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EXECUTIVE SUMMARY 
 
NHTSA and EPA recently published a Notice of Proposed Rulemaking (NPRM) for 
fuel economy/GHG regulations in the Federal Register1, which they denote ‘‘Safer 
Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021–2026 
Passenger Cars and Light Trucks’’.  The proposal is to rescind current new vehicle 
fuel efficiency/greenhouse gas reduction regulations for 2021-2025 (“Existing 
standards”) and freeze the standards at 2020 levels through 2026.  This proposed 
“Rollback” represents a complete reversal of the previous determination in 2017 by 
EPA that the Existing standards continue to be appropriate.  The 2017 
determination was based on an extensive and well-documented midterm review 
process--see, e.g., the 2016 Technical Assessment Report (“TAR”), EPA et al. (2016).   
 
The Agencies’ summary argument in favor of the Rollback rests on two major claims 
(plus related measures).  From the NPRM (page 42986, column 1):   
 

“Compared to maintaining the post-2020 standards set forth in 2012, current 
estimates indicate that the proposed SAFE Vehicles Rule [the Rollback] would 
save over 500 billion dollars in societal costs and reduce highway fatalities by 
12,700 lives (over the lifetimes of vehicles through MY 2029).” [Emphasis 
added.]   

 
The two italicized items are outcome measures (“net benefits”) from NHTSA’s 
economic modeling.  When announced, the immediate reaction from a wide range of 
experts was that they are dubious, and that the claims lack what researchers call 
face validity2.  This report provides a rigorous analysis and evaluation of key aspects 
of NHTSA’s economic modeling efforts, and unequivocally confirms what seems so 
obvious to so many.   
 
More specifically, estimation of net benefits relies critically on developing 
reasonable projections of how the future vehicle market will behave under 
alternative regulatory scenarios (a potentially challenging undertaking).  In prior 
rulemakings, NHTSA and EPA carefully crafted an approach that incorporated 
projections from reputable, third party sources.  For this rulemaking, NHTSA elected 
to instead develop its own in-house vehicle market simulation model.  This report 
identifies and demonstrates multiple shortcomings in key modeling components, 
and shows how these shortcomings lead to results that are inconsistent with basic 
economic principles (a violation of NHTSA’s own modeling standards).   

                                                        
1 Federal Register/Vol. 83, No. 165/Friday, August 24, 2018/Proposed Rules, pp. 
42986 – 43500.   
2 “In statistics, etc., the fact of something seeming to be a reasonable or accurate 
measure of something:  If a test has face validity, then it looks like a valid test to 
those who use it.”  [https://dictionary.cambridge.org/us/dictionary/english/face-
validity (October 18, 2018).] 
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In more common parlance:  their models have major flaws for multiple reasons, and 
produce incorrect results that are bad enough to lead to a wrong conclusion, i.e., that a 
Rollback has positive net benefits versus the Existing standards.   
 
Moreover, all of these actions and decisions were made within a very short time 
frame, and apparently without the benefit of any meaningful peer review.  A careful 
reading of the NPRM and related documentation suggests that NHTSA was fully 
aware of these deficiencies, but chose to proceed anyway.  Because economic 
modeling is a subject requiring significant technical expertise, the remainder of this 
summary provides a review of background material prior to a more detailed 
enumeration and explanation of the report’s findings.   
 
Background on vehicle market modeling and approaches.  
The purpose of rulemaking for new vehicle efficiency/GHG standards is to alter the 
behavior of a large and important economic market (the vehicle market) in a way 
that produces outcomes that meet specified policy objectives (greater fuel efficiency 
and reduced greenhouse gases).  However, this is also quite likely to have an 
economic impact on multiple stakeholders.  Different regulatory options will have 
different impacts, and the benefits and costs must be evaluated.  In this case, 
regulatory analysis relies on quantitative economic models to determine how 
market behavior is likely to change under alternative regulatory scenarios, so that 
the impact on benefits and costs can be estimated.   
 
Economic theory plays a major role because it is the accepted framework for 
developing models of market behavior.  The underlying principles take the form of 
specific behavioral assumptions that determine the decisions of stakeholders (e.g., 
consumers and producers) when participating in a market that involves multiple 
interactions.  In the case of vehicle markets, manufacturers use technologies 
(inputs) to produce and sell new vehicles (Supply).  They decide which 
designs/features to use for their vehicle offerings, and what prices to charge.  The 
prototypical assumption is that they make these decisions so as to maximize profits 
subject to constraints (e.g., their technological capabilities, availability of inputs).   
 
Demand arises from an aggregation of individual decisions by consumers (or, 
households) on how many vehicles to own, which ones (chosen from among a large 
set of competing options), and how to use them.  They get “utility” from the mobility 
services that vehicles provide, and their specific choices are based on preferences for 
product attributes (e.g., new or used, car/SUV/van/truck, size, seating capacity, fuel 
efficiency) including purchase price.  Consumers can vary in their preferences and 
behaviors, which can be represented using the concept of consumer segments.   
 
Multiple types of interactions contribute to complexity in the vehicle market.  Some 
consumers buy new vehicles from manufacturers, but in the used vehicle market 
consumers can be both buyers and/or sellers.  Near the end of a vehicle’s life when 
it no longer makes economic sense to keep it in operation, it will be sold for scrap.  
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With all of these interactions, price changes occur to “clear the market” so as to 
create a balance between supply and demand across all sub-markets (new, used, 
scrappage).  
 
To perform analyses that capture these phenomena, theory-based models have been 
developed that incorporate the fundamental behavioral features and interactions 
described above.  These so-called structural models specifically identify how changes 
in certain variables (e.g. price, fuel economy) directly influence an outcome of 
interest (e.g. purchase behavior), usually in the form of parameters that have clear 
economic interpretation (e.g. preference for an attribute).  One specific class, discrete 
choice models, can be used simulate households’ vehicle-related decisions using the 
features discussed above (e.g., attributes, preferences, and segmentation).  (For a 
more detailed discussion, see see section 3.2).   
 
It is clear that implementing a highly detailed system of structural models could be 
challenging, and model development inevitably involves making simplifying 
assumptions.  It is understandable that analysts would seek simpler modeling 
approaches that require less detail.  Many times these efforts yield models in the 
form of equations that produce results at a more highly aggregated level, so that 
potentially important details on the structural, behavioral features are lost:  so-
called reduced form models.  If such models are carefully derived with the goal of 
ensuring consistency with theory, they could produce realistic “behavioral 
responses” to input changes even when structural features are no longer apparent.  
While this can be feasible under the right circumstances, there are always risks.  
Rigorous validation and testing of model behavior are an absolute requirement.  
Unfortunately, it is very easy for such modeling attempts to go awry when analysts 
face limitations on data and other resources.   
 
A specific class of reduced form models (used by NHTSA) is autoregressive 
distributed-lag (ARDL) models, which are used for aggregate-level time-series 
forecasting.  In the literature, this type of model represents the polar opposite of 
structural models.  Their major strength is in producing short-term forecasts, which 
are essentially a descriptive extrapolation of existing trends in historical data.  These 
can be useful for supporting short-term decisions (by, e.g., industry managers) in 
situations where it is safe to assume that no meaningful structural changes are 
occurring in the market.  Although there are times when such models can play some 
role in supporting policy analysis, they are particularly unsuitable for capturing 
behavioral responses of stakeholders to fundamental market changes of the type 
induced by policy.   
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Modeling requirements and evaluation standards.  
Given the previous discussion, it is clear that developing and using economic models 
for regulatory analysis requires careful judgment and technical expertise.  The 
Agencies have helpfully provided some (brief) background material on the 
standards they are required to meet.  The Preliminary Regulatory Impact Analysis 
(or, “PRIA”—see page 937) focuses on the requirement to produce measures of 
economic benefits and costs, indicating that they… 
 

“… are important considerations, because as Office of Management and Budget 
Circular A-4 states, benefits and costs reported in regulatory analyses must be 
defined and measured consistently with economic theory, and should also reflect 
how alternative regulations are anticipated to change the behavior of producers 
and consumers from a baseline scenario.479  In this analysis, those include vehicle 
manufacturers, buyers of new cars and light trucks, and owners of used vehicles, 
all of whose behavior is likely to be affected in complex ways by the proposed 
action to adopt less strict CAFE and CO2 emission standards for future years.”  
[Emphasis added.] 

 
This description, when combined with the previous background discussion, 
suggests the following are required for success:  Choosing a modeling 
approach/methodology sufficient for capturing behavioral responses to policy 
options in a manner prescribed by economic theory, availability of required data 
and related resources, and correct execution (e.g., choice of model specifications, 
statistical estimation, etc.).  Having established this background on modeling and 
evaluation standards, the remainder of this summary provides more detail on what 
the Agencies have done, and our evaluation.   
 
Background on the CAFE Model.  Over the course of many rulemakings, NHTSA has 
relied on output from its own modeling system (the CAFE Compliance and Effects 
Model, also referred to as “the CAFE model” or, prior to the current rulemaking, “the 
Volpe model”) for producing net benefit analyses.  Until the current rulemaking, the 
CAFE model was focused almost exclusively on modeling manufacturer decision-
making behavior in response to fuel efficiency standards.  Specifically, the CAFE 
model was primarily concerned with identifying feasible vehicle redesign pathways 
that could be used by manufacturers to comply with fuel efficiency standards.   
 
Within the CAFE model is a “manufacturer decision module” that simulates each 
manufacturer’s adoption of new fuel-saving technologies for future model years 
(relying on an extensive database of technologies and costs, and a complex 
algorithm).  Technologies are added to a base year fleet of over 1600 vehicle 
offerings to create new vehicles in future model years.  This “behavioral model” is a 
simplification of our earlier description:  in the CAFE model, manufacturers do not 
decide on both technologies and prices to maximize profits.  Instead, they can only 
choose technologies, and they do so on the basis of minimizing their costs.  (This 
aspect of NHTSA’s modeling is outside the scope of this report, but we note that the 
simplification of excluding pricing, while perhaps reasonable under the 
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circumstances, could yield simulation results that inappropriately adopt 
technologies at higher cost versus what would happen in the real world.) 
 
On the consumer side, in prior rulemakings the CAFE model incorporated vehicle 
market projection data from external sources (as mentioned earlier) as well as 
other assumptions to compute outcome measures of economic costs and 
environmental effects.  However, in the most recent rulemaking NHTSA developed 
and incorporated its own internal vehicle market model into the CAFE model.  In 
addition, the CAFE model has been modified to analyze greenhouse gas regulations 
as well as fuel economy standards, so that all of the NPRM analyses rely on the CAFE 
model.  In prior rulemakings, EPA independently performed its own analyses using 
its own models.   
 
Overview of NHTSA’s models.  NHTSA’s vehicle market model can be viewed as 
consisting of multiple (sub-)models (or modules).  NHTSA added three of these to 
simulate the following phenomena:  new vehicle sales, dynamic fleet share (changes 
in relative share of cars versus light trucks), and dynamic scrappage (vehicles 
retired/removed from the fleet).  The results of these are then combined to simulate 
the evolution of the US light-duty vehicle fleet.  When evaluating model behavior, 
the focus could be on one of the three individual components, or on the overall 
vehicle market (model) behavior when they are combined.   
   
All three of the above components are reduced-form models of the type discussed 
previously:  aggregate-level time-series forecasting models.  For example, their new 
vehicle sales model takes the following form:  
 

 
 
There are three types of input variables.  Two are macroeconomic indexes 
(GDP_GrowthRate, and LaborForceParticipation).  There is only one variable related 
to new vehicles:  the change ( ) in the average compliance cost (the average cost of 
adding technology to meet the regulations, taken over all manufacturers).  There are 
many lag effects (a defining feature of time-series models), including NewSales from 
the two previous periods.   
 
It is important to understand that this model is used to directly compute total 
(aggregate) sales forecasts for three types of vehicles:  Cars, SUV/Vans, and Trucks.  
In other words, although the CAFE model maintains detailed specifications for over 
1600 vehicle configurations, and simulates redesign decisions for each year, no 
“consumer” ever actually “sees” any of these vehicle options or makes purchase 
decisions based on preferences for vehicle attributes.  The only vehicle-related 
variable (average compliance cost for the entire fleet) is used as a proxy for vehicle 
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price.  However, the reason for increased compliance cost is that technology has 
been added to vehicles to improve their fuel efficiency (another vehicle attribute for 
which consumers have preferences).   
 
This model lacks both the level of detail and the structural features (e.g., vehicle 
offerings, attributes, preferences, and segmentation) that would seem to be required 
for capturing consumer responses to changes in new vehicle market offerings.  In 
this specific implementation, even though all cost increases are accompanied by 
improvements in fuel efficiency, this improvement is completely ignored.   
 
The situation is similar for dynamic scrappage, although in this case the models are 
much more complex.  Some background:  A scrappage model gives scrappage rates 
for groups of vehicles of the same age.  A scrappage rate is defined as: the probability 
(P) that a vehicle in a given age group will be scrapped during the current year.  
(Conversely, the probability of survival is 1-P).  The total number of vehicles (T) in 
this group will therefore diminish, so that the number of surviving vehicles at the 
beginning of the next year will be: .   
 
NHTSA’s dynamic scrappage model is the sole determinant of what happens in the 
“used vehicle market” in the CAFE model.  However, as in the new vehicle sales 
model, a key vehicle-related input variable is average compliance cost for new 
vehicles (not, e.g., a more direct measure of used vehicle prices).  In fact, there are no 
structural connections to capture behavioral interactions between the new and used 
vehicle markets (a fact that will turn out to be very important, as discussed later).   
For reasons that will become apparent later, no attention is devoted to the dynamic 
fleet share model in this report.  The purpose of this discussion was to support the 
following summary of key findings.  We divide these into two categories:  evaluation 
based on theoretical considerations, and evidence based on numerical studies and 
analysis.   
 
Summary of findings based on theoretical considerations.  Recall the Agencies’ 
own requirements:  Their models should be able to simulate the behavioral 
responses of vehicle manufacturers, buyers of new cars and light trucks, and owners of 
used vehicles to policy changes, and to produce results that are consistent with 
economic theory.  A review of the models based on theoretical considerations yields 
the following findings.   
 

T1.  The single-equation aggregate-level, time-series equations used by 
NHTSA lack sufficient level of detail and structural features to 
adequately capture consumers’ behavioral responses to changes in 
vehicle prices and attributes made by manufacturers attempting to 
comply with CAFE/GHG standards.  Vehicle choice options, attributes, 
and consumer preferences are not adequately represented (i.e., only 
aggregate new vehicle sales are being forecasted, and they are assumed 
to respond only to average increases in compliance costs).   
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T2.  There is no meaningful structural relationship or interaction 
between the new and used vehicle markets of the type required by 
theory.  Specifically, there are no linkages between the new vehicle 
sales model and the dynamic scrappage model ensured to capture 
theoretical requirements.  This deficiency makes the models vulnerable 
to producing simulation results that are inconsistent with economic 
theory.   
 
NHTSA’s dynamic scrappage model (considered in isolation) has comparable 
analogs in the published literature to support an evaluation.  Based on key 
literature references (and, in turn, other literature cited by them), NHTSA’s 
approach is clearly deficient.  In particular: 
 
T3.  Other scrappage models in the literature are specified based on 
well-established theory, and use structural formulations with 
parameters that have clear economic meaning.  NHTSA essentially 
ignores these and instead opts for a time-series curve-fitting approach 
with no obviously identifiable behavioral structure, and un-
interpretable parameters.   
 
One unfortunate consequence of this approach is that the documentation and 
results in the PRIA for the scrappage models were generally quite 
impenetrable to direct interpretation (even by experts), contributing to the 
need for the numerical studies discussed below.  (See section 3.6.2.) 
 
Even if aggregate-level forecasting approaches were appropriate for policy 
analysis, the large literature on travel demand forecasting suggests that 
NHTSA’s overall approach of forecasting new sales in conjunction with 
scrappage is inferior to other alternatives.  Established aggregate-level 
approaches start with projections of growth in the total vehicle fleet 
(reflecting transport needs), not new vehicle sales.  These typically exclude 
prices altogether, because experience has shown that prices do not help the 
accuracy of aggregate forecasting models.  (In contrast, approaches using 
more detailed discrete choice models for consumers’ vehicle-related decisions 
make successful use of price effects.)   
 
T4.  A key reference, Greenspan and Cohen (1999), solves the same 
forecasting problem as NHTSA, but uses a different approach that is 
consistent with the travel demand literature.  They first forecast the 
size of the total vehicle fleet (based on population and household 
ownership trends from the Census Bureau, plus economic indexes), 
and then simulate scrappage.  New vehicle sales are determined on 
the basis of these other two forecasts (see section 3.3).   
 
There are also other issues that raised concerns.   
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T5.  In terms of technical execution (statistical estimation), NHTSA’s 
complex, time-series based models are vulnerable to over-fitting the 
historical data, leading to poor “out of sample properties” (i.e., poor 
forecasting behavior).   
 
T6.  Available rulemaking documents suggest that these models have 
not been peer reviewed (see section 1), and (based on our numerical 
results—see below) it seems unlikely that they have been adequately 
tested.   
 
T7.  The PRIA sections devoted to modeling make frequent reference to 
a phenomenon known as the “Gruenspecht effect.”  Briefly, this effect 
relies on an economics-based chain of logic whereby regulations that 
cause new vehicle prices to increase will result in fewer used vehicles 
being scrapped (all else equal).  Although this subject is a potential 
source of many discussions, the main consideration here is the role the 
concept has played in NHTSA’s model development decisions.   
 
A careful reading of the NPRM and PRIA documents suggest that a 
desire to “mathematically mimic” this specific effect was a guiding 
motivation behind their modeling decisions, in contrast to, e.g., a focus 
on adequately capturing a more fundamental underlying behavioral 
structure that could legitimately allow this effect to occur (section 
3.1.2).  This further undermines their overall approach to modeling 
vehicle market behavior, contributing to its ultimate failure to produce 
results that are consistent with economic theory (as shown by our 
numerical studies).   

 
Overall, these theory-based observations suggest many potential problems.  In our 
view, the observations offered thus far would ensure that the NHTSA modeling 
approach would be very unlikely to withstand a peer review if it were, e.g., 
submitted for publication in an academic journal.   
 
Summary of findings based on numerical studies.  To determine whether or not 
these concerns can be conclusively shown to produce incorrect modeling results, 
and to also determine any implications for outcome measures and conclusions, we 
performed a number of numerical studies.  These are largely based on actual 
computer runs from the CAFE model in CO2 mode, using the assumptions for Table 
II-27 of the NPRM.   
 
As a starting point, we established procedures for replicating NHTSA’s benefit-cost 
results.  Next, we experimented with the model by changing input assumptions.  An 
initial finding was that turning off the dynamic scrappage model had a major impact 
on the results, whereas the role of the other two models was much more limited.  
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For this reason, most of our numerical studies focus on the dynamic scrappage 
model.  (This and the following two points are discussed in section 2.) 
 

N1.  Under the reference case, the Rollback costs $200.7B less than 
Existing standards.   Turning off the dynamic scrappage model more 
than erases the estimated cost differences between the Existing and 
Rollback scenarios.  Specifically, the Existing standards cost $14.3B less 
than the Rollback with the scrappage model turned off.  This reverses 
NHTSA’s conclusion that the Rollback has positive net benefits versus 
the Existing standards.    
 

The next finding involves the so-called “VMT rebound effect.”  NHTSA’s analysis 
assumes a value that in our judgment is too high (based on recent publications 
and expert opinion)—see, e.g., Gillingham (2018).  NHTSA assumes 20% in the 
2018 NPRM, whereas they assumed 10% in the 2016 TAR (which is closer to 
expert consensus).     

 
N2.  Turning off both the dynamic scrappage model and the rebound 
effect reverses the N1 result even further:  The Existing standards cost 
$39.2B less than the Rollback.   
 
The result of running the model with no dynamic scrappage and a 10% 
VMT rebound rate:  The Existing standards cost $27.8B less than the 
Rollback.   
 

