Issues associated with solid particle measurement

Heejung Jung, Zhongqing Zheng, Thomas D. Durbin and Kent C. Johnson
University of California, Riverside

David B. Kittelison
University of Minnesota

Shaohua Hu and Tao Huai
California Air Resources Board

ARB Chairman’s air pollution seminar series
Jan 24th, 2012
Outline

• Challenges quantifying diesel emissions
• Issues with particle number measurement
• Background
• Test results
• Conclusion
Challenges quantifying ultra low diesel emissions

- PM (particle mass) of <50% of 2007 standard drives the total uncertainty >30% in the gravimetric method:
 - Swanson et al. SAE 2009-01-1516.
 - Burtscher et al. JAS, 2005, 36, 896.
 - And several papers by other researchers.

- Nuclei mode particles are difficult to have a repeatable conditions.
 - Solid particle number (PN) method (a.k.a. PMP=Particle Measurement Programme)
 - Integrated particle size distribution (IPSD)
 - Chemically reconstructed mass method
 - Measurement of precursors of nuclei mode particles (organic acids, sulfuric acid)
Outline

• Challenges quantifying diesel emissions
• Issues with particle number (PN) measurement
 • Background
 • Test results
 • Conclusion
Issues with number measurement

- Current PMP method regulates “solid” particles larger than 23 nm
 - For engines equipped with particle filters regulating to 23 nm effectively regulates all sizes.
 - For engines without filters (advanced fuels, combustion modes, gasoline) there may be large concentrations of solid particles below 23 nm that are not counted by current method.
 - The next generation of high efficiency direct injection gasoline engines are challenged by the current standard even with the 23 nm limit.
Issues with number measurement

• Extending solid PN (particle number) measurements to 10 nm.
 – Significant semi-volatile particles downstream of PMP VPR (Volatile Particle Remover) often observed.
 – No significant semi-volatile formation downstream of catalytic stripper (CS) in this size range.

• Extending solid PN (particle number) measurements to below 10 nm – problematic
 – Particles as small as sub 3 nm formed in large concentrations downstream of PMP VPR (Volatile Particle Remover).
 – Some evidence of solid particle formation by VPR.
 – Sub 10 nm particle formation observed downstream of catalytic stripper (CS) under some conditions.
 – Removal of sulfate or other low vapor pressure species is critical.
Recent papers raised issues about solid particle measurements, especially when applied to particles smaller than 23 nm.

- Work done at University of California, Riverside, CE-CERT

- Work done at the University of Minnesota, CDR

- Work done at California Air Resources Board
 - Herner et al. (2007). Investigation of ultrafine particle number measurements from a clean diesel truck using the European PMP protocol, SAE 2007-01-1114
Outline

• Challenges
• Issues with particle number measurement
• Background of Particle Measurement Programme (PMP)
• Test results
• Conclusion
Particle measurement programme

Red: Semivolatile particles
Black: Solid (mostly soot) particles
Why solid, why only larger than 23nm?

- The concentration of volatile nucleation mode particles is very dependent on sampling conditions.
- Most of these particles are smaller than 23 nm.
- If the engine is fitted with a particle filter, particles below 50 nm or so are very effectively removed.
- Thus regulating solid particles above 23 nm is really regulating soot particles is effectively regulating all particles for a trap equipped.
- Without a trap, the story is different.
Engine out, light-load, low soot conditions: Most of the number emissions are solid with $D_p < 23\text{nm}$
Spark ignition engines with metal additives show solid particles below 23nm.

A modern gasoline direct injection engine shows solid particles below 23nm.
Gasoline engine in pure HCCI mode shows no solid particles above 10nm.

- Emissions depend upon speed, load, temperature – in-cylinder thermal processing
- Solid PN measured with catalytic stripper (CS) total PN without
- Right plot shows solid fraction on 10x expanded scale
- Most of the particles emitted are volatile but the solid ones are very small

No solid particles above 10nm

From: David Kittelson, 2011 Particles Emissions from a Soot Free Engine, 15th ETH-Conference on Combustion Generated Nanoparticles
Outline

• Challenges
• Issues with particle number measurement.
• Background

• Test results
 – Using exhaust particles
 – Using lab-generated model particles

• Conclusion
Unexpectedly large “solid” particle concentrations during UCR’s previous PMP study

- A heavy-duty truck equipped with a CRT (continuously regenerating trap) was tested over different driving cycles on road.
 - It showed large concentration of “solid” particles below 23 nm at high load conditions.
 - These conditions favor sulfate particle formation.
 - Filtration efficiency for particles below 23nm should be very high.

Johnson et al. 2009, ASnT, 43, 962
Objectives

- Investigation of the nature of sub 23nm particles downstream the PMP system.

