

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

> LIBRARY CALIFORNIA AIR RESOURCES BOARD P.O. BOX 2815 SACRAMENTO, CA 95812

APPENDICES

EVALUATION
OF
PROPERTIES
OF
ARCHITECTURAL COATINGS

Agreement # A8-095-31

August 29, 1980

Jerry H. Willner

Group Leader

Saul Spindel

Technical Director

Sidney B. Levinson

President

df
50 copies

Prepared for the

Air Resources Board State of California Sacramento, California LIBERTY
COLLORNIA AN RESOURCES BOARD
I COLORO 2015
COLORO 2015
COLORO 2015

APPENDICES		<u>Pa</u>	ge
3	D.11111		
Appendix I	Publicity, Letters & Questionnaires		
A	Publicity - Covering Letter		1
В	Publicity Release		2
C	Questionnaire - Covering Letter		4
D	Questionnaire		6
E	Letter to Raw Material Suppliers		8 9
F	Revised Covering Letter		
G	Data Sheet (Revised Questionnaire)		.1
Annondia II	Mook Dobo		
Appendix II	Test Data	•	
Class			
A lA	Clear Interior Gloss Finishes	1	.3
В 1В	Clear Interior Semigloss Finishes	1	.5
C 1C	Clear Exterior Gloss Finishes	1	.7
D 1D	Clear Exterior Satin Finishes	1	8
E 2	Semi-transparent Stains	1	9
F 3	Opaque Stains - CARB	2	0.9
G 3	Opaque Stains - Conventional	. 2	21
H 4A	Metal Primers - One Package - CARB		22
J 4A	Metal Primers - One Package - Conventional		23
K 4A-2	Metal Primers - Two Component		24
L 4A-Z	Metal Primers - Zinc Rich		25
M 4B	Exterior Wood Primers		26
N 4C	Interior Wall Primers		27
P 7	Tile-like Glaze Coatings		8
Q 8	Waterproofing Coatings		30
R 9A	Maintenance Topcoats - Light Duty - CARB		32
S 9A	Maintenance Topcoats - Light Duty - Conventional Maintenance Topcoats - One Package	3	33
Т 9В	Maintenance Topcoats - One Package	3	34
U 9C	Maintenance Topcoats - Two Component		36
W 11	Swimming Pool Paints		8
X 13A	Mastic Coatings - Waterproofing		39
Y 14	Multicolor Paints	4	40
Annendiv TT	I Test Procedure	,	11
LLCCTV TT	1 TODO ITOCCAUTO	-	

y comment of the second	the second section of the second	and the second second second	The second of the second of the second	 e de la companya del companya de la companya del companya de la co

Appendix IA

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Publicity

Covering Letter

Dear Editor:

As you probably know, air pollution regulations have been issued which restrict the type and amount of solvents, other than water, that can be used in paint and coatings.

The California Air Resources Board (CARB), which has been in the forefront in developing regulations of this type, has taken the practical step of trying to determine whether it is possible for all major types of architectural coatings on the market to meet these strict requirements and yet demonstrate competitive performance vs equivalent conventional paints and coatings. They have contracted with the D/L Laboratories to assist them in this program.

Our first approach is to publicize their interest as widely as possible in order to alert manufacturers of these products as to CARB's interest. Commercial or prototype samples of these products will then be compared with equivalent conventional products by us.

We would therefore appreciate your inserting the enclosed Publicity Release in an early issue of your publication. If and when you do, please send us two copies of the item.

Thank you for your cooperation.

Sincerely,

Sidney B. Levinson President

SBL/df cc: S. Spindel

enc.

LABORATORIES

Appendix IB

(FORMERLY DAVID LITTER LABORATORIES).

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Publicity Release

CARB SEEKS ACCEPTABLE COATINGS

The California Air Resources Board (CARB), as part of their research program to investigate the current status of coating technology, is seeking commercial paints and coatings which meet CARB solvent limitation requirements. Consequently, CARB has contracted with the D/L Laboratories to locate and investigate the relative performance of commercial field applied products which contain less than 250 gm of volatile organic material (e.g., solvent) per liter of paint (excluding water) and which exhibit competitive performance to conventional products.