N1 and N2 suggest the importance of carefully evaluating the dynamic scrappage 
model in terms of its actual behavior.  We performed a detailed numerical study 
of the dynamic scrappage model behavior for passenger cars.  We started by 
comparing scrappage curves from multiple sources:  a recent reference in the 
literature that performed a very similar modeling exercise (Bento et al. 2018), 
two different CAFE curves used by NHTSA in the 2016 CAFE model, a “No 
Gruenspecht” sensitivity case from the PRIA, and curves for the Existing and 
Rollback scenarios.  These results, and results for the following points (N3 and 
N4) are in section 4.  
 

N3.  A high-level summary of conclusions:   
 

N3a.  The dynamic scrappage model implicitly projects “durability 
improvements” for recent, current and future model years that 
seem overly optimistic, leading to systematically lower future 
scrappage rates.   
 
N3b.  The model demonstrates inappropriately high sensitivity to 
new vehicle price increases, creating unreasonably large gaps 
between the scrappage rate curves for the Existing and Rollback 
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scenarios.  It is these gaps that drive the difference in results 
reported in the 2018 NPRM (both economic costs and fatalities).   
 
N3c. The “gap” between the Existing and Rollback scrappage 
curves occurs primarily between the ages of 18 and 22, a region 
where data have been deemed “too noisy to use” by some 
academic researchers, raising further questions about the 
model’s validity.  (The implications of this are discussed below.) 

 
These observations are consistent with our earlier concerns in T3 and T5 
(that high levels of “over-fitting” lead to poor out-of-sample behavior).   

 
N4.  We devised additional numerical tests to address the noise issue.  We 
found that:   

 
N4a.  Even though the gap between Existing and Rollback scrappage 
curves is inappropriately large, the size of this gap is dwarfed by the 
amount of statistical error (noise) in the predicted scrappage rates.  
In other words, the gap that is ultimately responsible for NHTSA’s 
modeling results is not statistically meaningful (see section 4).  
 
N4b.  These scrappage rate differences are the ultimate source of the 
benefit-cost differences between the Existing and-Rollback 
scenarios in the Agencies’ analysis.  When these dynamic scrappage 
model rates are replaced with the scrap rates most recently 
developed and vetted by the Agencies, the Existing standards have 
positive net benefits versus the Rollback (not the negative net 
benefits reported by the Agencies).  (See section 2.) 
 
N4c.  Additional numerical tests suggest that this high level of noise 
in the scrappage model’s predicted scrappage rates propagates 
through the rest of the CAFE model, creating large differences in the 
final results that compromise their validity.  The failure of NHTSA to 
identify and test these behaviors speaks to the lack of peer review, 
testing, and validation that they should have performed to comply 
with their rulemaking requirements.  (See Appendix A.) 

 
These serious problems with the dynamic scrappage model raise a larger question:  
What is the impact of these deficiencies on the overall economic modeling of vehicle 
fleet behavior?   
 
We conducted a series of numerical studies to answer this question (see section 5).  
For purposes of comparison, we also replicated all calculations on corresponding 
results from the U.S. Department of Energy-Energy Information Agency’s NEMS 
model, published in their 2018 Annual Energy Outlook (AEO).  NEMS is a well-
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established model that is frequently used in energy-related policy analyses (see 
section 3.4 and Appendix B).      
 
N5.  Numerical results highlight major deficiencies of NHTSA’s economic 
modeling of vehicle market behavior (in contrast to NEMS):   
 

As discussed in more detail below, our numerical results conclusively 
demonstrate that the current CAFE model produces results that are wildly 
inconsistent with economic theory on multiple measures, whereas NEMS 
is consistent with economic theory on the same measures.   
 

We summarize two specific examples.  In a CAFE-model-based comparison of 
Existing and Rollback scenarios, the only difference in terms of “economic modeling 
inputs” for the two scenarios is:  the overall cost of “driving vehicles” is 
systematically higher under the Existing standards, due to its pattern of increased 
stringency.  According to economic theory, if the overall cost of a good (“driving 
vehicles”) increases, demand for the good decreases.  For this specific analysis, the 
total vehicle fleet size should decrease.  However:   
 

N5a.  The CAFE model simulates systematic increases in the size of the 
total vehicle fleet under the Existing standards (versus the Rollback) 
when it should produce systematic decreases. This violates economic 
theory.  (See section 5.1.) 

 
It is important to understand that, not only does this result violate economic theory, 
it does so via a specific mechanism:  keeping a large number of very old used 
vehicles on the road.  This is a direct result of the dynamic scrappage model 
behavior, which predicts very large retention of 18-22 year-old vehicles.   
 

N5b.  This problematic result is the main source of both of NHTSA’s 
claimed advantages for the Rollback:  lower economic costs (higher net 
benefits), and lower fatality rates.   

 
As another test, the available numerical output allowed us to compute estimates of a 
highly relevant economic measure for both the CAFE model and NEMS:  elasticity of 
scrappage with respect to new vehicle prices.   
 
The definition of this elasticity is:  the percentage change in scrap rates for a one 
percent increase in new vehicle prices.  For example, a value of -1 indicates that, if 
new vehicle prices were to increase by 1% (all else equal), scrap rates would 
decrease by one percent.   
 
Theory suggests that scrap rates should go down when vehicle prices increase, i.e., 
that the elasticity should be negative.  The recent literature provides elasticity 
estimates for used vehicle prices (not new vehicle prices) in the range of -0.4 to -3.  
Although it would be preferable to have them for new vehicle prices, these provide a 
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reasonable baseline for comparison.  For our purposes we use the range 0 to -3.5.  
(The fact these elasticities are generally unavailable is additional evidence 
suggesting the inappropriateness of NHTSA’s approach—see section 5.2 for more 
discussion).    
 

N5c.  The vast majority of elasticity estimates from NEMS falls into a 
reasonable range based on theory (0 to -3).  In contrast, the CAFE model 
elasticity estimates show wild variation, taking on very large values 
(both positive and negative) with about half of the values being positive 
(a violation of theory).  In other words, the CAFE model elasticity 
measures (and therefore the underlying results) are inconsistent with 
economic theory.   

 
The reasons for these violations are easily traced to previously identified problems 
based on theoretical considerations:  as a “system,” NHTSA’s economic models 
consist of single-equation aggregate-level time-series projections with almost no 
structural/behavior-related factors suggested by theory or more detailed structural 
modeling approaches (T1).  The new vehicle sales and scrappage model equations 
themselves have no structural connections that capture interactions between, e.g., 
the new and used vehicle markets (T2).  For more details, see section 3.1.2.   
 
Why does the NEMS model produce superior results that are consistent with 
economic theory?  It adopts various aspects of the modeling principles reviewed 
earlier—see section 3.4 and Appendix B for details.  
 
Concluding Comments.   
 
The analysis and evaluation in this report rigorously establish the deficiencies in the 
Agencies’ economic modeling approach, including the fact that their results violate 
the OMB requirement that regulatory analyses must be based on measures that are 
consistent with economic theory.   
 
We also provide details on the multiple reasons for these failures, which can be 
largely traced to the dynamic scrappage model.  This is very important because 
removing the scrappage model and replacing it with scrappage curves developed for 
the 2016 analysis yield benefit-cost results that reverse the conclusions in the 2018 
NPRM (even with a 20% VMT rebound rate).   
 
We also emphasize that our findings are narrowly limited in scope, and are not 
intended to imply that all other aspects of the CAFE model are problem-free.  
 
Finally, there is one other aspect of the NPRM/PRIA that bears mentioning.  A 
careful reading of the NPRM and PRIA suggests that NHTSA was fully aware of many 
of the problems and deficiencies associated with their modeling approach, yet they 
decided to proceed anyway.  This raises serious questions about why this course of 
action was taken (see section 3.6).   
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1.  Introduction 
 
On August 24, 2018 NHTSA and EPA officially published their Notice of Proposed 
Rulemaking (NPRM) for fuel economy/GHG regulations in the Federal Register.  The 
NPRM proposes to rescind the previously established regulations for 2022-2025 
(the so-called Existing standards) in favor of a policy that requires no further 
improvements after 2020 (Rollback).   
 
The NPRM, as well as a Preliminary Regulatory Impact Analysis (PRIA) and other 
documents, have been made available at 
https://www.regulations.gov/docket?D=NHTSA-2017-0069.  These lengthy 
documents include an agency analysis to support and justify the proposed Rollback.  
They include, in part, a quantitative analysis of benefits and costs that purports to 
provide a meaningful comparison of the Existing versus Rollback scenarios, and 
which alleges the Rollback scenario to be superior.  Portions of this analysis rely on 
modeling economic effects related to the future behavior of the vehicle market in 
response to the policies.  The introduction to Chapter 8 of the PRIA (page 937) 
indicates that measuring economic benefits and costs… 
 

“… are important considerations, because as Office of Management and Budget 
Circular A-4 states, benefits and costs reported in regulatory analyses must be 
defined and measured consistently with economic theory, and should also reflect 
how alternative regulations are anticipated to change the behavior of producers 
and consumers from a baseline scenario.479  In this analysis, those include vehicle 
manufacturers, buyers of new cars and light trucks, and owners of used vehicles, 
all of whose behavior is likely to be affected in complex ways by the proposed 
action to adopt less strict CAFE and CO2 emission standards for future years.”  
[Emphasis added.] 

 
The purpose of this report is to review and evaluate the economic models used by 
NHTSA to produce the PRIA/NPRM analyses and results that claim to satisfy these 
requirements.   
 
The reasons for doing this require additional context.  Over multiple cycles of 
rulemakings, NHTSA has used its own modeling system (the CAFE Compliance and 
Effects Model, also referred to as “the CAFE model” or “the Volpe model”) for 
performing a variety of quantitative analyses.3  In prior rulemakings, the CAFE 
model was largely limited to projecting how manufacturers might be able to comply 
with CAFE standards, given the feasibility and costs of using various technologies.  
In the past, the approach to addressing economics-based factors could be 
characterized as “conservative,” given the notable difficulty of modeling and 
predicting the behavior of a complex market with many stakeholders.   
 
                                                        
3 See https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-
effects-modeling-system 

https://www.regulations.gov/docket?D=NHTSA-2017-0069
https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system
https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system
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However, as will be discussed in more detail below, NHTSA has made a dramatic 
shift in its approach since the midterm review in 2016.  In a very short time period 
NHTSA made major changes to its CAFE model, incorporating never-before-used 
models for forecasting the future behavior of the vehicle market, and with no 
(readily apparent) peer review.   
 
Specifically, see USDOT-NHTSA (2018) for the most recent peer review of the CAFE 
model.  The focus of the review appears to have been primarily technology issues, 
which also was reflected in the expertise of the panel.  Although the economic 
modeling did not receive much attention, in response to one reviewer’s question 
about the likely impact on new vehicle sales of technology cost increases, the 
following response was (page 303):   
 

“The model has been updated to including [sic] procedures to estimate 
impacts on new vehicle sales, and on older vehicle scrappage. Model 
documentation will be revised to document these new methods, and a new 
Regulatory Impact Analysis will discuss the development of corresponding 
model inputs.” 

 
This peer review was published in July 2018, not long before the rulemaking.  This 
response suggests that updating the documentation and providing the materials in 
the PRIA is the first opportunity for any actual external review.4   
 
An important consequence is that the results and conclusions developed during the 
previous rulemaking have been dramatically reversed.  Further exploration reveals 
that this reversal is not due to some important new finding or additional data, but is 
a direct result of NHTSA changing its analysis approach.  Because of the direct 
impact on results and conclusions, this report begins by reviewing relevant details 
of the benefit-cost measurements involved (section 2).  Section 2 shows that turning 
off the dynamic scrappage model and replacing its results with the scrappage 
schedules recently developed by NHTSA completely reverses the net-benefit result 
reported in the NPRM, i.e. results from dropping the scrappage model show that the 
Existing standards have higher net benefit than the Rollback.   
 
This result by itself would not be consequential if, as the Agencies might contend, 
the new economic modeling approach were an “improvement” over their previous 
analysis methods.  However, this report provides a thorough review of these models 
and finds that NHTSA’s newly introduced models are wholly inadequate for their 
intended purpose, falling well below the standard articulated above.  All of the 
models rely on the application of time-series-based approaches that are appropriate 
for short-term forecasting of trends under “stable market conditions,” but are 
unlikely to satisfy the requirements for policy analysis.  
                                                        
4 A global document search for the word “scrap” located only the cited response, i.e., 
there was no other discussion in the peer review related to scrappage, which is a 
major change in modeling approach, and the primary subject of this report.   
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To be more specific, NHTSA has added three new economic models to project the 
following three behaviors:  future new vehicle sales, high-level shifts in market 
share between cars and light-duty trucks (“fleet share”), and scrappage of used 
vehicles.  These are combined to simulate evolution of the future US light-duty 
vehicle fleet.  Although all three models have clear deficiencies, our analysis 
concludes that the one with the largest impact is the “dynamic scrappage model” 
[DSM], and it will therefore be singled out for the most scrutiny.5   
 
Section 3 begins with a more detailed discussion of these models, and also highlights 
the fact that NHTSA’s development of its models seems primarily oriented toward 
ensuring that they “mathematically mimic” a phenomenon known as the 
“Gruenspecht effect.”  The models are designed to create a type of “correlation” 
between new vehicle sales and used vehicle scrappage, rather than capture 
meaningful behavioral effects and market structure based on theory.  To provide a 
well-documented baseline for what such theory-based models could look like, we 
review theory and methods for economic modeling of vehicle markets in section 3.2.  
The remainder of section 3 reviews important, relevant references in the literature 
and provides an evaluation of the dynamic scrappage model based on theoretical 
considerations.  Troubling aspects of the model development process are also 
discussed.   
 
Section 4 evaluates NHTSA’s scrappage model in more detail by using numerical 
results to directly demonstrate its multiple deficiencies.  Section 5 evaluates the 
behavior of their total “system” when simulating the future behavior of the vehicle 
market, based on a comparison of numerical results from the CAFE model and the 
National Energy Modeling System (or “NEMS,” described in section 3.4 and 
Appendix B).  This comparison reinforces and extends insights from sections 3 and 4.  
Section 6 summarizes the report’s conclusions.  
 
The critically important findings are:  the economic modeling approach produces 
results that are highly inconstant with the requirements of economic theory 
(violating Agencies’ requirements for regulatory analysis).  Although the overall 
approach is highly flawed, the specific failings of the dynamic scrappage model 
appear to be the primarily source of the errors in the regulatory analyses that 
wrongly conclude that the Rollout has higher net benefit than the Existing standards.   
 
Finally, although it requires some careful reading between the lines, the lengthy 
discussions and documentation provided in the PRIA/NPRM reveal that, in many 
                                                        
5 However, it is important to note that there are a variety of other economics-related 
issues.  For example, NHTSA has opted to use an inappropriately high estimate of 
the “VMT rebound effect” that is at odds with the most current literature, and the 
judgment of most experts.  These and other issues are outside the scope of this 
report, so any lack of discussion on other economics-related issues should not be 
interpreted as a judgment of acceptability.   
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instances, agency staff understands and recognizes that the methods employed (and, 
in particular, the data) have major shortcomings that render them inadequate for 
their intended purpose.  The primary justification offered is typically based on 
practicality:  limited access to data and other resource constraints could only 
support the type of methods that were employed.  This, and other aspects of the 
supporting material contained in the NPRM/PRIA are also discussed. (See section 
3.6.) 
 
2.  Review of Benefit-Cost Measurements 
 
As part of the earlier 2016 midterm review, EPA produced its Technical Assessment 
Report (TAR), which includes a chapter (Chapter 13) “Analysis of Augural CAFE 
Standards” performed by NHTSA using the version of the CAFE/Volpe Model 
available at that time.  The chapter’s introduction includes a review of the CAFE 
model’s history, as well as a concise and informative description of its functionality:   
 

“…NHTSA designed the model with a view toward (a) detailed simulation of 
manufacturers’ potential actions given a defined set of standards, followed by 
(b) calculation of resultant impacts and economic costs and benefits. The 
model is intended to describe actions manufacturers could take in light of 
defined standards, estimated production constraints, and other input 
assumptions and estimates, not to predict actions manufacturers will take.” 
(page 13-2)  

 
The results from item (b) were used to produce the benefit-cost comparison of the 
Augural and Rollback scenarios reproduced in Table 2-1 (Table 13-25, 2016 TAR, 
page 13-103).  The result:  The Augural standards yield $85B in net benefits over the 
Rollback scenario.  Table 2-1 shows one way that benefits and costs can be 
separated into different categories (although the sign convention can be confusing).  
The Augural standards result in higher costs (primarily technology costs), but also 
higher benefits (primarily fuel savings).  Importantly, estimated benefits outweigh 
costs under the Augural standards.   
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Table 2-1.  Excerpt from 2016 TAR:  Net-Benefit Analysis 

 
However, the net-benefit analyses in the 2018 NPRM/PRIA lead to dramatically 
different results, and an opposite conclusion (i.e., that the Rollback produces larger 
net benefits).  To demonstrate this, and to provide background on the main 
assumptions used for analyses in this report, we compute net-benefit results using 
the 2018 CAFE model.  Our analyses use the case from Table II-27 of the NPRM 
(Federal Register, page 43065, not shown here).  Economic costs and benefits are 
computed using the 2018 CAFE model in “CO2 mode” with a discount rate of 3% 
(plus some minor spreadsheet calculations).  In the remainder of this report, results 
from our CAFE model-based calculations will typically be reported for two 
scenarios:  Existing standards, and Rollback.  
 
See the first column in Table 2-2.  First, the reporting convention is different from 
Table 2-1:  All figures are reported as net benefits for the Rollback versus the 
Existing standards (equivalent to subtracting the costs for Existing standards from 
Rollback costs), i.e., a positive number indicates that the Rollback is “better.”6  
Second, we needed to confirm that we could reproduce the figures the NPRM.  After 
some experimentation, we were able to do so. 7.    
                                                        
6 The NPRM explains in detail that the Existing standards (not the Rollback) are 
used to define the policy “baseline” (see, e.g., NPRM page 43003).   
7 One challenge in performing this analysis was a lack of clarity in the NPRM and 
PRIA regarding how the results in many tables were calculated.  In this case, the 
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 CAFE Model 2016 TAR 
Tech Cost  259.8     88 
Maintenance Cost        5 
Crashes, Fatalities, Congestion, Noise        6 
Reduction in external costs from lower vehicle use    62.4  
   
Pre-tax fuel savings -143.8 -122 
Mobility Benefit  -69.5      -9 
Refueling Benefit    -9.4      -6 
   
GHG emissions    -4.7   -27 
Criteria pollutants    -0.8   -11 
Petroleum externality  -11.9     -9 
   
Total [excluding accident]    82.1   -85 
   
Total Fatal Crash Costs    94.0*  
Total Non-Fatal Crash Costs  147.0*  
   
Non-Rebound Fatal Crash Costs    46.2*  
Non-Rebound Non-Fatal Crash Costs    72.3*  
   
Net Benefits  200.7  -85 

* Only the non-rebound crash-related costs are used to compute net benefits—see the text.  
Table 2-2. Comparison of 2016 TAR and 2018 NPRM Analyses:  Estimated Net 

Benefits from Adopting the Rollback Proposal 
 
Although some basic input assumptions are not strictly the same as in the 2016 
TAR8, we compare (to the degree possible) results from Table 2-1 (with adjusted 
signs) to corresponding measures from the NPRM for purposes of illustration only.  
There are some notable differences.  The net benefit for Tech Cost (positive in both 
analyses) is much larger in the NPRM.  Although this is an important difference, it is 
outside the scope of this report:  We do not evaluate the portion of the CAFE model 
that simulates manufacturers’ technology choices.  All of the remaining differences 
are due to changes in NHTSA’s approach to modeling vehicle-related market 
behavior.   
                                                                                                                                                                     
CAFE model was run with the “Fleet Analysis” option turned on, and results from 
the Annual Societal Costs output file were filtered to include MY1977-2029, and 
Calendar Year less than 2070 (corresponding to a 40 year lifetime for MY2029 
vehicles).  This allowed us to reproduce the figures published in the NPRM for the 
case we are using.  Our result ($200.7B) matches the NPRM result in Table II-27.  
However, NPRM Table VII-51 (the same results using a different format) reports 
$200.8B.   
8 The base year and vehicle fleet in the 2016 TAR are 2015, versus 2016 in the 
current CAFE model.  Some economic projections (e.g., GDP growth, fuel price 
projections) are not going to be exactly the same.  As noted in the text, our computer 
runs use CO2 mode rather than CAFE mode.   
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Other notable differences between the NPRM and 2016 TAR are the crash-related 
costs.  In the 2016 TAR, costs due to crashes, congestion, and noise are combined, 
resulting in a relatively small number.  However, in the NPRM crash-related costs 
are much larger.  The reasons for this will be clearly established later in the report.   
 
