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June 14, 2023 

 

Submitted via Email: Kannan.krishnan@oehha.ca.gov 

Office of Environmental Health Hazard Assessment 

California Environmental Protection Agency 

1001 I Street, 12th Floor 

Sacramento, California 95814 

 

Re: ACC Comments on Draft Cancer Inhalation Unit Risk Factor (IUR) for Ethylene Oxide 

 

Dear Dr. Krishnan, 

 

The Ethylene Oxide Panel (EO Panel) of the American Chemistry Council appreciates the 

opportunity to provide comments on the OEHHA’s proposed Cancer Inhalation Unit Risk Factor 

for ethylene oxide (EtO) and its accompanying Draft Technical Support Document (Draft IUR).  

The EO Panel includes the major producers and users of EO in North America. 

 

The Draft OEHHA IUR adopts the US EPA IUR and rejects the TCEQ IUR.  We urge OEHHA 

to reconsider this decision and, at a minimum, to revise the Draft IUR Technical Support 

Document to address errors and other issues impacting the dose-response assessment of the 

NIOSH lymphoid mortality and breast cancer incidence data.   

 

EPA’s selection of the final IRIS model was based on a questionable statistical analysis and  

assessment of visual fit in relation to the categorical (grouped) model estimates.  Unfortunately, 

the Draft IUR’s acceptance of EPA’s EtO IRIS 2016 methodology and assumptions results in the 

same errors and flaws leading to an implausible IUR and Residual Risk Specific Concentration 

(RSC).  While OEHHA admirably attempts to conduct an “independent” evaluation of bias in 

EPA’s model and the NIOSH epidemiological data, their efforts are based on assumptions in the 

absence of access to the actual data being considered and repeats EPA’s faulty reasoning.  

 

As OEHHA correctly points out, the IRIS IUR is based on both lymphoid mortality and breast 

cancer incidence from the study by the National Institute of Occupational Safety and Health 

(NIOSH), whereas the TCEQ IUR is based on lymphoid mortality alone. As discussed in our 
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detailed comments, the unavailability and incomplete ascertainment of the breast cancer data 

precludes the use of the NIOSH breast cancer data for quantitative risk assessment purposes.  

The weaker evidence of causation for breast cancer in the epidemiology studies further supports 

focus on lymphoid cancers from the NIOSH study.  However, the major reasons for the large 

difference in magnitude between the two IURs are (a) the type of exposure-response model used 

to fit the epidemiologic data and (b) the interpretation and value of information in related 

epidemiological and biological evidence to inform the selection of the model.   

 

The Description of the NIOSH and Union Carbide Corporation (UCC) cohort studies need 

to be corrected  

 

The epidemiological evidence indicates that the NIOSH and Union Carbide Corporation (UCC) 

EtO Cohort studies are comparable in terms of the number of lymphoid cases (an important 

factor to consider in the power of the study) and the exposure assessment.  While we do not 

dispute the use of just the NIOSH study to derive the IUR for EtO, the Draft IUR description of 

the strength and weaknesses of these two studies should be corrected so that both of the studies 

can inform the selection of the exposure-response model. 

 

Specifically, the Draft IUR should be corrected to limit the description of the NIOSH study 

exposure assessment as “high quality” and “validated” to apply only to the narrow exposure 

period after 1978 when data were available to validate the exposure regression model.  Prior to 

1978, there was very limited or no exposure data available. Furthermore, the model validated 

after 1978 was altered for years prior to 1978 by holding a key variable “calendar year” fixed at 

the predicted level in 1978. This calendar year variable is described by the authors of the NIOSH 

exposure model to be a “surrogate for improvement in work practices.”  By holding the variable 

calendar year fixed prior to 1978, the NIOSH exposure model estimates lower exposure in earlier 

years compared to 1978.  No effort was made by the NIOSH authors to independently validate 

this substantial adjustment to the model prior to 1978.  

 

Bogen et al (2019) addressed this limitation by finding many sources of new information 

including but not limited to interviews with sterilizer operators and managers.  Independent of 

any modeling effort, Bogen et al (2019) cited several references from the 1950’s -70’s which 

provided clear evidence that there were changes in work practices prior to 1978 that did not 

support holding the variable calendar year fixed prior to 1978. Ironically, the draft IUR dismisses 

the Bogen et al (2019) model showing the opposite but more plausible trend for historical 

exposures (e.g., higher exposures in earlier years) because “the authors were unable to validate 

their pre-1978 predictions since no actual worker measurement were available from that time”, 

and thus, “the accuracy of the Bogen et al. (2019) assessment is unknown to OEHHA.” 

 

By the same reasoning, OEHHA should also conclude that the accuracy of the NIOSH model 

prior to 1978 is unknown, and OEHHA should indicate that the data NIOSH used to develop the 

model are no longer available (lost) (EPA IRIS, 2016, Appendix H, p H-28).   
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In contrast, the UCC exposure estimates are superior in quality to the NIOSH exposure estimates 

because exposure data for the most recent periods, 1957-1973 and 1974-1988, were available for 

more than 75% of the cohort based on routine monitoring, personal sampling and a plant wide 

survey in another UCC plant using the same process (Greenberg et al., 1990; Teta et al., 1993; 

Swaen et al., 2009).  Accordingly, at a minimum the NIOSH study needs to be downgraded with 

respect to these earlier exposure periods and the UCC study needs to be more fully integrated.   

 

These corrections are necessary for a more balanced consideration by OEHHA of both the 

NIOSH and UCC studies in selecting the most appropriate exposure-response model.  The 

evidence from both of these studies, individually and combined, do not support selection of a 2-

slope exposure-response model with a very steep initial slope. The log-linear exposure-response 

model is far more consistent with the weight of evidence from the NIOSH and UCC studies as 

described in greater detail in this submission.  

 

Biological and epidemiological evidence should play a primary role in selecting the 

exposure-response model 

 

The dose-response model used by IRIS (2016) for both breast cancer and lymphoid is a 

“supralinear1” two-slope linear spline model (2-slope model), suggesting that risk increases 

sharply at low exposures and less steeply at higher cumulative exposures above 1600 ppm-days 

for lymphoid cancer and 5750 ppm-days for breast cancer incidence. In contrast, the dose-

response model used by TCEQ (2020a) is the standard2 log-linear Cox Proportional Hazards 

(CPH) model, which is virtually linear at relevant exposure concentrations for estimating cancer 

risk for the general population3.   

 

The steep initial slope of the USEPA IRIS (2016) supralinear two-slope spline model, which 

gives rise to one of the highest inhalation cancer potency estimates derived by IRIS, is not 

justified based on the relatively weak epidemiological findings reported in the original NIOSH 

peer-reviewed publications, the weight of evidence in the epidemiological literature including the 

UCC cohort, and the biological evidence in cancer bioassays and analysis of genotoxicity data.   

 

Our comments provide evidence that the TCEQ model is more consistent with epidemiological 

evidence and has greater biological plausibility than the IRIS model.  While the IRIS assessment 

includes summaries of genotoxicity, toxicology, epidemiology and toxicokinetics, there is no 

integration of these important lines of evidence into the final quantitative risk assessment 

process.  Instead, the IRIS dose response assessment is driven by exhaustive statistical modeling 

analyses divorced from consideration of dose-response concordance with genotoxicity, 

 
1 EPA IRIS uses the term “supralinear” to describe the exposure-response relationship.  Ironically, EPA (2022) 
attributes “supralinear” to ACC as if this is not an appropriate description. 
2 EPA (2022) attributes the term “standard” to ACC to describe the CPH model TCEQ uses, yet this is the correct 
term EPA IRIS (2016) uses to describe the log-linear CPH model  
3 EPA (2022) correctly acknowledges on p.57 that “the log linear Cox model is essentially linear in the low dose 
range”.  
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toxicology and epidemiological weight-of-evidence.  Similarly, OEHHA makes no attempt to 

integrate the different lines of evidence to inform selection of the dose-response. 

 

The EPA (2005) carcinogen risk assessment guidelines states: 

 

“Another problem occurs when a multitude of alternatives are presented without 

sufficient context to make a reasoned judgment about the alternatives. This form of 

model uncertainty reflects primarily the availability of different computer models and not 

biological information about the agent being assessed or about carcinogenesis in general. 

In cases where curve-fitting models are used because the data are not adequate to support 

a toxicodynamic model, there generally would be no biological basis to choose among 

alternative curve-fitting models. However, in situations where there are alternative 

models with significant biological support, the decisionmaker can be informed by the 

presentation of these alternatives along with their strengths and uncertainties.”  

 

Similarly, the EPA SAB (2015) emphasized that “any model that is to be considered reasonable 

for risk assessment must have a dose-response form that is both biologically plausible and 

consistent with the observed data.” Thus, the epidemiological weight of evidence should play a 

very important role in the consideration of the model selection. The absence of findings in the 

UCC study at any exposure, and absence of statistically significant findings at lower exposures 

in males in the NIOSH study are more consistent with a standard CPH model than an extremely 

steep initial exposure-response slope. 

 

In the most recent EPA (2022) response to public comments regarding this lack of consideration 

of the biological evidence in the dose-response assessment,  EPA conducts a highly subjective 

visual inspection of genotoxicity and cancer bioassay data to support its claim that the biological 

evidence cannot be used to inform biological plausibility.  The EPA (2022) evaluation involved 

(a) plotting the data as point estimates without error bars, (b) drawing a straight line between the 

response levels for the lowest and highest dose levels and (c) declaring the dose-response to be 

supralinear or sublinear depending on whether the responses for the mid-dose levels visually 

appeared to be above or below the line.  This visual inspection did not involve any consideration 

of statistical significance or evaluation of which data set and dose regimen is most relevant and 

useful to inform epidemiology data based on cumulative exposures.  Our comments explain why 

a single slope CPH model linear at lower exposures that gradually increases at higher exposure is 

more consistent with the epidemiological, toxicological, and genotoxicity evidence compared to 

a 2-slope model with a very steep initial slope leading to derivation of one of the highest EPA 

IRIS IURs. 

 

 

 

The Proposed NSRL model selection criteria is based on flawed statistics and visual fit 

analysis 
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The Draft IUR reiterates the EPA IRIS (2016) rationale for selecting the 2-slope model based on 

statistical and visual fit, without considering important new information that was available in the 

final TCEQ (2020a) DSD and in TCEQ (2020b) response to comments.  For example, OEHHA 

reports a p-value of 0.01 for EPA’s 2-slope model for breast cancer, suggesting that OEHHA 

is unaware that statistics literature as well as independent peer reviewers of the TCEQ 

Development Support Document (DSD) with strong statistical backgrounds agreed with TCEQ 

that the p-values for the 2-piece spline models were incorrectly calculated.  The corrected p-

values are summarized in Table 1 and indicate that there is no statistical basis to select the 2-

slope model over the CPH model. Our comments provide ample evidence for why OEHHA’s 

Draft TSD should report corrected p-values for lymphoid mortality and breast cancer incidence. 

Table 1. Corrected p-values for IRIS 2-slope linear spline and IRIS standard CPH model  

 

 EPA IRIS (corrected) 

2-slope linear spline 

EPA IRIS Standard CPH 

Model 

 

Lymphoid Mortality P=0.14 corrected from 0.07 P=0.22 

Breast Cancer Incidence P=0.04 corrected from 0.01 P=0.02 

Source: Corrected and IRIS reported p-values are based on IRIS (2016; Tables 4-2, 4-4, 4-6, 4-

12,  4-13, Appendix D) and Final TCEQ DSD (2020a).   

 

The draft OEHHA IUR includes mistakes with visual fit comparisons made in the IRIS (2016) 

assessment by stating the following: 

 

“Other models, including the log-linear models (e.g., Cox regression) and the models 

using categorical data or exposure transformation, generally resulted in slopes that appear 

to dramatically over- or under-predict the actual study results, especially in the lower-

exposure ranges.”  

 

OEHHA makes two errors in this statement: 

 

First, OEHHA incorrectly equates the “actual study results” for lymphoid cancers with 

the 5 categorical modeled estimates which appear as filled purple dots in IRIS Figure 4-3 

and the draft OEHHA IUR Figure 6 with the first “dot” at the origin representing the 

lagged-out group considered to have zero exposures. Categorical rate ratios (RR) are 

calculated with respect to a baseline background hazard rate that is also estimated non-

parametrically (i.e. not estimated by the CPH procedure). For the continuous models, the 

actual data modeled are the individual hazard rates not represented graphically in EPA 

IRIS figures.  For example, for lymphoid cancers, there are 53 individual hazard rates-
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each reflecting comparisons between one lymphoid mortality case against a risk set of  

“control” workers defined as those who survived to at least the age of the index case4. 

 

The risk set of “control” workers includes both exposed and unexposed workers and is 

different for each of the 53 lymphoid mortality cases.  These “control” risk sets are 

different from the underlying background hazard rate implied by the nonparametric 

relative rate (or rate ratios; RR) represented by EPA IRIS as the first categorical purple 

“dot” at the origin. The true (or implicit) y-intercept (or baseline hazard rate at 

cumulative exposures) for each continuous model applied to the 53 individual hazard 

rates will be normalized to 1 at zero lagged exposure5.   The higher the implicitly 

modeled y-intercept, the lower the graph will appear on a graph of RR.   

 

Second, OEHHA makes the mistake of assessing whether various models underestimate 

or overestimate the “actual study results” by making subjective comparisons along the y-

axis in direct contradiction to the warning note EPA IRIS and OEHHA included in the 

figure legends: “Note that, with the exception of the categorical results, the various 

models have different implicitly estimated baseline risks; thus, they are not strictly 

comparable to each other in terms of RR values (i.e., along the y-axis).6”  In other words, 

it is impossible to make conclusions about over- or under- predicting the actual study 

results even if one were to incorrectly define the “actual data” as the 5 categorical RR 

estimates.  As explained above, this is because the baseline background hazard rates 

implied by the nonparametric (categorical) RRs and the underlying background hazard 

rates implied by the parametric models are generally different, but when graphed as RR 

values are all normalized to 1 making it impossible to make any conclusions about under- 

or over-estimations. 

 

Valdez-Flores and Sielken (2013) and TCEQ (2020a) explain in greater detail why OEHHA’s 

and EPA IRIS’s visual fit approaches are inappropriate because it cannot be assumed that 

summary RRs describe the true underlying exposure–response relationship for the continuous 

models.  The SAB 2007 implied the same recommendation against visual fit when it instructed 

EPA to use the individual data to fit the dose-response models. The SAB 2007 concluded “The 

Panel was unanimous in its recommendation that the EPA develop its risk models based on 

direct analysis of the individual exposure and cancer outcome data for the NIOSH cohort rather 

than the approach based on grouped data that is presently used.”[emphasis added].   

 

 
4 See IRIS (2016) Appendix D p. D-3, D-69. Note that EPA relied on Steenland et al. 2004 assumption that 100 
randomly picked “controls” from the risk set is representative of the full risk set. In contrast, TCEQ (2020a, p. 51) 
more accurately utilized the full risk set each possibly having more than 17,000 individuals in the risk set for each 
case. 
5 Allison (2010), a practical guide to survival analysis using SAS, explains that the intercept is part of the arbitrary 
function of time, which drops out of the estimating equations”. 
6 IRIS (2016) Figures 4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-9 for lymphoid and breast cancers 
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The OEHHA Proposed NSRL should reconsider TCEQ’s objective method for assessing 

model fit based on theoretical concerns that were addressed, instead of relying on incorrect 

statistical and visual fit methods 

 

Compared to the IRIS and OEHHA visual “eyeballing” comparisons using graphs that are not fit 

for this purpose, TCEQ (2020a) provided a more objective method  to check how well each of 

the two models (i.e., the standard CPH model7 and the 2-piece spline model8) applied to general 

population background cancer rates predicted the number of lymphoid cancer deaths (the key 

cancer endpoint)  that were actually observed in the NIOSH cohort. Table 2 compares the 

number of lymphoid cancer deaths that were observed in the NIOSH cohort versus the 

predictions by the IRIS and TCEQ models.  In this model ground-truthing exercise, the TCEQ 

model was not only able to better predict the actual total number of lymphoid cancers in the 

NIOSH cohort but also the number of cancers in Quintile 2,9 demonstrating superior global and 

local fit below the knot.  This approach used to predict cancer deaths from the model is 

essentially the same well-accepted approach IRIS (2016, Section 4.7) used to estimate extra risk 

for various occupational exposure levels by applying the IRIS model to the general population 

background cancer rates  in the life-table program.   