- Evaluation and comparison of the PMP and CS systems.
Catalytic stripper (CS)

- Oxidation catalyst:
 - Wall temperature: 300°C
 - Length: 11 cm
 - Diameter: 3.2 cm
 - 75 g/ft³ of Pt

- Sulfur-trap (S-Trap):
 - Wall temperature: 300°C
 - Length: 11 cm
 - Diameter: 3.2 cm
 - BaO + SO₃ → BaSO₄

- Particle penetration
 - 5% at 3 nm
 - 75% at 100 nm

Kittelson D.B.; Stenitzer, M. A
New Catalytic Stripper for Removal of Volatile Particles.
7th ETH Conference on Combustion Generated Particles,
Zurich, 18–20th August, 2003
Test conditions

• Comparisons of fully compliant PMP system and catalytic stripper system
 – Use a variety of counting instruments with different lower size cutoffs
 • TSI 3022 – 7 nm Notation CPC_cutoff diameter_location
 • TSI EEPS – 6 nm
 • TSI 3790 – 23 nm
 • TSI 3772 – 10 nm
 • TSI 3025A – 3 nm
 • TSI 3776 – 2.5 nm
 – Tests with exhaust aerosols from heavy-duty vehicle operating on chassis dynamometer
 • Freightliner class 8 truck with 14.6 liter, 2000 Caterpillar C-15 engine, equipped with Johnson Matthey Continuously Regenerating Trap (CRTTM)
 • Two steady state cruise conditions, constant speed 56 mph at 26% and 74% of full load
 – Tests with laboratory challenge aerosols
Experimental set up for chassis test

CVS

Outlet

Compression

Catalytic stripper

Heated line

CPC_2.5

CPC_3

nano-SMPS

to vacuum

Vent

Rotameter

Ball valve

Venturi

Ejector

Compressed air

Alternate between the PMP and CS systems

DR=21

DR=100 or 500

1st dilution

2nd dilution

CPC_23_PMP

PMP system

CPC_10_CS

CPC_7_CVS

EEPS_6

College of Engineering - Center for Environmental Research & Technology
Steady state 74% load strongly bimodal

Measurement by Engine Exhaust Particle Sizer (EEPS) at the CVS.
At 74% load PMP compliant system closely tracks the accumulation mode.
The CPC_23_PMP is always connected thru the PMP system and the CPC_10_CS is always connected thru the CS. The lower reading with the CS is due to thermophoretic losses ~40%.

74% load, CPC_23_PMP and CPC_10_CS
Changing PMP dilution ratio does not change results - it should not.

- CPC_2.5
- CPC_3
- CPC_10
- CPC_10_CS
- CPC_23_PMP

PMP500-PMP system, 500 dilution ratio
PMP100-PMP system, 100 dilution ratio
CS-Catalytic Stripper
CVS-sampling directly from main dilution tunnel, no removal of volatile particles
74% load
CPC_10 switched between PMP and CS system

No particles between 10 and 23nm under APC

Switching from 100 to 500 overall dilution ratio has no impact on the PMP results—the desired result
74% load
CPC_2.5 switched between PMP and CS system

Under the PMP
- CPC_2.5 >> CPC_23_PMP due to particle formation below 10nm.

Under the CS
- CPC_2.5 reads progressively higher than the CPC_10_CS again indicating sub 10nm particles.
Summary of the results at 74% load cruise

- **Downstream of PMP system**
 - CPC_23_PMP and CPC_10 agree-no particles between 10 and 23 nm
 - CPC_3 and CPC_2.5 agree and read progressively higher than CPC_10 and CPC_23_PMP as time goes on - particles forming between 3 and 10 nm
 - Same trend at 100 and 500 dilution ratio

- **Downstream of CS**
 - In first time window all instruments agree-no particle below 23 nm
 - In second and third time windows CPC_2.5 and CPC_3 read higher than CPC_10_CS-particle formation between 3 and 10 nm
26% load, CPC_23_PMP

Changing PMP dilution ratio changes results - it should not.

PMP500-PMP system, 500 dilution ratio

PMP100-PMP system, 100 dilution ratio

CS-Catalytic Stripper

CVS-sampling directly from main dilution tunnel, no removal of volatile particles
26% load

CPC_10 switched between PMP and CS

When connected thru the PMP system, the CPC_23_PMP and CPC_10 agree – no particles between 10 and 23 nm but some additional particles above 23 nm at the lower PMP dilution ratio.
26% load
CPC_2.5 switched between PMP and CS

When connected thru the PMP system the CPC_2.5 shows higher concentration than the CPC_23_PMP indicating particles below 10nm, especially at higher dilution ratio, little evidence of this with CS.
26% load
CPC_2.5 and CPC_3

The CPC_2.5 and CPC_3 disagree at the higher dilution ratio downstream of the PMP system but agree for 50 nm calibration aerosols suggesting that the particles are near the lower detection sizes of the instruments, < 3 nm.