However, the crash-related costs raise an issue related to an economic “parameter” 
that that must be discussed for purposes of completeness:  the rebound effect.  
According to economic theory, if the cost of a good (or service) goes down (all else 
equal), then demand for it will go up.  If fuel economy for new vehicles goes up (e.g., 
due to the regulation), then the per-mile cost of driving goes down.  Theory 
therefore suggests that new vehicle purchasers would be expected to drive more 
miles (than they would have otherwise).  This increase in driving (were it to occur) 
is the rebound effect.  
 
Assuming that the rebound effect produces increased driving for certain individuals, 
this means that their expected number of crashes goes up.  However, it must be 
recognized that this increase in crashes will have occurred because drivers decided 
they would be better off by driving more.  Therefore, any crashes associated with 
these extra miles are due to consumer choice.  Consumers are assumed to take this 
risk into account when making their decision to drive more miles.  Therefore, any 
costs associated with these crashes are not directly attributable to the regulation 
that caused the increase in fuel economy.  For this reason, only “non-rebound crash 
costs” are included in the regulatory analyses.   
 
One final remark about the rebound effect:  The Agencies’ analysis in the NPRM 
assumes a value that in our judgment is too high (based on recent publications 
and expert opinion).  For example, see Gillingham (2018).  He concludes that the 
range of central estimates is 8.1% to 14.1%, where the 8.1% is arguably 
preferred because it is based on a methodology that uses two odometer readings.  
A reasonable estimate would therefore be 10% (which happens to be the value 
used in the 2016 TAR).   
With this as background, we now explore the role NHTSA’s new economic modeling 
approach plays in determining the NPRM net-benefit results.  The CAFE model 
includes options for turning off various modules, and, in addition, values in the 
parameter input file can be changed to produce alternative sets of results.   
 
Table 2-3 shows results from different CAFE model runs with two key effects turned 
on and off:  the rebound effect, and the dynamic scrappage model.  When the 
rebound effect is turned off there is some reduction in net benefit for the Rollback 
standard (but not especially large).   
 
However, when the dynamic scrappage model is turned off, net benefit switches from 
positive to negative, i.e., the Existing standards provide more net benefit than the 
Rollback ($14.3B).  This is true even though the 20% rebound has been left in place.  
When both are turned off, the net benefit of the Existing standards increases by 
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another $25B (roughly what would be expected from the difference in results 
between the first two columns).  Using our preferred rebound effect of 10%, the 
Existing standards yield a net benefit of $27.8B over the Rollback (full figures not 
shown).   
 
 Reference 

Case 
No 
Rebound 

No Dynamic 
Scrap 

No Rebound + 
No DS 

Tech Cost 259.8 259.8 259.8 259.8 
Pre-tax fuel savings -143.8 -194.0 -185.1 -230.7 
Mobility Benefit -69.5 0.0 -63.7 0.0 
Refueling Benefit -9.4 -11.9 -9.9 -12.2 
     
GHG emissions -4.7 -6.3 -6.1 -7.6 
Criteria pollutants -0.8 -4.1 -7.1 -10.2 
Petroleum externality -11.9 -16.0 -15.2 -18.9 
Reduction in external costs from 
lower veh use 

62.4 27.9 
25.7 -6.8 

     
Total [excluding accident] 82.1 55.4 -1.5 -26.4 
     
Total Fatal Crash Costs 94.0 46.2 40.1 -5.0 
Total Non-Fatal Crash Costs 147.0 72.3 62.7 -7.8 
     
Non-Rebound Fatal Crash Costs 46.2 46.2 -5.0 -5.0 
Non-Rebound Non-Fatal Crash 
Costs 

72.3 72.3 
-7.8 -7.8 

     
Net Benefits 200.7 174.0 -14.3 -39.2 
* Only the non-rebound crash-related costs are used to compute net benefits—see the text.  

Table 2-3.  The Impact of Rebound and Dynamic Scrappage Effects  
on NPRM Net Benefit Results From CAFÉ Model 

 
Similar explorations for the other two components of NHTSA’s new economic 
modeling approach (new vehicle sales, and dynamic fleet share) revealed that (in 
contrast to dynamic scrappage) they have relatively little impact on the bottom-line 
net-benefit results.  For this reason, the dynamic scrappage model receives most of 
the attention in our evaluation.     
 
To summarize:   

This exercise demonstrates the critical role played by the dynamic scrappage 
model in determining the outcome and conclusions of the NPRM regulatory 
analysis9.   

                                                        
9 The difference in Tech Costs between the Existing and Rollback scenarios are much 
larger than in the 2016 TAR, and (according to Table 2-3) are unaffected by the 
behavior of the vehicle market.  If these turn out to be too large, then the net benefit 
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To elaborate further:  When the dynamic scrappage model is turned off, the CAFE 
model reverts to using scrappage projections developed by NHTSA very recently.  
More specifically, these were used in the 2016 TAR only a short time ago, so they 
represent their most recent approach to determining scrappage rates prior the 
current rulemaking.  Because the impact of this modeling change is not only large 
but also consequential, it is clear that the decision to make such an important 
change must be the correct one.  But, how can this be evaluated?   
 
The Agencies’ requirements for performing regulatory analysis were reviewed in 
the introduction, and are useful for identifying evaluation criteria related to this 
type of economic modeling, which is technically challenging, and requires expertise 
in multiple areas.  Within this context, considering the range of issues involved 
suggests the following initial questions:   
 

1.  How suitable is NHTSA’s dynamic scrappage model when evaluated from 
the perspective of economic theory and/or methods that have been previously 
established in the literature?   
 
2.  Do the methods, data, and other factors employed by NHTSA yield a 
dynamic scrappage model that produces credible and reasonable results?   
 
3.  Given that the scrappage model is a statistical model whose parameters 
are estimated based on historical data, what are the implications for this 
model’s performance with respect to the precision and accuracy of its 
forecasts?   
 
Specifically, even under ideal conditions, such models produce predictions 
that are subject to a certain amount of statistical error.  How large is this 
error?  And, when these errors are propagated through the rest of the CAFE 
model, what is the impact on the final results?   

 
This report provides answers to the first two questions, as well as most of the third. 
For the third question, section 4 investigates the issue of statistical error, and the 
precision of predictions from the scrappage model.   
 
The very last question in item 3 (error propagation) raises the concern of how the 
final cost estimates produced by the CAFE model will be affected when a statistical 
model with prediction error (such as the dynamic scrappage model) is embedded 
within it.  This issue is a relatively complex one, and during our investigation we 
produced some preliminary results on this subject.  These are discussed separately 
in Appendix A to emphasize that they are in no way required to support the main 
conclusions in this report.  At the same time, we wanted to document the potential 
impact of this issue, and highlight the fact that it is one of many that should have 
                                                                                                                                                                     
differences in favor of the Existing standards would be even larger.  However, this 
issue is outside the scope of this report.   
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been the subject of rigorous testing and validation before deciding to use this model 
for an important regulatory analysis.   
 
 
3.  Economic Modeling of Consumer Vehicle Markets for Policy Analysis 
 
This section includes background material on theory and methods for economic 
modeling of consumer vehicle markets in the context of performing policy analysis.   
The purpose is to establish a well-documented basis for evaluating NHTSA’s new 
models.  However, before presenting this material, sub-section (3.1) reviews 
additional details of NHTSA’s models so they are available for consideration while 
reading the remainder of the section.  In addition, an economic argument known as 
the “Gruenspecht effect” has had a major influence on NHTSA’s modeling decisions, 
so it is also reviewed.   
 
Section 3.2 reviews a modeling framework due to Berkovec (1985), which provides 
a representative example of an approach with features suitable for policy analysis.  
It consists of an integrated system of models based on sound behavioral theory and 
economic principles.  In fact, it was specifically created to address the problem 
considered here:  simulating the response of vehicle markets to policy interventions 
such as fuel efficiency standards.   
 
However, fully implementing this type of modeling system might be impractical for 
many analysts.  Model development almost always requires making decisions on 
which simplifying assumptions to adopt, where the usual tradeoff is “improved 
behavioral realism” versus “reduced data and computational requirements.”  
Analysts frequently adopt simpler (less realistic) models when faced with practical 
limitations.  However, correctly evaluating which simplifying assumptions are 
acceptable requires a clear understanding and application of underlying theory.  
When faced with practical obstacles, one possible approach would be to start with 
an established and well-understood modeling framework with good theory-based 
properties (like Berkovec’s), and develop alternative options by applying 
simplifying assumptions to the framework.  This would clarify the theoretical 
implications of making tradeoffs, including what might be unacceptable.   
 
In this way, section 3.2 also serves to provide a baseline for comparing models in 
this report.  The remainder of the section is devoted to reviewing specific models 
and research results from the literature that are directly relevant to various aspects 
of NHTSA’s modeling approach (particularly with respect to scrappage).  Section 3.3 
reviews the aggregate-level vehicle market forecasting approach of Greenspan and 
Cohen (1999).  This is highly relevant, since it is directly comparable to what NHTSA 
is attempting to do with its approach.  Section 3.4 provides background on NEMS 
from the EIA.  [Add more here.]   
 
Finally, section 3.5 discusses aggregate scrappage models in more detail, and 
summarizes research results from two recently published articles:  Bento, et al. 
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(2018), and Jacobsen and van Benthem (2015).  Both references specifically 
comment on the Gruenspecht effect.  Notably, the NPRM and PRIA explicitly cite all 
three references reviewed here, indicating at least some level of awareness of the 
modeling approaches and research findings in these references.   
 
3.1.  NHTSA’s Economic Models and the Gruenspecht Effect 
 
As discussed in section 2, previous versions of the CAFE model prior to the current 
rulemaking were primarily focused on manufacturers’ decisions on which fuel-
saving technologies to add to their vehicles at the time they are redesigned.  Because 
the simplest version of NHTSA’s responsibility is to set fuel economy standards to 
levels that are “maximum technically feasible,” it makes sense that developing 
technology databases and algorithms for simulating future compliance pathways for 
manufacturers in response to regulations would be of paramount importance.  
Accordingly, NHTSA has developed a highly detailed representation of this process, 
which we will refer to as the Manufacturer Decision Model (or MDM).  This is a 
significant model of economic behavior in its own right.   
 
However, recall that the CAFE model’s other main function is to compute the 
estimated impact of these decisions on economic costs and benefits (to produce 
analyses shown in, e.g., Table 2-3).  Computing these measures requires some 
representation of future consumer behavior in the vehicle market.  For example, 
computing pre-tax fuel savings requires an estimate of how many vehicles are on 
the road, the distribution of ages, fuel efficiencies and fuel types within the fleet, 
how far they are driven, and the cost of fuel.  There is a wide range of options for 
how these “consumer demands” might be modeled, which is the subject of later 
sections.  
 
However, we first discuss the vehicle “supply side” in more detail.  The vehicle 
market is highly differentiated, i.e., it provides a large number of offerings to 
consumers (who vary widely in their needs and tastes).  The CAFE model maintains 
a representation of new vehicle offerings at a relatively complete level of detail.  The 
model is initialized using an observed vehicle fleet for a specific base year.  Model 
Year 2016 is the current base year with over 1600 vehicle offerings, fully 
characterized in terms of their prices, technologies, attributes, and specifications.   
 
An individual consumer’s decision options for participating in the new vehicle 
market are represented in Figure 3-1.  The top-level decision is whether or not to 
“Buy a New Vehicle.”  The “No Buy” option subsumes all other options, e.g., 
participating in the used vehicle market, or keeping the current household fleet.  A 
more detailed treatment would explicitly represent both the new and used vehicle 
markets (as discussed in the next section), and additional details on transaction 
option (e.g., replace a currently held vehicle, add a vehicle, dispose of a currently 
held vehicle).   
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Figure 3-1.  Consumer Decision Options in the New Vehicle Market 
 
The entire section of the tree under the “Buy a New Vehicle” branch is how the 
supply side of the market is represented inside the MDM.  During a CAFE model run, 
the MDM simulates manufacturers’ choices about what new technologies to add to 
their vehicles in each future model year over a specified range (e.g., from 2017 to 
2050).  Each specific vehicle can only be redesigned in certain years.  A vehicle’s 
current “price” is estimated as the base year price plus all accumulated incremental 
costs from adding technology (i.e., costs are passed on to the consumer).  
Technology is added to keep the manufacturer in compliance with fuel 
efficiency/emissions regulations, so these are referred to as compliance costs.   
 
For each year, an algorithm determines what technologies to add (and to which 
vehicles) so that each manufacturer’s compliance cost increases are minimized10.  
This means that both the selling price and the fuel efficiency of each redesigned 
vehicle will change from the previous year.  In the real world this would be expected 
to cause sales shifts, because consumers would change their purchase decisions in 
response to the changes in the vehicles offered in the new vehicle market.  However, 
this is not addressed by the MDM algorithm due to the complexity it would 
introduce.   
 
Another consideration is that, in the real world, manufacturers do not necessarily 
need to add technology to achieve compliance:  they can use pricing strategies to 
create sales shifts among their vehicles, i.e., they can use cross-subsidization.  In this 
case, because they can decide on both redesign and pricing, they could make these 
decisions so as to maximize profits (rather than minimize costs) subject to 

                                                        
10 This is actually an oversimplification, but is sufficient for illustrative purposes.   
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compliance with the regulation.  As before, this would require the MDM to anticipate 
what sales shifts would occur in response to changes in vehicle offerings by the 
entire industry.   
 
However, this another way of saying:  NHTSA does not have the capability of 
modeling consumer response to changes in vehicles at the individual vehicle level.  This 
is the type of consumer choice modeling discussed in section 3.2.   
 
In fact, in previous versions of the CAFE model there were no attempts to directly 
simulate consumer response from within the CAFE model at all.  Instead, NHTSA 
relied on fixed projections of future vehicle market behavior from multiple sources 
for the purpose of performing the required economic cost and benefit calculations.  
While this might possibly be less than ideal, this approach is only a problem if, in the 
real world, there notable differences in future market behavior occur under different 
regulation scenarios, and, moreover, that these differences would be large enough to 
compromise the validity of the net benefit comparisons.   
 
However, for the current NPRM, NHTSA abandoned its previous approach in favor 
of a new approach that uses the three models to be discussed section 3.1.2.  As will 
be discussed, these three models are extraordinarily limited in terms of their 
aspirations to model consumer response.  For example, they have no capability of 
modeling the types of sales shifts discussed above.  So, why were they introduced?   
 
One early finding of our review was that, when developing these models, NHTSA’s 
primary motivations appears to have been finding a way to introduce the so-called 
“Gruenspecht effect” into its CAFE model.  Numerous references to, and discussions 
of, this effect appear throughout the NPRM and PRIA documentation.  Given this 
finding, we define and explain this effect before moving to other material.   
 
3.1.1  The Gruenspecht Effect  
 
When economists think about the potential impact of a public policy, they are often 
on the lookout for possible “unintended negative consequences,” whereby a policy 
might “backfire” in some way so as to be (at least partially) self-defeating (e.g., the 
rebound effect).  The existence of such effects are usually easily justified on the basis 
of high-level theoretical arguments, although empirically proving their existence and 
measuring their size are much more difficult (and frequently the source of 
controversy).   
 
One such effect that may arise in discussions of new vehicle emissions regulations11 
is often attributed to Gruenspecht (1982, 1983), which follows this change of logic:    
 

                                                        
11 These are an example of so-called “differentiated regulation,” because, e.g., used 
vehicles are not subject to the same regulations as new vehicles.   
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Regulation of new vehicle emissions increases their manufacturing cost, 
pushing new vehicle prices higher.  Higher new vehicle prices causes lower 
demand for new vehicles, and therefore higher demand for used vehicles.  
Higher used vehicle demand pushes used vehicle prices higher, i.e., they have 
higher market value.  When used vehicles are worth more, they stay on the 
road longer and are scrapped at lower rates.  This causes an increase in the 
emissions that were originally targeted by the regulation.   

 
There are a number of things to consider here.  First, this is a ceteris paribus 
argument, i.e., it requires every other factor to remain unchanged.  Even if 
regulation adds costs to new vehicles, ongoing economic growth and other 
technological advances could cause new vehicle demand to keep rising.   
 
Second, and more important in our view:  The above argument is frequently applied 
to the case of fuel economy/greenhouse gas regulations, and ignores the fact that 
vehicle costs are increasing due to a required improvement in a vehicle attribute 
that has value to consumers.  One possible reason for this error is a failure to 
recognize that Gruenspecht’s original argument was formulated in the context of 
criteria pollutants, not fuel economy/GHG!   
 
To clarify:  Starting in the 1970’s federal emissions standards for criteria pollutants 
(e.g., hydrocarbons, CO, and NOx) were established for new vehicles sold in the 
United States.  Manufacturers were required to add emissions mitigation 
technologies to their vehicles (e.g., catalytic converters) that provided only public 
benefits while imposing multiple types of private costs.  This requirement (1) drove 
up manufacturing costs that (to some degree) were passed on to consumers in the 
form of higher prices, (2) compromised the performance of some vehicles, and (3) 
increased average maintenance costs.   
 
However, the case of fuel economy/GHG emissions has the important difference 
noted above.  Nevertheless, the Gruenspecht effect argument is frequently repeated 
almost verbatim as though the two contexts were identical. There are multiple 
problematic references of this type in the NPRM and PRIA (to be discussed later).  
But more concerning is that this same error has effectively been incorporated into 
one of NHTSA’s economic models, as discussed in the next section.   
 
3.1.2  More on NHTSA’s 2018 Economic Modeling 
 
Recall that for the current rulemaking NHTSA added three new (sub-)models to its 
CAFE model:  new vehicle sales, dynamic fleet share, and dynamic scrappage.  All 
three are aggregate-level time-series forecasting models.  For reasons described in 
section 2, this report focuses primarily on the dynamic scrappage model, with some 
discussion of new vehicle sales, and no further exploration of dynamic fleet share.   
 
There are actually three different versions of the model to provide aggregate-level 
scrappage rates for each of three vehicle types:  Car, SUV/Van, and Truck.  Although 
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these are technically three different models, we will refer to “the dynamic scrappage 
model” for ease of presentation.  Similarly, there are separate vehicle-type-specific 
models for new vehicle sales.   
 
One shorthand depiction of the two models is as follows:   
 

      (1) 
 

    (2) 
 
where MSRPs are manufacturer suggested retail prices for the 1600+ vehicles in the 
2016 base year fleet,  is the incremental compliance cost for all technologies 
added to the 2016 vehicle, and CPM is a measure of fuel cost per mile.  The 
remaining three variables are macroeconomic indexes:  GDP (gross domestic 
product), LFP (labor force participation), and Int (a measure related to interest 
rates).  The subscript t denotes a time period (i.e., year).  As indicated above, 
average measures across all the vehicles in a given fleet are used as explanatory 
variables.   
 
The technical limitations of these models of these models should be obvious when 
contrasted with, e.g., the idea of forecasting sales shifts for individual vehicles 
discussed earlier in this section.  Specifically, the highly aggregated nature of these 
models is clearly a potential limitation (e.g., not enough detail and/or structure to 
capture realistic behavior).  Another concern is that the time-series approaches 
employed by NHTSA, while perhaps suitable for short-term extrapolation of existing 
trends under stable market conditions, are inappropriate for policy analysis (for 
reasons to be discussed in later sections).   
 