 

Table 2. Comparison of observed versus predicted number of lymphoid cancer deaths in NIOSH 

study using IRIS and TCEQ models 

 Observed  Predicted (95% CI)  

2-piece linear spline 

model with knot 

Standard log-linear CPH 

model (linear at POD of 

1/100 and below) 

Total number of 

cancer deaths  

 

53 91.69 

(70.1, 122.4) 

52.42 

(40.1, 70.0) 

Quintile 28 cancer 

deaths  

 

11 20.9 

(11.7, 42.0) 

14.4 

(8.1, 28.9) 

Source: TCEQ (2020a) Appendix 3 Table 29 and 30 

 

OEHHA dismissed TCEQ’s prediction method based on an unsupported vague claim that the 

analysis is flawed because it does not account for differences that might exist between the 

general US population and the NIOSH worker cohort. Epidemiologic literature has shown that a 

healthy worker effect (HWE) is predominantly related to workers with shorter follow-up and 

non-cancer causes (Monson, 1986; Fox and Collier, 1976).  Most importantly, the NIOSH study 

authors themselves concluded that there was unlikely to be a cancer HWE in this longer follow-

 
7 TCEQ’s model using 15-yr lag and the full risk set 
8 EPA IRIS model using 15-yr lag and 100 workers randomly selected individuals from each case’s risk set 
9 TCEQ (2020a) defined Quintile 1 as the 9 lagged-out cases (no exposures). The remaining 44 cases were equally 
divided into 4 groups designated by TCEQ as Quintiles 2-5. EPA IRIS (2016, p. 4-15) reported 13 exposed cases 
below the knot of 1600 ppm-days.  Thus, prediction of Quintile 2 comprised of 11 cases with the lowest exposures 
best reflects “local” fit below the knot. 



 

8 
 

up study (Steenland et al., 200410).  Their conclusions are consistent with that of the International 

Agency for Research on Cancer textbook on Cancer Epidemiology: Principles and Methods 

(IARC, 1999), which specifically notes that HWE “is known to vary with type of disease, being 

smaller for cancer than for other major diseases, and it tends to disappear with time since 

recruitment into the workforce.”  Thus, it is unlikely that there is a HWE in the NIOSH cohort. 

 

OEHHA did not appear to be aware of the TCEQ DSD11 sensitivity analysis to demonstrate that 

the TCEQ model still better predicts the overall actual cancers after applying a high HWE of 15-

16% for lymphoid cancers. Although one can quibble with the TCEQ’s selection of 15-16% 

based on overall12 cancer SMRs from a Norwegian worker study with relatively short average 

follow-up of 11.5 yrs. (Kirkeleit et al., 2013), the larger point is that 15% HWE is a reasonable 

estimate for differences between the general population and the NIOSH worker cohort given the 

unlikelihood of a cancer HWE in the NIOSH study (Steenland et al., 2004).    Figures 1 and 2 

show the TCEQ model better predicts the observed lymphoid deaths than the IRIS model overall, 

and locally at Quintile 2.  Taken together, the OEHHA IUR should be corrected to indicate 

that the TCEQ model has excellent overall and local fit based on the TCEQ’s prediction 

analysis, which considers a possible HWE effect as a reasonable surrogate for differences 

that might exist between the general US population and the NIOSH worker cohort. 

 

 
10 “The healthy worker effect would seem an unlikely explanation for the lack of cancer excesses in the exposed 
versus non-exposed comparisons.” (Steenland et al. 2004) 
11 TCEQ Section A3.3.2 
12 Kirkeleit et al, (2013) did not find a HWE for lymphoid (SMR of 0.97 for males, 1.07 for females) or breast cancer 
(SMR of 1.02),  but TCEQ conservatively used the overall cancer SMR of 0.85 and 0.84 for male and females 
workers.  It is unknown if the Norwegian workers are representative of the NIOSH sterilizer workers.   
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Figure 1. Comparison of Overall Fit of TCEQ and IRIS Models To the NIOSH Study 

Note: Confidence intervals (CI’s) shown are based on Poisson distribution and are very similar to 

those calculated by TCEQ (2020a) as described in our detailed comments.  These similar results 

provide additional support for TCEQ’s conclusions that the TCEQ model has greater overall fit 

to the data. (See TCEQ, 2020a) 
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Figure 2. Comparison of Local Fit of TCEQ and IRIS Models To Quintile 2 of the NIOSH 

study  

Note: CI’s shown are based on Poisson distribution and are very similar to those calculated by 

TCEQ (2020a) as described in our comments. These similar results provide additional support 

for TCEQ’s conclusions that the TCEQ model has greater local fit below the knot. 

 

 

OEHHA makes an incorrect and unsubstantiated claim that the CPH model is sublinear at the 

point of departure (POD) and is therefore less accurate than a linear model (e.g., first initial 

linear model before the knot).  The standard CPH model is essentially linear over the range of 

exposures for the NIOSH study, and the POD of 1/100,000 was selected by TCEQ to be within 

the experimental dose-range.   Although EPA also prefers a POD of 1/100, EPA (2022, p. 57) 

agrees that the CPH model is linear at and below the POD of 1/100: “Given that the log linear 

Cox model is essentially linear in the low dose range, this choice of the POD would likely not 

have major effect on bottom line estimates, but the use of such a low POD is not a sound risk 

assessment practice.” 

 

Neither OEHHA nor EPA may have considered that TCEQ’s (2020a, Appendix 4) selection of 

the POD is based on USEPA cancer guidelines (2005 page 1-13) and that the POD should be in 

the range of the observed data “near the lower end of the observed range, without significant 

extrapolation to lower doses.”  The exposure concentration (EC) for an extra risk of 1 in 100 

(354,399 ppm-days) using TCEQ’s model is outside (above) the range of cumulative exposures 
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for the male lymphoid mortalities in the NIOSH study.  In contrast, the EC for an extra risk of 1 

in 100,000 is near the lower end of the observed range of cumulative exposures to EtO, and is 

consistent with TCEQ and USEPA guidelines (TCEQ 2015, USEPA 2005a) on the selection of a 

POD at the low-end of the observable range of exposures 

 

Background endogenous and ambient levels of EtO provide important reality checks for 

model selection. The key assumptions in extrapolating the exposure-response relationships 

at lower exposures are scientifically valid and are now corroborated by independent data 

sets. 

 

Background endogenous and ambient levels of ethylene oxide are an important reality check for 

the TCEQ and IRIS model. While OEHHA is correct that the potency estimates technically 

only apply to exposures above endogenous levels, it is implausible that a chemical would be 

a potent carcinogen at fraction of levels that the body produces through natural processes 

and also be well within the population variability. We applaud OEHHA for including a 

section on endogenous levels. However, we disagree with OEHHA’s claim in the toxicokinetic 

section that the data presented by Kirman et al. (2021) is inadequate  to estimate ambient 

equivalent EtO levels at exposures below occupational. 

 

The linear relationship between HEV adducts and EtO exposures is well-supported by data 

across a broad range of exposure levels (i.e., ranging from background levels to ~4 ppm in 

workers). As explained in the comments below, this well-supported linear relationship is also 

supported by a “forward” analysis suggested by EPA (2022) based on measured EtO 

concentrations in mainstream cigarette smoke that corroborates the Kirman et al. (2021) linear 

relationship. 

 

In summary, we urge OEHHA to adopt the TCEQ model for lymphoid cancers or use CPH 

model estimates from the IRIS assessment and revise the draft IUR proposal and background 

Appendix to better reflect the following: 

 

1. The original NIOSH study upon which OEHHA’s IUR is based found no indication of 

increased risk of lymphoid cancers in males at lower categories of exposures and 

concluded there were no exposure-related effects in females. The TCEQ dose response 

model is more consistent with the original findings of the NIOSH mortality study.  

 

2. Breast cancer, like other types of cancers OEHHA considered from both animal and 

human studies, is a cancer endpoint that deserves consideration in the weight of 

evidence for cancer classification. However, the NIOSH breast cancer incidence data 

should not be used for quantitative risk assessment based on substantial under-

ascertainment of incident cases reported by Steenland et al (2003) and subsequent risk 

deficits in the lower exposures.   

 



 

12 
 

3. OEHHA’s rationale for supporting EPA IRIS model selection is based on uncritical 

acceptance of EPA’s statistical analysis that did not account for a systematic statistical 

search for the knot as an estimated statistical parameter.  Independent peer reviewers 

for TCEQ agreed with TCEQ’s corrections of the statistics, which puts the TCEQ 

model on par with the IRIS model based on statistical significance alone. 

 

4. The TCEQ dose-response model is more plausible based on the biological and 

toxicological evidence, and the mode of action. 

 

5. OEHHA repeats IRIS’s visual fit comparisons by comparing (“eyeballing”) whether 

graphs of different models are above or below the categorical (grouped) estimates to 

incorrectly conclude that the models over- or underestimate “the data.”   EPA IRIS 

footnotes (repeated in OEHHA’s figure legends) clearly indicate that such comparisons 

along the y-axis should not be made.   OEHHA  appears to equate the 5 categorical rate 

ratios with the 53 rate ratios, and/or assumes that the shape of the exposure-response 

curve for the actual data can be based on grouping the actual data into 5 categorical 

rate ratios. 

 

6. OEHHA dismisses TCEQ’s prediction analysis which is a more objective method than 

visual fit to check how well each of the two models (i.e., TCEQ’s vs EPA’s) applied to 

general population background lymphoid cancer rates can predict the number of 

lymphoid cancer deaths (the key cancer endpoint) that were observed in the NIOSH 

cohort.  In this model ground-truthing exercise, the TCEQ model was not only able to 

better predict the actual total number of lymphoid cancers in the NIOSH cohort but 

also the number of cancers in every quintile and specifically in the lowest Quintile 213 

demonstrating superior global and local fit.   

 

7. OEHHA’s reliance on internal analyses and OEHHA’s exclusion of external analysis is 

based on a scientifically oversimplified main conclusion that all external analysis should 

be ignored because it is confounded by HWE.  This is contradicted by the NIOSH study 

authors’ own published conclusions that “the healthy worker effect would seem an 

unlikely explanation for the lack of cancer excesses in the exposed versus non-exposed 

comparisons.”  Furthermore, OEHHA’s acceptance of conclusions of a more recent 

paper by Park (2020) that there is a Healthy Worker Survival Effect (HWSE) led 

OEHHA to support EPA IRIS model.  However, the conclusions are not supported by 

the actual results in the paper. 

 

8. Based on uncritical acceptance of the IRIS evaluation, OEHHA inaccurately 

exaggerates the reliability of the NIOSH worker exposure estimates prior to 1978. 

 
13 TCEQ (2020a) defined Quintile 1 as the 9 lagged-out cases (no exposures). The remaining 44 cases were equally 
divided into 4 groups designated by TCEQ as Quintiles 2-5. EPA IRIS (2016, p. 4-15) reported 13 exposed cases 
below the knot of 1600 ppm-days.  Thus, prediction of Quintile 2 comprised of 11 cases with the lowest exposures 
best reflects “local” fit below the knot. 
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9. The Union Carbide Corp. (UCC) cohort should play a prominent role in considering 

the strength and consistency of the epidemiology data in supporting the IRIS vs. TCEQ 

IUR. Table 7 and OEHHA’s description of this cohort in the text is missing the internal 

analysis by Valdez-Flores et al. (2010) which included exploration of different exposure 

metrics and lag times.   The absence of findings in the UCC cohort for male LH is not 

consistent with a steep slope at low concentrations. 

 

10. The OEHHA Draft IUR questions the reliability of the Kirman et al. (2021) method of 

estimating endogenous levels of EtO by favoring speculative uncertainty and tangential 

information on DNA adducts over the well-documented toxicokinetic and converging 

evidence from animals and humans as presented by Kirman et al. and independently 

confirmed by data in Filser and Klein (2018).   Endogenous levels greatly exceed the 

levels to which residents near sterilization facilities may be exposed.  While EPA’s 

potency estimate technically only applies to exposures above endogenous levels, it is 

implausible that a chemical would be a potent carcinogen at levels that the body 

produces through natural processes.  

 

11. OEHHA cites two studies reporting an association between smoking and 

lymphohematopoietic (LH) cancers published in 2012 (Diver et al., 2012 and Kroll et 

al., 2012) to discount Kirman et al. (2021) reality checks.  These two studies are 

inconsistent with the lymphoid cancer (NHL, lymphocytic leukemia, multiple myeloma) 

findings from the NIOSH mortality study (Steenland et al., 2004), upon which IRIS 

2016 developed their low exposure high risk model and do not constitute a weight-of-

evidence evaluation akin to the Surgeon General report, The Health Consequences of 

Smoking —50 Years of Progress (US DHHS 2014). In addition, OEHHA cites an IARC 

review associating a positive relationship between tobacco smoking and breast cancer, 

though not for lymphoid cancer. 

 

12. OEHHA’s estimated EtO 10-5 Risk Specific Concentration provide little utility in 

managing general population risk if background exogenous exposure isn’t considered 

as an initial reality check.  There has been an extensive ambient air measurement 

campaign over the last several years, including measurements near many sterilizer 

facilities and at background locations.  In many cases, the levels of ethylene oxide far 

away from sterilizer facilities are similar to the levels near sterilizer facilities.  Although 

the sources of this exogenous background ethylene oxide is currently not fully 

characterized, what is clear is that, in many cases, residents living near sterilizer 

facilities are not exposed to higher ethylene oxide than people living far away. 
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DETAILED COMMENTS 

 

1. The original NIOSH study upon which OEHHA’s IUR is based found no indication of 

increased risk of lymphoid cancers in males at lower categories of exposures and 

concluded there were no exposure-related effects in females. The TCEQ dose response 

model is more consistent with the original findings of the NIOSH mortality study. 

 

Pertaining to IUR p. 12-18, 34-43 

 

The extremely steep dose response model selected by EPA IRIS (2016) and adopted by OEHHA 

for lymphoid cancer mortality has led to the derivation of an IUR that is among the highest EPA 

IRIS inhalation IURs for known or likely carcinogens.  This is inconsistent with the following 

original conclusions by the NIOSH study authors regarding both internal and external 

comparisons (Steenland et al., 2004): 

 

• “There was little evidence of any excess cancer mortality for the cohort as a whole” 

• “The healthy worker effect would seem an unlikely explanation for the lack of cancer 

excesses in the exposed versus non-exposed comparisons” 

• “Positive exposure-response trends for lymphoid tumors were found for males only (15-

year lag)”  

• “It is not known why we find an association for males and not females for haematopoietic 

cancer. . .there was sufficient variation in the exposure of women to have observed an 

exposure-response if one existed. 

A large number of models were considered by IRIS, including those using log transformation 

of cumulative exposure, which IRIS (2016) correctly excluded as biologically implausible. 

Of the models using cumulative exposures, the strongest trend was seen in male lymphoid 

mortality. As described in detail in the next section, breast cancer incidence is not an 

appropriate endpoint based on the weight-of-evidence and quality issues. Therefore, of the 

critical endpoints selected by IRIS, male lymphoid mortality is the most appropriate endpoint 

for risk assessment, protective of effects in females who showed no sensitivity. 
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In the internal categorical analysis for male lymphoid tumors, the only statistically significant 

increase in male lymphoid odds ratio (OR) is only at the highest cumulative exposure level.  

Were EtO a potent carcinogen as IRIS suggests, one would expect to see a statistically 

significant increase at these lower cumulative exposures. 

