structure

HUMBOLDT STATE UNIVERSITY

Reference emissions

- Exponential decay rate varying based on:
 - Composition: Material type and species
 - Disposition: Piled vs scattered material
 - Climate: Temperature and residue moisture level
- Wildfire emissions
 - Modeled using Consume model (USFS)
 - Applied to residue based on CALFIRE projections of fire probability
- Modeled out 100 years

Take-home messages

- Net emissions are variable and sensitive to a handful of characteristics.
- Identify what they are, and study them deeply.
- Target policy to mobilize the residues that offer most benefits
- May be net reduction in criteria pollutant emissions, but exposure is what matters
- Better tracking of pile burn emissions

Thank you Kevin Fingerman, Ph.D.

kevin.fingerman@humboldt.edu

HUMBOLDT STATE UNIVERSITY

lin	Orland		Portola	ALL STANK STAR	A A A
	Chico			Residue Base	
m	Willows	Oroville		of California Forests	
	Colusa	Grass Valley Yuba City Nevada City		with 40% Basal Area	
	44-1			Thin From Above	
A L	11/	LincolnAubu	m	South Lake Tahoe	Total Residue (lbs per acre)
	Wo	Woodland			3,400 - 7,800
		Sacramento	Placerville	A BOAR WILL	7,900 - 14,000
	Dav	ris long			23,000 - 105,000
K K	Fairfield	Galt	Jackson		Sound Plant
lovato Va	illejo R	io Vista	Angels Camp	- The A	318.3
-6	Concord	rentwood Stockton	Sonora		
San Fra	ancisco	Manteca	Oakdale		A A A A A A A A A A A A A A A A A A A
Colma	Hayward Live	Mod	lesto	Service States	Mammoth Lakes

California Biopower Impacts Project - CALFIRE

HUMBOLDT STATE UNIVERSITY

0	rland		Portola	Mark and the	1 Martin Cal	
	Chic	0	Resid		lue Base	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	fillows	Oroville		of Califo	rnia Forests	
	Colusa	Grass Valley		with 40%	6 Basal Area	
X		Yuba City Ne	evada City	Thin Fi	Thin From Below	
	XX	LincolnAubu	um	South Lake Tahoe	Total Residue (lbs per acre)	
Winte	Wo	odland Sacramento	Placerville		3,400 - 7,800 7,900 - 14,000 15,000 - 22,000 23,000 - 105,000	
Novato Valle	Davis Ione Jackson Fairfield Galt Allejo				A Bres	
	Concord Brentwood Stockton Sonora		imp ira			
San Franc Colma	cisco Hayward Live	Manteca	Oakdale		Mammoth Lakes	

California Biopower Impacts Project - CALFIRE





# Model Capabilities/Sensitivities

- Location of source and destination in transport network
- "Counterfactual" fate of biomass
  - Burn probability, decomposition rate, etc.
- Wildfire frequency projection
- Supply chain characteristics such as harvest equipment, fuel use, landscape specifics, post-harvest treatment, and conversion technologies
- End-use technology pathway
- Analytical time horizon







**California Biopower Impacts Project - CALFIRE** 





# Key issues of scope

- We assume that the feedstocks are "true wastes" – they would not have otherwise been used
- As such, we don't allocate upstream emissions or sequestration to bioenergy supply chains
- Forestry and agricultural activity happens in both bioelectricity and reference cases, so land use emissions are not considered
- We don't consider the growth phase only the reference fate for same material



## **Project Team**

#### HUMBOLDT STATE UNIVERSITY





- Andrea Tuttle chair Pacific Forest Trust; US Endowment for Forestry
- Annette Cowie Government of New South Wales
- Alan Di Vittorio Lawrence Berkeley National Laboratory
- Jacopo Giuntoli International Council on Clean Transportation
- Amy Clark Eagle / Corey Brinkema Forest Stewardship Council
- Neil Ewald Green Diamond Resource Company
- Han-Sup Han Northern Arizona University Ecological Restoration Inst.
- Garvin Heath National Renewable Energy Laboratory
- Matt Hurteau University of New Mexico Dept. of Biology
- Brian Kittler Pinchot Institute for Conservation
- Matt Kruemenauer Consortium for Advanced Wood-to-Energy Systems
- Angie Lottes California Department of Forestry and Fire Management
- Tadashi Moody California Department of Forestry and Fire Management

CutTPA	Harvested trees per acre.
CutBA	Harvested basal area (sq ft per acre).
CutQMD	Harvested quadratic mean diameter (inches).
CutCV6LT9	Harvested cubic foot volume per acre to a 6 inch top in trees with DBH less than 9 inches.
CutCV6GE9	Harvested cubic foot volume per acre to a 6 inch top in trees with DBH greater than or equal to 9 inches.
CutCV4To6	Harvested cubic foot volume per acre between 4 to 6 inches stem diameter.
CutBF6LT9	Harvested board foot volume to a 6 inch top in trees with DBH less than 9 inches.
CutBF6GE9	Harvested board foot volume to a 6 inch top in trees with DBH greater than or equal to 9 inches.
CutStem6BLT9	Harvested stem biomass (pounds per acre) to a 6 inch top in trees with a DBH less than 9 inches.
CutStem6BGE9	Harvested stem biomass (pounds per acre) to a 6 inch top in trees with a DBH greater than or equal to 9 inches.
CutStem4To6B	Harvested stem biomass (pounds per acre) between 4 to 6 inches stem diameter.
CutBarkStem6BLT9	Harvested bark biomass (pounds per acre) to a 6 inch top in trees with a DBH less than 9 inches.
CutBarkStem6BGE9	Harvested bark biomass (pounds per acre) to a 6 inch top in trees with a DBH greater than or equal to 9 inches.
CutBarkStem4To6B	Harvested bark biomass (pounds per acre) between 4 to 6 inches stem diameter.
CutBranchB	Harvested branch biomass (pounds per acre).
CutFoliageB	Harvested foliage biomass (pounds per acre).
CutStumpB	Harvested stump biomass (pounds per acre).
CutBarkStumpB	Harvested stump bark biomass (pounds per acre).



## **Transportation network**

HUMBOLDT STATE UNIVERSITY



**California Biopower Impacts Project - CALFIRE** 



## **LCA Conceptual Structure**



HUMBOLDT



## **Task 3: Fire Risk Assessment**



HUMBOI





HUMBO





## **Spatial data in LCA**







# **Example pathway**

- User defines material type and harvest type
  - Woody biomass from harvest residue in forest type X
- This triggers 'utilization factors' for equipment (Han)
  - # operation minutes of equipment type a, b, and c per BDT of material at the landing
- Each of these 'utilization factors' has associated emission factors. (CORRIM)
  - x kg CO₂e per minute of operation of equipment type a, etc.
  - These are themselves life cycle characteristics, but we don't build them into the customizable model (except *maybe* device fuel efficiency and/or fuel CI)
- Transport distance and equipment 'utilization factors' (UW)
- These characteristics are defaults that can be usercustomized as necessary.

CARAISIONIA BIS PROVINCE IN PROJECT CON A Ida REd visory Committee