New Car Buyers’ Valuation of Zero-Emission Vehicles

California Air Resources Board
Research Seminar
20 April 2016

Ken Kurani
Plug-in Hybrid & Electric Vehicle Research Center
Institute of Transportation Studies
University of California, Davis
Goals and Regulatory Context

• What are consumers’ awareness, knowledge, experience, and valuation of plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs)?

• Regulatory Context
 – Air quality standards: Section 177 of Federal Clean Air Act
 – Greenhouse gas emissions reductions: AB 32,…

• Supporting Programs: federal, state, and local
 – Zero-emission vehicle (ZEV) sales requirements
 – Vehicle purchase and use incentives
 – Charging and fueling infrastructure deployment
Executive Summary

“Californians are generally unfamiliar with most advanced technologies and alternative fuel vehicles, or have misperceptions about the vehicles and their capabilities, believing them to be small and lacking in power and style. “Consumers have little trust in new, “untested” technologies, but they tend to trust those they consider to be their peers with personal experience for vehicle validation.”

Plax, Kearney, and Jolly (2006)

• Consumers, everywhere we looked, are generally unfamiliar with plug-in electric and fuel-cell vehicle technology.
 – The first hurdle to growing markets is so few households have yet to ask themselves whether a PEV or FCEV is right for them.

• Consumers are not monolithic in their response to “ZEV” or “new” technology, and policy goals and tools.
 – The differences across states and regions may be less important than the similarities.
 – Differences within states and regions are correlated with respondents’ ZEV valuations.

Kurani, Caperello, and TyreeHageman (2016)
Multiple States
What they have in common may turn out to be more important than their differences
Multiple methods

• Survey: December 2014 to January 2015
 – Multi-state sample of new car buyer households
 • Total, n = 5,654
 • CA, n = 1,671

• Interviews: January to March 2015
 – Selected from survey respondents
 • Pro- and Con-ZEV respondents from survey
 • Three States
 – Oregon (Portland)
 – Washington (Puget Sound)
 – California (Sacramento, San Francisco Bay Area, San Diego, Los Angeles)
Valuation

- Will new vehicle buyers design a plausible next new vehicle for their household that is a PHEV, BEV or FCEV?
 - Yes = positive valuation
 - No = negative valuation
Design Game Parameters

• Establish Starting Vehicle
• Drivetrain Design: More electric costs more
 – HEV
 • Fuel economy and purchase price increments
 – PHEV
 • Charge Sustaining (CS) mode: fuel economy equivalent to HEV
 • Charge Depleting (CD) mode: assist or all-electric; range
 • Charging: duration, home and away
 – BEV
 • Range
 • Charging: duration, home and away
 – FCEV
 • Range
 • Home hydrogen fueling
Design Game Parameters

• Incentives
 – Offered in final game only
 – PHEVs, BEVs, and FCEVs assigned a federal incentive
 • Equivalent to schedule of federal tax credit at time of survey
 – FCEVs given same credit as BEVs
 – Plus respondent’s choice of one of the following
 • State vehicle incentive equal to CVR at time of survey
 • State home charger/H2 fueling incentive equal to State vehicle incentive
 • Single occupant HOV access (until Jan. 2019)
 • Reduced bridge and road tolls (until Jan. 2019)
 • If workplace charging isn’t available, assume it is made available
 – Workplace fueling not offered for FCEVs
27 to 39 percent of respondents design their next new vehicle to be a PHEV, BEV, or FCEV.
Incentives by State/Region

- Workplace charging
- Reduced tolls
- HOV access
- State EVSE rebate
- State vehicle rebate
Why do people design PEVs and FCEVs, or not?

1. Modeling design game results
 • Models for states and NESCAUM

2. Post-game motivations
What is correlated with drivetrain designs?

• Respondents’ Contexts
 – Can they charge a PEV at home?
 – Do they commute by private vehicle to work?
• Respondents’ attitudes toward policy goals and tools
 – Air quality is motivating across most states
 • Regional risk, personal threat
 – Incentives
 • Awareness of federal incentives or support for incentives
What is correlated with drivetrain designs?

• Specific assessments of PEVs and FCEVs
 – Whether electricity and/or hydrogen is a likely replacement for gasoline and diesel;
 – Extent to which respondents have already considered acquiring a PEV or FCEV.
 – Whether respondents have already seen PEV charging in the parking facilities they use
 – Personal interest in ZEV technology;
 – Familiarity with drivetrain types in the design games: ICEVs, HEVs, PHEVs, EVs, and FCEVs;
 – Prior assessments of EVs and FCEVs on six dimensions including charging/fueling, purchase price, safety, and reliability;
 – Experience driving vehicles of the different drivetrain types;
Are you familiar enough with these types of vehicles to make a decision about whether one would be right for your household?

Mean scores; -3 = no, 3 = yes
How much driving experience do you have in these types of vehicles?

Mean Scores; -3 = none at all; 3 = extensive
Self described access to charging at home parking location and whether they have seen electric vehicle charging in the parking garages and lots they use. Percent “yes.”
As far as you are aware, is each of the following offering incentives to consumers to buy and drive vehicles powered by alternatives to gasoline and diesel? Percent “yes.”
Have you considered a vehicle that runs on electricity for your household?