However, to conclude here, we focus on NHTSA’s decision to use these models, and 
how its apparent relationship to the Gruenspecht effect.  Recall that the Gruenspecht 
effect is only concerned with high-level aggregate behavior as described in the 
previous section.  The “chain of logic” begins with the hypothesis that regulations 
create “price increases” that dampen new vehicle sales.  Recall also our admonition 
that the Gruenspecht effect (as frequently stated) ignores the accompanying 
improvement in fuel economy.  It so happens that the only vehicle attribute included 
in the aggregate new sales model is a proxy measure for “new vehicle price increase.”  
As in the misapplication of the Gruenspecht effect argument, fuel economy 
improvement is ignored in their model12.  
 
                                                        
12 To be fair, NHTSA would argue that it could not find a “statistically significant 
effect” associated with fuel economy improvement.  However, this fact is primarily 
consistent with the many problems associated with their approach, not evidence 
that consumers do not care about fuel economy (which is known to be false based 
on the huge literature on this topic).   
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With regard to scrappage:  Recall that the complete chain of logic suggests that 
higher new vehicle prices (due to tighter regulations) eventually result in lower 
scrappage rates.  NHTSA attempts to reproduce this effect by directly including “new 
vehicle prices” in their scrappage rate equations.  But, this is not an actual 
implementation of the behavioral effects enumerated in the statement of the 
Gruenspecht effect.  This appears to be an attempt to ensure that, taken together, 
the two models might “mathematically mimic” the overall behavior hypothesized by 
the Gruenspecht effect.   
 
To be clear:  The best that can be said is that, because the two models share a new 
vehicle price-related variable in common, the outputs of these models might 
somehow be correlated.  In this regard, a widely known admonishment in 
introductory quantitative analysis courses is:  “Correlation is not causality.”  As will 
be shown in section 5, this “stitching together” of two models via a correlation 
mechanism is insufficient to produce vehicle market behavior that is consistent with 
economic theory.   
 
The material in the next section will help clarify how behavioral effects can be 
correctly captured using theory-based modeling approaches.    
 
3.2.  Economics-based Modeling of Vehicle Market Behavior:  Berkovec (1985)  
 
The Berkovec modeling framework is reviewed here because it is a good example of 
a theory-based structural modeling approach for the specific problem we are 
addressing:  Economic modeling of vehicle market behavior.  His motivation (as 
described in the paper’s introduction) is to evaluate policies that   
 

“…work in similar ways on the automobile market in that they modify the 
attributes (including prices) of the new vehicles available to consumers, 
thereby leading to different consumer purchases of new vehicles.   
 
 The complexity of the automobile market makes it difficult to evaluate the 
effects of these policies, especially in the short run.  Automobiles are highly 
differentiated durable goods with variable lifetimes.  If an ‘improvement’ (e.g., 
fuel efficiency) is mandated in the offerings of new cars at sufficiently high 
cost, it will induce a demand shift away from new vehicles and cause existing 
vehicles to be more highly valued and longer lived.  This may cause the fuel 
efficiency of the vehicle stock to fall in the short run if older cars are 
sufficiently less efficient than new cars.  Empirical estimates of market 
response are needed to evaluate the effectiveness of regulations.”  [Emphasis 
added.] (Berkovec 1985, pp. 195-196.)  

Italics were added to identify his concern about the possibility of a type of 
Gruenspecht effect.  However, we further emphasize in bold some phrases to 
highlight the care with which this statement was made.  Note that his version does 
not assume that increases in manufacturing costs (due to regulation) will 
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automatically cause used vehicle scrappage rates to decline.  The outcome depends 
on the details of other factors.   
 
Proceeding to his framework:  The two main economic actors are Households and 
Manufacturers13.  
 
The specific structure and features are as follows14: 
 
• Overall automobile market behavior is captured for a sequence of 

interconnected time periods.   
• Vehicles enter the market via annual offerings from Manufacturers.  
• Vehicles exit the market by being scrapped.   
• In each period, Households decide how many vehicles to own, and which ones 

(e.g., which vehicle classes, whether they are new or used, and if used, what 
vintage(s)).   

• Changes in Household vehicle holdings are captured when going from one 
period to the next.   

• Households make decisions based on their vehicle preferences.   
o Vehicle preferences are based on vehicle attributes (e.g., capital cost, fuel 

operating cost, vehicle type and size) 
o They can vary across household types due to differences in household 

characteristics (e.g., income, household size, age, education, employment 
status, residential location).   

• An economic equilibrium occurs that balances supply and demand for vehicles 
in each period.   

• Equilibrium is achieved through the setting of market-clearing prices for all 
vehicles.   

 
There are T time periods, indexed by t = 1,…,T.   
 
In every period t there are N vehicle ‘types’ available.  Vehicles vary by vehicle class, 
indexed by j = 1,…, J, and vehicle age, indexed by a = 0,…, A (i.e., vehicles of age a = 0 
are new vehicles).  For simplicity, we assume that all classes are available in all 
periods, and that vehicles of age A in period t are retired (scrapped) in period t+1.  
This means that in any period the total number of classes N = J*(A+1), and that a 
vehicle type can be alternatively represented by n = aj.   
 

                                                        
13 In the real world, many businesses and governmental entities also purchase light-
duty vehicles.  However, when discussing economic modeling, these are frequently 
ignored.  However, see section 3.3.   
14 Selection of which modeling features to include is a matter of professional 
judgment, determined by factors such as the purpose of the model, data availability, 
etc.  For example, this framework excludes details such as decisions on the use of 
public transportation, and how far to drive each vehicle.   
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For each time period t, define the following: 
 Pt = the vector of prices for the N vehicles;  
 Xt = a matrix of vehicle characteristics;  
 Zt = a matrix of household characteristics.  
 
The key (aggregate) market quantities are defined as follows15: 

Rajt(Pt, Xt)  = number of vehicles of age a and class j being scrapped (or 
    retired) during period t;   

Dajt(Pt, Xt, Zt)  = consumer demand for vehicle aj in period t;  
Sajt(Pt, Xt, Zt)  = production quantity of vehicle aj in period t;  

   = existing stock of vehicle aj in period t.  
 
The general equation balancing supply and demand is [Berkovec (1985, equ. 1)]:   
 

Sajt(Pt, Xt) +  = Rajt(Pt, Xt) + Dajt(Pt, Xt, Zt)  for all a, j.    (3) 
 
However, additional considerations place some limitations on what values are 
allowed.  During period t the existing stock of new vehicles is 0, i.e., Q0jt = 0.  Similarly, 
the only non-zero values for Sajt(Pt, Xt, Zt) occur when a = 0.  Finally, for our purposes 
we also assume that only vehicles in existing stock can be scrapped during period t, 
i.e., Rajt(Pt, Xt) = 0.  Given these restrictions, (3) can be rewritten as:   
 
 S0jt(Pt, Xt) = D0jt(Pt, Xt, Zt)     for all j,   (4a) 
        = Rajt(Pt, Xt) + Dajt(Pt, Xt, Zt)   for all a > 0, j.  (4b) 
 
The aggregate demand from households during period t becomes the total vehicle 
stock for period t+1, i.e.,  = Dajt(Pt, Xt, Zt).  This aggregate demand is 
determined by adding up results from more detailed behavioral models that 
“simulate” vehicle-related choices by many different household types.  This can be 
shown by decomposing the matrix (Zt) into individual vectors of characteristics for S 
household segment (i.e.,  for s = 1,…, S), so that aggregate demand is given by:  

   for all a, j.    (5) 

 
The features discussed thus far are depicted in Figure 3-2.   
 

                                                        
15 Berkovec’s framework also includes a numeraire good (“money”) that represents 
the value of all other goods in the economy (denominated in dollars).  This can be 
used to represent income for households, household expenditure on non-vehicle 
goods, inputs (investment) to pay for materials used in producing vehicles, and 
manufacturer profits.  In addition to vehicle supply and demand, total money supply 
is balanced in the system.  We omit this feature for simplicity.   
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Manufacturers and Vehicles.  The tree structure inside the Manufacturers box 
represents the detailed vehicle offerings corresponding to Figure 3-1.  The multiple 
arrows leaving the right-hand boundary denote that all of these individual vehicle 
offerings are made available to Households.  The flow of supply to the Households is 
denoted by the second set of arrows, accompanied by S0jt(Pt, Xt).  Households have 
full information on prices and vehicle attributes.   
 
Vehicle Stock.  Although Households own previously purchased vehicles, Vehicle 
Stock is represented separately to model the used vehicle market.  The multiple 
trees depict used vehicles of previous model years.  In addition to new vehicle 
supply S0jt(Pt, Xt), current used vehicles  (a = 1, …, A) can be bought, sold, or kept 
during period t.   
 
Household Demand and Scrappage.  Figure 3-2 shows S Household segments, each 
with different preferences (assumed to be determined by their demographic vector 

).  Each Household type has a demand for all vehicle classes and ages (with j 
suppressed), and total demand is determined by equation (5).  When Household 
segments determine their vehicle ownership, some vehicles are purchased new, 
some are purchased used, some used vehicles are sold, and some are scrapped 
(Rajt(Pt, Xt)).  At the end of period t, the Vehicle Stock is updated for period t+1 ( ). 
 
In going from period t to t+1, Manufacturers redesign their vehicles for the next 
model year, and Households are “aged” based on demographic and economic trends.  
As already described, in Berkovec’s framework a vector of prices is identified that 
clears the market.  Demand shifts occur in each period due changes in many possible 
factors:  the distribution of household types, the vehicle attributes of new vehicle 
offerings introduced by manufacturers, fuel prices, the characteristics of the 
remaining used vehicle fleet, etc.   
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Figure 3-2.  Berkovec (1985) Vehicle Market Modeling Framework 

 
There are many modeling options for determining the various quantities 
represented in Figure 3-2, some of which we discuss now.  
 
Household Choices.  Household demand ( ) can be simulated using 
discrete choice models.  There are many possible approaches.  One approach (called 
a holdings model) is to treat households as “re-deciding” what vehicles to own in 
each year.  Multiple decisions can be depicted using a tree structure.   
 
See Figure 3-3: The top-level choice is whether to own 0, 1, or 2 vehicles16.  Under 
the branches for 1 or 2 vehicles, additional choice options are enumerated as vehicle 
“portfolios”.  Under the branch for 1-vehicle, one could imagine two additional 
branches:  new or used.  Under “new” would be an additional tree structure (as in 
Figure 3-1).  Under “used” there would be A additional trees (for ages a = 1,…, A).  
Alternatively, all possible combinations of vehicle options could be depicted (as in 
Figure 3-3, which provides two example portfolios under each branch for 1 and 2, 
respectively.)   
 
Discrete choice models are estimated based on, e.g., data on actual household 
vehicle ownership from a survey.  They compute the probabilities for all branches at 
the “bottom” of the tree.  Berkovec (1985) uses this approach, and can be consulted 
                                                        
16 Although 0-vehicle households clearly exist, they are frequently omitted for 
practical reasons.   
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for more details.  The literature on discrete choice models is voluminous, but one 
reference devoted to this type of vehicle choice modeling is Train (1986).   
 
              

 0 vehicles   1  vehicle     2 vehicles  

              

              

              

None  2017 
Two-
Seater 

 2012 Small 
SUV 

 2012 Two-
Seater + 
2015 
Minivan 

 2013 
Subcompact+ 
2017 Large SUV 

 
Figure 3-3.  Nested Decision Structure for a Household Holdings Model   

 
As has been described previously, preferences are a function of household 
characteristics and vehicle attributes.  These are typically represented by a “utility 
function” with weights to represent their relative importance.  For example, in 
Berkovec (1985) he estimates a vehicle type choice model for 1-vehicle households.  
The coefficient for expected vehicle capital cost (in thousands) in the case of low-
income households is -2.24, and for high-income households is -0.653 (indicating 
they are less price sensitive).  The coefficient of fuel operating cost (in cents per 
mile) is -0.199.  All of these coefficients are negative, indicating that higher values 
lower the utility of the vehicle option.  Similarly, the coefficient on age is negative, 
and the coefficient on a “seat space” variable is positive, with a higher coefficient for 
larger households (5 or more members).  
 
An important point to emphasize about this approach is:  Demand for new and used 
vehicles is explicitly addressed in terms of bottom-up household choices that 
include their decisions about owning new versus used vehicles (which are 
substitutes), and these decisions are determined on the basis of full information on 
prices and vehicle attributes for all possible available options.   
 
Scrappage.  As shown in equation (3) and Figure 3-2, a complete model for the 
vehicle market takes into account how used vehicles are eventually 
scrapped/retired.  One approach is to ensure that scrappage is somehow inferred as 
part of the Household decision process (e.g., when demand for old vehicle type is 
less than supply, then the remainder are scrapped).  Another approach is to 
explicitly model scrappage (a Berkovec does).  The subject of scrappage models is 
obviously a critical one for this report, and a more detailed discussion of scrappage 
models appears in section 3.5.   
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Manufacturer Decisions.  For completeness, we review here the range of possible 
manufacturer decisions (see section 3.1) that could be incorporated into a 
behavioral model.  The CAFE model focuses on redesign decisions, where 
manufacturers add fuel saving technologies to comply with emissions standards.  
Pricing strategies are also a possibility, but these are not included in the CAFE model.   
 
In the above framework the equilibrium process ultimately determines the prices, 
and these could be viewed as conditional on manufacturers’ design decisions.  
However, in theory, manufacturers would have full information about the existence 
of both the equilibrium mechanism and household choice models, so it could 
determine exactly what demand shifts would occur in response to redesign 
decisions.  This would allow manufacturers to evaluate whether or not their 
decisions would result in compliance, and also allow them to optimize their 
decisions on the basis of some specified criterion (e.g., profit maximization or cost 
minimization).  For an example of a modeling approach that includes both design 
and pricing decisions by manufacturers, see Liu, Greene, and Bunch (2014).   
 
However, such models are rather complicated.  In fact, the system actually 
implemented by Berkovec assumes a short-run planning horizon, i.e., manufacturers’ 
design decisions are assumed to have already been made:  production quantities 
and prices are therefore determined by the supply and demand process alone.  
However, the framework itself does not preclude more complex versions of the 
manufacturer decision model.   
 
Having commented on this issue, there are practical alternatives for evaluating 
policies that do not require a complex manufacturing decision model.  A demand-
oriented model using the Berkovec framework can be used to perform iterative 
scenario analyses, where a user supplies possible design decisions and then 
simulates the outcomes.  This is the approach used with the CARBITS model 
developed for the California Air Resources Board, and the DynaSim model used by 
the California Energy Commission for its biannual transportation demand energy 
forecast—see, e.g., Bunch (2009).   
 
Remarks.  The purpose of providing this background is to demonstrate what a 
theory-based modeling approach for analyzing regulatory options that meets the 
OMB requirements in the Introduction would look like.  There is large and well-
established literature on this subject.  
 
While we recognize that such a model could be difficult to implement for some 
researchers, note that most aspects of the framework in this section are incorporated 
into the models mentioned above (CARBITS and DynaSim).  At the start of this section, 
we quoted Berkovec’s goal of addressing the need simulate whether or not a 
“Gruenspecht effect” might occur in response to vehicle emissions regulations as a 
motivation for this framework.   
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From reading Chapter 8 in the PRIA, the Agencies are very forthcoming about their 
goal of producing such an effect in their analyses.  In an effort to support and justify 
these efforts, the NPRM contains a section entitled “Models of the Gruenspecht 
Effect Used in Other Policy Analyses” (NPRM, page 43094, column 3).  Here is an 
excerpt:   
 

“This is not the first estimation of the ‘Gruenspecht Effect’ for policy 
considerations. In their Technical Support Document (TSD) for the 2004 
proposal to reduce greenhouse gas emissions from motor vehicles, California 
Air Resources Board (CARB) outlines how they utilized the CARBITS vehicle 
transaction choice model in an attempt to capture the effect of increasing 
new vehicle prices on vehicle replacement rates.”   

 
The Agencies do not identify any other models in this category (only CARBITS).  
Their apparent purpose in citing CARBITS is to provide some justification and 
support for their own attempt to create a model that might produce a "Gruenspecht 
Effect”:   
 

“The CARB study captures the effect on new vehicle prices on the fleet 
replacement rates and offers some precedence for including some estimate 
of the Gruenspecht Effect.”   

 
However, their description of CARBITS (while correct in some respects, but 
incorrect in others) is one that most readers will not understand the implications of:  
CARBITS is a bottom-up structural model of the type discussed in this section, 
capable of capturing household behavior in response to regulations in a manner that 
is consistent with economic theory.  It was specifically designed to do a good job of 
analyzing alternative regulations by adhering to sound, theory-based modeling 
principles.   
 
Because I am the designer of CARBITS, I can definitively say that the model was not 
specifically designed or intended to “capture the effect of increasing new vehicle 
prices on vehicle replacement rates.”  The intent of CARBITS was to simulate the 
behavior of the new and used vehicle market in California under alternative 
scenarios.  Because new vehicle price increases would also be accompanied by other 
attribute improvements (fuel economy, but perhaps others, depending on 
technology forecasts), and because of the large amount of preference heterogeneity 
across households captured by the model, there would be no way to know in 
advance exactly what the market response would be.    
 
In contrast, the NHTSA models described in section 3.1 do not adhere to these same 
principles, so the existence of CARBITS is in no way a justification of their approach 
(in fact, just the opposite).  Before moving to a more detailed evaluation of NHTSA’s 
models based on the material in this section, we review other relevant references in 
the literature.   
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3.3.  Aggregate-level Vehicle Market Forecasting: Greenspan-Cohen (1999) 
 
The modeling approach proposed by Greenspan-Cohen (1999) [hereafter, GC96] 
provides a useful example for comparison with NHTSA’s modeling approach.  This is 
because, in contrast to models of the type discussed in the previous section (e.g., 
CARBITS), GC96 is pursuing a very limited form of modeling that is highly similar to 
NHTSA’s:  Aggregate (macroeconomic) forecasting of motor vehicle stocks, 
scrappage, and new vehicle sales.   
 
Recall that NHTSA’s approach is based on forecasting new vehicle sales, and then 
predicting scrappage rates of used vehicles in order to make vehicle market 
projections.   
 
GC96 takes a different approach.  They also model scrappage of used vehicles.  
However, instead of modeling new vehicle sales, they develop projections of total 
fleet size (or “aggregate vehicle stock”).  Aggregate vehicle stock can be combined 
with scrappage estimates to infer new vehicle sales.   
 
Although projecting either one (total fleet size or new vehicle sales) can be 
challenging, well-known insights from the travel demand forecasting literature 
suggest why projecting total fleet size is more tractable.  Households own vehicles 
because of the accessibility and mobility services they provide.  Different household 
types might have different ownership levels (vehicles per household), e.g., larger 
households typically have more vehicles.  Rural households typically have more 
vehicles, and have a higher percentage of trucks (versus cars).  Higher income 
households have more vehicles per household member.  Estimates of future 
ownership levels for different household types can be combined with population 
growth, demographic projections, and economic trends to obtain an overall forecast.   
 
Note that insights into useful variables for forecasting vehicle ownership levels can 
be obtained from considering more detailed bottom-up models of the type 
described in section 3.2.  For example, a household’s choice of how many vehicles to 
own is known to be a function of:  household size, number of adults, number of 
children, number of workers, household income, and possibly access to good public 
transportation.  
 
One specific finding in the travel demand literature is that vehicle prices are not 
usually useful in aggregate-level forecasting.  For example, the experience of one 
highly regarded expert has led him to conclude:   
 

“It has proved generally difficult to introduce price terms into the models.  
Although on a priori grounds one would obviously expect them to influence 
demand for car ownership, it is difficult to find suitable datasets in which 
adequate variation in prices over time exists.  It can certainly be said that 
there is no correlation between the unexplained growth over time and the 
movement of any general price indices relating to motoring.  Thus it does not 
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appear that the temporal stability would be improved by the inclusion of 
price effects.” (Emphasis added.) [Bates (2013, page 25)]   

 
However, what immediately follows is:   
 

“The only way in which it has been possible to develop price effects on car 
ownership is by means of so-called ‘car type models’ (see Chapter 28)17, 
where the basic concept of ‘car’ is greatly expanded to consider engine size, 
age and other essential characteristics; an example is the work by Train 
(1986)…”  [ibid] 

 
Put another way:  When using aggregate-level models to project car ownership 
levels (which are then translated into projections of vehicle stock) price effects are 
not helpful.  However, when using more detailed (Berkovec-type) systems that 
include household discrete choice models based on vehicle attributes, price effects 
can then have an effect on the results.   
 