These paints and coatings are as follows:

- 1. Clear Finishes, e.g., varnish, lacquer (brushing), shellac
- 2. Wood Stains semi-transparent type, either interior or exterior
- 3. Wood Stains opaque type (heavy bodied)
- 4. Primers, Sealers or Undercoaters
- 5. Penetrating Wood Preservatives
- 6. Fire Retardant Coatings Flame spread of 25 or less
- 7. Tile-like (high build) Glaze Coatings
- 8. Waterproofing Coatings, e.g., roof coatings, concreate waterproofing
- 9. Industrial Maintenance Topcoats
- 10. Metallic (e.g., aluminum) Coatings
- 11. Swimming Pool Paints
- 12. Graphic Arts Coatings, e.g., sign paints, bulletin boards

116 East 16th Street, New York, N.Y. 10003

- 13. High Build Mastic Coatings, e.g., texture paint, at least 15 mils thick
- 14. Multicolor Paints
- 15. Aerosol Spray Paints

These paints and coatings may be either water-base or high solids provided that they are similar to the equivalent competitive products in package qualities, application properties, appearance and performance. The water-base coatings may contain any organic solvents, provided that the total volatile organic material is less than 250 gms per liter of paint (excluding water). It is not necessary that the solvents meet the requirements of Rule 66 or its variation.

Your cooperation in obtaining this information is solicited. If you have any of the above products, either on the market or in preparation for marketing, please call or write to:

Sidney B. Levinson President D/L Laboratories 116 East 16th Street New York, N.Y. 10003

Phone: (212) 777-4410

Appendix IC

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Questionnaire

Covering Letter

Dear Sir:

The California Air Resources Board (CARB), as part of their research program to investigate the current status of the technology, is seeking commercial paints and coatings which meet CARB solvent limitation requirements. Consequently, CARB has contracted with the D/L Laboratories to locate and investigate the relative performance of commercial field applied products which contain less than 250 gm of volatile organic material (e.g. solvent) per liter of paint (excluding water) and which exhibit competitive performance to conventional products.

These paints and coatings are as follows:

- 1. Clear Finishes, e.g., varnish, lacquer (brushing), shellac
 - 2. Wood Stains semi-transparent type, either interior or exterior
 - 3. Wood Stains opaque type (heavy bodied)
 - 4. Primers, Sealers or Undercoaters
 - 5. Penetrating Wood Preservatives
 - 6. Fire Retardant Coatings Flame spread of 25 or less
 - 7. Tile-like (high build) Glaze Coatings
 - 8. Waterproofing Coatings, e.g., roof coatings, concrete waterproofing
 - 9. Industrial Maintenance Topcoats
- 10. Metallic (e.g., aluminum) Coatings
- 11. Swimming Pool Paints

116 East 16th Street, New York, N.Y. 10003

- 12. Graphic Art Coatings, e.g., sign paints, bulletin colors
- 13. High Build Mastic Coatings, e.g., texture paints, at least 15 mils thick
- 14. Multicolor Paints
- 15. Aerosol Spray Paints

These paints and coatings may be either water-base or high solids provided that they are similar to the equivalent competitive products in package qualities, application properties, appearance and performance. The water-base coatings may contain any organic solvents provided that the total volatile organic material is less than 250 gms per liter or paint (excluding water). It is not necessary that the solvents meet the requirements of Rule 66 or its variations.

If you have any of the above products, either on the market or in preparation for marketing, will you please submit as much as you can of the information requested on the enclosed form. Use a separate form for each product you have to offer. More forms are available on request or you can duplicate them, if you prefer to do so.

We solicit your cooperation in obtaining this information and look forward to your reply.

Sincerely,

Sidney B. Levinson President

SBL/df

cc: S. Spindel

enc.

LOW SOLVENT VS CONVENTIONAL PAINTS AND COATINGS

Please supply whatever data you have, where applicable, on both the new product and the equivalent conventional coating. The latter may be either your own or one of your competitors. Use one form for each product.

