Disclaimer

Certain of the statements contained herein may be statements of future expectations and other forward-looking statements that are based on management's current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in such statements. In addition to statements which are forward-looking by reason of context, the words “may, will, should, expects, plans, intends, anticipates, believes, estimates, predicts, potential, or continue” and similar expressions identify forward-looking statements.

Actual results, performance or events may differ materially from those projected in such statements due to, without limitation: (i) general economic conditions, (ii) ethanol and gasoline prices, (iii) commodity prices, (iv) distillers grain markets, (v) supply and demand factors, (vi) transportation rates for rail/trucks, (vii) interest rate levels, (viii) ethanol imports, (ix) changing levels of competition, (x) changes in laws and regulations, including govt. support/incentives for biofuels, (xi) changes in process technologies, (xii) the impact of acquisitions, including related integration issues, (xiii) reorganization measures and (xiv) general competitive factors on a local, regional, national and/or global basis, (xv) natural gas prices, and (xvi) chemicals and enzyme prices.

The matters discussed herein may also involve risks and uncertainties described from time to time in the company’s annual reports and/or auditors’ financial statements. The company assumes no obligation to update any forward-looking information contained herein, and assumes no liability for the accuracy of any of the information presented herein as of a future date.

Non-GAAP Financial Information

We have provided non-GAAP measures as a supplement to financial results based on GAAP. A reconciliation of the non-GAAP measures to the most directly comparable GAAP measures is included in the accompanying supplemental data. Adjusted EBITDA is defined as net income/(loss) plus (to the extent deducted in calculating such net income) interest expense, loss on extinguishment, income tax expense, intangible and other amortization expense, depreciation expense, and share-based compensation expense.

Adjusted EBITDA is not calculated in accordance with GAAP and should not be considered as an alternative to net income/(loss), operating income or any other performance measures derived in accordance with GAAP or to cash flows from operating, investing or financing activities as an indicator of cash flows or as a measure of liquidity. Adjusted EBITDA is presented solely as a supplemental disclosure because management believes that it is a useful performance measure that is widely used within the industry in which we operate. In addition, management uses Adjusted EBITDA for reviewing financial results and for budgeting and planning purposes. EBITDA measures are not calculated in the same manner by all companies and, accordingly, may not be an appropriate measure for comparison.
Introduction to Aemetis
Aemetis Mission

Aemetis is an international renewable fuels and biochemicals company using patented industrial biotechnology for the conversion of first-generation ethanol and biodiesel plants into advanced biorefineries.

Traditional Corn Ethanol and Vegetable Oil Biodiesel
PAST

Advanced Biofuels (Purpose-Grown Feedstocks)
PRESENT

Low Carbon, Low Land Use (Waste Orchard/Forest/Oils)
FUTURE

G1

G2

G3
Aemetis Overview

- Founded in 2006 by biofuels veteran (co-founder of Pacific Ethanol; EPM)
- $170 million revenue in 2018; 110 million gallons per year biofuels capacity
 - Own/operate 60+ million gallon ethanol plant in California
 - Own/operate 50 million gallon capacity Biodiesel and Glycerin refinery in India
 - Building $30 million Dairy Biogas digesters, pipeline and cleanup system
 - Building $175 million Cellulosic Ethanol plant (waste orchard wood feedstock)
Aemetis Projects: Optimizing California’s Waste Supply Chains
Agricultural Waste to Sugars

JBEI Collaboration and $3 million DOE/CEC Funding

- Ionic Liquids have the capability to breakdown cellulose and hemicellulose into C5 and C6 sugars
- Sugars can be utilized in existing ethanol facilities utilizing forest and agricultural waste for wide range of usages

JBEI AT A GLANCE

1. Centralized at One Facility
2. Five Divisions
 - Lifecycle, Economics, and Agronomy Division
 - Feedstocks Division
 - Deconstruction Division
 - Bioproducts & Fuels Division
 - Technology Division
3. Six National Laboratories
 - Argonne, Brookhaven, Pacific Northwest, Lawrence Berkeley, Lawrence Livermore, and Sandia
4. Eight Academic Institutions
 - UC Berkeley, Clemson, UC Davis, Iowa State, UMass - Amherst, Northwestern, UC San Diego, UC Santa Barbara