This means that, even given NHTSA’s perception that they had limited options 
available, their choice to adopt an approach using a “new vehicle sales model” that 
relies heavily on (average) new vehicle price is at odds with the perceived wisdom of 
the travel demand forecasting literature, and is essentially the opposite of GC96’s 
approach.   
 
To review: GC96 starts with forecasting the change in vehicle stock (not new vehicle 
sales).  They use an approach that relies on Census data projections of various 
aggregate-level household statistics and trends on vehicle ownership, e.g., average 
number of vehicles per household, as well as breakdowns involving fractions of 
household holdings of trucks versus cars.  These can be combined to produce 
estimates of future vehicle stocks of cars and trucks.   
 
Finally, note that GC96 specifically discusses why this approach is better than, e.g., 
time series methods of the type used by NHTSA (GC96, page 137).   
 
3.4  National Energy Modeling System (NEMS)  
 
EIA’s NEMS is widely used in policy analysis involving energy-related issues, and is 
used by EIA to produce its Annual Energy Outlook.  Appendix B provides a 
description of NEMS.  The 2018 AEO provides projections of total fleet size and new 
vehicle sales for both the Existing standards and the proposed Rollback that are 
directly comparable to CAFE model projections, which is the subject of section 5.   
 
The purpose of this section is to briefly review salient features of NEMS in relation 
to the material in sections 3.1-3.3.  First, NEMS is a large-scale model of the economy 
that includes price equilibration of the type described in section 3.2.  This is a feature 
                                                        
17 See Bunch and Chen (2008).   
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that very few modeling systems have.  Second, NEMS generally follows the 
recommended approach discussed in the previous section:  Getting a high-level 
estimate of overall “transportation needs” for the economy as a first step.  
 
However, after that, NEMS represents yet another approach that is different from 
the ones discussed thus far.  Although it does not have a detailed model of 
household new and used vehicle markets of the type discussed in section 3.2, it does 
have a structural model of new vehicle sales shares that uses a discrete choice model 
preferences for vehicle attributes, and a relatively large number of vehicle classes 
(including fuel types required analyzing scenarios with, e.g., electric vehicles, plug-in 
hybrid electric, etc.)18.  Recall from section 3.3, Bates (2008) indicates that price can 
be introduced as an explanatory variable if ‘car type’ (choice) models are used.   
 
Finally, NEMS (like the CAFE model) has its own manufacturer decision model with 
information on technologies and costs, and it makes vehicle redesign decisions in 
response to fuel efficiency/GHG standards.   
 
3.5  Background on Aggregate Scrappage Models 
 
The previous background sections establish that scrappage behavior is frequently a 
key component in determining the overall behavior of the vehicle market.  In 
addition, our analysis reveals that NHTSA’s scrappage model has a much larger 
impact on CAFE model output and net-benefit analyses than the other two models 
(section 2).  We therefore explore scrappage models in more detail.  
 
As previously discussed, both Berkovec and GC96 directly employ scrappage models.  
Their models, as well many others in the literature, share many similarities based on 
a behavioral theory of decision making at the individual consumer level.  These can 
be summarized as follows:   
 

• Once purchased, a household uses a vehicle over some period of time for the 
purpose of consuming its “mobility services.”  

• Vehicles are durable goods that age and deteriorate over time.  
• As a vehicle ages/deteriorates, its market value decreases.   
• Deterioration also gives rise to an increasing need for maintenance, which 

can be viewed as occurring in the form of discrete “events”.   
• Both the frequency of these events, and the associated costs, can modeled 

using probability distributions, and which take into account that 

                                                        
18 It uses a Nested Logit model that can be viewed as taking the tree in Figure 3-1 
and making a horizontal “cut” so as to leave the top layers of “vehicle classes”. 
operating cost, and other vehicle attributes (similar to the description of household 
choice models in section 3.2).   
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probabilities can change over time (e.g., more frequent events, with higher 
costs).   

• As this process continues, it will eventually trigger a decision by the 
consumer to either replace or dispose of the vehicle.   

 
The details of the consumer’s decision options will vary, depending on the current 
value of the vehicle and the preferences of the consumer.  Early in a vehicle’s life the 
consumer could trade in the vehicle as part of a replacement transaction, or simply 
sell it in the used vehicle market.  Later in the vehicle’s life when its market value 
gets lower, the need for a repair could trigger a different type of decision:  spend 
money on a repair, or scrap the vehicle.19  In this case, the decision can be modeled 
as being governed by the following “parameters”:   
 

• Cn = the repair cost required to return the vehicle to good operating 
condition, 

• δn = the scrap value of the vehicle,  
• Pn = the market value of the vehicle (when in good operating 

condition) 
 
The vehicle will be scrapped if:   

Pn - δn < Cn.     (3) 
It will be repaired otherwise.   
 
Specific models are formulated by including additional details and assumptions.  For 
example, implementing a model requires some assumptions on the probability 
distributions for frequency of repair events and the level of cost.   
 
One general factor affecting the behavior of a scrappage model is the inherent 
durability of the vehicle.  Another factor might be the rate of driving:  although these 
can clearly vary by consumer and specific vehicle, scrappage models typically 
assume that any given vehicle type (or possibly class) will follow a similar pattern of 
driving.20   
 
However, the vehicle’s market value (price) that appears in the above scrappage 
rule ensures that the decision is determined at least in part by economic factors that 
may be independent of the vehicle’s durability.   

                                                        
19 Note that a similar decision could arise earlier in the life of a vehicle in the event 
of an accident.   
20 Another factor occurring in the real world is the driving style of the driver, which 
can be correlated with vehicle choice.  For example, a young male purchasing the 
“muscle car” version of a particular vehicle model might have a higher probability of 
accidents than another driver that has purchased a more “mainstream” version of 
an otherwise identical vehicle.  These complications are frequently assumed to not 
play a role.   
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Greenspan and Cohen (1999) view these two factors (“engineering” and “cyclical”) 
as “separable,” and employ a two-step model based on Walker (1968).  Another 
reference using this approach is Bento et al. (2018).  Alternatively, both effects can 
be captured using single-equation (“one step”) models.  Examples include Parks 
(1977) and Jacobsen and van Benthem (2015).  (All of these references were cited in 
the PRIA.)   
 
Because of their direct relevance to evaluating NHTSA’s scrappage model, we now 
review some of these references in more detail, and discuss their implications.   
 
3.5.1  Bento et al. (2018) Scrappage Model 
 
In what follows, we will refer to “Bento” for ease of presentation.  Similarly, we will 
at times use the abbreviations “DS” or “DSM” in reference to NHTSA’s dynamic 
scrappage model.  Bento provides a useful point of comparison to DSM because (1) 
it is based on recent data that overlaps with DSM, and (2) it models scrappage at an 
aggregate level (as in the DSM), using separate models for a small number of vehicle 
“types.”  
 
Specifically, Bento estimates models for two types:  Cars and Trucks.  The DSM uses 
three types:  Cars, SUV/Vans, and Trucks.  However, the CAFE model only reports 
results at the level of Cars and Trucks, so all of our comparisons will be made on this 
basis.  To begin, we have replicated Table 1 of Bento below (Table 3-1), which 
reports average scrappage rates (as a function of vehicle age) for three different 
groups of vehicles (grouped according to range of model years).   
 
A scrappage rate can be defined as follows:  Assume that a vehicle has survived to be 
a years old.  The scrappage rate is the probability that this vehicle will be scrapped 
during the next year (when it would otherwise attain an age of a+1).  Another 
statistic of potential interest is the survival probability, which is 1 – ScrapRate. 
 
New vehicles have age a = 0.  There are a number of complications with computing 
scrappage rates in the first few years, so rates for the first year or two are frequently 
not reported.21   
 
 

                                                        
21 The complication arises because of the timing of how vehicles of a particular 
model year (MY) are introduced into the market.  Using the most simple equation 
for scrap rate, this could give a negative scrap rate in year 1. Greenspan and Cohen 
discuss this problem in some detail, and provide a procedure for processing data 
based on registration data.  NHTSA follows these procedures (see PRIA, pp. xxx). 
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Table 3-1. Scrappage Rates from Bento et al. (2018) 

 
Table 5 illustrates a number of features.  First, average rates for a given age are 
based on data across multiple model years (which are linked to calendar years).  So, 
calendar-year-specific effects should be averaged out, removing cyclical/economic 
factors.  What remains should represent the average of engineering/durability 
effects for the vehicle cohort.  The average scrap rate for any particular age appears 
to decline as a vehicle cohort gets “newer” (with some reversals for older years of 
trucks).  Second, Cars seem to be scrapped at a systematically higher rate than 
Trucks as a function of age.  This could be correlated with faster driving rates.   
 
One problem with scrappage data is that vehicle counts can become very small as 
age increases, so that estimated rates are increasingly volatile at higher ages.  For 
this reason, tables of rates are frequently truncated (e.g., at 14 years).  This becomes a 
potentially important issue when estimating models.   
 
We highlight this distinction between “engineering” and “cyclical” scrappage effects 
because it is related to the two-step modeling approach used by both GC96 and 
Bento.  In the first stage a model is estimated that captures the average pattern of 
scrappage due to engineering durability effects.  Bento estimates an engineering 
scrappage rate model for each of the three vehicle groups using the following 3-
parameter logistic model:   
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      (4) 

 
where Ram is the scrappage rate for model year m at age a.22 This function can 
capture lower and upper bounds, and the overall shape of the curve.   
 
Note that the only explanatory variable here is vehicle age.  Bento maintains this 
level of simplicity, requiring only three parameters for each group of vehicles.  For 
example, his model estimates for the 1987-2014 passenger car cohort are:  L = 2.724, 
B = 314.030, and k = 0.275.   
 
Other researchers have used slightly different logit-related functions with similar 
properties, often with more complex equations in the exponent.  However, two-step 
models should always involve functions of age and/or model year in the first stage 
to capture the desired effect, i.e., average engineering scrap rates related to 
durability.   
 
Once the stage-one model is estimated, the residuals (differences between observed 
values and averages) can be computed.  As noted, these are effects that are “left over” 
after removing engineering/durability effect, so these deviations should be due to 
cyclical/economic factors.  Bento estimates a variety of stage 2 models (using a 
similarly simple form) beginning with one based on the original theory of Walker 
(1986).   
 
According to Walker’s theory, the economic factors affecting scrappage can be 
represented by two explanatory variables:   
 

• Car ownership turnover rate 
• Used Vehicle Price Index = Used vehicle price CPI/maintenance-repair 

cost CPI   
 
where CPI denotes a consumer price index developed by the Bureau of Labor 
Statistics (BLS).  Car ownership turnover rate is not generally available, so Walker 
suggests approximating it by the ratio of new car registrations to total car 
registrations (a measure of the overall fleet turnover rate).   
 
The other variable (used vehicle price index, defined above) is worthy of discussion, 
because it has potentially important modeling implications.  First, recall that the 
behavioral rule for deciding whether to scrap involves both used vehicle price and 
maintenance cost (see equation 3), so this is an economics-based choice.   
 

                                                        
22 Because of the assumption of this form and disturbance term, Bento estimates the 
model using nonlinear least-squares.  
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However, Walker’s approach indicates the importance of using quality-adjusted 
prices (not just market transaction prices).  Over time, new vehicles are constantly 
being improved through addition of new features and technologies (e.g., safety, fuel 
efficiency, etc.).  Because of this, the average used vehicle price for, e.g., a given age 
group may not have the same meaning at two different points in time.  Prices need 
to be quality adjusted so that they are comparable when estimating models using 
longitudinal data.  This theoretical principle has generally been adopted in the 
literature.   
 
Bento uses Walker’s stage-2 model as the default model, which (similar to stage 1) 
requires only three parameters.  One of these parameters is a measure of the price 
elasticity of scrappage with respect to used vehicle price (index) change, which in this 
modeling approach is an overall measure that captures systematic shifts relative to 
the (baseline) engineering scrappage rates.  Their reported representative measure 
of scrappage elasticity with respect to used vehicle prices is -0.4, which they indicate 
is “substantially different than values adopted in simulation models.”   
 
Note that, if this type of model is available, it represents one specific “link” in the 
chain of logic of the Gruenspecht effect (section 3.1.1):  “when used vehicle prices 
increase, scrappage rates go down.”  Modeling this effect directly as part of a larger 
modeling system (e.g., Berkovec) would be the preferred approach (if possible).  
However, Bento goes beyond this and performs a specific model-based “test” that 
provides evidence for the existence of the Gruenspecht effect.  Specifically, there is 
evidence of a relationship between increasing CAFE standards and changes in used 
vehicle prices and scrappage in the data they were analyzing.  This subject is also 
addressed by the next reference.    
 
3.5.2  Jacobsen and van Benthem (2015) 
 
Another relevant reference is Jacobsen and van Benthem (2015) [JvB15].  In part of 
their study they estimate the relationship between used vehicle price changes and 
and scrappage rates (similar to Bento).  However, their models are estimated using 
a large database of used vehicle transactions prices for vehicles with highly detailed 
descriptions (make/model/configuration).  (In other words, they are using highly 
disaggregated data rather than aggregated data.)  Their approach exploits the fact 
that, at this level of detail, price adjustments of used vehicles in response to changes 
in gasoline prices, and, simultaneously, changes in scrappage rates, can be used to 
“identify” the effect(s) of interest (again, similar to Bento).  However, in this type of 
approach the goal is to statistically identify specific “effects,” not to create a formal 
scrappage model of the type found in the other references.   
 
For example, they are able to determine that used vehicle prices change in response 
to gasoline price changes, and that the amount of change is different for vehicles 
with different levels of fuel economy.  A similar effect is found for changes in 
scrappage rates.  They emphasize that these effects can also cause vehicles in 
different vehicle groups to be driven differently over time:  Specifically, high 
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efficiency vehicles will be driven at a higher rate.  The fact that vehicle miles traveled 
(VMT) can be different for vehicles with different fuel efficiencies is an affect that has 
not been taken into account in net-benefit analyses.  Currently, the only effects that are 
taken into account are the age and type of vehicle.   
 
At the same time, JvB15’s approach (which relies on a large number of fixed effects) 
does not incorporate macroeconomic indexes of the type that might be useful for 
forecasting.  Given their data and modeling approach, it is valid for them to base 
their analysis on actual observed used prices without any quality adjustment for 
different model years.  Their central estimate of scrappage elasticity with respect to 
used vehicle price change is -0.7.  This is a bit larger in magnitude that Bento’s (-0.4), 
but still much smaller than values that have been used in simulation studies in the 
past (e.g., -1 to -3).   
 
JvB15 also addresses the Gruenspecht effect in a very direct way.  They employ a full 
simulation system that formally includes sub-models to represent all of the features 
found in the Berkovec framework:  a manufacturer decision model, a discrete choice 
model for consumer vehicle choices based on attribute preferences (price, fuel 
economy, etc.), a scrappage model, and a price equilibration procedure.   
 
The manufacturer decision model is more realistic than the one used by NHTSA, 
incorporating both the decision to add fuel economy as well as the option for pricing 
strategies.  However, it is much less detailed and more highly stylized (relying on 
cost curves).  Manufacturers are assumed to maximize profits, which is included in 
the model.  The consumer discrete choice model treats all households as one-vehicle 
households, but capture choices of vehicles by type (car or truck), size (small or 
large), age (0-18), and manufacturer (7 firms).   
 
They perform simulations on this highly stylized system and demonstrate the 
existence of a Gruenspecht effect in response to increasing CAFE levels, and 
estimate fuel savings “leakage” due to higher numbers of used vehicles.   
 
Both this reference and Bento, et al. (2018) were published only recently.  They are 
generally regarded as providing some of the only limited, reliable evidence of the 
existence of the Gruenspecht effect.  In addition JvB15 provides evidence that this 
effect could be important to consider when making policy decisions.  However, 
neither paper provides results that are sufficiently detailed for direct inclusion into 
a policy analysis.  Moreover, NHTSA’s scrappage model bears little resemblance to 
the approaches used by these researchers in terms of theoretical support and rigor.   
 
3.5.3  Greenspan-Cohen (1999) Scrappage Model 
 
As described in section 3.3, GC96 uses a two-stage modeling approach for scrappage 
(similar to Bento).  A stage-one engineering scrappage curve is estimated as a 
function of vehicle age and model year (albeit more complex than Bento’s).  In their 
second-stage model, their explanatory variables are:  civilian unemployment rate, 
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gasoline prices, and a new vehicle price index using the new-price version of the 
Walker (1968) definition for used vehicle price index.  Specifically, they use a ratio 
of the BLS cost of repair index and the BLS new vehicle price index.  Moreover, they 
cite Parks (1977) who finds that the inverse of this ratio is “highly significant in 
explaining total scrappage.”   
 
The main point in mentioning these references is that they do lend some support to 
the notion of using new-vehicle-price-related explanatory variables in a scrappage 
model.  However, these still maintain the theoretical requirement of using quality-
adjusted prices rather than market transaction prices.   
 
Chapter 8 of the PRIA reveals that NHTSA is aware of this theoretical consideration, 
but takes pains to argue in favor of using unadjusted new vehicle prices instead.  We 
postpone any further discussion until later.   
 
3.6  A Theory-Based Evaluation of NHTSA’s Economic Models 
 
With sections 3.1-3.5 as background, we now evaluate NHTSA’s economic modeling 
approach based on theoretical considerations.  First, we summarize some key points 
that were established in the previous sections.  
 

• Reading the relevant material on their models in the NPRM and PRIA make it 
clear that their primary motivation was to produce a modeling approach that 
would somehow produce the Gruenspecht effect.  However, rather than 
develop models that are based on solid behavioral theory to capture the 
structural causes of what could be a legitimate effect, they produced a pair of 
models (new vehicle sales, and dynamic scrappage) that were “stitched 
together” by virtue of sharing a common explanatory variable:  average 
compliance cost.    

• It is important to understand that the two models in equations (1)-(2) 
eschew what is known about how this type of aggregate-level modeling 
should be done from reviewing the literature, which is further evidence of 
NHTSA’s motivations.   

 
The material in sections 3.2-3.5 was provided to demonstrate this.  Section 3.2 
shows what an approach with behavioral content, integration between new and 
used vehicle markets, etc., looks like.  However, anyone reading Chapter 8 of the 
PRIA (“Economic Analysis of Regulatory Alternatives”) could certainly be forgiven if 
they were under the impression that the CAFE model included models with 
behavioral content.   
 
Figure 8-1 from the PRIA has been reproduced in Figure 3-4 as an illustration.  
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Figure 3-4. Figure 8-1 from the PRIA 

 
From the PRIA (page 938):   
 

“As the figure indicates, the resulting changes in the fuel economy, other 
features, and prices of new vehicles will affect their sales, although the 
direction in which they do so is difficult to anticipate. This is because the 
change depends on how potential buyers value the future savings or increase 
in fuel costs that result from changing vehicles’ fuel economy, as well as how 
they value any accompanying changes in other attributes that affect their 
utility. Modifying vehicles’ fuel economy also changes their operating costs 
(by changing the amount of fuel consumed in driving each mile), which as the 
figure also shows, affects how much they are likely to be driven each year 
and throughout their lifetimes.”  (Emphasis added.) 