		,	,
Туре	of Product:		
		LOW SOLVENT	CONVENTIONAL
1.	Trade Name:		
2.	Code No:		
3.	Water: (by vol)	<u> </u>	<u> </u>
4.	Volatile Organic Material:	(by vol)%	%
5.	Total Solids:		
	Weight:	<u> </u>	<u>8</u>
	Volume:	 	
6.	Application Properties:		
	a) Any Special		
	problems		
	or requirements?		· · · · · · · · · · · · · · · · · · ·
	b) Speed of Dry:		
	Tack free:	hours	hours
	Dry hard:	hours	hours
7.	Appearance Properties:		
	a) Opacity:		
	Thickness (dry):	Mils	Mils
	Contrast Ratio:	6	90
	b) Gloss - 60°:		
	c) Reflectance (White).	·	

		LOW SOLVENT	CONVENTIONAL
Per	rformance Properties (as	applicable):	
a)	Adhesion (# hatch):	96	98
b)	Flexibility:	in	in
c)	Resistance to:		
	(1) Water:	days	days
	(2)	days	days
	(3)	days	days
d)	Durability:		
	Accelerated:	hours	hours
	Exterior:	month	months
e)	Salt Fog Resistance:	hrs	hrs
f)	Flame Spread:		
<u>Otl</u>	her Properties of Inter	est:	
<u> </u>		Uni	t Unit
		Uni	t Unit
App	proximate Retail Price:		
1, 9	gal:	per Ga	per Gal
5 9	gals:	per Ga	per Gal
Sar	mples for Test:		
a)	Qts Can Be Purchased	From:	
b)	If not, will you plea	se send us l Qua	art for test purposes.
Cor	mpany		
ву			
Da ⁻			
Pl	ease mail to:		
	Sidney B. Levin President	son	
	D/L Laboratorie 116 East 16th S New York, N.Y.	treet	

Appendix IE

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Letter to Raw Material Suppliers

Re: California Air Resources Board (CARB)

The enclosed letter has been sent to major paint and coating manufacturers throughout the continental U.S.A. and to all paint manufacturers of any significant size in California.

Have you developed any coatings on the enclosed list which meet CARB requirements? If so, is any paint manufacturer presently either marketing or getting ready to market a similar product? In that event, will you either forward the enclosed information to him or advise us and we will do so.

We also would appreciate your sending us whatever literature is available on the products you have developed that are on the list and conform to the CARB requirements.

Sincerely,

Sidney B. Levinson President

SBL/nv cc: S.Spindel enc.

Appendix IF

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Revised Covering Letter

The California Air Resources Board (CARB), as part of their research program to investigate the current status of coating technology, is seeking commercial paints which meet CARB solvent limitation requirements. Consequently, CARB has contracted with the D/L Laboratories to obtain and test the following products which contain less than 250 gm of volatile organic material (e.g., solvent) per liter of paint (excluding water) and which are competitive to conventional paints.

- 1. Clear Finishes
- 2. Wood Stains semi-transparent and /or opaque
- 3. Primers and/or Undercoaters
- 4. Penetrating Wood Preservatives
- 5. Fire Retardant Coatings
- 6. Tile-like (high build) Glaze Coatings
- 7. Waterproofing Coatings, e.g., for roofs or concrete
- 8. Industrial Maintenance Topcoats
- 9. Aluminum Paints
- 10. Swimming Pool Paints
- 11. Sign Paints or Bulletin Colors
- 12. High Build Mastic Coatings, e.g., texture paints
- 13. Multicolor Paints

116 East 16th Street, New York, N.Y. 10003

These paints and coatings may be either water-base or high solids, provided that they are competitive to the equivalent conventional products. The water-base coatings may contain any organic solvents provided that the total volatile organic material is less than 250 gms per liter of paint (excluding water).

If you have developed any of these products, will you please send us a quart sample and any data that you have on the product(s).

We solicit your cooperation in obtaining this information and look forward to your reply.

Sincerely,

Sidney B. Levinson President

SBL/nv cc: S.Spindel

Data Sheet (Revised Questionnaire)

LOW SOLVENT VS CONVENTIONAL PAINTS AND COATINGS

Please supply any data you have, where applicable, on the new product. If you can, include data on any equivalent conventional product which can either be your product or a competitive one.