. JBEI’s Integrated Approach to Bioenergy
CO2 to Compressed CO2: Displacing Petroleum

Liquid CO2 Plant

- Executed off-take agreement with Large Gas Company
- Shared OPEX for additional equipment
- Market barriers of long contracts and multiple supply sources support CO2 plant ventures with existing gas companies
- CO2 must be compressed and processed next to emission point
Aemetic Biogas to Ethanol Plant Project:

- $30 million in funding secured from existing lender 2018
- $3.1 million in CDFA funds awarded for the project in July 2018
- Engineering/Permitting Underway
- First operations Q4 2019
Agricultural Waste to Cellulosic Ethanol

1. Feedstock
 - Biomass
 - Orchard/Vineyard Wood Waste
 - Orchard Byproducts
 - Forest Wastes

2. Thermal Transformation

3. LanzaTech Fermentation

4. Ethanol Plant Integration

Aemetis is implementing the first **biomass-to-ethanol** plant using LanzaTech process
Value Creation Through Incentives and Valued Products
Solving Barriers and Logistical Concerns for CA Feedstocks

Create Value Through......

1) LCFS 2) RFS 3) Product and Process Considerations

Fuel Prices

<table>
<thead>
<tr>
<th>Types of Fuels</th>
<th>Market Price</th>
<th>Cellulosic Bio</th>
<th>Milo + BioGas</th>
<th>Milo</th>
<th>Aemetis Ethanol</th>
<th>Midwest Ethanol</th>
<th>BiD Market</th>
<th>UCO BD</th>
<th>Tallow BD</th>
<th>Corn Oil BD</th>
<th>Any other BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$USD/Gallon of Fuel</td>
<td></td>
</tr>
<tr>
<td>LCFS ($/CI)</td>
<td></td>
</tr>
<tr>
<td>Tax Credits</td>
<td></td>
</tr>
<tr>
<td>RIN</td>
<td></td>
</tr>
<tr>
<td>Base Fuel Price</td>
<td></td>
</tr>
</tbody>
</table>

12
• Perform Studies with credible local universities, national labs and established environmental engineers to exhibit the benefits of waste feedstock
• Work with CARB to create standardized pathway
• Change logistic and value chain to improve carbon intensity score
• Find ways to utilize the GREET model to accurately calculate appropriate CI
 • Example: Temporal model for ag. waste burning
Aemetis Example: University Study and Expert Reports

Biomass-to-Energy Plants Closing in California
- Biomass to energy plant operations decreased
- Lack of ability to compete with low-cost solar, wind and natural gas

California advanced ethanol plants could produce 160+ million cellulosic ethanol gallons per year from orchard waste
- 4 ethanol plants each could produce about 40 million cellulosic gallons / year
- At 80 gallons per ton of waste feedstock, requires 1.6 million tons of biomass
 - Almond / pistachio / walnut wood waste

About 1.5 million acres of Almonds and walnuts in California
- 2+ million tons/year of Ag Waste
- Need for valuable uses for waste ag wood

Source: San Joaquin Valley Air Control District Emergency Meeting on Open Burning November 2017

Open Burning Emissions Increasing without uses for waste wood

[Graph showing increasing emissions over time]
To receive value through the EPA’s RFS you must have a “Pathway”

- Products fall under an existing pathway or a pathway must be created
- Depending on the type of Renewable Identification Number, drastically different values result
How to Create RFS Value?