 
This seems to imply that NHTSA is going to be providing a behavioral model of new 
vehicle choice (similar to the NEMS description in section 3.4), as well as a VMT 
model that is a function of fuel operating costs.  Continuing on:   
 

“At the same time, changes in the prices, fuel economy, and other features of 
new cars and light trucks will alter some potential buyers’ choices between 
new and used models because used vehicles often represent a close 
substitute for new models. The direction of this effect again depends on the 
magnitude of changes in new vehicles’ prices and on how buyers value the 
changes in new vehicles’ fuel economy relative to any accompanying changes 
in their other features. If on balance fewer buyers elect to purchase new cars 
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or light trucks, some who would otherwise have purchased a new model may 
decide to buy a used model instead, while others will continue to drive a 
vehicle they already own. Conversely, if buyers find the combination of 
changes in new vehicles’ prices, fuel economy, and other attributes attractive, 
some will respond by purchasing new vehicles instead of buying used models 
or by replacing one on they already own.”   

 
This effect is shown in Figure 8-1 as a change in the demand for used vehicles. 
…” 

 
The paragraph above seems to imply that the behavioral interactions between the 
new and used markets are also being captured, and that, again, these are being 
modeled on the basis of consumers preferences for “prices, fuel economy, and other 
features of new cars and light trucks” versus preferences for used versions of these 
vehicles.”  
 
This type of narrative continues to flow through the remainder of the initial sections 
of Chapter 8, with occasional factually correct statements about what has actually 
been done (and why) interwoven into the narrative.   
 
3.6.1  New Vehicle Sales 
 
Section 8.6.2 of the PRIA includes a discussion of some of the actual details 
regarding modeling decisions and approaches, which in this case is focused on 
“changes in new vehicle sales.”  The first part describes the challenges they 
encountered when attempting to estimate a new vehicle sales model based on only 
aggregate-level data.   
 

“The analysis explored various approaches to predict the response of new 
vehicle sales to the changes in prices, fuel economy, and other features in an 
attempt to overcome analytic challenges. This included treating new vehicle 
demand as the result of changes in total demand for vehicle ownership and 
demand necessary to replace used vehicles that are retired, analyzing total 
expenditures to purchase new cars and light trucks in conjunction with the 
total number sold, and other approaches. However, none of these methods 
offered a significant improvement over estimating the total number of 
vehicles sold directly from its historical relationship to directly measurable 
factors such as their average sales price, macroeconomic variables such as 
GDP or Personal Disposable Income, and regularly published surveys of 
consumer sentiment or confidence.” (PRIA, page 956) 

 
Parsing this paragraph is revealing.  Recall that section 3.3 establishes that a better 
approach to aggregate-level modeling would be to model “total demand for vehicle 
ownership and demand necessary to replace used vehicles that are retired,” which 
the above paragraph claims they tried.  Recall also that the suggested approach 
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would not involve new vehicle prices.  However, it is clear from the first sentence 
above that including new vehicle “prices” was a requirement for NHTSA.   
 
The above paragraph also says that “none of these models offered a significant 
improvement” over the adopted approach (emphasis added).  This implies that one 
of the other methods was an “improvement,” just not a “significant” (enough) 
improvement to alter their decision.  Based on our review (which indicates that 
prices are not helpful in this type of analysis) it seems possible that, e.g., the 
superiority of using an approach like GC96’s was discovered, but that it may have 
been unacceptable because new vehicle prices did not play a role.   
 
Also on page 956 of the PRIA is a description of the time-series econometric 
approach to estimation, which uses quarterly sales in order to “more accurately 
capture the causal effects of individual explanatory variables,” which (except for 
change in average compliance costs) consists entirely of lagged dependent variables 
and macroeconomic indicators.   
 
Based on this material, our judgment is that the time-series modeling approach 
applied to quarterly data would be highly vulnerable to over-fitting, in addition to 
being inappropriate for policy analysis.   
 
On page 957 of the PRIA they indicate that “The results of this approach are 
encouraging…”  We find that this is an inadequate standard for deciding to continue 
with this approach.   
 
Concerns about over-fitting were then confirmed based on pages 959-959 of the 
PRIA.   
 
Recall that a model of new vehicle sales would be expected, in some sense, to reflect 
the market’s preferences for new vehicle attributes other than price, and, in particular, 
fuel economy.  Page 957 of the PRIA indicates:  “The model did not incorporate any 
measure of new car and light truck fuel economy that added to its ability to explain 
historical variation in sales…”   
 
Similarly, a portion of the NPRM is revealing on this same point, and also that 
NHTSA staff understood that this high level of aggregation was yielding a poor 
modeling approach (yet they proceeded with it anyway).   
 

“Despite the evidence in the literature, summarized above, that consumers 
value most, if not all, of the fuel economy improvements when purchasing 
new vehicles, the model described here operates at too high a level of 
aggregation to capture these preferences. By modeling the total number of 
new vehicles sold in a given year, it is necessary to quantify important 
measures, like sales price or fuel economy, by averages. Our model operates 
at a high level of aggregation, where the average fuel economy 
represents an average across many vehicle types, usage profiles, and fuel 
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economy levels. In this context, the average fuel economy was not a 
meaningful value with respect to its influence on the total number of new 
vehicles sold. A number of recent studies have indeed shown that consumers 
value fuel savings (almost) fully. Those studies are frequently based on large 
datasets that are able to control for all other vehicle attributes through a 
variety of econometric techniques. They represent micro-level decisions, 
where a buyer is (at least theoretically) choosing between a more or less 
efficient version of a pickup truck (for example) that is otherwise identical. In 
an aggregate sense, the average is not comparable to the decision an 
individual consumer faces. 

Estimating the sales response at the level of total new vehicle sales 
likely fails to address valid concerns about changes to the quality or 
attributes of new vehicles sold—both over time and in response to price 
increases resulting from CAFE standards. However, attempts to address 
such concerns would require significant additional data, new statistical 
approaches, and structural changes to the CAFE model over several years. 
[Emphasis added.]  

 
We have highlighted in bold and italic items that are immediately obvious from the 
material provided in sections 3.1-3.5.  These and other statements throughout the 
NPRM and PRIA indicate that NHTSA staff was painfully aware of the inadequacies 
of their modeling approach.  While the above statements were oriented toward 
modeling new vehicle demand, similar statements are available in the area of 
scrappage.   
 
3.6.2  Dynamic Scrappage 
 
Section 3.5 reviewed scrappage models from the literature, and already highlighted 
a number of items that NHTSA staff chose to ignore.  This section provides a more 
detailed and formal comparison.  
 
The Bento model in section 3.5.1 provides a good option for comparison.  Bento and 
NHTSA analyze similar types of aggregated vehicle count data from multiple model 
years.  Bento analyzes relatively recent data that overlaps with NHTSA.  In addition, 
NHTSA claims to have followed a two-step modeling approach and makes reference 
to the “engineering” and “cyclical” scrappage concepts applied in Bento (as well as 
GC96).   
 
Recall that Bento’s two-step approach yields two models with three parameters 
each, and that the meaning of both models and their parameters are highly 
interpretable.  We reported the stage-1 parameter estimates for passenger cars, as 
well as the estimated scrap elasticity.   
 
By way of contrast, see Table 3-2 for an example of NHTSA’s first stage “engineering 
scrappage” model estimates for cars.  For an excerpt of some “cyclical scrappage” 
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model estimates, see Table 3-3.  For the final scrappage models used by the CAFE 
Model, see Table 3-4.   
 
These tables highlight some of potential concerns about NHTSA’s approach in 
comparison to the literature.  Although the PRIA includes some discussion on their 
choice of variables, the actual model estimates defy any realistic possibility of 
meaningful behavioral interpretation.  This is due to the extreme time-series-style 
approach of including large numbers of lagged effects (including for the dependent 
variable!).  There is a clear risk that over-fitting is occurring.   
 
This highlights further the problems with NHTSA’s approach.  The approach does 
not conform to the literature, and relies on reduced form time-series models with no 
direct interpretation.  These factors are the reason for the numerical study in 
section 4.   
 
In addition to the clearly obvious deficiencies on technical grounds, similar to the 
previous discussion on the new sales model, NHTSA staff clearly understood that 
they were miss-specifying their models in ways that run counter to the literature.  
For example, as discussed in section 3.1, it is clear that they wanted to have new 
vehicle costs as an attribute in the dynamic scrappage models to support a 
Gruenspecht effect.  Although used prices are more appropriate, they needed new 
“prices.”  
 
In this regard, section 3.5.3 indicates that GC96 and Parks (1977) provide 
precedents for incorporating new vehicle prices, but only in a form consistent with 
theory.  However, NHTSA rejected this requirement.  On page 1018 of the PRIA, they 
actually make an argument that the reason for their approach was that “it is the 
purpose of this study to measure whether or not this is true” (emphasis added), i.e., 
whether or not a “quality adjustment” was actually required.   
 
We would submit that this was a regulatory analysis and not a “study.”  If they believe 
this was a “study,” they need to justify the use of their results for regulatory analysis.  
The subject of whether the above item in question was “true” or not was never 
revisited in the PRIA, nor could it have been given the modeling approach they decided 
to use.   
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Table 3-2. “Engineering Scrappage” Models for Cars in PRIA 
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Table 3-3.  Excerpt of “Cyclical Scrappage Models’ For Cars from PRIA.  
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Table 3-4.  Parameters Used in CAFE Dynamic Scrappage Models 
 
Moreover, NHTSA staff also clearly recognizes that the approach they are using is 
hampered by inadequate data.  On page 1017 of the PRIA: 
 

“While ideal data would represent individual vehicles, unfortunately the data 
is only available in aggregate for historical model years.  The models are thus 
unable to be trained on model-specific data and must rely on average 
measures.  This decision is further justified by the fact that the CAFE model 
does not capture any cross subsidization of technology costs that occurs 
between vehicles in an OEM’s fleet. Because it is likely manufacturers will 
cross-subsidize costs, the aggregate measure of average new vehicle price 
may be the best measure of the general price trend of the new vehicle market 
under different fuel economy standards, even if disaggregated data were 
available.”   
 



 55 

First, the initial sentence about unavailable data is simply not true.  Second, the 
remainder adds insult to injury:  It justifies this approach by highlighting another 
deficiency in the CAFE model that we have already mentioned multiple times:  the 
inability of the manufacturer decision model to take into account cross-
subsidization.  There are many other examples of this type that can be found in the 
NPRM and PRIA that call into question the decisions made by NHTSA.  
 
3.6.3  Final Remarks on Economic Modeling 
 
In this section we have shown based on theoretical considerations that NHTSA’s 
approach is not only inadequate but clearly unacceptable for the purposes of a 
regulatory analysis this important.  Based on our assessment, NHTSA’s models 
would be highly unlikely to be accepted for publication if they were submitted to an 
academic journal.  However, in order to conclusively demonstrate that our 
assessment is accurate, we provide numerical studies in the next two sections to 
demonstrate this.   
 
What would a better approach look like?  Section 3.2 reviews a modeling framework 
that supports development of modeling approaches that capture the necessary 
market structure and theory-based behavioral choices required for analyzing the 
effect of policy changes on vehicle markets.  Part of that discussion highlighted the 
specific role that discrete choice models could play, and mentions two such models 
that have been used in California.  In the 2016 TAR, EPA describes their recent 
investigation of consumer choice models, and although they recognize the 
challenges, in our view their findings are promising.  
 
However, the NPRM (page 43076) includes a section entitled “Vehicle Choice 
Models as an Alternative Method To Estimate New Vehicle Sales,” seemingly in 
anticipation that the flaws in their current modeling approach would be identified 
and exposed, and that choice models would be recommended as an alternative.  The 
discussion provided in the NPRM is an exercise in suggesting poor ideas for how 
choice models might be used as “straw men” for the purpose of criticizing them.  
There is definitely a middle ground where structural models like discrete choice 
models could be used to support a proper analysis, rather than the two extremes 
represented in this NPRM:  poorly executed aggregate-level reduced form models 
that do not conform to economic theory versus extraordinarily detailed structural 
models that would be difficult to implement and overly sensitive to small changes in 
input values.   
 
 
4.  Evaluation of NHTSA’s Dynamic Scrappage Model 
 
Because it is so difficult to evaluate the models by direct inspection of their 
coefficient estimates, we must rely on the creation of plots to reveal how they 
behave.  We begin with some initial plots to provide context.  Recall that Bento 
provides engineering scrappage models for MY1987-2015.  NHTSA uses a similar, 
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overlapping data set from the same source (HIS/Polk) spanning a wider range of 
model years (MY 1975-2015).   

Before looking at the current models, we begin by reviewing some of the available 
information included in the CAFE Model Parameters input file.  Worksheets include 
“Vehicle Age Data” and “Historical Fleet Data.”  Our understanding is that the Vehicle 
Age Data are, in effect, a set of static scrappage curves that were developed for use 
in the previous rulemaking.  Moreover, these are the static curves that are used if 
the DSM is turned “off” during a CAFE model run.   
 
For an initial comparison, see Figure 4-1.  Bento-Car is the engineering scrappage 
curve for the MY1987-2014 cohort.  As such, it should represent the effect of 
average durability for the cohort.  The other two curves are based on data collection 
and analysis by NHTSA.  The curves overlap completely, but are not smooth.  They 
bear some similarity to the Bento-Car curve.  After 7 years the CAFE curve lies to the 
right of Bento-Car, indicating higher durability.  This might be expected if the curves 
were generated to avoid downward bias from historical data.  However, before six 
years, the CAFÉ curve implies higher scrappage rate than Bento-Car.   
 
We intentionally limited the initial plot to 14 years, because Bento reports that the 
data source “reports vehicle counts by age up to 15.”  However, CAFE-Static reports 
values for 30 years, and CAFE-MY2014 reports values for 37 years.  (But, as noted, 
these CAFE figures are identical for the first 30 years).  Figure 3-2 extends the age 
range to 37 years.  On this scale all three curves track fairly closely for about 21 
years.  Interestingly, the CAFE model documentation describes that, although the 
DSM uses a logit form similar to Bento, it has a trigger that causes it to switch to an 
alternative function (called a decay function), and the trigger parameter is set to 21 
years.  The curve is created to follow a decay rate ensuring that the final fleet 
survival percentage (another parameter) occurs at age 40.   
 
To proceed logically, we would next like to understand how the DSM would behave 
it were not “dynamic.”  That is, if the DSM is turned off, the CAFE model reverts to 
using a survival curve created for the previous rulemaking.  However, what type of 
“static curve” would be produced by NHTSA’s current scrappage modeling approach 
if the dynamic feature were “turned off”?  The dynamic effects in the current model 
are a function of average compliance costs (and perhaps CPM).  In any case, we 
discovered that the PRIA includes a “sensitivity case” that seems to address this 
question.  It provides a set of parameters that will “turn off” the part of the DSM that 
has been added for the purpose of creating a Gruenspecht effect.  (See PRIA, page 
1059).   
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Figure 4-1.  Car Scrap Rates:  Bento (MY1987-2914 Car) vs. CAFÉ-Static/Data 
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Figure 4-2.  Car Scrap Rates from Figure 1 – Extended to 27 Years 

 
We used these parameters to generate another set of “static” results.  The “NoGruen” 
scrappage curve for MY2014 is provided for comparison in Figure 4-3.  Note that, 
for completeness, we have included two NoGruen curves:  one for Existing, and one 
for Rollback.  As per NHTSA’s intent, these two curves are essentially the same 
(although not identical).   
 
These curves raise some serious concerns about the behavior of the DSM.  The 
Bento curve comes from MY1987-2014 data using (up to) 14-15 years for each 
model year.  One argument for not using this curve for regulatory analysis is that the 
older vehicles in this group might be assumed to have less durability than newer 
vehicles, so the curve could have scrappage rates that are too high.  Indeed, the 
Bento-Car curve lies just to the left of the CAFÉ-Static/MY2014 curves.  One expects 
that these curves were constructed to ensure a higher level of durability than one 
based on averages of older vehicles.  However, how does one actually obtain 
projections of durability levels for recently manufactured vehicles, much less future 
vehicles, without data?   
 
The PRIA seems to suggest that one rationale for estimating such a complex 
scrappage model was that it could somehow provide such “projections” of future 
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durability levels.  In this regard, both the CAFE curves and the DSM curves lie to the 
right of Bento-Car (after about year 8).    
 

 
Figure 4-3.  Car Scrap Rates: Figure 4-2 plus DSM Non-Gruenspect MY2014 

 
However, there is no good explanation for why the DSM scrappage rate for a 
MY2014 Car would level off at 0.15 at 18 years.  Even though Bento-Car is estimated 
on 14 years of data, it is not unreasonable for the curve to keep increasing for a 
number of years, and, indeed, the Bento-Car and CAFE-Static/Data curves track each 
other fairly closely until the “magic” 21-year mark.   
 
The PRIA includes a very similar discussion for MY2016 (pp. 1055-1056).  However, 
this is accompanied by survival curves rather than the scrap rates we have shown 
here.  The survival curves do not seem to demonstrate the size of the effects we have 
detected here in the same way.  Still, even in that discussion the results seem a bit 
odd, and the explanation offered is that an “optimistic” GDP growth rate is the cause 
of apparent anomolies.  For future reference Figure 8-35 in the PRIA shows that in 
the 20-22 year age range only about 20% of the original MY fleet would be 
remaining.  (This will be important later.)   
 
To establish some additional points of reference, we generated scrap rate curves for 
two more model years:  2021 and 2028.  For an initial comparison, see Figure 4-4.  
(To reduce clutter, we include the Existing scenario NoGruen results only, which are 
essentially the same as the Rollback results).  On this scale there are differences in 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Sc
ra

p 
Ra

te

Vehicle Age

Bento-Car CAFE-MY2014

CAFE-Static NoGruen-MY2014-Existing

NoGruen-MY2014-Rollback



 60 

scrap rates as a function of model year.  One might expect these to represent 
increasing durability.  However, see Figure 4-5 that includes only the DSM results.   
 

 
Figure 4-4.  Car Scrap Rates:  Additional MYs with No Gruenspecht Effect. 

 

 
Figure 4-5.  Car Scrap Rates:  Three MYs with No Gruenspect (Isolated) 
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A closer look at Figure 4-5 shows that there is a pattern of differences from 
increasing model year starting after age 14 or 15.  For some reason, scrap rates for 
cars increase with increasing model year from age 16 until reaching the ‘trigger’ at 
age 21, and then the ordering of scrap rates reverses.  Again, these differences are 
rather small, but they do demonstrate that most of the “action” with this model only 
seems to occur rather late (e.g., 16 years or later), but, then the trigger is reached at 
21 years and an ad hoc model takes over.  When action does occur, it seems 
counterintuitive.  Finally, the general leveling off in the 0.14 to 0.17 range for all 
vehicles represents a type of “regularity” in future durability of vehicles that is 
questionable in origin.   
 
With the above results for context, it is now time to “reactivate” the Gruenspecht 
effect built into the DSM.  For results corresponding to those from Figure 4-3, see 
Figure 4-6.  When the full DSM is operating, there is a small change in the scrap rate 
under the Rollback scenario, but a relatively large change under the Existing 
standards.  And, consistent with previous patterns, the changes are concentrated in 
16-21 age range.  For a collection of the DMS results for the three model years, 
considered previously, see Figure 4-7.   
 

Figure 4-6.  Car Scrap Rates:  Dynamic Scrappage for MY2014. 
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The Figure 4-7 results are expected as a logical extrapolation from Figure 4-6, 
although on this scale the patterns are a bit clearer.  The separation in scrap rates 
between the Existing and Rollback scenarios start to become visible by age 12 or 13, 
although it is still true that most of the differences occur between ages 16 and 21.  
However, by now it should be clear that the reversals that occur starting at age 21 
are inconsistent with any theory that is based on the concept of durability versus 
cyclical effects.   
 
How would one evaluate whether the large differences between Existing and 
Rollback scrappage rates are consistent with theory?  The PRIA (page 1003) offers a 
theory-based discussion that was intended to support the development of these 
models:   
 

“The effects of this process on prices and the number of vehicles in use are 
likely to vary significantly among those of different ages and accumulated 
mileage (a measure of their cumulative lifetime use). Figure 8-17 through -
Figure 8-18 illustrate the likely differences. As Figure 8-17 and Figure 8-17 
show, the supply of both nearly-new vehicles (say, those less than five years old) 
and very old vehicles (more than 15 years) is likely to be very unresponsive to 
changes in their price.” (Emphasis added.) 