Type of Product:	•	
	LOW SOLVENT	CONVENTIONAL
Trade Name:		
Code No.:		
Water: (by volume)		
Volatile Organic Material:	(by vol.)%	
Total Solids:		
Weight:	%	8
Volume:	°6	8
Application Properties:		
a) Any special requirements	s?	
	-	
b) Speed of Dry:		
Tack free:	hours	hours
Dry hard:	hours	hours
Appearance Properties:		
a) Opacity:		
Thickness (dry):	Mils	Mils
Contrast Ratio:	ි 	8
b) Gloss - 60°		
c) Reflectance (White):		

LOW SOLVENT

CONVENTIONAL

Performance Prop	perties (as app	olicable an	nd available)	
a) Water resist	cance:		days		_days
b) Durability:	_		years		_years
c) Salt Fog Res	sistance:		hrs		hrs
d) Flame Spread	1:			phone Principles in the companion of the control of	
Other Properties	of Interest:				
			Unit		_Unit
			Unit		_Unit
Approximate Reta	ail Price:	•		•	
l gal:	:	\$	per Gal	\$	_per Gal
5 gals:	• •	3	_per Gal	\$	_per Gal
Samples for Test	≘ :				
Please submit que red color, if population please advise when	ossible. If the	ne convent			
Company	·				
Ву	:				
Please sent to:					

Sidney B. Levinson President D/L Laboratories 116 East 16th Street New York, N.Y. 10003

Appendix IIA

TEST DATA

Class IA

CLEAR INTERIOR GLOSS FINISHES

		CARB Con					Conv.
F	rom→	1 (15) (a)	5 (33)	15 (8)	19 (15)	6 (15	
Viscosity Initial 4 wks/120°F	KU	61 64	66 61	51 51	61 70	5.7 5.7	
Storage - 4 wks/120° Skinning	F Score	10	(b)	10	10	10	10
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 0.3 0.4 0.4	0.3 1.4 16.5 16.5	0.3 0.3 1.0	0.4 2.0 3.0 3.0	0. 0. 1.	6 4.5 4 7.0
Application Ease	Score	10	10	10	10	10	10
Gloss - 60°		95	95	100	100	94	95
Adhesion	%	100	100	100	100	100	100
Flexibility - Pass	Inch	1/8	1/8	1/8	1/8	1/8	3 1/8
Taber Abrasion	mgm	12	24	15	18	13	l 15
Alcohol (50%) - 1 hr Blistering Color change Gloss change Hardness Recovery	ASTM Score "	8M 9 8 6 10	10 10 10 6 9	10 9 10 6 9	10 10 10 10	10 10 10 9	0 9 0 10 9 8
Butyl Acetate - 3 hr Failure Hardness Recovery	ss Score "	2 0 10	8 0 10	10 0 10	2 0 10	10 10	4 8

Appendix IIA

TEST DATA

Class IA

CLEAR INTERIOR GLOSS FINISHES (Cont)

		•		RB		Cor	ıv.
	From→	1 (15) (a)	5 (33)	15 (8)	19 (15)	6 (15)	$(\frac{10}{33})$
Mineral Spirits	- 1 hr						
Blistering	ASTM	10	10	10	10	10	10
Color change Gloss change	Score "	10 10	10 10	9 10	10 10	10 10	10 10
Hardness	11	10	10	8	10	10	8
Recovery	"	-		9		-	9
Hot Water - 1 h	r						
Blistering	ASTM	10	10	10	10	10	10
Color change Gloss change	Score "	10 10	10 10	10 10	10 10	10	10
Hardness	11	10	9	9	10	10 9	10 8
Recovery	π		9	10		10	9
Cold Water - 50	0 hrs						
Resistance	Score	10	9	9	10	10	10
Hardness	11	10	9 10	10	9 10	10	9 9
Recovery		-	TO	_	7.0		9