- **I (we) already have a vehicle powered by electricity**
- **Shopped for an electric vehicle, including a visit to at least one dealership to test drive**
- **Started to gather some information, but haven not really gotten serious yet**
- **The idea has occurred, but no real steps have been taken to shop for one**
- **I (we) have not considered buying a vehicle that runs on electricity but maybe some day we will**
- **I (we) have not and would not consider buying a vehicle that runs on electricity**
Why do people design PEVs and FCEVs, or not?

1. Modeling design game results
2. Post-game motivations
Why do people design PHEVs, BEVs, or FCEVs?: California

- Air quality
- Reduce my pay to oil producers
- Reduce US oil imports
- Climate Change
- Fits lifestyle
- Right impression
- Like their looks
- Incentives
- Save maintenance cost
- Save fuel cost
- Save purchase cost
- Safer
- Comfort
- Fun to drive
- Home charging
- ZEV tech

Pro-social technologists. n=229
Thrifty environmentalists. n=143
ZEV-tech Hedonists. n=152
Low total scores. n=106

All motivations have a mean score greater than zero. Only mean scores higher than total mean of 1.38 are plotted.
Why *don’t* people design PHEVs, BEVs, or FCEVs?: California

- Battery concerns
- Environmental concerns
- Lifestyle
- Impression on others
- Vehicle looks
- Fuel safety
- Vehicle safety
- Electricity supply reliability
- Vehicle reliability
- Want higher incentives
- Fuel cost
- Maintenance cost
- Purchase cost
- Charge/fuel time
- Limited range
- Limited fuel network
- No home charge or fuel
- Unfamiliar technology

All motivations have a mean score greater than zero. Only mean scores higher than total mean of 0.96 are plotted.
Progress toward ZEV goals
Population estimates of new car buyers with positive PHEV, BEV, or FCEV valuation

<table>
<thead>
<tr>
<th>Occupied housing units x 1,000 (US Census)</th>
<th>Vehicle available (ACS)</th>
<th>% buy new (est. from past UCD surveys)</th>
<th>% Design PEV or FCEV Game 3</th>
<th>Population Estimate x 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>1,523</td>
<td>92%</td>
<td>33%</td>
<td>38.7%</td>
</tr>
<tr>
<td>California</td>
<td>12,617</td>
<td>92%</td>
<td>33%</td>
<td>38.1%</td>
</tr>
<tr>
<td>Washington</td>
<td>2,645</td>
<td>93%</td>
<td>33%</td>
<td>35.9%</td>
</tr>
<tr>
<td>Maryland</td>
<td>2,156</td>
<td>91%</td>
<td>33%</td>
<td>31.4%</td>
</tr>
<tr>
<td>Delaware</td>
<td>339</td>
<td>94%</td>
<td>33%</td>
<td>28.0%</td>
</tr>
<tr>
<td>NESCAUM</td>
<td>16,078</td>
<td>81%</td>
<td>33%</td>
<td>26.6%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Households and PEVs in CA

1.5 million ZEVs on-road in 2025

~3.8 million new-car buying households; ~8% own, lease or have seriously considered a PEV

Thus, less than 3% of ~11.6 million car-owning households in California

~200,000 PEVs sold in CA from January 2011 through March 2016

~1.5 million ZEVs on-road in 2025
Households and PEVs in CA

1,850 participants in a PEV Collaborative Ride-and-Drive in 2015

1.5 million ZEVs on-road in 2025

~38% design next new vehicle to be a PHEV, PEV, or FCEV; ~1.5 million new-car buying households
Conclusions

1. Despite low awareness, knowledge, experience, and prior consideration, across the states and regions in this study 24% to 39% of respondents design a PEV or FCEV as their next new vehicle.
 - CA: 38%
 - ~3.34 million new car-buying households
 - CA: ~1.48 million
Conclusions

2. The effects of incentives (as offered):
 – Among those who designed a PEV or FCEV:
 • ≈20% more PEV and FCEVs
 – Among those who did not design a PEV or FCEV:
 • (Increased) incentives may have had little effect
 – 2.5% to 5% say higher incentives would have “tempted” them to design a PHEV, BEV, or FCEV
Conclusions

3. Most households with negative ZEV valuation have yet to ask themselves, “Is a PEV or FCEV right for my household?”

– The litany of motivations against designing a PEV or FCEV may be as or more important than any single motivation.

• Highlighted by the high scores pervasively given to “unfamiliar technology”
Conclusions

4. The importance of awareness, knowledge, experience, and prior consideration

~38% positive ZEV valuations because ZEV technology
~62% negative ZEV valuations because new technology

- If you aren’t aware of passing generations of improving ZEV technology, you always think you’re being asked to be a risk-taker.

 - Promotional policies that mitigate up-front costs still leave the “new-technology averse” with an expensive unknown.

 - Promotional policies to prompt awareness and provide knowledge and experience address that unknown.
Conclusions

5. Those with positive ZEV valuations have multiple motivations suggesting multiple media and messages to reach them.

 – Everyone highly motivated by fuel cost savings is highly motivated by something else, too.
Acknowledgements

• California Air Resources Board
• Delaware Department of Natural Resources & Environmental Control
• Maryland Air and Radiation Management Administration
• Massachusetts Department of Environmental Protection
• New York State Energy Research and Development Authority
• New Jersey Department of Environmental Protection
• Northeast States for Coordinated Air Use Management
• Oregon Department of Environmental Quality
• Washington State Department of Ecology