 

Figure 3.  Categorical Odds ratios (OR) for males (95% Confidence Intervals):                        

Note: Male ORs for exposure categories 0 (lagged out), >0-1200 ppm-days, 1201-3680 ppm-

days, 3681-13,500 ppm-days, >13,400 ppm-days are, respectively, 1, 0.91 (0.16-5.23), 2.89 

(0.65-12.86), 2.71 (0.65-11.55), 3.76 (1.03-13.64) (EPA IRIS, 2016, Table D-28)  

 

Statistical modeling can take on a life of its own if not checked against epidemiological data 

which do not indicate an extremely steep low-dose dose response and/or a major discontinuity in 

the dose response.  It is important to keep into perspective that the relevant epidemiology, 

including a large number of human studies published over a forty-year period, indicates that 

there is inconclusive evidence of carcinogenicity (IARC 2012a).   For example, the UCC study 

of EtO chemical workers with comparable numbers of lymphoid cancers and substantial 

exposures to EtO show no increased risk of male lymphoid cancers.  The findings from EtO 

epidemiology conflict with the IRIS risk values which imply EtO is a highly potent carcinogen at 

lower cumulative exposures.  Were EtO a highly potent carcinogen, one would have expected to 

see a strong signal rather than many studies being inconclusive. 
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2. Breast cancer, like other types of cancers OEHHA considered from both animal and 

human studies, is a cancer endpoint that deserves consideration in the weight of 

evidence for cancer classification. However, the NIOSH breast cancer incidence data 

should not be used for quantitative risk assessment based on substantial under-

ascertainment of incident cases reported by Steenland et al (2003) and subsequent risk 

deficits in the lower exposures.    

 

Pertaining to IUR p. 20, 35, 39, 45  

The primary reason breast cancer should not be included in EtO quantitative exposure response 

analysis is that there is substantial under-ascertainment of incident cases due to non-participation 

in the interview study.  This raises a serious issue- potential selection bias.  The evidence related 

to causation is weak for breast cancer, supporting the focus on lymphoid cancers for quantitative 

risk assessment based on the epidemiological data. 

Neither the NIOSH breast cancer incidence study (Steenland et al., 2003) nor the NIOSH 

mortality study (Steenland et al., 2004) report an overall excess of breast cancer.  The positive 

NIOSH findings are not robust in that they are seen with a certain lag and exposure metric that 

are not evident with numerous other exposure metrics, models, or lags. The breast cancer 

incidence findings are at most suggestive, not only due to inconsistencies in the exposure-

response, but also due to incomplete cancer ascertainment and the subsequent potential for bias. 

This disease endpoint is only weakly supported by other epidemiology studies and is inconsistent 

with others.  

The IRIS breast cancer incidence analysis relied on data from the subpopulation of the NIOSH 

cohort that was interviewed, which required both locating subjects and identifying those 

diagnosed with breast cancer. Of the 7,576 women in the NIOSH cohort, only 5,139 (68%) were 

included in the interview portion of the study. The percent non-response was of concern, 

according to the authors. The majority of these, 22%, could not be located and therefore any 

breast cancer diagnosis would have been missed. Steenland et al. (2003) indicated that cases lost 

are more likely to be shorter term (i.e., lower cumulative exposure) employees. 

Those who work longer (i.e., higher cumulative exposures) stay in the area longer and are more 

likely to get picked up in the state tumor registries and be found for interview. Shorter duration 

workers with lower cumulative exposures are more likely to leave the area and not be captured in 

the overall analyses and less likely to be interviewed. If more cases were missed among those 

with lower cumulative exposures (shorter term employees), then the data would be biased toward 

seeing a positive slope and/or elevated risk in the higher exposure groups, as reported by 

Steenland et al. (2003). 

Steenland et al. (2003) stated that “breast cancer ascertainment in the sub-cohort with interviews 

was considered complete.”  In other words, all the women who were interviewed were identified 

as having breast cancer or not. This, however, does not account for the missing cases among 
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non-participants in the interview study or for cases never identified in the overall target 

population. Importantly, there is no way of knowing that the distribution of cases by level of 

exposure in the subcohort of interviewed breast cancer cases is comparable to the distribution in 

the fully ascertained total cohort. Due to the greater difficulty of locating women with short term 

employment, there is a high potential for bias in missing cases at lower cumulative exposure. 

The rate ratios for breast cancer incidence in the lowest exposed groups in the entire cohort were 

0.88 (15 yr. lagged out group) and 0.74 (<647 ppm-days, no lag), the latter of which was a 

statistically significant deficit (Steenland et al., 2003, Table 3). These deficits contributed to 

suggested positive trends.   

 

Steenland et al. (2003) made an attempt to investigate possible selection bias but noted he didn’t 

have adequate data to address this concern: 

 

“A second possible bias was the preferential ascertainment of breast cancer among 

women with stable residence in states with cancer registries; women with stable 

residency might be expected to have longer duration of employment in companies under 

study, and hence greater cumulative exposure. Unfortunately, we didn’t have residential 

history, limiting our ability to explore this possibility. (Steenland et al. 2003)” 

 

Without the incidence data, selection bias cannot be properly tested. However, several issues 

support this explanation: 1) the overall population long-term (higher exposed) women would be 

easier to identify as having breast cancer as they remain for longer periods in states of 

employment that have tumor registries, 2) similarly, longer employed and higher cumulative 

exposure women would be easier to locate and thus interviewed, and 3) duration of employment 

in Steenland et al. (2003) showed a stronger relationship with breast cancer than did actual 

cumulative exposure.   

 

Steenland et al. (2003) recognized this limitation as one reason he was tempered in his causation 

conclusions:  

 

“Our data suggest that ETO is associated with breast cancer, but a causal interpretation is 

weakened due to some inconsistencies in exposure-response trends and possible biases due to 

non-response and incomplete cancer ascertainment.” 

 

In summary, the weak association of EtO with breast cancer and the exposure-response 

uncertainty due to the sizeable number of missing breast cancer cases precludes use of the 

NIOSH interview data in derivation of IURs. This, together with the unavailability of the breast 

cancer incidence data to other researchers to independently examine these issues raises quality 

issues that indicate the data are inappropriate for exposure-response modeling for regulatory 

cancer risk assessment purposes. 
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3. OEHHA’s rationale for supporting EPA IRIS model selection is based on uncritical 

acceptance of EPA’s statistical analysis that did not account for EPA’s systematic 

statistical search for the knot as an estimated parameter.  Independent peer reviewers 

for TCEQ agreed with TCEQ’s corrections of the statistics, which puts the TCEQ 

model on par with the IRIS model based on statistical significance alone. 

 

Pertaining to IUR 34, 47  

 

OEHHA accepts EPA IRIS (2016) conclusions on model fit that are based on incorrect statistical 

analysis and inappropriate visual fit comparisons (described below). TCEQ (2020a) provided 

corrected AIC and p-values for the spline models that OEHHA could have easily verified were 

correct.  The peer review of TCEQ’s dose-response assessment included two independent 

reviewers who had strong statistical modeling expertise.  Both peer reviewers agreed that EPA 

incorrectly calculated p-values because they did NOT correct for including the knot as an 

estimated parameter in the model, a basic violation of statistical principles: 

 

Expert 5: “I do believe that TCEQ has identified a real problem with the USEPA AIC 

and p-value calculations. The explanation of the issue and the resolution supplied in DSD 

seems appropriate. That is, I agree with TCEQ that the knot parameter in the spline 

models should be considered in the count of the parameters, that the AICs reported by 

USEPA for those models are too low by a value of 2, and that the p-values should be 

computed using an approximation to a chi-square with 3 degrees of freedom.” (TCEQ 

2020b, p. 45) 

Expert 6: “I consider that the location of the spline should be considered a parameter 

when evaluating fits of spline models, as long as the data were used in determining the 

knot, as it apparently was in EPA’s model. I believe also that the lag should also be 

considered a parameter when the data are used to determine its value. But, in general, I 

consider the AIC in such complex models to be essentially only a rough guide to 

evaluating fit. Therefore, I think TCEQ’s conclusion that the ‘lower AIC means that 

TCEQ’s selected model is a statistically superior model fit than USEPA’s selected model 

when taking into account model complexity‘ is an overstatement. Comparing a model 

with an AIC = 464.5 to one with an AIC = 264.4[sic14], you can only conclude with 

confidence that the two models fit about equally well. Additionally, the overall fit is not 

of major importance – the fit at small doses is much more important when the object of 

the fitting is to estimate the risk at very small doses.” (TCEQ 2020b, p. 50) 

 

The basic principle of accounting for all modeled parameter is clearly articulated in the National 

Research Council report entitled “Models in Environmental Regulatory Decision Making”, 

which states that the strategy to pick the “best model” for regulatory decision making should be 

“subject to a penalty function reflecting the number of model parameters, thus effectively forcing 

a trade-off between improving model fit by adding addition[al estimated] model parameters 

 
14 Expert really meant 464.4 
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versus having a parsimonious description” (NRC, 2007, pp. 174). Importantly, there are no 

recognized exceptions to the penalty component of the balance incorporated into the AIC metric 

when applied in a valid procedure for model-selection (Burnham et al., 2002). This general 

principle is well recognized in the  peer reviewed literature to apply specifically to including the 

estimated “knot” or inflection point from reporting the use of 2-piece linear spline models 

(Berman et al., 1996, Li et al., 2011; Gkioulekas et al. 2018, Molinari et al., 2001).  

 

EPA ORD incorrectly claims that they fixed the knot and then conducted a sensitivity analysis.  

However, EPA ORD did not simply “fix” or “select” the position of the knot in that model. 

Instead, IRIS systematically tested 20 alternative knots for breast cancer and 70 knots for 

lymphoid mortality, and then among these, selected knot values that maximized the likelihood of 

data fit to a corresponding 2-piece spline model.  

 

In the EPA IRIS (2016 Appendix D at p. D-13), Dr. Steenland provided statistical analysis 

considering the knot as a parameter for breast cancer to show this had no substantial effect in that 

analysis, but a similar examination was not presented in the case of lymphoid cancer. In other 

words, there was clear acknowledgement and recognition expressed in the IRIS (2016) 

assessment that each knot value that was used to obtain a final spline-model fit is appropriately 

interpreted as an estimated parameter. Thus, IRIS should have reported the p-values considering 

the knot as an estimated parameter for breast and lymphoid cancers in the summary tables of the 

main report for greater transparency.   

 

OEHHA should revise their discussion of fit of the data to reflect the corrected p-values reported 

by TCEQ (2020a) for the IRIS selected 2-piece spline provided in Table 1 of our comments 

above.  Based on corrected statistical analysis alone, neither EPA IRIS (p=0.14) nor the TCEQ ( 

p=0.22) dose-response models for lymphoid cancers provide strong evidence that the exposure-

response slope differs from zero.  Based on statistics alone, the CPH model fits the data similarly 

to the supralinear 2-piece spline slope but has the advantage of parsimony (simpler model) and 

biological plausibility (described below). Also described in greater detail below, the CPH model 

more accurately predicts the observed lymphoid mortalities overall and at lower exposures in the 

NIOSH study compared to the IRIS (2016) selected 2-piece spline model. 

 

In addition to Table 1, we suggest OEHHA include Table 3 in their detailed analyses, which 

provides a more complete and direct comparison between the statistics and IUR derivation for 

the 2-piece spline model and the CPH model.  Table 3 will provide users of OEHHA’s 

assessment an understanding of the range of values that can be estimated for risk assessment 

based on the IRIS (2016) preferred methods and assumptions.   



 

20 
 

Table 3.  Comparison of IRIS (2016) derived models (IURs not including the ADAF)  

 2-piece linear spline 
Linear at EPA POD 1/100 

  
Standard CPH 

Linear at EPA POD 1/100 

Model of individual data? Yes   Yes 

IRIS full model name Linear spline model with knot at 1,600 
ppm x days 

  Log-linear model (standard Cox regression 
model) 

LYMPHOID INCIDENCE (Males and Females) 

IRIS p-value  0.14 corrected from 0.07    0.22 

Central estimate IUR (per ppm) 1.34   0.0095 

Upper bound IUR (per ppm)  5.26   0.020 

     

BREAST CANCER INCIDENCE (Females) 

IRIS p-value  0.04 corrected from 0.01   0.02 

Central estimate IUR (per ppm) 0.71   0.08 

Upper bound IUR (per ppm) 1.48   0.14 
 

These data are not appropriate for quantitative risk assessment purposes because authors report substantial number of missing cases with higher 
potential for those with shorter employment missing (Steenland et al. 2003).  These data have not been available for independent evaluation by 
EPA or the public, and, thus, lack transparency, verification, and independent analysis.   

 
LYMPHOID & BREAST CANCER INCIDENCE (Males and Females) 

Central estimate IUR (per ppm) 2.1   0.1 

Upper bound IUR (per ppm)   6.1   0.15 

     

These data are not appropriate for risk assessment because the breast cancer incidence data are included. EPA provided no justification for the 
POD of 1/100.  TCEQ (2020a) analysis shows that the POD 1/100 for the standard CPH model extrapolates above or in the high range of the 
experimental data! 
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4. The TCEQ dose-response model is more plausible based on the biological and 

toxicological evidence, and the mode of action. 

  

Pertaining to IUR p 15-18, 20-23 

 

A biological mode of action should be a major consideration when selecting a model for risk 

assessment. 

 

Currently, genotoxic MoA is considered as a default assumption in the absence of a convincing 

alternate MoA that does not involve genotoxicity as the initial key event.   The dose-response 

and temporality of EtO induced genotoxicity in the etiology of either animal or human tumors 

has not been fully vetted through a formal process such as the one recommended by International 

Program on Chemical Safety (Boobis et al., 2006).   

 

For  a direct acting alkylating agent such as EtO, the default dose-response for the induction of 

mutations is linear. This is the worst-case scenario since at low doses closer to the origin, one 

should expect cellular protective mechanisms (e.g., detoxification and DNA repair) to offer 

protection, resulting in a shallower slope in this region when compared to higher doses.  Based 

on a presumed genotoxic MoA, both TCEQ and EPA/OEEHA estimate cancer risk based on a 

linear extrapolation from the POD to the origin but apply very different statistical models to the 

same epidemiological study to derive the POD, i.e., Cox proportional hazards (CPH) model by 

TCEQ vs. the two-piece spline model by the EPA/OEEHA. 

 

In the 2-two-piece spline model,  the initial slope rises rapidly at lower exposure levels and then 

rises more gradually for higher exposures. This type of dose-response is not consistent with the 

biology of how EtO works as a direct acting genotoxicant.  The dose-response curve for EtO-

induced  gene mutations in the bone marrow (Recio et al., 2004, Figure 4) and lung (Manjanatha 

et al., 2017, Figure 5) tissues of transgenic Big Blue mice is especially informative since these 

tissues represent targets for EtO-induced tumors.  In both cases, there is no evidence for a steeper 

initial slope and the dose-response pattern is more consistent with the CPH model than the 2-

piece spline.   
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Figure 4.  Dose-Response for EtO-Induced lacl mutations in Mouse Bone Marrow (6 h/day; 

5 days/week; 48 weeks from Recio et al., (2004)       

 

Recio et al. (2004) observed increases in lacI mutant frequency in the bone marrow of transgenic 

Big Blue B6C3F1 mice at EtO exposure concentrations of 100 and 200 ppm (but not at 25 or 50 

ppm) after 48 weeks of exposure. No increases were observed following 12 and 24 weeks of 

exposure. 

 

 
Figure 5.   