Conv - Conventional

a - Special sealer, all other samples - two coats, first coat reduced 10%

b - Slight separation

c - Simulates nail polish remover

Appendix IIB

TEST DATA

Class 1B

CLEAR INTERIOR SEMIGLOSS FINISHES

			CA	RB			Conv	
Fr	com→	2 (15) (a)	11 (19)	14 (8)	17 (9)	7 (15)	1 <u>6</u> (8)	18 (9)
Viscosity Initial 4 wks/120°F	KU	57 58	108 150	51 51	54 51	56 62	56 53	47 47
Storage - 4 wks/120° Separation Skinning Settling Redispersion	F,Score	9 10 9 9	10 8 10 10	10 10 10 10	8 10 10 10	9 10 10 9	9 10 10 10	10 10 10
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 0.3 0.4 0.4	0.1 0.1 0.2 0.2	0.3 0.3 1.0 1.0	0.4 0.4 2.0 2.0	0.3 0.6 1.4 1.4	0.6 1.0 1.0	1.6 5.0 6.5 6.5
Application Ease	Score	10	1:0:	10	10	10	10	10
Gloss - 60°		15	64	38	7	24	29	31
Adhesion	90	100	10	10	10	10	10	10
Flexibility - Pass	Inch	1/8	1/4	1/8	1/8	1/8	1/8	1/8
Taber Abrasion	mgm	36	26	18	52	18	85	44
Alcohol (50%) - 1 hi Blistering Color change Gloss change Hardness Recovery	ASTM Score "	10 9 10 6	10 8 8 8 10	10 8 6 6	10 10 10 10	10 9 10 10	10 9 10 10	10 10 10 10
Butyl Acetate - 3 has Performance Hardness Recovery	rs Score "	6 4	2 4 10	0 0 8	0 0 10	10 .6 10	0 0 0	10 6 10

Appendix IIB

TEST DATA

Class IB

CLEAR INTERIOR SEMIGLOSS FINISHES (cont)

	·		CAF	RB		Conv.
1	From→	2 (15) (a)	(11) (19)	14 (8)	17 (9)	$ \begin{array}{cccc} 7 & 16 & 18 \\ \hline (15) & (8) & (9) \end{array} $
Mineral Spirits	- 1 hr	No e	effect			No effect→
Hot Water - 1 hr Blistering Color change Gloss change Hardness Recovery	ASTM Score " "	10 10 10 10	10 10 10 10	10 9 10 8 10	10 10 10 10	10 10 10 10 10 10 10 10 10 9 9 10 10 10 -
Cold Water - 500 Performance Hardness Recovery) hrs Score "	(c) 2 0 0	10 10 -	9 10 -	9 9 10	9 10 4 (c) 10 10 8 9

a - Special sealer, all other samples - 2 coats, first coat reduced 10%

b - Butyl Acetate simulates nail polish remover

c - Discolored and lost adhesion

Appendix IIC

TEST DATA

Class IC

CLEAR EXTERIOR GLOSS FINISHES

			CARB	Conv	•
	From→	3 → (15) (á)	$(\frac{12}{20})$	(15)	1 <u>3</u> (20)
Viscosity Initial 2 wks/120°F	KU	61 79	54 51	58 57	61 63
Storage- 4 wks/120 Skinning	°F Score	10	10	10	10
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 1.8 16.5 16.5	0.3 0.6 0.6 0.6	1.1 3.5 7.0 7.0	0.2 0.3 0.5 0.5
Application Ease	Score	10	10	10	10
Gloss - 60°		91	100	96	70
Adhesion	8	1,00	10	10	10
Flexibility - Pass	Inch	1/8	1+ -	1/8	1/8
Taber Abrasion	mgm	18	21	7	32
Accelerated Weathe	ring_500 hrs	5			
Color change Gloss change Chalking Checking Cracking	Score " ASTM	10 10 10 10	10 9 10 10	10 10 10 10	10 2 10 10 10
Wrinkling	Score	10	10	10	2

a - Special sealer required

Appendix IID

TEST DATA

Class ID CLEAR EXTERIOR SEMIGLOSS FINISHES

		CARB	Conv.
•		From $\rightarrow \frac{4}{(15)}$ (a)	(15)
Viscosity Initial 2 wks/120°F	KU	61 92	56 53
Storage - 2 wks/120°F Separation Skinning Settling Resispersion	Score	9 10 9 9	10 10 10 10
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 0.3 2.5 16.5	0.9 3.5 7.0 7.0
Application Ease	Score	10	10
Gloss - 60°		10	29
Adhesion	8	100	10
Flexibility - Pass	Inch	1/8	10
Taber Abrasion	mgms	17	15
Accelerated Weathering - Color change Gloss change Chalking Checking	- 500 hr Score " ASTM	10 10 10 10	10 10 6 10
Cracking	11	10	10

a - Special sealer required

Appendix IIE

TEST DATA

Class 2

SEMI-TRANSPARENT STAINS

		CAR		Conv		
	Color> From>	1 Brown (21)	Brown (9)	Brown (21)		
Viscosity Initial 4 wks /120°F	KU	60 60	71 64	51 47		
Storage - 4 wks/120°F Separation Skinning Settling Redispersion	Score	9 10 10 9	8 10 10 9	9 10 10 9		
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.6 1.0 2.5 3.5	0.5 0.5 0.7	3.0 24 24 24		
Application Ease	Score	10	10	10		
Opacity	%	90	94	50		
Water Absorption	8	2.6	1.4	1.0		
Accelerated Weathering Color change Gloss change Chalking Checking Cracking	- 500 hrs Score " ASTM	9 10 9 10	10 10 10 10 10	9 10 9 10		