 
And, from page 1005:   
 

“Shifts in demand for used cars and light trucks of different ages in response 
to changes in the prices and attributes of new models are likely to mirror 
how closely they substitute for their new counterparts. Nearly-new vehicles 
offer the closest substitutes for new ones, so their demand is likely to be 
most responsive to changes in prices and other characteristics of new ones, 
while the outdated features and accumulated usage of older vehicles make 
them less satisfactory substitutes.” 

 
So, the observed behavior of the dynamic scrappage models appear to be the exact 
opposite of what is predicted in the PRIA:  Extremely old vehicles appear to be the 
most sensitive to new vehicle “price” changes.   
 
In looking for an actual computational test, the notion of elasticity will be useful.  
The differences in these curves are being driven by the difference in average 
compliance costs for new vehicles being introduced into the market.  These, of 
course, don’t actually represent meaningful price changes, for multiple reasons.  
First, consumers actually select from among individual vehicles (not one “average 
vehicle”), and second, the prices for these vehicles are determined by market 
equilibrium (which does not exist in the CAFE model).  Finally, Cars actually do 
compete with vehicles in the other two classes.   
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However, suppose that the new vehicle market average price increase actually had 
an effect on scrappage of new vehicles due to a Gruenspecht effect.  What is the 
likely size of the “elasticity”?   
 

Figure 4-7.  Car Scrap Rates:  Dynamic Scrappage for Three MYs.  
 
The complexity of the models estimated by NHTSA makes it difficult to develop an 
interpretation in terms of elasticity by direct inspection of it coefficients.  However, 
we do have the Bento model to use as a reference point.  (Recall that Bento uses an 
equation with a parameter that can be directly interpreted as an elasticity.) 
 
See Figure 4-8.  Using the elasticity from Bento, we have created a plot for the effect 
on scrappage rates if used prices were to be increased by 20%.  This is a very large 
percentage increase, and it has been directly applied to all used cars. As might be 
expected, the impact on scrappage rate increases to its maximum effect for the 
oldest cars left in the fleet.  However, for vehicles of age 16 through 20, the impact of 
this effect is much smaller than the effect generated by the DSM on the basis of new 
car price increases, even though used cars are much closer substitutes for one 
another than are new cars.   
 
This is a clear indication that the DSM is likely to be too sensitive to average 
compliance cost increases for new cars.   
 
However, there is yet one more aspect of the DSM models to consider:  The difficulty 
associated with estimating a scrappage model that will produce accurate projections 
for what goes on in the “tails” (as vehicles are getting older).  The model estimation 
results in the PRIA report root mean square errors (RMSE) for models that are 
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estimated in the “logit space.”  This RMSE gives a measurement of the error for 
predicted values of the dependent variable (the logit) when using the model.  The 
value reported for the Car model is about 0.15 (PRIA, Table 8-17, page 1044).   
 

 
Figure 4-8.  Car Scrap Rates: Bento Model Response to  

20% Used Vehicle Price Increase 
 
Using this value, we performed additional CAFE model runs that could be used to 
produce a 95% confidence interval (technically, a “prediction interval”) around the 
predicted scrappage rates.  (The technical details are in Appendix C.)  Observed 
historical data on scrappage rates are used to estimate the model’s parameters, and 
random variation in the data has an effect on the model’s predictive ability.  The 
noisier the data, the less able the model will be to provide a useful prediction.  A 
prediction interval provides a representation of this impact, producing a range of 
values where the “true” scrappage rate could be expected to lie with a specified rate 
of “confidence” (in this case, 95%)23.  Specifically, the CAFE model runs are used to 
produce an upper bound and a lower bound that define the endpoints of this 
interval.   
                                                        
23 Absolutely correct interpretation of confidence and prediction intervals can be 
rather technical, as discussed in Appendix C.  However, for our purposes, these 
intervals provide a useful representation how random variation in the data affects 
the model’s predictive ability.   

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Sc
ra

p 
Ra

te

Vehicle Age

Bento-Car Existing-MY2014

Rollback-MY2014 Bento-20%PriceIncrease



 65 

 
See Figures 4-9a and 4-9b.  One issue with this approach is:  Two sets of upper and 
lower bounds are available from these runs (one set for Existing, one set for 
Rollback). Figures 4-9a and 4-9b use the Existing and Rollback bounds, respectively.   
 
First, consider Figure 4-9a (which uses the 95% bounds from the Existing scenario).  
There are four lines.  The two middle lines are the predicted scrap rates for the 
Existing and Rollback scenarios.  The top dotted line is the upper bound of the 95% 
prediction interval using Existing runs, and the lower dotted line is the lower bound.  
It is notable how the uncertainty in predicted scrap rates increases with increasing 
age.  The maximum width occurs at around age 20 (just before the model reaches a 
trigger at age 21 and switches “modes”).  One possible reason for this is the effect of 
the modeling equation (logit); however, another possible reason is the increased 
volatility in the observed data as vehicles get older and the population of vehicles 
declines.  (Recall that Bento uses no data past age 14 or 15).   
 
Suppose we want a 95% interval for the predicted scrap rate when a vehicle is 16 
years old.  Drawing a vertical line at age = 16 yields (approximately) these values:  
lower bound = 0.063, and upper bound = 0.150.  This interval can be represented as:  
(0.0625, 0.150).  The predicted scrap rate for Existing is 0.085 (which must lie 
between the two bounds).   The size and location of this interval represent the 
uncertainty in the model’s prediction.   
 
Now, consider the predicted scrap rate for the Rollback scenario:  It is about 0.113.  
The values 0.085 and 0.113 both lay within the interval (0.0625, 0.150).  The 
predicted scrap rate for the Rollback lies roughly halfway between 0.085 and the 
upper bound.  This suggests that the difference between the Existing and Rollback 
predicted scrap rates are small relative to amount of statistical uncertainty.   
 
However, as already noted, it is also possible to compute a prediction interval by 
using the Rollback scenario results.  See Figure 4-9b.  These results look very much 
like those in Figure 4-9a:  The width and shape of the 95% prediction intervals from 
these plots are similar.  They are slightly shifted because they are based on Rollback 
results rather than Existing.  However, the basic finding is still the same:  The two 
curves for predicted scrap rates from Existing and Rollback both lay well inside the 
prediction interval.  To allow direct comparison, Figure 4-9c includes both sets of 
results in the same plot.   
 
So, despite the earlier concerns about the DSM’s unrealistic response to incremental 
average compliance costs, as well as the general shape of the scrappage curves 
relative to observed data, these problems may in a sense be moot:   
 

The relatively large uncertainty in the predicted values from the 
dynamic scrappage model is so large that the observed differences 
between the Existing and Rollback predicted scrap rates are not 
statistically meaningful.   
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This is an extremely important observation, because it is these specific 
differences that are the ultimate source of the benefit-cost differences 
between the Existing and Rollback scenarios produced in the Agencies’ 
analysis.  When these scrap rates (and their non-meaningful 
differences) are replaced with the most recently developed scrap rates 
available, the Existing standards have positive net benefits versus the 
Rollback (which reverses the results and conclusions in the NPRM).  
(See section 2).   
 

 

 
Figure 4-9a.  Effect of Statistical Prediction Error on Dynamic Scrap Rates: 

95% Confidence Bounds from Existing Standards CAFE Run 
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Figure 4-9b.  Effect of Statistical Prediction Error on Dynamic Scrap Rates: 

95% Confidence Bounds from Rollback CAFE Model Run  
 

 
Figure 4-9c.  Effect of Statistical Prediction Error on Dynamic Scrap Rates: 

95% Confidence Bounds from Both CAFE Model Ru 
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5.  A Comparison of Results from the CAFE Model Results and NEMS 
 
The previous section revealed clear deficiencies in NHTSA’s dynamic scrappage 
model based on isolating its main output (scrap rates).  In this section we take a 
closer look at how the model behaves as a whole, with regard to forecasting the 
evolution of the entire future light-duty fleet.   
 
We begin in the next section by comparing CAFE model results to the corresponding 
results from EIA’s Annual Energy Outlook (AEO) projections, which are produced by 
NEMS.  This comparison demonstrates that the CAFE model (in contrast to the 
NEMS model) produces results that are generally inconsistent with economic theory.  
In succeeding sections, we provide additional results to gain additional insight into 
reasons for the CAFE model’s failure.   
 
5.1  Comparison of Results from the CAFE Model and NEMS    
 
In the past, NHTSA has at times relied on output from NEMS, which has a high level 
of credibility in policy circles.  Figure 5-1 gives projections of total light duty 
vehicles for 2017-2050, using figures from AEO 2016-2018, CAFE_Existing, and 
CAFE_Rollback.  Note that CAFE uses AEO fuel projections, which is an important 
factor to have in common.  
 
These plots yield some initial observations about the challenges of producing 
market projections/forecasts.  First, even AEO projections can change quickly in the 
space of a single year.  AEO-2016 and AEO-2017 overlap almost completely, but 
then there is a major shift in 2018.  One reason for including the AEO-2018 
projections is that AEO-2018 contains a scenario option for generating results under 
the Rollback scenario.  On the scale used in this figure, the results from Existing 
versus Rollback differ only slightly.  (This will be considered in more detail below.)  
 
Second, the CAFE model projections increase at a much faster rate in the early years 
than AEO’s, and vehicle counts for 2016 are different than the AEO figures (all four 
of which converge)24.  The CAFE results demonstrate notable differences for 
Existing versus Rollback (which is one reason for performing this evaluation):  Fleet 
sizes get larger under the Existing scenario.  At the same time, it could be 
noteworthy that these differences are of comparable size to the shift in going from 
AEO 2016/2017 to AEO 2018.  In other words, movements of this size can easily 
occur for a variety of reasons when producing projections.   
 
 

                                                        
24 This could be something worth investigating, but we have not done so.   
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Figure 5-1.  Total Light Duty Vehicle Projections (NEMS and CAFE Model) 

 
For the AEO18 results, the fleet size for AEO18_Existing is a little bit larger than for 
AEO18_Rollback.  However, the difference is very small and, and does not begin 
growing until about 2029.  To show this, we plot the difference in fleet sizes 
(AEO18_Existing – AEO18_Rollback)—see Figure 5-2.  The differences are initially 
about 100K, increasing linearly from 2031 from 200K to 1.8M in 2050.  Because 
even the Existing standards remain at the same level after 2025, this would seem to 
represent a very different effect from what might be going on in the CAFE model 
results.  This would be consistent with a lower scrappage rate due to the higher 
value of vehicles that have been produced with greater fuel efficiency.   
 
Next, consider new vehicle sales in Figure 5-3.  New vehicle sales for both CAFE 
results are notably higher than any of the AEO projections (which is perhaps 
consistent with the total fleet size results).  However, the AEO 2016/2017 sales 
levels are below AEO 2018 levels, while the AEO 2016/2017 fleet sizes were larger.  
The main difference between AEO 2018 and CAFE is that CAFE has a very steep 
increase from 2016 to 2021.  After 2021, the lines are roughly parallel.   
 
One interesting observation from Figure 5-3 is that CAFE_Rollback sales appear to 
be slightly larger than CAFE_Existing, whereas for AEO 2018 the reverse is true.  
These differences can be seen a bit more clearly in Figure 5-4.  In the CAFE results, 
the difference in sales levels begins in 2022 (the first year the polices are different) 
and the gap stays roughly the same over the entire period.  In AEO the differences 
grow slowly over time, starting in 2027.  It is clear that vehicles, by definition, are 
likely to be more fuel efficient under the Existing standards, and therefore more 
attractive on this attribute.  Fuel prices are the same for both, so there may be some 
differences, e.g., in assumptions about technological learning.   
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Figure 5-2.  Difference in Fleet Size (millions) for AEO18_Existing – 

AEO18_Rollback 

 
Figure 5-3.  New Vehicle Sales (NEMS and CAFE Model) 
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Figure 5-4.  New Vehicle Sales (AEO 2018 and CAFE Model) 

 
To summarize: For both AEO18 and CAFE, fleet sizes are larger for Existing than for 
Rollback.  For new vehicle sales, Rollback sales are higher than Existing for CAFE, 
but the reverse is true for AEO18.  These are potentially important qualitative 
differences.  However, here is another potentially important observation:  In all four 
scenarios, new vehicle sales are either growing or flat in almost all years after 2021.  
(CAFE_Existing shows slight declines only in 2022 and 2023, but no other years.   
Both AEO18 scenarios show slight declines in 2032 and 2033.)   
 
First, consider AEO18.  New vehicle sales generally are growing in both scenarios, so 
economic theory suggests that fleet sizes should also be growing (they are).  
Specifically, although the Gruenspecht effect logic suggests that increasing new 
vehicle sales should lead to increased used vehicle scrap rates, the total “value” of 
the fleet is increasing, so this would suggest an increase in the fleet size.  Moreover, 
new vehicle sales are higher under Existing, so the fleet size should be also.  Based 
on these observations, AEO18 results are consistent with economic theory.   
 
Now, consider CAFE results.  The first part of the AEO18 argument is exactly the 
same:  New sales, and fleet sizes, are increasing under both scenarios.  However, 
new sales are higher under the Rollback, so therefore fleet sizes should be larger.  
But, the opposite is true.  The CAFE results are not consistent with economic theory.   
 
Recall that, in NEMS, our understanding is that the model produces estimates of 
total market size and new vehicle sales in a rather direct fashion, so that scrappage 
is likely to be an inferred/derived quantity.  However, in NHTSA’s approach their 
scrappage model is playing an active role.  This (and the results in section 4) suggest 
that a closer look at scrappage rates is warranted.   
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See Figure 5-6.  The AEO18 results are unremarkable, because we were required to 
use the total fleet size and new vehicle sales results to estimate scrap rates.  So, 
these will be consistent with the previous results by definition.   
 
However, consider the scrap rates for the CAFE results.  They display a pattern 
consistent with the results in section 4:  Scrap rates are lower for Existing than for 
Rollback, and the differences are large.  Based on the discussion above, one would 
expect the Rollback scrappage rates to be lower than Existing (because new vehicle 
sales are larger).  However, the opposite is true.   
 
What is the reason for this problem with the CAFE results?  Why are they 
inconsistent with economic theory?   
 
The reasons are explained in the modeling review of section 3.  In section 3.2 we 
established the importance of developing models consistent with theory, and that 
capture the behavioral and structural features of the market.  In particular, the new 
and used markets are related, and the behavior of both is driven by a combination of 
consumer preferences and other economic factors.   
 

 
Figure 5-6.  Average Scrap Rates (NEMS and CAFE Model) 

 
In section 3.1.2 we pointed out that there was no structural relationship between 
the new and used vehicle markets in NHTSA’s modeling approach, only an attempt 
to create a “correlation” based on new vehicle “prices.”  However, we also 
emphasized in section 3.5 that the full value of new vehicles need to be taken into 
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account, and not just their prices.  (This is also the point of section 3.1.1, which 
focuses on the common miss-statement of the Gruenspecht effect.)   
 
The failure of the CAFE economic modeling demonstrated above is due to the fact 
that there are multiple factors driving new vehicle demand (as well as scrappape) 
other than price and GDP growth, and these were inadequately captured by the 
reduced form aggregate-level time series approach adopted by NHTSA.   
 
More colloquially:  The attempt to create a desired “Gruenspecht effect” by basing 
both models almost exclusively on new vehicle “prices” was doomed to failure 
 
Put more simply:  New vehicle prices and GDP growth rates yielded effects in both 
the dynamic scrappage and new vehicle sales models  
 
To explore the issue of new vehicle sales and scrappage behavior from another 
perspective, see Figures 5-7 and 5-8.  Figure 5-7 uses AEO results to compute 
percentage change from the prior year for new vehicle sales levels, and scrappage 
rates, respectively.  They are plotted on the same graph for comparison purposes.  
Figure 5-8 contains the corresponding plots for CAFE model results.   
 
First consider the AEO 2018 results in Figure 5-7.  As an overall matter, scrap rates 
appear to experience very small declines over time, with little variation.  They creep 
into positive territory for the last two years.  In contrast, new vehicle sales first 
decline and then increase with sales growth being positive until the very last year 
(2032).  

 
Figure 5-7.  Percentage Changes from Previous Year for New Vehicle Sales and 

Scrap Rates (AEO 2018).   
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Figure 5-8.  Percentage Changes from Previous Year for New Vehicle Sales and 

Scrap Rates (CAFE Model).   
 
As in previous figures, there are only very small differences between the Existing 
and Rollback AEO results.  As a practical matter, there seems to be very little 
interaction between new vehicle sales and scrap rates, with both being relatively 
stable after 2021.  It might be tempting to attribute sales declines from 2018 to 
2021 to increasingly stringent CAFE standards; however, examination of other 
NEMS macroeconomic factors suggests that these are due to a short-term projected 
slowdown in economic growth  
 
Next, consider the CAFE model results in Figure 5-8.  In many ways the patterns in 
this figure are the exact “opposite” of the AEO results.  Sales changes are largely flat 
starting in 2022, slightly positive, with very little change (similar to scrap rate 
changes in the AEO results, except they are slightly negative).  The CAFE results 
show much larger amounts of variation in scrap rates (analogous to sales in AEO).  
Both sets of results have their largest sales rate increases in 2018.   
 
With regard to the Gruenspecht effect, these CAFE model results demonstrate that 
there is very little relationship between changes in new vehicle sales and changes in 
scrap rates.  Sales changes are very small, and stay flat over most of the period.  At 
the same time, changes in scrap rates make large swings from negative to positive.  
This behavior is largely consistent with the more detailed analysis in section 4.   
 
The “disconnect” between sales and scrappage rates is clearly demonstrated in this 
figure, providing an empirical demonstration of the previous observations based on 
theoretical considerations.   
 
Another frequently considered aggregate measure is “turnover rate,” which (as 
discussed in section 3) is usually replaced by the ratio of new vehicle sales to fleet 
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size.  (We will use the term turnover rate for this measure.)  For AEO and CAFE 
model results, see Figure 5-9.  In this figure we have expanded the range of years 
(2017-2015).   
 
Based on experience with the previous results, the patterns here are not surprising.  
The turnover rate is “flatter” for the AEO results when compared to the CAFE model 
results (although one must consider the scale being used).  In previous figures we 
looked at results through 2032, and the behavior in this figure is consistent with 
previous results, with everything going flat afterwards (this is consistent with the 
way the CAFE model works in years after 2032).  As with previous results, there 
could be a question about differences between AEO and CAFE model results for the 
initial year.  But, again, scale is potentially an issue.   
 
In looking at the CAFE results, we see patterns that are consistent with what has 
already been learned about the scrappage model.  On this scale, turnover rate drops 
rather quickly from 0.072 (a figure we have seen cited in online articles) to 0.060 
and below.  So, all CAFE results yield a drop in fleet turnover, compromising the 
efficacy of any CAFE policy.  Also, as in previous results, there is a clear gap between 
the curves for the Rollback and Existing scenarios.  By 2032 this is on the order of 
0.02, which is about 3%.   
 
On one hand, this may not be considered large.  On the other hand, the effect 
associated with this gap is what gives rise to NHTSA’s claim that the Rollback has 
substantial net benefits relative to the Existing standards (as discussed in section 4).    
 

 
Figure 5-9.  Turnover (New Vehicle Sales/Fleet Size) for AEO and CAFÉ Results 
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There has been much discussion about the dropping turnover rate in the US vehicle 
fleet.  To put all of this in perspective, we obtained data from the Transportation 
Energy Data Book to show the much larger trend.  See Figure 5-10.   
 
First, over this time scale we can see that:  (1) actual observed turnover rates can 
vary over a wide range, and (2) as has been recently reported, turnover has been 
experiencing a downward trend, from 0.10 in 1970 to roughly 0.07 in 2015 (with a 
large dip during the great recession).  On this scale, the differences between AEO 
and CAFE look rather small, and suggest a continuation of a downward trend to a 
level of 0.06 on average.   
 
This perspective is entirely consistent with the results reported in section 4 (see, e.g. 
Figure 4-9) that demonstrate how, due to the statistical error in the dynamic 
scrappage model, the difference between the Rollback and Existing vehicle fleet-
related results  are not meaningful in a practical sense. 
 