Dose-response for the Induction of cII mutations in the lung tissue of Big Blue B6C3F1 transgenic mice 

at 8 weeks of inhalation exposure to EtO (Manjanatha et al., 2017). 
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Similarly, Manjanatha et al. (2017) investigated exposure-response and temporality for EtO-

induced mutations at the cII locus in the lung tissue of transgenic Big Blue male B6C3F1 mice 

exposed to 0, 10, 50, 100, or 200 ppm EtO for 6 hr/day, 5 days/week over 4 weeks (in all 

exposure groups) or for 8 or 12 weeks (in only the two highest exposure groups).    A significant 

increase was observed only following 8 or 12 weeks of exposure and only at the highest 

concentration studied (200 ppm), which was twice the tumorigenic concentration used in the 

NTP (1987) bioassay in the same strain of animal.  Contrary to expectations consistent with a 

mutagenic MOA, no statistically significant increase in mutant frequency or mutational spectrum 

were observed following 4 weeks of EtO exposure (which is considered to be adequate exposure 

duration for detecting chemically-induced mutations as per OECD test guideline 488).   These 

results are inconsistent with modified Hill criteria for exposure-response and temporality 

assuming a mutagenic MOA when considering the NTP (1987) studies in male and female 

B6C3F1 mice exposed to 0, 50, 100 ppm, 6 hrs/day, 5 days/wk for 102 weeks that were 

described in the draft IUR (p.7)          

 

The above dose-response patterns are fully consistent with the molecular initiating event(s) 

leading to EtO-induced mutagenicity, i.e., the formation for DNA adducts.  Marsden et al. (2009) 

using a highly sensitive liquid chromatography-tandem mass spectrometry and high-performance 

liquid chromatography-accelerator mass spectrometry analysis have shown that the dose-

response for the induction of  N7-(2-hydroxyethyl)guanine) (N7-HEG) adducts  in the livers of 

rats treated with EtO is at best described as linear, with significant increases over the background 

being observed only at the three higher tested doses.   
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Figure 6.  Dose-response for exogenously derived DNA adducts in liver of [14C]EtO-treated 

rats measured by LC-MS/MS (Marsden et al., 2009). 

 

Although the N7-HEG adducts are not considered mutagenic, they are the most abundant DNA 

adducts formed following EtO exposure (Walker et al., 1992).  Thus, the shape of the dose-

response curve for the N7-HEG adduct can be considered as the worst-case scenario for EtO-

induced adducts, including the most mutagenic O6-HEG adduct whose abundance is 

approximately 300 times lower than that of the N7-HEG adduct (Walker et al., 1992).  In reality, 

the slope for the mutagenic O6-HEG adducts is expected to be much shallower than that for N7-

HEG because of the kinetics of their formation and repair (Swenberg et al., 2008).  Accordingly, 

the dose-response pattern for the molecular initiating event leading to EtO-induced mutagenicity 

is expected to be non-linear or at best linear at the low end of the dose-response curve and the 

efficiency of adduct formation increasing at higher  exposure levels due to saturation of the 

DNA-repair processes.   

 

Further evidence for the implausibility of a steeper initial slope in the EO dose-response comes 

from genotoxicity and carcinogenicity studies conducted with ethylene.  Since ethylene is 

metabolized in vivo to EtO, it forms the same type of protein and DNA adducts as EtO.  Based 

upon a physiologically based toxicokinetic model, Filser and Klein (2018) predicted that  

exposures to 10000 ppm ethylene induces adduct levels equivalent to EO exposures of 3.95 

(mice), 5.67 (rats), or 0.313 ppm (humans).   Ethylene is not an in vivo genotoxicant in the rat or 

the mouse (Vergens and Pritts, 1994; Walker et al., 2000). 

 

In a chronic bioassay, ethylene was not carcinogenic in male and female Fischer 344 rats 

following exposed 6 hr/day, 5 days/week, for up to 24 months to concentrations of  300, 1000, or 

3000 ppm (Hamm et al., 1984).  DNA adducts resulting from 300, 1000 or 3000 ppm ethylene 

are shown to be quantitatively to 2.4, 5.3 and 5.5 ppm EtO, respectively (Filser and Klein, 2018).   
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Lack of ethylene carcinogenicity in the rat, in spite of  increased DNA adducts equivalent to low 

ppm-level EtO exposure, informs that the potency of EtO’s carcinogen is not higher at the lower 

exposures, an observation contrary to the prediction based on the IRIS (2016) 2-slope dose 

response  model.   On the other hand, the dose-response for EtO carcinogenicity is 

conservatively consistent with a default linear risk model with a single slope. 

 

Fennell and Brown (2001) showed that blood concentrations of EtO in mice, rats, and humans 

increased linearly with exposures between 50 and 200 ppm (see figure below). Dose-

disproportionate increases in blood EtO occurred only in mice at exposures exceeding 200 ppm 

and were attributed to substantial depletion of GSH, which limits the overall GSH conjugation 

capacity.  It needs to be emphasized that the dose-disproportionate response in mice involved an 

increased (not decreased) rate of blood EtO concentration at exposures >200 ppm EtO.  These 

observations do not support the plausibility  for a steeper slope at lower exposures either for 

genotoxicity or carcinogenicity.   

 

  
Figure 7.  Toxicokinetics of EtO from Fennell and Brown (2001).  

 

In conclusion, EtO is a relatively weak genotoxicant and requires relatively high and prolonged 

exposures to induce mutagenicity.  The experimentally observed dose-response patterns for 

mutagenicity/carcinogenicity show that the CPH model is biologically more plausible than the 

IRIS (2016) 2-slope model.  Accordingly, the CPH model should be the model of choice for risk 

assessment purposes especially if an alternate model is not a better fit to the observed data.  
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Qualitative and quantitative analysis of genotoxicity data by Gollapudi et al. (2021) provide 

independent converging evidence supporting TCEQ’s quantitative risk assessment. 

 

The recent literature search conducted by OEEHA missed the publication by Gollapudi et al. 

(2021).  These authors analyzed the dose-response data to identify a point-of-departure for EtO-

induced in vivo genotoxicity from an exhaustive list of published studies that employed various  

endpoints, tissues, and species and derived 238 ppt as the lowest permitted daily exposure (PDE) 

from  this analysis.  The PDE of 238 ppt proposed in this publication is more than three orders of 

magnitude higher than the 0.1 ppt established by the U.S. EPA (2016) and similar to the 240 ppt 

estimated from TCEQ (2020a) risk values for 1-in-106 (1/M) extra risk.  Thus, if EtO were 

operating through a genotoxic mode of action (MoA) for its carcinogenicity, then the  risk 

assessment model used by the TCEQ, rather than the one used by the EPA, is consistent with the 

biology based on the analysis by Gollapudi et al., (2020).  

 

Regarding Carlsson et al. (2017) and Zeljezic et al. (2016) genotoxicity study in workers 

 

The results from the studies by Carlsson et al. (2017) and  Zeljezic et al. (2016) identified in the 

recent literature search by OEEHA should be interpreted with caution since the subjects in this 

study were exposed to multiple carcinogenic/genotoxic chemicals including EtO and hence it is 

difficult to attribute the effects observed to any single chemical.  Accordingly, the statement by 

OEEHA that the results  “……. are consistent with the overall evidence for the genotoxicity of 

ethylene oxide” is an overstatement. 
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5. OEHHA repeats IRIS’s visual fit comparisons by comparing (“eyeballing”) whether 

graphs of different models are above or below the categorical (grouped) estimates to 

conclude that the models over- or underestimate “the data.”   EPA IRIS footnotes 

(repeated in OEHHA’s figure legends) clearly indicate that such comparisons along the 

y-axis should not be made.   OEHHA appears to equate the 5 categorical rate ratios 

with the actual 53 hazard rates, and/or assumes that the shape of the exposure-response 

curve for the actual data can be based on grouping the actual data into 5 categorical 

rate ratios. 

 

Pertaining to IUR p. 36, 37, 40 

OEHHA relies on IRIS’s visual fit comparisons using figures that compare continuous models 

with categorical models, as if the categorical model with only five points were the gold standard 

for understanding the shape of the exposure-response curve.  While categorical models with a 

small number of odds ratios can be useful for identifying possible associations, they do not 

identify the shape of the dose-response curve based on continuous data modeling as shown in 

detail by Valdez-Flores and Sielken (2013).  Based on these visual fit comparisons, OEHHA 

concludes that models either over or underpredict the categorical model, which are not the data 

modeled.   

TCEQ provided new information that OEHHA may not have been aware of.  Graphical display 

of data is subject to manipulations including the choice of how data are expressed on the y-axis 

and resolution of categorical models to represent the underlying individual data that were 

modeled.   TCEQ’s purpose is best expressed in response to peer review comments (TCEQ 

2020b, p.49. 51):  

“The TCEQ only discusses visual fit (and only in an Appendix) because of USEPA’s 

reliance on it.  By contrast, the TCEQ does not rely on visual model fit as a primary 

consideration for model choice, but rather principally relies on MOAs and various 

statistical diagnostics of model fit (i.e. AIC and p-values, statistical analyses of model 

accuracy), consistent with the comment.”    

TCEQ’s explains in text and illustrates in figures that EPA’s graphs are misleading because EPA 

uses the categorical modeling results (which are not the primary data being modeled) to visually 

evaluate the fit of models as though these cruder categorical estimates represent the true 

underlying dose response.  EPA correctly points out that each of these individual case categories 

will have very wide confidence intervals (CI) but fails to address TCEQ’s major point which is 

that the categorical estimates graphed as point estimates without the CI are not representative of 

the underlying 53 hazard rates modeled.  EPA IRIS did not exhibit the wide confidence intervals 

associated with the EPA’s categorical model in the graphs used to illustrate visual fit. Thus, 

TCEQ produced similar figures without the CI’s to better illustrate the underlying individual 

hazard rates that are being modeled. TCEQ explains why comparison of the dose-response model 

results to the categorical model results is inappropriate on p. 52 of TCEQ’s (2020b) response to 

the peer review. 
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“This is because while assessing model fit by visual inspection to the underlying modeled 

datapoints is a commonly used technique. . ., the dose-response models being judged by 

visual fit to the categorical results were fit to different data, the more refined individual 

data. The USEPA should not have used the categorical modeling results (which are not 

the primary data) to visually evaluate the fit of models to other data (the individual data) 

as though the cruder categorical data represent the true underlying dose-response.” 

EPA counters TCEQ stating that the categorical model is a well-accepted method to represent the 

data. This true statement is irrelevant to addressing TCEQ’s main point- visual fit based on 

categorical models are not appropriate for the purpose of determining goodness of fit of the 

model to the underlying data, because the categorical model is NOT the underlying individual 

data.  TCEQ cites Valdez-Flores and Sielken (2013) which is a peer-reviewed paper that 

demonstrates how the shape of categorical results can change with different numbers of 

categories. 

TCEQ is not advocating the use of these graphs to assess visual fit as a method to select the 

models, but instead is informing that these graphs should not be used for visual fit.  Instead, 

TCEQ relies on a more objective statistical modeling approaches to evaluate goodness of fit, 

rather than “eyeballing” comparisons using figures that are not fit for this purpose and distort the 

true comparisons of models against the underlying individual data that were modeled. 

OEHHA should correct their discussion of visual fit so that all OEHHA’s claims of over or 

underprediction are omitted, as they violate EPA IRIS’ warning that such comparisons along the 

y-axis are incorrect comparisons of over or under prediction. 
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6. OEHHA dismisses TCEQ’s prediction analysis which is a more objective method than 

visual fit to check how well each of the two models (i.e., TCEQ’s vs EPA’s) can predict 

the number of lymphoid cancer deaths (the key cancer endpoint).  In this model 

ground-truthing exercise, the TCEQ model was not only able to better predict the 

actual total number of lymphoid cancers in the NIOSH cohort (with and without an 

HWE) but also the number of cancers in Quintile 215 demonstrating superior global and 

local fit.   

 

Pertaining to IUR p. 47-48 

As described above in our general comments, OEHHA dismissed TCEQ’s “reality check” (Table 

4) based on a prediction analysis because the models are applied to general population 

background cancer rates, which OEHHA considered to be a flawed analysis because the NIOSH 

study is based on a specific cohort of occupational workers.  Yet, this approach is essentially the 

same approach used by IRIS (2016, Section 4.7) to estimate extra risk for various occupational 

exposure levels by applying the model to the general population background cancer rates in the 

life-table program.   

Table 4: Total NIOSH Cohort Lymphoid Cancer Mortalities Predicted by TCEQ (2020a) 

and EPA IRIS (2016) Models 

 

Model  (15-

yr lag, MLE) 

Slope 

Parameter 

(per ppm-

day) 

Predicted if 

the Model 

were True 

100% × 

Ratio: 

Predicted / 

Observed 

100% × SMR: 

Observed / 

Predicted 

95% Poisson 

CI if the 

Model were 

True 

 

TCEQ (CPH)  

 

2.81E-06 

 

52.42 

 

98.9% 

 

(40.1, 70.0) 

 

(38.2, 66.6) 

 

IRIS  2-slope 

spline 

15-yr lag 

(MLE)  

7.58E-04 91.69 173.0% (70.1, 122.4) (72.9, 110.4) 

Note:  There are 53 actual lymphoid mortalities. 53 is within the CI’s for the TCEQ model but 

not within the CI’s for the IRIS model.  Thus, the TCEQ model accurately predicts the actual 

cancers. In contrast, the IRIS model statistically significantly (bold font) over-predicts the actual 

number of cancers. TCEQ used the inverse of the confidence intervals of the SMRs. We 

calculated the confidence intervals based on the Poisson distributions.  TCEQ (2020a, Table 6). 

 

  

 
15 TCEQ (2020a) defined Quintile 1 as the 9 lagged-out cases (no exposures). The remaining 44 cases were equally 
divided into 4 groups designated by TCEQ as Quintiles 2-5. EPA IRIS (2016, p. 4-15) reported 13 exposed cases 
below the knot of 1600 ppm-days.  Thus, prediction of Quintile 2 comprised of 11 cases with the lowest exposures 
best reflects “local” fit below the knot. 
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EPA (2022) also raised a question about TCEQ’s calculation of the confidence interval (CI) 

based on the inverse of the SMR CI as described in detail by TCEQ (2020a).  Thus, it is useful to 

show that another well-accepted approach for estimating the 95% CI results in the exact same 

conclusion that the TCEQ model accurately predicts the actual 53 cases, whilst the IRIS model 

over-predicts the number of cases (Table 4) 

OEHHA claims that TCEQ calculations did not accurately account for any differences that might 

exist between the general US population and the NIOSH cohort. It is unclear if OEHHA is aware 

that the TCEQ (2020a) DSD16 includes a sensitivity analysis to demonstrate that the TCEQ 

model better predicts the overall actual cancers even after applying a high HWE of 15-16% for 

lymphoid cancers as a sensitivity analysis (Table 5).  

 

Table 5: Total NIOSH Cohort Lymphoid Cancer Mortalities Predicted by TCEQ (2020a) 

and EPA IRIS (2016) Models with 15% HWE as a Sensitivity Analysis 

 

Model  (15-yr 

lag, MLE) 

Slope 

Parameter 

(per ppm-day) 

Predicted if the 

Model were True 

100% × Ratio: 

Predicted / 

Observed 

95% Poisson CI 

if the Model were 

True 

 

TCEQ (CPH)  

 

2.81E-06 

 

44.56 

 

84.1% 

 

(31.4, 57.6) 

 

IRIS  2-slope 

spline 

15-yr lag (MLE)  

7.58E-04 77.94 147.1% (60.6, 95.2) 

Note:  The TCEQ model still accurately predicts the actual cancers after accounting for a theoretical 
HWE. In contrast, the IRIS model statistically significantly (bold font) over-predicts the actual number of 
cancers after including a theoretical HWE17.  TCEQ used the inverse of the confidence intervals of the 
SMRs. We calculated the confidence intervals based on the Poisson distributions. 

. 

Although one can quibble with the TCEQ’s selection of 15-16% based on a Norwegian worker 

study with relatively short average follow-up of 11.5 yrs (Kirkeleit et al. 2013)18, the larger point 

is that a 15% HWE is a very reasonable high estimate for any differences that might exist 

between the general US population and the NIOSH worker. The NIOSH study authors 

themselves concluded that there was unlikely to be a cancer HWE in this longer follow-up study 

(Steenland et al. 200419) cohort. This conclusion of the NIOSH study authors is very consistent 

with the general experience in cancer epidemiology that HWE is known to vary with type of 

 
16 TCEQ Section A3.3.2 
17 Predicted is based on multiplying predicted values in Table 4 by 0.85 for HWE of 15%, and CI’s calculated using 
Poisson distribution. Compare with TCEQ (2020a, p. 102, Section A3.3.2) estimates of 44.3 (95% CI: 33.9, 59.2) and 
77.5 (95% CI: 59.3, 103.6) based on 15 and 16% HWE for males and females, respectively. 
18 Kirkeleit et al (2013) did not find a HWE for lymphoid or breast cancer.  It is unknown if the Norwegian cohort is 
representative of the NIOSH sterilizer workers.   
19 “The healthy worker effect would seem an unlikely explanation for the lack of cancer excesses in the exposed 
versus non-exposed comparisons.” (Steenland et al. 2004) 
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disease, being smaller for cancer than for other major diseases, and it tends to disappear with 

time since recruitment into the workforce (IARC, 1991).  In addition, the epidemiologic 

literature has shown that a HWE is predominantly related to populations with shorter follow-up 

and non-cancer causes (Monson, 1986; Fox and Collier, 1976). 