1) Meet GHG reduction thresholds

2) Meet or Create Pathway Definition

<table>
<thead>
<tr>
<th>D-Code</th>
<th>Cellulosic Biofuel</th>
<th>Biomass-Based Diesel</th>
<th>Advanced Biofuel</th>
<th>Total Renewable Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Aemets Biogas Project Supported by LCFS/RFS Value Creation

Dairy → Pipeline → Local Customer
Specification and Product Creation with Technology Considerations
Product Value Creation: Renewable Fuels

• Determine highest value creation from specific waste feedstocks
• Explore technologies capable of utilizing specific waste material and create a roadmap
• Narrow down technologies and focus on lessons learned from other commercialization efforts
• Perform pilot testing to determine feasibility of process with feedstock
Product Creation Overall Roadmap

Biomass Feedstocks
- Starch
- Hemicellulose
- Cellulose
- Lignin
- Oil
- Protein

Intermediate Platforms
- Sugars (Glucose, Fructose, Xylose, Arabinose, Lactose, Sucrose, Starch)

Building Blocks
- C2
 - Glycol
 - Lactic Acid
 - Polyhydric Alcohols
 - Propionic Acid
 - Malic Acid
 - Acetic Acid

Secondary Chemicals
- C3
 - Succinic Acid
 - Fumaric Acid
 - maleic acid
 - Glycolic Acid

Intermediates
- C5
 - Butyl Glycol
 - Butyl Acid
 - Butyl Alcohol

Products/Uses
- Industrial
 - Corrosion inhibitors, dust control, boiler water treatment, gas purification, emission abatement, specialty lubricants, hoses, seals
- Transportation
 - Fuels, oxygenates, anti-freeze, wiper fluids, molded plastics, car seats, belts, hoses, bumpers, corrosion inhibitors
- Textiles
 - Carpets, fibers, fabrics, fabric coatings, foam cushions, upholstery, drapes, lycra, spandex
- Safe Food Supply
 - Food packaging, preservatives, fertilizers, pesticides, beverage bottles, appliances, beverage can coatings, vitamins
- Environment
 - Water chemicals, flocculants, chelators, cleaners and detergents
- Communication
 - Molded plastics, computer casings, optical fiber coatings, liquid crystal displays, pens, pencils, inks, dyes, paper products
- Housing
 - Paints, resins, siding, insulation, cements, coatings, varnishes, flame retardants, adhesives, carpeting
- Recreation
 - Footwear, protective equipment, camera and film, bicycle parts & tires, wet suits, tapes-CD's-DVD's, golf equipment, camping gear, boats
- Health and Hygiene
 - Plastic eyeglasses, cosmetics, detergents, pharmaceuticals, suntan lotion, medical-dental products, disinfectants, aspirin
Considerations When Determining Process and Product

- **What is the ultimate and compositional analysis of the feedstock?**
 - Sugar content, cellulose content, hemicellulose content, lignin content
 - Carbon content, oxygen content, hydrogen content, ash content

- **What contaminants and barriers exist?**
 - Are there catalyst poisons?
 - Microbial poison?
 - Mechanical/physical issues (rocks, ash, contaminants)

- **What is the waste product best positioned to produce?**
 - Biogas with digestion?
 - What kind of digestion
 - Ethanol and other products with microbes?
 - Syngas, sugar, protein or oil fermentations?
 - Renewable Diesel/Biodiesel
 - What process, pressures, distillation, product specification considerations?
 - What type of catalyst?
Example: Ionic Liquids Overview (JBEI/Aemetis project funded by CEC)

- Ionic Liquids have the capability of breaking down any biomass source into their component sugar molecules.
- With the production of sugars from cellulosic feedstocks, about 210 ethanol plants have the potential for upgrading.
- Ionic liquids have the capability of changing the paradigm of biofuels.
Recommendations for CARB
Recommendations to CARB

- California Air Resource Board staff are the GHG experts and currently lead worldwide renewable energy policy
- CARB should continue to work with project developers to create accurate carbon intensity scores in order to assist projects in receiving funds and ultimately begin operations
- Time delays prevent projects from being built
- CARB’s continued work to adjust the GREET model to match and assist project developers in creating accurate CI scores either allows the project to be built – or not.
- The future of the global energy policy is directly impacted by CARB
Jeffrey Welch – VP Strategic Projects, Aemetis
jeff.welch@aemetis.com
www.aemetis.com