Appendix IIF

TEST DATA

Class 3			OPAQUE	STAINS				·	CARB
	Color→ From→	1 Bwn (13)	3 Wht (21)	5 Red (35)	6 Wht (25)	7 Bwn (25)	10 Grn (29)	12 Bwn (32)	14 Bwn (9)
Viscosity Initial 4 wks/120°F	KU	62 62	69 75	58 58	71 71	62 60	81 89	90 90	83 83
Storage - 4 wk/120°F Separation Skinning Settling Redispersion	, Score	4 10 8 6	6 10 8 8	2 10 9 8	4 10 9 6	4 10 9 8	10 10 10	10 10 10	10 10 10 10
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.4 0.5 0.6 1.5	0.2 0.3 1.5	0.5 1.5 2.2 2.2	0.3 0.3 1.5	0.5 0.5 1.5 2.2	0.3 0.3 0.5 2.2	0.3 0.3 2.5 2.5	0.5 0.5 0.7
Application Ease	Score	10	10	10	10	10	10	10	10
Opacity	96	100	89	100	96	93	95	100	100
Water Absorption	8	1.4	0.6	5.8	2.2	0.8	2.1	0.5	1.2
Accelerated Weatheri Color change Gloss change Chalking Checking Cracking	ng - 500 hrs Score " ASTM	10 10 8 10 10	10 10 8 10 10	10 10 8 10	10 10 9 10	10 10 8 10 10	10 10 8 10 10	10 10 8 10 10	10 10 10 10

Appendix IIG

TEST DATA

Class 3		OP	AQUE STAINS			<u>Convent</u> :	ional
	Color From		8 White (25)	9 Brown (25)	11 Green (29)	13 Brown (32)	
Viscosity Initial 4 wks/120 F	KU	89 Gel	58 55	55 42	53 51	57 57	
Storage - 4 wk/120°E Separation Skinning Settling Separation	7, Score	- - - -	2 10 6 6	2 10 4 4	2 10 6 8	9 6 10 9	•
Drying Time Set to Touch Tack free Dry hard Dry thru	Hrs	0.3 2.2 6.5 6.5	17 19 31 31	5.0 6.5 18 19	5.5 6.5 16 48	2.0 4.0 5.5 5.5	-21-
Application Ease	Score	10	10	10	10	10	•
Opacity	00	100	97	100	99	100	
Water Absorption	90	1.8	0.1	0.7	0.9	0.3	
Accelerated Weatheri Color change Gloss change Chalking Checking & Crackin	Score " ASTM	10 8 8 10	9 10 6 10	10 10 6 10	10 10 8 10	10 10 8 10	

_	
10	
10	

TEST DATA					<u> </u>		TT11				(One Pa	ckage	
Class 4A-1					META	L PRIME	ERS					CARB		
	Color	$ \begin{array}{c} $	2 Bwn (23)	<u>4</u> (31)	10 Gry (13)	13 Bwn (33)	20 Bwn (11)	23 Org (22)	24 Bwn (22)	32 Wht (22)	36 Bwn (20)	42 Wht (26)	49 Grn (34)	51 Wht (14)
Viscosity Initial 4 wks/120°F	KU	75 107	70 77	110 125	94 100	74 b	88 138	118	98 121	113 Gel	124 Gel	89 98	95 95	90 97
Storage - 4 wks/120°F Separation Skinning Settling Redispersion	Score	4 10 4 4	a 4 10 4 2	8 10 9 8	9 10 9 9	6 10 0 0	8 10 8 8	8 10 9 9	6 10 6 6	- - - -	- - -	9 10 10 10	9 10 8 9	9 10 10 9
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.2 0.4 1.0 1.0	0.3 0.5 1.0 1.0	0.2 0.3 0.4 0.6	0.2 0.4 0.4 0.4	0.5 0.7 1.2 1.2	16 16 16 16	0.4 3.0 168 168	5.0 48 168 168	0.2 0.3 0.8 0.8	0.1 3.0 6.0 7.0	0.2 5.0 16 16	20 24 72 72	0.2 0.2 1.0 1.0
Application Ease	Score	10	10	10	10	10	10	9	10	10	10	10	10	10
Opacity	90	100	100	100	99	100	100	97	100	95	100	93	100	91
Adhesion	%	100	100	100	100	100	80	97	95	100	100	100	100	100
Enamel Holdout	90	100	91	79	100	100	87	86	94	67	84	90	70	64
Salt Fog Blisters - body " at X Corrosion Creep at X	Hrs ASTM " Score mm	36	36	24	15	500 6F 8D 6 9	132	500 10 6F 9 0	132	53	285	240	500 4F 6D 8 4	45
Acc. Weathering - 500 Chalking Check. & Crack.	hrs ASTM "	8 10	8 10	8	8 10	8	8	2 10	8 10	9 10	10 10	6 10	8 10	10
a - Gel particles b - Cannot determine of	fue to har	d settl	ina		Gry - Bwn -	Grey Brown				Orange White				