  

Using a 15% HWE, the CPH model statistically estimates the observed number (53) of lymphoid 

deaths in the NIOSH study (Table 5).  In contrast, the linear 2-piece spline model statistically 

significantly overestimates the number of observed lymphoid deaths in the NIOSH study (Table 

5).  In addition, a quintile analysis was also performed by TCEQ (2020a) to address EPA IRIS 

(2016) emphasis on the local fit of the models below the knot.  EPA IRIS (2016, p. 4-15) 

reported 13 exposed cases below the knot of 1600 ppm-days.  Thus, prediction of Quintile 2 

comprised of 11 cases best reflects “local” fit below the knot.   Table 6 summarizes TCEQ CPH 

and EPA 2-piece spline model predictions of the number of lymphoid deaths at each quintile.  

Table 6 shows that for each quintile, the CPH model has superior local fit  These results indicate 

that the CPH model not only has better local fit below the knot, but also at the highest quintile.   

 

Table 6: Quintile-Specific NIOSH Cohort Lymphoid Cancer Mortalities Predicted by Cox 

and Linear Two-Piece Spline Models  

 

Model  Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Lymphoid Cancer Deaths 

Observed in NIOSH 

Cohort  

11 11 11 11 

 

Standard Cox model – 15-

yr lag (MLE)  

 

14.4  

(8.1, 28.9)20 

(7, 21.8)21 

8.0  

(4.5, 16.1) 

(2.4, 13.5) 

9.4  

(5.2, 18.8) 

(3.3, 15.4) 

9.1  

(5.1, 18.3) 

(3.2, 15.0) 

 

Linear two-piece spline 

with knot @ 1,600 ppm-

days –  

15-yr lag (MLE)  

20.9  

(11.7, 42.0)20 

(11.9,29.8)21 

17.6  

(9.8, 35.2) 

(9.3, 25.8) 

20.8  

(11.6, 41.7) 

(11.8, 29.7) 

20.9  

(11.7, 41.9) 

(11.9, 29.8) 

Note: The TCEQ model accurately predicts the actual cancers for the lowest exposure quintile 2. 
In contrast, the IRIS model statistically significantly (bold font) over-predicts the actual number 
of cancers. See TCEQ (2020a, Table 6). 
 

In conclusion, the TCEQ standard CPH model accurately predicts the number of lymphoid 

deaths observed in the NIOSH study while EPA’s two-piece linear spline model statistically 

significantly (at the 2.5% significance level) overpredicts the number of lymphoid deaths 

observed in the NIOSH study.  This is true with and without consideration of a reasonably high 

 
20 TCEQ (2020a) used the inverse of the confidence intervals of the SMRs 
21 , for comparison we calculated the CI based on Poisson distribution 



 

32 
 

HWE of 15% which reasonably accounts for any differences that might exist between the general 

US population and the NIOSH worker cohort given the absence of a HWE in the NIOSH cohort.  

This TCEQ “reality check” is a well-accepted approach that is essentially the same approach 

used by IRIS (2016, Section 4.7) to estimate extra risk for various occupational exposure levels 

by applying the model to the general population background cancer rates. 

 

7. OEHHA’s reliance on internal analyses and OEHHA’s exclusion of external analysis is 

based on an oversimplified main conclusion that all external analysis should be ignored 

because it is confounded by HWE.  This is contradicted by the NIOSH study authors’ 

own published conclusions that “the healthy worker effect would seem an unlikely 

explanation for the lack of cancer excesses in the exposed versus non-exposed 

comparisons.”  Furthermore, OEHHA’s uncritical acceptance of conclusions of a more 

recent paper by Park (2020) that there is a Healthy Worker Survival Effect (HWSE) led 

OEHHA to support EPA IRIS model.  However, the conclusions are not supported by 

the actual results in the paper. Improvements in these and other descriptions of the 

human epidemiological studies are needed to accurately assess the epidemiological 

weight-of-evidence. 

 

Pertaining to IUR p. 44 

 

External (comparisons to the general population) and internal analyses (worker to worker 

comparisons) in occupational epidemiology studies are complementary approaches to the 

examination of potential exposure-response associations. When they agree, confidence in the 

presence or absence of risk is enhanced. When they disagree, it is incumbent upon the 

researchers to explore explanations. In some cases, and more often in the early years of 

occupational epidemiology, the identification of the potential for the HWE led to a general 

preference in favor of internal analyses. The HWE, particularly for cancer outcomes, is of much 

lesser concern in external analyses of cohort studies that have been updated with longer 

observation periods.  The UCC study has had two published updates since the original Greenberg 

et al. 1990 publication (Teta et al. 1993, Swaen et al., 2009), such that the average follow-up of 

study subjects has gone from 20 to 37 years.  This is what Steenland et al. 2004 was referring to 

below when he noted the change observed from the original study published in 1991. 

“The healthy worker effect has diminished (all-cause mortality was up to an 0.90 from 

the prior SMR of 0.81) as would be expected with increased follow up.” 

ACC’s analysis and explanation of the HWE is also supported by IARC (1999) in its textbook on 

Cancer Epidemiology: Principles and Methods, which specifically notes that HWE “is known to 

vary with type of disease, being smaller for cancer than for other major diseases, and it tends to 

disappear with time since recruitment into the workforce.” 
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Furthermore, comparisons to worker populations can have their own limitations, such as small 

sample sizes, baseline risks that suggest they are non-representative of the true low or non-

exposed population (e.g., Mikoczy et al., 2011).  

 

OEHHA’s complete reliance on internal analyses leads them to consider well-conducted meta-

analyses as “flawed” and ignore their conclusions.  In general, meta-analysis is a well-accepted 

method for summarization of results from multiple studies, despite being generally limited to 

pooled overall risk estimates, as many studies do not provide data by levels of exposure.  

Furthermore, OEHHA is incorrect in saying that Marsh et al. (2019) did not consider the results 

of NIOSH internal analyses. In fact, these authors, state: 

 

“However, similar to the LHC results, the NIOSH findings, which revealed no overall excess 

for breast cancer, were limited to the exposure–response analyses using the log-transformed 

EtO exposure metric and were questioned by the authors due to their inconsistency across the 

other EtO metrics considered and potential case over-ascertainment in the higher exposure 

categories. As discussed above, due to the questionable validity of the positive EtO 

exposure–response of Mikoczy et al. (2011), these findings add little weight to the overall 

evidence for EtO exposure and breast cancer.” 

 

It is, therefore, scientifically unjustified to ignore the absence of any overall excess of breast 

cancer in the NIOSH 2004 mortality study and the relevant meta-analyses (Marsh et al. 2019; 

Vincent et al., 2019).   

 

 

OEHHA’s incomplete evaluations and acceptance of Park, 2020 led them to unequivocally 

support the EPA model.  

 

Pertaining to IUR p. 43-44 

 

OEHHA states they conducted several qualitative and quantitative assessments of potential bias 

and errors in the NIOSH study and its use by EPA.  

 

1. Their discussion of exposure assessment is limited to the successful validation NIOSH 

performed of the post 1978 estimates from their regression model. OEHHA does not consider 

the NIOSH limitations related to exposure estimates for the pre-1978 period that had no 

validation, as ACC has previously discussed in detail.  Instead, they criticize Bogen et al. 

(2019) for not validating their estimates.  OEHHA cannot simultaneously criticize Bogden, 

which has contemporaneous material underlying it with respect to pre-1978 exposures and 

find NIOSH to be of high quality when the author of that study acknowledges that his model 

incorporates an unsubstantiated assumption that there were no changes in practices that 

would have reduced worker exposure.  As described below, that assumption is manifestly 

inconsistent with cited literature 
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2. While OEHHA raises the issues of the HWE and the healthy worker survivor effect (HWSE), 

they conclude that the internal analyses by NIOSH removed the HWE issue and there is no 

more than a minor downward OR bias (10% or less), due to the HWSE. They cite Park 2020 

to support the existence of a HWSE in the NIOSH data. We agree with OEHHA that neither 

of these types of biases are relevant.  However, any HWE in the NIOSH study has 

diminished due to extensive follow up, as noted by Steenland, which adds to the relevance of 

the external analyses of these data. The absence of findings in external analyses of the 

NIOSH (and UCC data) adds to the uncertainty of the EPA model suggesting a highly potent 

carcinogen.  

 

3. We also disagree with citing Park (2020) in support of the existence of a HWSE in the 

NIOSH study, such that control for employment duration leads to a stronger association 

between cumulative exposure and breast and hematopoietic cancers.   In Section 3.2 of Park 

(2020), the author discusses the findings reported in Table 2. The models include both 

cumulative exposure to EtO and duration of employment – variables that are very likely 

highly correlated.  For example, if there are two workers doing the same job, one for five 

years and another for 10, the exposure of the second worker would be double that of the first 

(absent some significant change in practices).  

 

Park reports “statistically significant negative effect of duration (diminishing rate of leaving 

with increasing time on job) and positive effects of EtO cumulative exposure that are highly 

significant for all but the smaller work group of black women (Table 2).” These two 

variables are in the model used to fit the data with a similar multiplicative role. Given the 

high correlation between cumulative exposure and duration of employment, a negative 

coefficient for duration of employment would have to be compensated by a positive 

coefficient for cumulative exposure. Thus, it is not surprising that a negative coefficient for 

one variable results in a negative coefficient for the other variable. In fact, in three of the 

analyses reported in Table 2, the more negative of the coefficient for duration resulted in 

more positive coefficients for cumulative exposure.  

 

Park (2020) Table 5 shows the results of Park’s models for female breast cancer. There, Park 

does not find any statistically significant relationship between breast cancer and EtO exposures 

or employment duration. Park states “For the 102 deaths from female breast cancer, there was no 

statistically significant difference in mortality on cumulative EtO exposure with a 10-year lag.” 

Park goes on to indicate that “with 20-year lag, the contribution of cumulative EtO was 

significant.” It is interesting that although the model is significant, the 95% confidence intervals 

indicate that the coefficients for cumulative exposures to EtO are not statistically significantly 

different from zero. That is, the 95% confidence intervals indicate that breast cancer in female 

workers is not related to cumulative exposure to EtO lagged 20 or 10 years. 

 

Park (2020) Table 6 shows the results for lymphopoietic cancer deaths in the male and female 

workers. There, Park showed the results for male black workers only because “The 73 

lymphopoietic cancer deaths did not represent an overall excess (SMR = 0.96; 95% CI, 0.76‐
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1.20), based on U.S. rates, particularly for white men (SMR = 0.92), and white women (SMR = 

0.85), but among black workers, there was a statistically significant increase in SMR with 

cumulative EtO exposure (lagged 2.5 years; LRT: P = .011) (Table 6; model 1).” Similar to the 

results in Table 5 for breast cancer, in Table 6 the models statistically significantly improved the 

model fit to the lymphohematopoietic deaths in black workers but the coefficients for the 

cumulative exposure to EtO were not significantly different from zero; that is, there is no 

statistically significant increasing relationship between lymphopoietic cancer and cumulative 

exposure to EtO lagged 10 years even in the most sensitive subgroup of workers in the NIOSH 

study.  

 

The above data are inconsistent with Park’s description of his results in his abstract that were 

accepted by OEHHA.  

 

4. OEHHA attempted to address the possibility that high intensity- short exposures might 

explain the NIOSH findings and therefore not be generalizable to the general population, not 

subject to such types of exposures. Without actual NIOSH data and with incorporation of 

several questionable assumptions, OEHHA concludes that excluding workers with these 

exposures from the NIOSH study would have little impact on the EPA exposure-response 

slope. They assumed that workers with this type of exposure would most likely be in the 

middle categories of cumulative exposure. 

 

OEHHA then estimated case and control counts in each exposure category, recalculated ORs and 

exposure-response slopes after excluding various percentages of participants (e.g., 10–30% high 

intensity-short duration exposed workers) in the middle exposure categories, using guestimates 

since the actual data were not available. “Exclusions were done at the case/control ratio equal to 

or slightly lower than that reported in the highest exposure category (where almost all workers 

probably had at least some high intensity exposure). Overall, these exclusions (with and without 

replacing the excluded participants into the highest category) had little impact on exposure-

response slopes (e.g., 10% or less). This suggests that this issue did not have a major effect on 

the unit risk calculations or the generalizability of the NIOSH findings.” This conclusion is 

hardly justified using this obscure analysis and exclusion assumptions, in the absence of actual 

NIOSH data.  

 

We agree with OEHHA’s summary of the limitations of community-based studies, which 

makes them inappropriate for exposure-response but disagree that they are useful for 

hazard assessment.  

 

Pertaining to IUR p. 13, 46 

 

On  p.13 OEHHA states,  “Four epidemiological studies not included in the US EPA’s IRIS 

assessment were identified by OEHHA (Garcia et al., 2015; Bulka et al., 2016; Hart et al., 2018; 

and Jones et al., 2023). These studies investigated associations between residential proximity to 

EtO-emitting facilities and increased cancer risk. Emissions data were obtained at the community 
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level from US EPA’s TRI (Bulka et al., 2016; Jones et al., 2023; US EPA, 2023a) and National 

Air Toxics Assessment (Garcia et al., 2015; Hart et al., 2018; US EPA, 2018) databases. While 

these community-based air pollutant studies can be useful for hazard identification, they were 

judged by OEHHA to be less useful for dose-response assessment of EtO compared to the 

occupational studies (Steenland et al., 2003 and 2004; Swaen et al., 2009; and Mikoczy et al., 

2011) due to greater uncertainty in estimating individual exposures. This can result in non-

differential exposure misclassification, and bias in risk estimates towards the null (Shy et al., 

1978). Furthermore, there were lower exposure levels, fewer exposed cases, and potentially less 

exposure contrast in these community-based studies of EtO, decreasing the sensitivity of the 

studies to detect an effect.”  

 

We agree with the limitations noted by EPA but disagree that community-based studies are 

useful for hazard identification of EtO, precisely because of limitations noted in EPAs final 

sentence. But in addition to concerns about sensitivity (study power), there are serious concerns 

in such studies related to confounding risks that may be related to potential errors in exposure 

assessment due to confounding by other sources of EtO exposure, such as smoking and 

highways. Bias can, therefore, be in either the positive (specificity) or negative direction 

(sensitivity), making such designs uninformative. 

 

 

OEHHA fails to discuss the most important limitation of the Mikoczy et al. 2011 study – 

the questionable comparison group in the internal analyses 

 

Pertaining to IUR p. 16 

 

OEHHA has but one criticism of Mikoczy et al (2011): “Exposures were much lower than in the 

NIOSH and Union Carbide cohorts, which decreases the ability to detect an effect.”  This is 

apparently OEHHA’s explanation for the failure in this study to detect any increase in LH 

cancers.  

 

While not noted by OEHHA, Mikoczy et al. (2011) has been incorrectly cited in IRIS as 

supportive of a supralinear association with breast cancer, despite an overall deficit of breast 

cancer (SIR= 0.81), with or without consideration of a latency period. However, the two higher 

cumulative exposure groups had statistically significant elevated rates of breast cancer, due to a 

substantial and statistically significant deficit of breast cancer in the low dose reference group. 