When connected directly to CVS, no removal of volatiles, CPCs agree and show lower concentration than when volatiles are removed at 500 DR.
Summary of results at 26% load cruise

- Much lower concentrations than at 74%
 - Downstream of PMP system
 - In first time window, DR = 500
 - CPC_23_PMP and CPC_10 agree – no particles between 10 and 23 nm
 - CPC_2.5 and CPC_3 read much higher and disagree – many particles below lower cutoff size of these instruments, 2.5 to 3 nm
 - In second time window, DR = 100
 - CPC_23_PMP and CPC_10 read higher but agree – no particles between 10 and 23 nm but formation above 23 nm
 - CPC_2.5 and CPC_3 agree but read only slightly higher than CPC_23_PMP and CPC_10 – nearly all particles have grown to above 23 nm
 - Downstream of CS
 - Consistently lower reading and agreement between instruments

- In last time window instruments bypass volatile particle removal systems and are directly connect to CVS – measure total solid and volatile particles – fewer particles than DR = 500 PMP, clear evidence of particle formation by PMP system.
Outline

• Challenges
• Issues with particle number measurement.
• Background
• Test results
 – Using exhaust particles
 – Using lab-generated model particles
• Conclusion
Lab and engine tests both show concentration swings tracking evaporation tube (ET) temperature.
Lab test shows some residue particles exist downstream of the PMP system.

Penetration efficiency by total particle number:

<table>
<thead>
<tr>
<th></th>
<th>PMP</th>
<th>CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄+HC</td>
<td>0.6%</td>
<td>0.55%</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0.1%</td>
<td>0%</td>
</tr>
<tr>
<td>HC (C₂₄ or C₄₀)</td>
<td>1%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Solid residue
Outline

• Challenges
• Issues with particle number measurement.
• Background
• Test results
 – Using exhaust particles
 – Using lab-generated model particles

• Conclusion
Conclusion

- Current PMP method regulates “solid” particles larger than 23 nm
 - For engines equipped with particle filters regulating to 23 nm effectively regulates all sizes
 - For engines without filters (advanced fuels, combustion modes, gasoline) there may be large concentrations of solid particles below 23 nm that are not counted by current method
 - The next generation of high efficiency direct injection gasoline engines are challenged by the current standard even with the 23 nm limit
Conclusion (continued)

• Extending solid PN (particle number) measurements to 10 nm
 – Significant semi-volatile particles downstream of PMP VPR often observed
 – No significant semi-volatile formation downstream of catalytic stripper in this size range

• Extending solid PN (particle number) measurements to below 10 nm – problematic
 – Particles as small as sub 3 nm formed in large concentrations downstream of PMP VPR
 – Some evidence of solid particle formation by VPR
 – Sub 10 nm particle formation observed downstream of CS under some conditions
 – Removal of sulfate or other low vapor pressure species critical
Acknowledgement

• **CARB**
 – For funding and instruments.
 – A. Ayala and J. Herner for encouraging this study.

• **AVL LIST GmbH Inc.**
 – Providing a PMP system (AVL particle counter) and technical support.
 – B. Giechaskiel, M. Linke, R. Frazee, S. Roeck, & W. Silvis

• **UCR/CE-CERT**
 – D. Pacocha, J. Valdez, and E. O’ Neil
 – P. Ziemann and D. Cocker

• **University of Minnesota**
 – J. Swanson

• **Johnson Matthey**
 – M. Twigg (For catalysts to assemble the catalytic stripper)
Thank You
Backup slide: nano-SMPS measurement

74% load

26% load

Sampling location

- PMP, DR = 100
- CS

Total number concentration

PMP: \(6.64 \times 10^4\) #/cc
CS: \(4.74 \times 10^4\) #/cc

PMP: \(4.55 \times 10^2\) #/cc
CS: \(6.81 \times 10^2\) #/cc
Why only particles larger than 23nm?

- **D50=23** ensures soot particles are measured but limits detection of any nucleation mode particles that escape the evaporation tube.

 Giechaskiel et al. (2009) SAE 2009-01-1767

- **Sulfate>HC> Ammonium**

 Biswas et al. (2009)

 Figures courtesy of H. Burtscher (2005)
Steady state total particle number measurement

26% load

74% load
Table 1
Specifications of instruments used in this study.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Cut off size (nm)</th>
<th>Max. conc. (#/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC 3022A_CVS</td>
<td>7</td>
<td>9.99×10^6</td>
</tr>
<tr>
<td>EEPS</td>
<td>5.6</td>
<td>-1×10^4</td>
</tr>
<tr>
<td>CPC 3790_APC</td>
<td>23</td>
<td>1×10^4</td>
</tr>
<tr>
<td>CPC 3772_CS</td>
<td>10</td>
<td>1×10^4</td>
</tr>
<tr>
<td>fast SMPS</td>
<td>3</td>
<td>$-\quad$</td>
</tr>
<tr>
<td>CPC 3025_A</td>
<td>3</td>
<td>9.99×10^4</td>
</tr>
<tr>
<td>CPC 3772</td>
<td>10</td>
<td>1×10^4</td>
</tr>
<tr>
<td>CPC 3776</td>
<td>2.5</td>
<td>3×10^5</td>
</tr>
<tr>
<td>nanoSMPS</td>
<td>3</td>
<td>$-\quad$</td>
</tr>
</tbody>
</table>