 
Figure 5-10.  Turnover Comparison:  FHWA Data and AEO/CAFÉ Model Results  
 
5.2   Additional Exploration of CAFE Model and NEMS Behavior 
 
One thing we have not yet directly is the potential role of new vehicle prices (more 
specifically, new vehicle price increases attributable to differences in compliance 
costs under different CAFE policies).  Both the CAFE model and NEMS execute 
procedures to ensure that manufacturers make decisions so as to comply with CAFE, 
which will generally require adoption of new technology.  Because this can place 
upward pressure on prices, it is instructive to compare average prices from the two 
models.   
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See Figure 5-11.  A number of features are clear.  AEO18 prices are systematically 
lower than CAFE model prices.  Although there could be any number of reasons for 
this, this is at least consistent with the higher sales levels in AEO18.  The price 
differences between the Existing and Rollback scenarios are smaller for AEO18 than 
for the CAFE model, which is a reminder of potential concerns regarding the Tech 
Cost results in the 2018 NPRM, and much they have changed since the 2016 TAR.  
Finally the pattern of AEO prices changes appears to track to the compliance 
schedule much more closely than the CAFE model results, which would be an 
indication of differences in the algorithms used the manufacturer decision models 
for two systems.   
 

 
Figure 5-11.  Average New Vehicle Prices from AEO18 and CAFÉ Model.   

 
Returning to economic considerations, it is worth remembering that neither of these 
two models has any type of behavioral model for the used vehicle market, nor do they 
have a representation of used vehicle prices.  On the other hand, NEMS does have a 
discrete choice model (nested logit) that yields new sales shares for a relatively 
large number of vehicle classes and fuel technology types.  Scrappage is an implied 
behavior determined by projecting total fleet size and new vehicle sales.  Through 
this mechanism, all else equal, an increase in new vehicle sales would yield an 
increase in scrappage.  In this way, consumer responses to price changes in the new 
vehicle market would influence scrappage25.   

                                                        
25 Note that this represents yet a third choice when compared to GC99 and the 
current CAFÉ model.  In GC99, total vehicle stock and scrappage are modeled, which 
determines new vehicle sales.  The CAFÉ model forecasts new vehicle sales and 
scrappage, which determines vehicle stock.  Based on earlier discussions, our view 
is that it is always preferable to model future levels of vehicle stock.   
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In contrast, in the CAFE model’s overall fleet size is an implied “behavior” 
determined by whatever results are produced from the new vehicle sales model and 
the scrappage model.  As discussed previously, the outputs of these two models are 
theoretically “correlated” because they both use new vehicle price as an explanatory 
variable, but there is no cause-and-effect mechanism that directly links new sales 
demand to scrappage rates.  New vehicle price changes affect scrappage rates 
directly by being an explanatory variable in the model.   
 
We have no independent source for an estimate of what the likely impact on 
scrappage would be from new vehicle price increases (i.e., the scrappage elasticity 
for changes in new vehicle prices).  Recall that we do have such estimates for used 
vehicle prices (see section 3).  Recall that Bento et al. (2018) report an estimate of -
0.4 based on models using aggregate data.  Jacobsen and van Benthem (2015) report 
a somewhat higher value using models estimated on highly disaggregated data.  
They estimate multiple models yielding a range of estimates that depend on various 
vehicle characteristics, reporting an overall “central estimate” of -0.7.   
 
Now, note that, with the numerical results we have compiled in this section, we can 
compute estimates of scrappage elasticities for new vehicle price changes.  
Specifically, we can compute the percent changes in new vehicle prices using the 
available data.  Then, for each calendar year, we can divide the percentage change in 
scrap rate by the corresponding percentage change in new vehicle price.  This 
provides a measure of elasticity.  See the results in Table 5-1.   
 
Year AEO18_Exist CAFE_Exist AEO18_Rollback CAFE_Rollback 
2018 -0.16 3.98 -0.16 10.30 
2019 -0.37 1.07 -0.38 12.63 
2020 -0.31 0.42 -0.31 6.63 
2021 -0.19 -3.97 -0.18 -13.47 
2022 -0.10 -5.92 -0.28 -60.47 
2023 -0.21 -5.16 -1.22 -142.79 
2024 -0.33 -5.68 -3.12 163.88 
2025 -0.19 -1.01 -0.73 6.62 
2026 -1.27 0.68 -2.59 -8.92 
2027 -5.65 -0.32 -2.17 11.83 
2028 -3.37 4.45 -1.81 54.81 
2029 -2.11 11.53 -1.13 -69.56 
2030 -0.37 -23.33 -0.14 -46.43 
2031 -0.04 -13.72 0.06 -32.59 
2032 1.12 -21.46 0.89 -26.41 
     
average -0.90 -3.90 -0.88 -8.93 

Table 5-1.  Estimates of Scrap Rate Elasticity  
With Respect To Changes In New Vehicle Price 

 



 79 

In comparing the two sets of results, the AEO18 values are much more reasonable 
than the CAFÉ model values.  In the above table we have identified in bold the 
entries that are reasonable based on economic theory and the results in the 
literature.  In this case, elasticities should be negative, and generally be smaller than 
3 (in absolute value.)  The vast majority of AEO18 values satisfy this condition.  Even 
the larger AEO18 values are “reasonable.”  Finally, the average values are -0.90 and -
0.88 for the Existing and Rollback scenarios, respectively.  On one hand, these are 
reasonably close to the Jacobsen and van Benthem (2015) estimate for scrap 
elasticity with respect to used vehicle prices.  On the other hand, the Bento et al. 
(2018) estimate was -0.4, and one might expect the elasticity with respect to new 
vehicle price to be smaller.  In any case, these results are not unreasonable.   
 
However, the results from the CAFE model do not fare nearly so well.  Although the 
negative values outnumber the positive ones (17 to 13), this is a relatively even mix 
of negative and positive values (and therefore clearly inconsistent with economic 
theory).  Most of the values are extremely large in absolute value.  (Given the mix of 
positive and negative values, the average values are not even valid for 
consideration.)   
 
Considering that the dynamic scrappage model was specifically intended as a direct 
implementation of the Gruenspecht effect by using new vehicle “prices” as an 
explanatory variable, this further demonstrates of the failure of the approach.  One 
possible reason for the relative success of NEMS results is the cause-and-effect 
structure describe above, combined with a discrete choice model of consumer 
behavior for new vehicle sales.   
 
Is it possible to explain in more detail while this approach did not work?  Recall that 
GC96 and Parks (1977) do use a variable related to new vehicle price in their 
scrappage models (specifically, the new vehicle price index).  However, recall that 
NHTSA’s approach used unadjusted new vehicle prices (as discussed in section 3.6).  
But, this completely ignores the well-known phenomenon occurring in new 
vehicles:  they are constantly being improved using rapid technological advances in 
multiple areas, so that quality-adjusted new vehicle prices have been dropping 
steadily.  
 
However, the bigger problem is that these models are just very limited when 
compared to approaches that use, e.g., discrete choice models of consumer behavior.  
In this regard, recent research reinforces how important it is to use a relatively high 
level of detail when estimating these models in order to get unbiased parameter 
estimates.  See, e.g., Wong, Brownstone, and Bunch (2018), who show that, even 
discrete choice models based on a relatively large number of vehicle classes are 
subject to problems with bias due to the use of attribute averages.  However, at the 
same time, we recognize that these approaches could be very challenging to use by 
many analysts due to their technical requirements.   
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6.  Conclusions 
 
The purpose of this report was to provide a review and analysis of NHTSA’s 
economic modeling approach, and determine any implications for the benefit-cost 
analysis results in the NPRM.  The reasons for specifying the purpose in this way 
were:  (1) a preliminary review of the NPRM revealed there were major differences 
between the results and conclusions in the NPRM versus the 2016 TAR, (2) it was 
unlikely that such a major reversal was due to “new information,” (3) further review 
revealed that the reversal hinged largely on the benefit-cost analysis, and (4) one of 
the major changes made since 2016 was the introduction of economic models that 
seemed motivated by a desire to implement the Gruenspecht effect.   
 
As noted elsewhere, there are also a number of other problems with NHTSA’s 
analysis related to issues such as technology costs, the rebound effect, etc., but these 
are outside the scope of this report.   
 
This report began in section 2 by reviewing benefit-cost measurement issues, and 
showing that the dynamic scrappage model was a major driver of the results in the 
NPRM.  Specifically, if the dynamic scrappage model is turned off and replaced with 
the most recently developed scrappage rates made available by the Agencies, the 
results and conclusions of the NPRM are reversed in favor of the Existing standards.   
 
The remainder of the report shows that the difference in results is not due to an 
improvement in the “quality” of the modeling employed by the Agencies.  Rather, the 
evidence is that the models were inherently limited based on theoretical 
considerations, were implemented using questionable approaches, and were not 
subjected to rigorous testing, validation, or peer review.  
 
In particular, we provide a thorough analysis using numerical results informed by 
comparison to other models in the literature, and also with NEMS.  These results 
empirically demonstrate that the dynamic scrappage model has many serious flaws.  
It behaves in a manner that is inconsistent with theory, and, in particular, produces 
results for vehicle market behavior that are inconsistent with economic theory 
(violating the Agencies’ own requirements for regulatory analysis).  Finally, the 
differences between the Existing and Rollback net benefit results in the NPRM can 
be directly attributed to specific differences in scrappage rates that are not 
statistically meaningful due to the prediction error properties of the dynamic 
scrappage model.   
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Appendix A:  Potential Impact of Dynamic Scrappage Model Statistical Error 

The results in Tables 2-1 to 2-3 were all presented in terms of net benefits.  However, 
the outputs from the , model are cost estimates.  Recall that the original net benefit 
estimate corresponding to the NPRM result was $196.6B (column 1 of Table 2-3).  
This estimate was obtained from two different runs of the CAFE model.  The total 
cost estimate of the Rollback is $16,338.34B (from one run), whereas the total cost 
estimate for the Existing standards is $16,534.91B (from another run).  The net 
benefit is obtained by subtraction:  $16,534.91B - $16,338.34B = $196.57B.   
 
However, because of the presence of a statistical model (dynamic scrappage) inside 
the CAFE model, the prediction errors in the scrappage model imply that there must 
be some amount of uncertainty in the final results.   
 
In section 4 we discuss the construction of a 95% confidence interval for the error in 
predicted scrappage rates from the scrappage model.  Using the reported results in 
the PRIA () made it possible to construct an upper and lower bound defining a 95% 
confidence interval.  We obtained CAFE model runs to generate curves in section 4 
that show the scrappage model prediction error.   
 
However, these same runs can be used to complete the calculations used to produce 
total cost estimates.   
 
Existing:   Central estimate =                                $16,534.9B 

Bounds      =   ($15,351.8B,                              $17,545.0B). 
 

Rollback:   Central estimate =                $16,338.3B 
Bounds      =   ($15,160.8B,                              $17,376.6B).  
 

 
The purpose of showing these results is to demonstrate that the potential impact of 
prediction error from embedding a model like the scrappage model within the CAFE 
model is an issue that should have been investigated.  We caution that we are not 
claiming that these final results are necessarily “95% confidence intervals”, nor do 
the conclusions and findings of this report rely on the results shown in this 
appendix.  Rather, this speaks to the need to rigorously test and validate models 
before using them for the purpose of making important policy decisions.   
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Appendix B.  Brief Description of National Energy Modeling System (NEMS) 
 
EIA’s NEMS model frequently plays an important role in policy analysis (including at 
the state level):  Its projections are widely used by researchers performing such 
analyses, representing a type of “standard” used to define reference scenarios.  
NEMS is used by EIA to produce its Annual Energy Outlook, which includes 
projections of important macro-level statistics.  For example, fuel price projections 
(including reference, low price, and high price scenarios), are widely used in policy 
analysis (as they are in the CAFE model).  Moreover, in our own work we have also 
used AEO projections of future vehicle fleet sizes and new vehicle sales for purposes 
of model calibration.   
 
Although a number of researchers have concerns about possible biases in specific 
sub-sectors (e.g., renewable energy), even those researchers characterize 
NEMS/AEO as follows (Gilbert and Sovacool 2016):   
 

“Released annually, AEO contains long-term projections of energy supply, 
demand, and prices in the U.S [10]. AEO projections are relied upon by 
industry, government, academia, and the public sector for regulatory 
proceedings, rulemakings, environmental projections, financial decisions, 
creating other energy models, and more. 
 
…  One colleague of ours even refers to it colloquially as ‘The Bible of energy 
information.’ 
 
Indeed, many high-profile regulatory proceedings in the U.S. rely on AEO or 
NEMS to assess the costs and benefits of regulatory policies. … One of the 
major challenges with energy economic models is a lack of transparency: it is 
usually difficult or impossible for third parties to be able to “independently 
verify published results” [14]. Unlike other energy models, AEO projections 
have been published for many years and are well documented, making them 
a prime candidate to test the effectiveness of energy model projections.”   

 
Based on the preliminary description of NEMS capabilities in the area of vehicle 
markets in section 3.4, it is evident that includes a much more advanced version of 
the same type functionality that NHTSA has attempted to add to the CAFE model 
(under a very short time frame), incorporating many of the desirable features 
described in section 3.2 (discrete choice models for vehicle classes based on 
attribute preferences, equilibration, and manufacturer decision making at a high 
level of detail).  The remainder of this appendix includes additional detail on NEMS, 
which draws heavily from the overview provided in EIA (2009).   

NEMS is a large-scale modeling system that incorporates many components, 
managed by an “integrating module” that performs iterations of the entire system 
until convergence to a general equilibrium (analogous to the Berkovec framework, 
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although with a much larger scope).  It addresses essentially all sectors of the 
economy, since all sectors have some implications for future energy use.  
 
At the “top level,” NEMS addresses “domestic spending (I), income (II) and tax policy 
(III) sectors” and simulates the “the central circular flow of behavior as measured by 
the national income and product accounts.”  Domestic spending is decomposed into 
according to a hierarchy of categories, including consumer spending on durable 
goods.  Durable goods spending “is divided into nine categories: light vehicles; used 
automobiles; motor-vehicle parts; other vehicles; computers; software; other 
household equipment and furnishings; ophthalmic and orthopedic products and 
‘other’.”  Consumer spending on non-durable goods and services is similarly sub-
divided.   

In terms of factors that affect these projections:  “In nearly all cases, real 
consumption expenditures are motivated by real income and the consumer price of 
a particular category relative to the prices of other consumer goods. Durable and 
semi-durable goods are also especially sensitive to current financing costs, and 
consumer speculation on whether it is a ‘good time to buy’.  Clearly, overall 
macroeconomic effects that affect future vehicle usage are taken into account.   

One of the many modules used by NEMS is the Transportation Demand Module, 
which is described as follows:  “The transportation demand module (TRAN) projects 
the consumption of transportation sector fuels by transportation mode, including 
the use of renewables and alternative fuels, subject to delivered prices of energy and 
macroeconomic variables, including disposable personal income, gross domestic 
product, level of imports and exports, industrial output, new car and light truck 
sales, and population.”   

The module makes extensive use of data on vehicle technology capabilities and costs, 
and models the decisions by manufacturers to add new technologies.  The demand 
side incorporates a vehicle choice model that includes detailed vehicle classes, 
including the capability to address future alternative fuel technologies.  It captures 
the effect of tradeoffs among different types of vehicle attributes (e.g., price and fuel 
operating cost), as well as the degree of substitution and competition among similar 
vehicle types.  Moreover, projections of future vehicle counts are provided at this 
level of detail.   

An important feature is that NEMS is specifically designed to take into account the 
effect of CAFE standards:   

Proposed changes in CAFE standards:  This class of simulations is based on 
changing (increasing) the combined average fuel economy of new light vehicles 
relative to the baseline CAFE standards.  Increases in the CAFE standards are 
associated with an increase in the cost of production of new light vehicles, which 
are calculated by the Transportation Module of the NEMS. This increased cost is 
passed to the MAM. The additional cost per new light vehicle is added to the 
reference average price of new light duty vehicles (PLVAVG).  
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Once the MAM solves its series of models using the new assumption, it writes its 
new projection to the global data structure. The other modules of the NEMS read 
the new MAM and CAFE assumptions and recalculate their projections. The 
resulting new energy prices and quantities along with the incremental cost for 
new light vehicles are returned to the MAM. The MAM uses the newly estimated 
energy market assumptions to re-solve. This process continues until the NEMS 
forecast converges.  

In the 2018 AEO, NEMS was used to produce results for two different regulation 
scenarios (Existing and Rollback), facilitating the comparison study in section 5.   
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Appendix C.  Prediction Uncertainty in the Dynamic Scrappage Models 

NHTSA’s scrappage model development is documented in section 8.10 of the PRIA.  
As discussed in section 3.5, three other references in the literature on this subject 
are Bento et al. (2018), Jacobsen and van Benthem (2018), and Greenspan and 
Cohen (1999).  The models in all of these references are developed by first adopting 
a particular form of equation (or, in the case of a two-stage model, equations) and 
then “calibrating” or “estimating” the model parameters by fitting it to observed 
data.   
 
The most familiar version of this exercise in introductory statistics is linear 
regression, where a straight-line formula is fitted to observed data.  In this case, the 
researcher assumes that the following is the “true model” (with unknown 
parameters ):     

  
 
where xi is an explanatory variable and yi is the dependent variable that the 
researcher is interested in understanding and/or predicting.  Pairs (yi , xi), i = 1,…,n, 
are observed data that can be used to obtain estimates of the parameters.  In this 
model, yi is subject to random variation due to unobservable effects on its value.  
Specifically, the true model explains the average value of yi ( ) for a particular value 
of xi (given by ), and the observed value of yi is subject to random 
variation ( ).  The mean and variance of  are 0 and , respectively.  The 
variance is a measure of how much “noise” there is in the observed values (the 
larger the yi, the more noise).   
 
Using the observed data, the researcher finds estimates for  (called a and b, 
respectively) that provide the best “fit” to the data, as well as s (an estimate of the 
noise).  Figure B-1 shows the output of this process, with a scatterplot of 
observations and a fitted line.  The fitted line gives the predicted value from the 
model at various values of X.  By plotting this together with the observations, it is 
possible to see the amount of random variation in the data.  A measure of this error 

is the root-mean-square-error:  .   

 
It is possible to create an upper and lower bound to define a prediction interval with 
a 95% confidence level.  The interpretation of this is:  “If this process of collecting 
data and performing this analysis were conducted over and over again (with a 
correct model), then the true value of Y would lie within this interval 95% of the 
time.”  For an example of a similar plot that also includes upper and lower bounds 
for a 95% prediction interval, see Figure B-2.   
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Figure B-1. Straight Line Fitted to Observations  

 
Figure B-2.  Fitted Straight Line, Observations, and 95% Prediction Bounds 
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Based on information available in Chapter 8 of the PRIA, we were able to use the 
CAFE model as a “black box” to make runs that determine the upper and lower lines 
corresponding to those in Figure B-2.  NHTSA estimated a linear regression like the 
ones depicted in the figures above.  However, in this case the fitted line was for y = 
ln(s/(1-s)), where s is the scrap rate (see page 1040 of the PRIA), and ln is the 
natural logarithm.  The scrap rates themselves are obtained by transforming this 
expression for y using equation 8-4 in the PRIA.  (This is all done automatically 
inside the CAFE model).   
 
We obtained the root-mean-square error (RMSE) for the regression for Cars from 
Table8-10 in the PRIA (0.15).  In order to produce the required results, we shifted 
the intercept in Table 8-10 and re-ran the CAFE model.  This required two runs: One 
for the lower bound, and one for the upper bound.  The reported intercept for the 
Cars model is in the “Scrappage Model Values” worksheet contained in the input 
Excel worksheet containing “parameters”.  The reported value is -0.985368.  The 
RMSE is 0.15.  To get the intercepts for the two runs, the intercept was shifted by 
plus-or-minus RMSE*1.96 (1.96 is the value that produces the 95% interval), and 
entered into the parameter worksheet for two runs.   
 
 
 