This deficit is not explained by the HWE, which is primarily related to non-cancer causes and 

declines with length of follow up. As discussed above, there are clearly advantages to comparing 

workers to workers in epidemiology studies to overcome possible biases in external comparisons 

to the general population. However, there may also be disadvantages to using an internal 

comparison group that may not be recognized. One danger is selecting a referent group that has 

an unusual deficit of the disease of interest that creates an artifact of an excess as is illustrated in 

this study, whose referent group breast cancer rates are 50% of general population baseline.  This 

serious limitation was also illuminated in Marsh et al. (2019): 
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“The validity of the Mikoczy et al. (2011) finding and conclusion can be challenged, 

however, on the basis of several methodological issues. First, the greater than 2-fold 

relative excesses in breast cancer incidence risk in the two highest cumulative EO 

exposure categories were ensured by an inordinately large, statistically significant 48% 

deficit in breast cancer incidence in the baseline category. The inordinately low baseline 

SIR for breast cancer is puzzling given that regional rates were used in the external 

comparisons and that there was no apparent problem with under-ascertainment of breast 

cancer cases. The healthy worker effect is also not a reasonable explanation for the low 

baseline breast cancer rate (Gridley et al. 1999). It appears that for unknown reasons, the 

baseline group used by Mikoczy et al. (2011) differs from the highest two cumulative EO 

exposure groups on factors other than EO exposure that may be related to breast cancer.”  

 

The IRIS report quantitatively demonstrated the inconsistency of the excesses reported at very 

low exposures in this population with excesses at only higher exposures in the NIOSH study.  

“Thus, crude comparison analyses were done to evaluate whether or not the exposure-

response models of the NIOSH study that were used to derive unit risk estimates in this 

assessment gave predictions consistent with the Mikoczy et al. (2011) internal incidence 

ratios (IIRs) for the two highest exposure quartiles (see Section J.2.2 of Appendix J). The 

predicted values for lymphoid cancer were within the 95% CIs for the IIRs for 

lymphohematopoietic cancer reported by Mikoczy et al. (2011). The predicted values for 

breast cancer incidence, however, were below the lower limit of the 95% CIs for the IIRs 

for breast cancer, suggesting that the Mikoczy et al. (2011) results are consistent with a 

higher unit risk estimate for breast cancer incidence than the one derived in this 

assessment. The reasons for the discrepancies are unknown… “(IRIS 2016, p.60-61) 

 

Marsh et al. (2019) also addressed this exposure inconsistency: 

 

“Second, cumulative EO exposure levels in the Mikoczy et al. (2011) study were very 

low relative to both the UCC cohort (Swaen et al. 2009) and NIOSH breast cancer cohort 

incidence study (Steenland et al. 2003).” 

 

EPA more recently argues that there were substantial exposures in the Mikoczy et al. cohort, 

making it more comparable to the exposures in the NIOSH cohort, backtracking from the IRIS 

report.  OEHHA reports the breast cancer findings from the internal analysis and ignores the 

potential bias associated with a non-representative worker comparison group. 
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8. Based on its acceptance of the IRIS evaluation, OEHHA inaccurately exaggerates the 

reliability of the NIOSH worker exposure estimates prior to 1978  

 

Pertaining to IUR p. 18, 45 

 

OEHHA could improve the weight of evidence of the epidemiological data by more accurately 

describing the substantial limitations of the NIOSH worker exposure estimates prior to 1978.  

Furthermore, NIOSH has lost the electronic files needed to independently assess the NIOSH 

estimates of exposure prior to 1978 for which NIOSH had no direct measurements22.  These data 

quality issues make open access and independent assessment of the IRIS IUR difficult for 

lymphoid cancers and impossible for breast cancers.   

 

OEHHA makes the same definitive statement regarding the NIOSH cohort exposure assessment,  

“Each participant’s EtO exposure was estimated using a validated multiple regression 

exposure model that incorporated information on workplace air measurements, 

sterilization unit size, engineering controls, timing of sterilization, product type, calendar 

year, and historical process changes.” (IUR p. 18) 

OEHHA also states,  

“The NIOSH study was judged by US EPA to be of “high quality” based on the 

availability of quantitative exposure estimates for individual workers, high-quality 

exposure assessment, longitudinal study design, large sample size, inclusion of males and 

females, adequate follow-up, absence of known confounding exposures, multiple study 

locations, and use of internal comparison groups. The NIOSH study was also reviewed 

by OEHHA, using the Bradford-Hill guidelines for causal inference and NTP’s risk of 

bias tool (Hill, 1965; NTP, 2019), and determined to be of high quality and unlikely to be 

affected by important bias or confounding.” (IUR p. 18) 

OEHHA dismisses a robust analysis of the trend of the NIOSH exposure data by Bogen et al. 

(2019): 

“Bogen et al. (2019) have suggested that exposures occurring prior to 1978, the first 

year that EtO sampling data were available for the NIOSH cohort, may have been 

dramatically under-predicted by the NIOSH exposure model. However, as noted by these 

authors, several assumptions were used in their assessment, and the information used to 

support these assumptions, “were limited in scope and quantitative detail.” In addition, 

the authors were unable to validate their pre-1978 predictions since no actual worker 

measurements were available from that time. Overall, because of these and other 

weaknesses, the accuracy of the Bogen et al. (2019) assessment is unknown to OEHHA.” 

(IUR, p.44) 

 

 
22 In response to the panel’s suggestion that the Hornung analysis represents an “invaluable opportunity” for 
further analysis of the impact of possible errors in exposure estimation, the EPA investigated the possible use of 
the “errors in variables” approach (page 27 of the panel report). . . Unfortunately, the electronic data files used in 
the exposure analysis were no longer available, so that analysis based on the errors-in-variables approach was not 
possible. 
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These OEHHA statements show, at a minimum, a lack of rigor in evaluating the NIOSH 

exposure model (Horning et al. 1994) and its “validation”, and a biased evaluation of the Bogen 

et al. (2019) paper as discussed in our general comments above.  

 

A more correct statement describing the NIOSH multiple regression exposure model is that the 

model was only validated for the period 1979-1985 (very few samples were collected from 1976-

1978) during which EtO concentration measurements were collected from six facilities, but not 

for the earlier period of sterilizer facility operations (pre-1978; from late1930’s to late 1970’s) 

when a majority of cohort workers were occupationally exposed to EtO and no exposure 

measurements were collected. An incorrect assumption by Hornung et al. in applying the NIOSH 

model to the Pre1978 sterilizer operations regarding a key variable “calendar year”, a surrogate 

for improvement in work practices, inferred no changes in the pre-1978 period and raises serious 

question about reliability of the NIOSH model in predicting early worker exposures and the 

dose-response relationship based on the exposures of these early workers in this cohort.  

 

There are several reasons to question the reliability of NIOSH model predictions of early 

sterilizer worker exposure estimates:  

• First, the NIOSH multiple regression exposure model validation (Hornung et al., 1994) 

was based using a portion of the 1978-1986 to develop the model and another portion of 

the data to test the model. Therefore, the model was validated for the years with data but 

not for the early years for which no concentration measurements were available. Hornung 

et al. provided no other data, information or analyses for sterilizer workers or processes in 

this earlier time period to check the applicability to this NIOSH exposure model to 

sterilization workers in the cohort who worked from the late 1930’s to later 1970’s. These 

facts regarding the NIOSH model validation should have raised concern about model 

predictions for early sterilization workers. 

 

• Second, Hornung et al. selected Calendar year, a surrogate for improvement in work 

practices, as the key variable in the NIOSH exposure model to pre-1978 cohort workers. 

This variable was applied conditionally on the max year 1978 forcing the inverse 

parabolic fit for years before 1978. This application of calendar year inferred that there 

were no major changes in work practices in sterilization operations between the late 

1930’s and late 1970’s that would have affected worker exposures. 

 

Contrary to this inference, substantial published information and data on early work 

practices and changes in work practices were found in technical literature, industry 

documents, and from early workers and industry experts (Bogen et al., 2019).  In other 

words, Bogen et al. (2019) brought far more information and data to inform the validity 

of the NIOSH model prior to 1978, when NIOSH had insufficient (1976-1978) or no 

(<1976) data.  For example, the numbers of repeated cycles of in chamber, post-exposure 

vacuum air- or nitrogen washes have increased from two or fewer from early operation 

up to ten or more for operations in the 1980’s leaving high levels of EtO residues to off 
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gas in from sterilized materials and packaging from early operations and lower levels in 

later operations (Goldgraben and Zank 1981; Buonicore et al., 1984). 

 

Consistent with few wash cycles, there are several published studies of rates of EtO off 

gassing from sterilized materials representing conditions in the 1950’s through 1980’s 

(Bruch 1961, 1972; Buonicore et al., 1984; FDA 1978; Stetson et al., 1976; White, 1977). 

As importantly, early operations stored sterilized materials in the same room as ongoing 

sterilizer operations where both operational emissions and sterilized material off gassing 

contributed to worker exposure while later operations moved sterilized material to a 

separate warehouse room reducing the exposure of highly exposed sterilizer operators 

(Bogen et al., 2019). Clearly there were important work practice changes over time that 

need be considered in assessing the exposure of cohort workers. 

 

• Third, the NIOSH exposure model based on the conditioning of calendar year predicted 

early sterilization workers were exposed to EtO concentration substantially lower than 

workers in 1978 when exposure concentration predictions were based on measurements 

(see Figure 8 below from Bogen et al., 2019). One would not expect low exposure 

concentration when equipment and processes were crude, and little was known about EtO 

toxicity and no worker protection regulations. The NIOSH model predicted early worker 

increasing exposure pattern is inconsistent with industrial hygiene data collected in other 

industries (e.g., on Grote et al., 2003, 2006) and inconsistent with historic worker 

exposure guidance (ACGIH 1948, 1957) for EtO exposure concentrations in the 

workplace. ACGIH provided an exposure limit for EtO of 100 ppm in 1948 and 50 ppm 

in 1957 to encourage reductions in workplace exposure. As a reality check, no ACGIH 

guidance would have been needed had EtO concentration been as low as predicted by the 

NIOSH exposure model. 

 

• Fourth, Bogen et al. (2019) performed an engineering/industrial hygiene evaluation of 

early sterilization worker EtO exposure to assess the reliability of NIOSH exposure 

model predictions of an increasing exposure trend. Bogen et al. concluded that from the 

late 1930’s to  1978  there was a decreasing exposure trend for sterilizer workers rather 

than increasing trend from very low exposures to high exposures predicted by the NIOSH 

exposure model (Figure 8 from Bogen et al., 2019, Figure 5).  
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Figure 8. Comparison of E/IH (purple lines) and NSR (orange lines) exposure model 

estimates of occupational respiratory exposures to EtO in facilities that sterilized 

medical/health products and prevailing ACGIH TLV limits for EtO (dashed lines). Shaded 

area represents the period during which very limited or (pre-1976) no contemporaneous 

measurements were available to validate NSR model predictions and during which no EtO-

specific regulations were in place to limit occupational EtO exposures. Adapted from Figure 

5 of Bogen et al. (2019) 

  

There are no data or analyses available to support OEHHA’s agreement with EPA that the 

NIOSH model produced a “high-quality exposure assessment.” To the contrary, Bogen et al. 

(2019) published substantial data and analyses showing that the NIOSH model is flawed and, 

there was a decreasing rather than increasing EtO exposure trend for pre-1978 sterilizer operators 

contributing uncertainty to the EPA and OEHHA EtO risk assessments.  OEHHA should 

recognize the limitations of the NIOSH multiple regression exposure model predictions for early 

sterilizer operators and the potential adverse effects it has on estimation of risk. 

 

Assigning cases with underestimated exposures means that the lymphoid cancer is associated 

with lower EtO levels than the workers with lymphoid cancers had been exposed to.  

Underestimating exposures associated with cancers will lead to an overestimation of potency. As 

there are data on worker exposures to EtO pre-1978 for production workers, it is suggested that 

OEHHA review production worker cohort monitoring data to ascertain a more reliable picture of 

early worker exposure patterns.  After doing so, OEHHA can further evaluate how to view the 

NIOSH study in its weight of evidence analysis.  
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9. The Union Carbide Corp. (UCC) cohort should play a prominent role in considering 

the strength and consistency of the epidemiology data in supporting the IRIS vs. TCEQ 

IUR.  OEHHA’s description of this cohort in the text and Table 7 is missing the internal 

analysis by Valdez-Flores et al. (2010) which included exploration of different exposure 

metrics and lag times.   The absence of findings in the UCC cohort for male LH is not 

consistent with a steep slope at low concentrations. 

 

Pertaining to IUR p. 12-13, 16 

 

This UCC study is very important to consider in the weight of evidence because it included long-

term follow-up of workers from the 1940s, the infancy in EtO production. The absence of 

findings in the UCC cohort for male LH is not consistent with a steep slope at low concentrations 

and does not support the IRIS (2016) derivation of one of the highest IURs. This cohort of 2,174 

workers was a subset of another NIOSH study of or more than 29,000 UCC chemical workers in 

the Kanawha Valley (KV) of WV (Rimsky et al., 1988). 

 

Compared to the NIOSH sterilizer worker mortality study, the UCC study has a smaller cohort 

sample size but has comparable numbers of LH and lymphoid cancers as those reported in the 

male component of the NIOSH cohort. The UCC study is, therefore, informative, with respect to 

males, and the increases in LH and lymphoid cancers reported in the NIOSH study were limited 

to males (Steenland et al., 2004).  Moreover, it is of similar quality to the NIOSH study, 

especially considering the problems with the NIOSH study noted above. 

 

Furthermore, the quality of the UCC study exposure assessment is comparable to that of the 

NIOSH study. It employed individual exposure estimates for a substantial period between 1925- 

1988, utilizing the Greenberg et al. (1990) validated categorization of EtO producing and using 

departments by level of exposure and quantitative estimates of average intensity by these 

categories developed by Teta et al. (1993). There were no potential confounders to other 

chemical exposures because such workers were removed from analysis by Teta et al. (1993), 

Swaen et al. (2009) and Valdez-Flores et al. (2010). 

 

Exposure data were available for study subjects at the West Virginia (WV) locations starting in 

1974. They were available from Union Carbide’s Texas City plant that operated identically to the 

WV location from the early 1960s. This represents an important advantage of the UCC study 

over the NIOSH study, which had no exposure data prior to 1978 (Bogen et al., 2019; see 

previous section for detailed discussion). Estimates from EtO operations in the literature were 

used for the 1940-1956 exposure period, although only a small  percentage of the cohort were 

employed during that period. 

 

Contrary to Table 7 of OEHHA’s Draft IUR, there was exploration of log cumulative exposures 

and multiple lag times.  Valdez Flores et al. (2010) reports that Table S11 in Supplemental 

materials indicates that the fit (maximum likelihood) varies depending upon the exposure scale 

used in the log cumulative exposure model (i.e., ppm-days, ppm-years, ppb-days, and ppb-
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years). Table S11 also illustrates that the Cox proportional hazard model with the slope 

parameter multiplying cumulative EO exposure fits the data better than any of these four 

alternative log cumulative exposure models in more than 55% of the combinations of 12 

endpoints.  None of the other lag periods resulted in a change in statistical significance, therefore 

no lag was included in the Valdez-Flores et al. (2010) publication.  Nevertheless, to be consistent 

with NIOSH, a lag period of 15 years was applied to the lymphoid analysis by TCEQ (2020a). 

 

In summary, the absence of increases in LH and lymphoid cancers in the UCC study (in both 

external and/or internal comparisons), as well as the statistically significant increases in the 

NIOSH study limited to male highest exposure groups in internal comparisons conducted by 

Steenland et al. (2004), call into question the biological plausibility of the very high IRIS IUR 

for LH cancers. Overall, the epidemiological evidence does not support EtO as a potent 

carcinogen with a steep exposure-response pattern at low exposures. The standard CPH model 

used to derive the TCEQ IUR is a model well-accepted by epidemiologists in cancer exposure-

response analysis, is linear at exposure levels of interest, and consistent with an assumption of 

no-threshold that reflects the epidemiological weight of evidence.  
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10. The draft IUR document questions the reliability of the Kirman et al. (2021) method of 

estimating endogenous levels by favoring speculative uncertainty and tangential 

information on DNA adducts over the toxicokinetic and converging evidence from 

animals and humans that was presented by Kirman et al. and by data in Filser and 

Klein (2018).   Endogenous levels can greatly exceed the levels to which residents near 

sterilization facilities may be exposed.  While EPA’s potency estimate technically only 

applies to exposures above endogenous levels, it is questionable that a chemical would 

be a potent carcinogen at levels that the body produces through natural processes.  

 

Pertaining to IUR p. 29, 30 

 

OEHHA’s Draft IUR indicates that cancer risks account for endogenous levels. 

 

“The EtO exposures from ambient and endogenous sources contribute to HEV levels, other 

adduct levels, and cumulative cancer risks (i.e., including from other chemicals and conditions). 

Thus, EtO and ethylene exposures are part of the risk factors accounting for the background 

cancer risk in the general population, including lymphoid and breast cancers (US EPA, 2016a; 

2016b).” (IUR p. 29) 

 

This is a true statement for both the TCEQ and IRIS cancer risk calculation and should not be 

used as a basis to ignore consideration of endogenous levels as part of an important reality check 

for derivation of cancer risk specific concentrations.  It does not make sense for risk specific 

concentrations to be orders of magnitude below human endogenous levels, or to be a fraction of 

the population variability of human endogenous levels.   

 

Most general population background exposure will be endogenous. 

 

Pertaining to IUR p. 29 

 

We applaud OEHHA for including a section on endogenous exposure to EtO. As illustrated by 

our comments above, this topic is important to future risk assessment and risk management 

decisions made for EtO. 

 

We recommend to expand this section to include the following: 

 

The biochemical pathways that contribute to endogenous exposures, include: (1) production of 

ethylene by bacteria normally present in the gastrointestinal tract, which is then absorbed into the 

body; and (2) systemic production of ethylene by specific precursors and by oxidative stress.  

Endogenous production of EtO results from the oxidation of ethylene resulting from both 

sources.  These pathways are operable in all mammalian species, with measured EtO biomarker 

levels (2-hydroxyethyl valine or HEV) generally being higher in laboratory rats and mice than in 

humans. 
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Endogenous exposures to EtO are variable.  These exposures vary from person to person 

(interindividual variation) and from day to day (temporal variation), and can be modulated by 

diet (e.g., fatty acid composition; diet content of precursors that are metabolized to ethylene), 

medications (e.g., antibiotics), and underlying conditions (e.g., oxidative stress). 

 

Kirman et al. (2021) estimated endogenously produced EtO is the largest contributor to EtO-

biomarker levels in general population nonsmokers. The estimated average HEV burden of 29.2 

pmol/g Hb resulting from endogenous exposure corresponds to an equivalent median inhalation 

exposure to 2.3 ppb EtO in air. In this context, EtO RSC exposure (0.0016 ppb) is more than 

1000-fold lower than the endogenous exposure and would generally be considered negligible. 

 

Background exogenous exposure is generally a small fraction of total background exposure 

 

Pertaining to IUR p. 29 

 

Most of the general population background exposure arises from endogenous production 

(~95%), whereas exogenous exposure via inhalation of EtO in ambient air generally constitutes a 

small fraction (~5%) of total exposure (Kirman et al., 2021). EtO in ambient air has been 

sampled since 2018 at background monitoring locations across the U.S. under the EPA NATTS 

and UAT hazardous substances monitoring programs. Samples also have been collected by state 

agencies and others at local/regional background locations as part of monitoring programs for 

EtO emitting facilities. Therefore, substantial data exists to characterize general population 

background exogenous exposures. 

 

Total background exposure from endogenous and exogenous pathways has been 

characterized from CDC NHANES biomarker data and Kirman et al. (2021) equivalent 

concentrations 

 

Pertaining to IUR p. 29; NISRL p 18 

 

Our knowledge of EtO background exposure is informed by CDC internal dose data in the form 

of a representative exposure biomarker, N-(2-hydroxyethyl)-valine (HEV) adduct levels, 

measured in erythrocytes for nonsmokers and smokers in the U.S. population (CDC 2019; 

Kirman et al., 2021). HEV adduct levels represent an individual’s total background EtO exposure 

from endogenous and exogenous sources. Kirman et al. 2021 developed a relationship between 

biomarker (HEV) concentration and total and endogenous equivalent concentrations (equivalent 

continuous exposure concentrations in ppb) for smokers and nonsmokers in the U.S. population. 

Endogenous and total equivalent levels reflect air concentrations of EtO that are equivalent to the 

levels that are produced endogenously, and endogenously and exogenously, respectively. Filser 

and Klein (2018; Figure 12A) provides an independent PBPK model-based validation of the 

linear equivalent relationship adopted by Kirman et al. (2021). 

 

OEHHA mischaracterizes the relevance and importance of background endogenous and 

endogenous equivalent exposure 
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“While the hemoglobin adducts such as the HEV resulting from endogenous and exogenous EtO 

may serve as sensitive markers of EtO exposure, the paucity of data on their relationship with the 

relevant DNA adducts makes it a limiting factor for use in risk assessment (Rietjens et al., 

2021[sic]23).” (IUR p. 30) 

• EtO hemoglobin adducts (HEV) are useful biomarkers of exposure, a point also noted in 

this publication, “...Hb alkylation may serve as a particularly sensitive marker of 

exposure...”  They are used as a cumulative measure of the internal doses of EtO present 

in blood for several months prior to measurement. 

• Kirman’s analysis utilizes HEV to apportion total exposures to EtO from different 

pathways. 

• There are several technical issues associated with measuring EtO based on the best 

quantifiable DNA adduct (N7-HEG), including high variation across analytical methods, 

difficulties in sample preparation, uncertainties in repair half-life/depurination rates, and 

limited data availability, which limit the utility of N7-HEG as a biomarker of exposure. 

• Limitations in the understanding in the relationship between HEV and DNA biomarkers 

does not detract from the utility of HEV biomarkers or from the application in the 

analysis of Kirman et al. (2021).  The “paucity” of data referred to in this comment 

applies equally to the relationship between external dose measures (e.g., air 

concentrations) and N7-HEG. 

 

“Alternatively, using the HEV levels to back-calculate endogenous-equivalent air concentrations 

of EtO is untenable at present as there are no relevant toxicokinetic models or data to support 

it.” (IUR p. 30) 

• Steady state blood levels of EtO (area under the curve or AUC) can be estimated from 

measured HEV levels with a high degree of confidence since the values for the reaction 

rate constants for EtO binding to hemoglobin and erythrocyte lifespans are known, as 

described in Motwani and Tornqvist (2014; see equations 2-3b). 

• Although a toxicokinetic model that fully encodes the endogenous formation pathways 

(Kirman et al. 2021, Figure 4) are not yet available, the model of Filser and Klein (2018) 

and data cited therein (Figure 12A of Filser and Klein, 2018) are fully consistent with the 

use of a linear correlation between EtO in air and HEV measurements in humans, as 

adopted in Kirman et al. (2021) : 

 

 
23 OEHHA typo. It should be 2022. 
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Figure 9. Hemoglobin adducts (HEV, nmol/g Hb) in workers exposed to EtO in air (from Filser 
and Klein, 2018). 
 

• The available worker data depicted in this figure indicate that a linear relationship 

between HEV adducts and EtO in air is across a broad range of concentrations (~0.1 ppm 

to ~4 ppm). Furthermore, the PBPK model of Filser and Klein (2018) predict a linear 

relationship across this range of exposures, as well as for exposures extrapolated below 

this concentration range (solid black line). Lastly, for exposure levels below the range of 

worker exposures, the NHANES biomonitoring data in smokers and in non-smokers are 

also consistent with a linear relationship (depicted by redline; note - log-linear scale) 

between EtO exposure (using cigarettes per day as a metric) and HEV adduct formation: 
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Figure 10.  Hemoglobin adducts (HEV, pmol/g Hb) in U.S. smokers exposed to EtO in cigarette 
smoke (NHANES, 2013-16) 

 

• These data indicate that the linear relationship between EtO exposure is maintained from 

background exposure levels up to 30x background levels.  The linear relationship 

between cigarettes per day and HEV in this figure is consistent with a linear relationship 

(e.g., assessed by multilinear regression analyses) for another EO biomarker (urinary 2-

hydroxyethyl mercapturic acid) as reported by CDC scientist (Kenwood et al., 2021). 

Together, these data provide evidence to support a linear relationship between HEV and 

EO exposure as used in Kirman and Hays (2017) and Kirman et al. (2021). 

 

“In this regard, ATSDR (2022) concluded that data are not available to demonstrate that 

background levels in non-smokers are direct indicators of internal, endogenous EtO exposures.” 

(IUR p. 30) 

• “Direct" measurements of endogenous exposure in isolation are not possible.  However, 

as noted above, indirect estimates of endogenous exposure can be inferred from available 

data sets (EtO and ET air monitoring; NHANES biomonitoring data). 

 

“The dose-response relationship for endogenous EtO exposures might be different from the dose-

responses seen with ambient exposures, possibly sublinear but ultimately unknown (US EPA, 

2016a).” (IUR p. 30) 

• Measured HEV levels in human populations are dependent upon three parameters: (1) 

circulating levels of EtO in blood; (2) hemoglobin binding rates; and (3) erythrocyte 

lifespan.  Although there are some possible sources of high-dose nonlinearity (e.g., 

induction of endogenous production of ethylene by EtO at high doses; theoretical 

exposure-related effects on erythrocyte turnover due to cytotoxicity) there are no 

documented sources of low-dose nonlinearity for EtO exposure and HEV formation. Any 

such nonlinearity would only be relevant at exposures above the range of observation  

(~0.1 to ~4 ppm) defined by Figure 12A above from Filser and Klein (2018).  As noted 

above, there is no evidence of nonlinearity in the NHANES HEV biomonitoring data as a 

function of EO exposure (using cigarettes per day).  

 

We believe that there are reliable data for characterizing background endogenous and 

endogenous equivalent EtO exposure and provide a preface for using background exposure as 

context for managing and communicating EtO risk.  

 

Kirman et al. (2021) model of external EtO exposures and internal EtO HEV hemoglobin 

adducts (EtOHEV) is validated in a “forward” analysis as suggested by EPA (2022) 

The relationship between NHANES HEV biomonitoring data as a function of EO exposure 

(using cigarettes per day) established by Kirman and Hays (2017) and Kirman et al. (2021) is 

validated with a “forward” analysis, as suggested by EPA (2022), based on measured EtO 

concentrations in mainstream cigarette smoke. Using the linear relationship between external 

EtO exposures and internal EtO HEV hemoglobin adducts (EtOHEV), Kirman et al. (2021) 

calculated that an approximate 10-fold increase in general population EtOHEV adducts in 

smokers compared to non-smokers (CDC NHANES, 2019) was equivalent to a continuous EtO 
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air exposure of 21.7 ± 20.2 ppb (mean ± SD). EPA (2022) suggested that the Kirman exposure 

model could be validated if “forwards determinations of smokers total exposures to EtO” 

compared reasonably to “backward” estimated EtO exposures derived from the Kirman EOHEV 

adduct/exposure relationship: 

p.69: “EPA also notes that the assumed relationship between HEV adduct measurements 

and EtO exposures in smokers (Kirman et al. 2017 and 2021) also needs validation. 

Cigarette smoke contains EtO and ethylene which may be metabolized to EtO. Smokers 

also experience physiological and biochemical changes that could affect their EtO 

exposures and/or formation of protein adducts. For validation of the HEV based 

projections, “forwards” determinations of smokers total exposures to EtO (e.g., as might 

be assessed using exhaled breath measurements) could be compared with “backwards” 

calculations of projected EtO exposure levels hypothesized from HEV from adduct level. 

Paired measurements of breath levels of EtO and ethylene and HEV adduct levels could 

provide useful bottom-line data to test the HEV/equivalent inhaled concentration 

hypothesis.” 

Importantly, and directly responsive to the EPA-recommended validation exercise, multiple 

datasets have been published that describe reliable analytically-determined concentrations of EtO 

in individual cigarettes that can then be converted to total daily EtO smoker exposures dependent 

on the intensity of smoking behavior (Table 1; Liu et al., 2014; Forster et al., 2018; Jaccard et al., 

2019). 

Liu et al. (2014) reported for Kentucky Reference 3R4F cigarettes mean concentrations of 8.37 

μg EtO/cig under the International Organization for Standardization (ISO) smoking regimen and 

26.03 μg EtO/cig under the “Health Canada intensive” (HCI) smoking regimen. Forster et al. 

(2018) reported for the updated Kentucky Reference 1R6F cigarettes mean concentrations of 

17.2 μg EtO/cig (HCI) and 19.3 μg EtO/cig (HCI) for Kentucky Reference 3R4F cigarettes. 

Jaccard et al. (2019) reported for Kentucky Reference 1R6F cigarettes mean concentrations of 

5.92 μg EtO/cig (ISO) and 17.3 μg EtO/cig (HCI). Jaccard et al. (2019) also reported for 

Kentucky Reference 3R4F cigarettes which yielded mean concentrations of 6.78 μg EtO/cig 

(ISO) and 19.2 μg EtO/cig (HCI).  

Daily EtO exposure concentrations (EC) can be estimated as C × CpD / IR, where C is the 

reported EtO concentration per cigarette (μg/cig), CpD is the number of cigarettes smoked per 

day (cig/day), and IR is the daily inhalation rate (m3/day). CpD conservatively assumed to be 17 

cig/day based on the average number of cigarette smoked by daily smokers in 2005 as reported 

by CDC (2018), and IR is assumed to be 16 m3/day based mean inhalation rates for adults aged > 

16 yr (EPA 2011). The estimated ECs, shown in Table 7 below, ranged from 3.5 to 15 ppb. 

These estimates are generally consistent with Kirman et al. (2021) estimates of 21.7 ppb for 

smokers, 1.9 ppb for non-smokers, which results in 19.8 ppb from smoking contribution, and 

confirms that HEV adducts can provide reliable estimates of EO exposure. 
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Table 7. Estimated daily ethylene oxide exposure concentrations based on measured 

ethylene oxide concentrations in mainstream smoke 

Source of EtO Mainstream 

Smoke Concentration Data 

Reference 

Cigarette Regimen 

Estimated Daily Exposure 

Concentration (ppb) 

Liu et al. 2014 

3R4F ISO 4.98 

3R4F HCI 15.49 

Forster et al. 2018 

1R6F HCI 10.23 

3R4F HCI 11.48 

Jaccard et al. 2019 

1R6F ISO 3.52 

1R6F HCI 10.29 

3R4F ISO 4.03 

3R4F HCI 11.42 

 

The data in Table 7 indicate that the “forward” analytical measurements of EtO in cigarette 

smoke, when converted to total daily EtO ppm exposures, are in excellent agreement with the 

“backwards” estimates of the mean and SD measurements of EtO ppm exposure calculated from 

the high-quality CDC smoker EtOHEV data using the Kirman EtO-EOHEV endogenous-

equivalent model approach.  

A preliminary analysis of the NHANES HEV data for smokers as a function CpD (see previous 

figure), demonstrates a linear relationship.  The linear slope in this figure (18 pmol/g per average 

CpD) would correspond exactly with the slope of 10.9 pmol/g per ppb (continuous) if the 

conversion factor for ppb to CpD is approximately 0.6 ppb per CpD.  Using the mean estimated 

daily concentration from Table 7 (8.94.3 ppb) along with the value of 17 CpD, results in an 

independently derived conversion factor of 0.530.25 ppb per CpD.  Together these data indicate 

that the linear correlation between HEV in smoker exposures to EtO is excellent agreement with 

the linear correlation between HEV and occupational exposures to EtO (i.e., the slope of 10.9 

pmol/g per ppb). 

The consistency between the “forward” and “backward” smoking-derived EtO exposures can 

also be used to explore the plausibility of the IRIS IUR as a reasonable predictor of cancer risks 

associated with low EO exposures.  If the IUR is assumed as correct, a 10 ppb (10,000 ppt, as a 

representative midpoint from Table 7) external EO exposure contributed by smoking is predicted 

to produce an upper-bound estimate on the order of 1x10-2 to 10-1 risk of cancers (i.e., the 0.1 ppt 

10-6 risk projected by IUR), 5 orders of magnitude less than the approximate 10,000 ppt smoking 

exposures estimated by Kirman et al. (2021) and validated by direct measurement of EtO in 

cigarettes.  This suggests smoking should result in a readily demonstrable cancer signal, but the 

overall epidemiological data are weak or equivocal for this endpoint.  Thus, the smoking data 

and associated EtO exposure analyses are an important and reliable “reality check” that the IRIS 

IUR substantially overestimates the low-exposure cancer risks of EtO. 
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11. OEHHA cites two studies reporting an association between smoking and 

lymphohematopoietic (LH) cancers published in 2012 (Diver et al. 2012 and Kroll et al., 

2012) to discount Kirman et al., (2021) reality checks.  These two studies are 

inconsistent with the lymphoid cancer (NHL, lymphocytic leukemia, multiple myeloma) 

findings from the NIOSH mortality study (Steenland et al., 2004), upon which IRIS 

2016 developed their low exposure high risk model and do not constitute a weight-of-

evidence evaluation akin to the Surgeon General report, The Health Consequences of 

Smoking —50 Years of Progress. In addition, OEHHA cites IARC review associating a 

positive association between tobacco smoking and breast cancer, though not for 

lymphoid cancer. 

 

Pertaining to IUR p. 29 

OEHHA has responded to Kirman et al.’s plausibility argument that, if EtO caused lymphoid 

tumors, it would be seen in smoker studies, and such an association has not been reported. The 

draft OEHHA IUR (p. 29) cites two smoker studies, however, published in 2012 (Diver et al. and 

Kroll et al.) in an attempt to provide biological plausibility for the IRIS cancer risk for lymphoid 

cancers: 

“Since the IARC review, new results from two large prospective cohort studies have 

found significant associations with lymphoid cancer. The American Cancer Society 

Cancer Prevention Study II identified 1926 non-Hodgkin lymphoma cases in a cohort of 

152,958 men and women (Diver et al., 2012). The study found an association between 

current smoking and non-Hodgkin lymphoma in women (RR = 1.37, 95% CI = 1.04–

1.81), with a positive trend for years smoked (p < 0.01). The UK Million Women Study 

identified 7047 lymphoid cancers in a cohort of 1.3 million women (Kroll et al., 2012). 

This study found associations between tobacco smoking and Hodgkin lymphoma (1.45 

per 10 cigarettes/day, 95% CI = 1.22–1.72) and mature T-cell malignancies (1.38 per 10 

cigarettes/day, 95% CI = 1.10–1.73). These large-cohort findings support the plausibility 

of increased cancer risks from low concentrations of EtO.” 

These two studies do not support this statement. They are inconsistent with the lymphoid cancer 

(NHL, lymphocytic leukemia, multiple myeloma) findings from the NIOSH mortality study 

(Steenland et al., 2004), upon which IRIS 2016 developed their low exposure high risk model. 

Diver et al. is a large cohort study of the relationship between smoking among men and women 

and the risk for non-Hodgkin lymphoid neoplasms (NHL), a cancer endpoint in IRIS 2016, based 

on the NIOSH findings for this group of cancers. Diver et al. examined smoking history in detail 

including status, intensity, duration, cigarettes /day.  OEHHA cites Diver et al.’s statistically 

significant RR for currently smoking women (1.37) but fails to note the deficit in currently 

smoking males (0.88), the positive trend with cigarettes per day and years smoked for females, 

no trends for males. This lack of positive association in smoking males occurred despite the fact 

that males smoked more than females. Furthermore, they fail to note these gender increases are 

in the opposite direction of the NIOSH gender results associated with EtO exposure, SMRs=1.29 
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for males and 0.73 for females and the positive slope for males and the negative slope for 

females in internal analyses. 

Given the large number of cases in this study, they were able to demonstrate gender differences 

statistically. Despite gender differences, they also presented data for males and females 

combined.  A statistically significant trend for NHL was seen for women but no trend for both 

genders combined.  The results for other subtypes of the NIOSH lymphoid category either are 

positive for females only (lymphocytic leukemia) or non-positive for both genders (multiple 

myeloma).  Diver et al conclude, “In the present study, current smoking was associated with an 

increased risk of NHL in women but not in men.”   

The Kroll et al. (2012) large cohort study was limited to females and examined the relationship 

between smoking and hematological cancers (both lymphoid and myeloid). OEHHA cites the 

increased risk observed in this study for Hodgkin lymphoma, which is not included in the 

NIOSH lymphoid category, which includes non-Hodgkin lymphoma. So OEHHA cites positive 

results but for a different disease. The authors do provide RRs for lymphoid cancers in their low 

exposure smokers (<15 cigarettes per day). No statistically significant increases were seen; no 

evidence of steep increases at low concentrations.  

Both papers summarize the existing literature related to smoking and hematologic cancers as 

“inconclusive” or “inconsistent”, indicating a need for their research.  Based upon their findings, 

Diver et al., (2012) conclude, “this large cohort study supports an association with cigarette 

smoking and increased risk of follicular lymphoma in women”, while Kroll et al. (2012) 

conclude, “Cigarette smoking was associated with increased risk of Hodgkin lymphoma, 

consistent with previous reports.”  The weight of evidence related to smoking and lymphoid 

tumors (as defined by NIOSH) overall and at low exposure concentrations remain inconsistent 

and inconclusive.    

EPA has also addressed this issue by raising the bar beyond a reality check of the existing 

literature requiring detailed quantitative analyses with adjustment for confounding and error 

bounds to rule out an association, ignoring theoretically easy detection of their putative IRIS 

conclusion of high risk at low exposures.  

“As cigarette smoke contains many carcinogens, there is not a reason to expect, that EtO 

exposures to smokers would contribute a large part of total cancer risks due to cigarette smoking. 

A quantitative statistical analysis, which has not been reported, would be needed to place bounds 

on the potential levels of risk from lymphoid and breast cancers in smokers to support 

comparisons EtO cancer risks. Results from such analyses, appropriately controlled for other risk 

factors, might support reasonable comparisons of lymphoid and breast cancer rates in smokers 

and levels of risk of these tumors that would be predicted by EtO exposures from smoking. 

However, such analyses, to EPA's knowledge, do not appear to have been undertaken” (EPA, 

2022, p. 68). 

The Agency concedes smokers have elevated EtO exposures “EPA notes that as smokers do have 

elevated exposures to EtO, further work to define and validate EtO exposure estimates and to 
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determine statistical bounds on risks for EtO associated cancers in the smokers could in the 

future contribute important information for EtO risk assessment” (EPA 2022, p. 69). 

Neither OEHHA nor EPA considered the published literature showing increased risk of acute 

myelogenous leukemia (AML) among smokers (IARC, 2012b). The average smoker is exposed 

to 1.8 mg/day of benzene, which is ten times that of non-smokers (ATSDR, 2007).  These 

findings are plausible and a reasonable reality check, given that benzene is a known cause of 

AML.  Extensive quantitative analyses as described above by EPA is not needed for this 

purpose, nor would it be needed to question the plausibility of  an EtO/lymphoid tumor 

relationship based on highly exposed smokers. 

The citation of these two studies reporting an association between smoking and LH cancers 

(Diver et al., 2012; Kroll et al., 2012) does not constitute a weight-of-evidence evaluation akin to 

the Surgeon General report, The Health Consequences of Smoking —50 Years of Progress (US 

DHHS, 2014). More importantly, it does not address the point that an extraordinarily large 

potency estimate derived by USEPA for EtO is inconsistent with isolated or weak associations.  

HEV levels in smokers (236 pmol/g Hb; per NHANES) are equivalent to daily exposures to 780 

ug/day, which is more than 4 orders of magnitude higher than the NSRL value, which would 

place predicted cancer risks above 1x10-1.  Because smoking prevalence and intensity was much 

higher in the past, HEV burdens (and predicted risks from EtO exposures) would also be much 

higher than measured by NHANES.  If the unit risk for EtO were truly predictive of its potency, 

the reported associations between smoking and lymphoid cancers would be larger and more 

consistently reported across epidemiological studies of smokers.  
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12. OEHHA’s estimated EtO 10-5 Risk Specific Concentration (RSC) provide little utility in 

managing general population risk if background exogenous exposure isn’t considered 

as an initial reality check.  There has been an extensive ambient air measurement 

campaign over the last several years, including measurements near many EO facilities 

and at background locations.  In many cases, the levels of ethylene oxide far away from 

facilities are similar to the levels near the facilities. 

 

Pertaining to IUR p. 41; NSRL p. 49, 51 

 

EtO is unique among managed hazardous substances 

 

• Ethylene is emitted to air from natural sources including plants where it functions as a 

hormone, microbial activity in soils, sediment and plant litter, as well as plants in aquatic 

systems (reviewed by Sawada and Totsuka 1986; Morgott 2015; Health Canada, 2016). A 

vast majority of ethylene emissions are from natural sources (Health Canada 2016). 

Ethylene also is emitted from anthropogenic sources such as biomass burning, including 

forest fires, and from exhaust emissions from gasoline and diesel vehicles (Swada and 

Totsuka, 1986; Margott, 2015; Health Canada, 2016). Early reviews also suggested EtO 

is emitted from vehicle exhaust (EPA 1985) although there is little current published 

supporting data. As both ethylene and EtO are constituents of tobacco smoke, combustion 

of tobacco (see Kirman et al., 2021), it seems reasonable that both ethylene and EtO may 

be emitted by biomass combustion and combustion exhaust from vehicles.  As early as 

the 1970’s, ethylene from natural and unregulated sources was being measured at 

relatively high levels in urban air (39-700 ppb; Ables and Heggestad, 1973).  More 

recently, EtO has also been measured in ambient air at multiple locations across the U.S. 

away from known industrial sources to characterize this background exogenous source 

(median levels 0.03-0.33 ppb; ATSDR 2022; Sheehan et al. 2021; Lewis et al., 2022; 

Georgia EPD 2022). 

 

Based on the limitations of its risk assessment, OEHHA should consider including 

discussion of EtO general population background exposure to provide context for risk 

management and risk communication 

 

OEHHA makes the following statements regarding background exposure, 

 

“Measurements of specific hemoglobin adduct levels, such as                                

 N-2-hydroxyethylvaline (HEV), in humans or other species, reflect the integrated 

exposure to ethylene (endogenous + exogenous) and EtO (endogenous + exogenous). 

Kirman et al. (2021) showed background exposures to EtO and ethylene in ambient air 

alone are insufficient to account for HEV levels seen in non-smokers, and endogenous 

EtO production contributes more to non-smoker HEV levels than ambient EtO and 

ethylene exposures do. The EtO exposures from ambient and endogenous sources 

contribute to HEV levels, other adduct levels, and cumulative cancer risks (i.e., including 
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from other chemicals and conditions). Thus, EtO and ethylene exposures are part of the 

risk factors accounting for the background cancer risk in the general population, 

including lymphoid and breast cancers (US EPA, 2016a; 2016b).” 

 

EtO background exposure contributes more to understanding risk than just accounting for 

background cancer risk; it provides a reality check on managing EtO general population risk 

when there are unaddressed questions about the representativeness of the risk model. It is likely 

reasonable to assume that these exposures do not impact the conversions between relative risk 

and extra risk measures in the dose-response assessment.  However, this assumption is not valid 

for exposures to EtO from smoking, which has changed significantly over time (Kirman et al., 

2021) and can vary between worker sub-populations (e.g., salaried vs. hourly workers; Hsu et al., 

2019). As such, smoking is a potential confounder for EtO exposures (vs. a confounder to 

observed cancer response) in the NIOSH cohort.  In addition, there is a clear need to include 

discussion of background exposures for the purposes of risk management and risk 

communication of total EtO exposures and potential risks. Based on the limitations in the 

OEHHA EtO risk assessment described above and the unique characteristics of EtO background 

exposure, a risk management check based on general population background exposure is 

warranted as a reality check of the utility of OEHHA’s assessment RSCs in managing general 

population EtO risk. 

 

The draft OEHHA assessment estimated EtO RSC provides little utility in managing 

general population risk if background exogenous exposure isn’t considered as an initial 

reality check 

 

Based on reported monitoring around emitting facilities, the OEHHA 10-5 RSC for EtO would be 

a small fraction of substantially higher ambient background concentrations from natural and 

unregulated anthropogenic EtO sources otherwise associated with industrial emissions. The EtO 

IUR document reported ambient background EtO concentrations for the Los Angeles area 

ranging from 0.02-0.17 ppb. Based on data from the EPA NATTS and UAT monitoring 

programs for the October 2018 to September 2019 period, ATSDR estimated a national mean 

background EtO concentration of 0.13 ppb (ATSDR, 2022). Similarly, the same monitoring data 

for years 2018-2021 showed median (50th percentile) background EtO concentrations ranged 

from 0.03-0.33 ppb nationally (summarized in Lewis et al., 2022). Local/regional location 

background EtO concentration for eight sterilization facilities evaluated over an extended period 

again showed median and 90th percentile background concentrations ranging from 0.07 and 0.26 

to 0.13 and 0.56 ppb, respectively (Sheehan et al., 2021). 

 

These data show that background concentrations are variable but more importantly, that 

everyone nationally (including Californians) is exposed exogenously to mean/median 

background concentrations of EtO substantially greater (~50-fold) than the EtO RSC. Although 

it has been suggested that true background concentration based on a refined sampling method 

(TO 15A) may be lower than measurements based on EPA Method (TO 15), calculations from 
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recent Georgia EPD background samples by both methods show refined background levels are 

still substantially greater than the OEHHA RSC. 

 

The OEHHA updated EtO RSC provides little utility in assessing general population risk 

unless total background exposure from combined exogenous and endogenous contributions 

are considered as an ultimate reality check 

 

At some monitoring locations, there may be EtO concentrations significantly greater than 

background concentrations, or modeling may predict risk above RSCs.  The total exposure 

concentration compared to total equivalent background exposure concentration distributions for 

nonsmokers provides a final reality check of the utility of OEHHA RSC estimates. There are 

published examples of where total equivalent concentration comparisons have been useful in 

informing whether further risk mitigation beyond recent emission controls was warranted.  

 

 

 

For example, Sheehan et al. (2021) compared 50th and 90th percentile ambient exogenous 

concentrations from monitoring around eight facilities plus 50th percentile endogenous 

equivalent concentration (total exposure concentrations) with 50th and 95th percentile total 

equivalent background concentrations for nonsmokers in the U.S. population and concluded that 

facility concentrations are contributing negligibly   to near residential population total exposure. 

Similarly, Lewis et al. (2022) compared 5-year average EtO modeled concentrations at near 

facility residences in Georgia plus background and endogenous concentrations (total exposure) 

with the 50th 60th and 95th total equivalent concentrations for the nonsmoking U.S. population 

and again concluded that facility contributions to residential exposure are negligible (see Figure 

4 below from Lewis et al. 2022).  These total exposure comparisons provide an additional reality 

check on the health significance of the facility emission contributions to near facility residential 

EtO exposure.  

 

We suggest that for populations in California living close to emitting facilities, OEHHA consider 

total equivalent exposure concentrations or the TCEQ RSCs as a final check in managing risk as 

the proposed OEHHA RSCs have no practical risk management utility. 
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Figure 11. Estimated total equivalent exposure for the highest 5-year average modeled EtO 

concentration for all residential receptors by facility ((50th percentile endogenous equivalent for 

the non-smoking U.S. population, or 2.3 ppb) + (50th percentile background EtO concentration 

for Georgia, or 0.12 ppb) + (highest 5-year average modeled EtO concentration for all residential 

receptors by facility)) relative to that of the 50th, 60th, and 95th percentiles of the non-smoking 

U.S. population (2.5, 2.7, and 5.5 ppb, respectively). 

 

We urge OEHHA to consider these comments and adopt an alternative such as the TCEQ 

approach.  Thank you.  

     

Sincerely, 

     William Gulledge 

     William Gulledge 

Senior Director 

     Chemical Products & Technology Division 
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