b - Cannot determine due to hard settling

Bwn - Brown

Wht - White

TEST DATA				repender	1 110				One I	Package
Class 4A-1				METAL PRI	MERS				Conver	ntional
	Color From		7 Bwn (23)	8 Bwn (31)	14 Bwn (33)	17 Wht (13)	21 Bwn (11)	26 Org (22)	27 Bwn (22)	37 Bwn (20)
Viscosity Initial 4 wks/l20°F	KU	74 89	73 86	72 77	75 92	78 86	86 96	87 150	74 89	72 86
Storage - 4 wks/120°F Separation Skinning Settling Redispersion	Score	4 10 9 6	4 10 6 6	4 10 4 4	6 10 8 8	4 10 4 4	4 10 4 4	6 _. 2 6 6	8 2 8 8	6 10 6 6
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.5 1.7 6.2 16	0.5 1.7 4.3 6.2	0.6 1.7 24 24	0.5 1.5 5.5 7.0	0.3 0.5 0.5 0.5	0.3 0.7 1.0 1.3	0.4 3.0 24 24	2.5 24 48 48	0.5 4.0 16 16
Application Ease	Score	10	10	10	10	10	10	10	10	10
Opacity	%	100	100	100	100	96	100	95	100	100
Adhesion	90	100	10	10	10	10	10	10	10	10
Enamel Holdout	90	91	95	84	90	98	76	83	90	96
Salt Fog Blisters - body " at X Corrosion Creep at X	Hrs ASTM " Score mm	100	80	220	500 10 4MD 10 0	15	130	130	20	285
Acc. Weathering - 500 Chalking Check. & Crack.	hrs ASTM "	6 10	6 10	8 10	8 10	4 10	8 10	2 10	9 10	8 10

Appendix IIK

TEST DATA

Class 4A-2	M	ETAL PRIM	2 Component				
	olor		CARB 39 Red (28)	43 Wht (10)	Convention 28 Bwn (22)	tional 40 Red (28)	
Viscosity Parts A/B Initial 4 wks/120°F Mixed Paint	KU	150/106 (b)/125 119	(a) 139/N (c)/N	(d)	102/91 150/150 106	72/52 104/52 61	
Storage - 4 wks/120° Separation Skinning Settling Redispersion	F, Score	-/ 4 -/10 -/ 6 -/ 4	4/10 10/10 0/10 0/10	10 10 10 10	10/8 2/10 9/8 10/8	6/10 10/10 8/8 8/8	
Pot Life	Hrs	30+	24	2	24	30+	
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.2 1.0 3.0 3.0	0.4 3.0 6.0 6.0	0.1 0.1 (e) (e)	0.2 0.2 3.0 3.0	0.3 0.7 1.5 1.5	
Application Ease	Score	10	10	(f)	10	10	
Opacity	90	89	100	100	100	100	
Adhesion	0/0	100	100	50	100	100	
Enamel Holdout	ojo	67	78	0	88	81	
Salt Fog Blisters - body " at X Corrosion Creep at X	Hrs ASTM " Score mm	53	500 2F 2F 10 0	400	300	500 10 2F 9	
Acc. Weathering Chalking Check. & Crack. Erosion & Rusting	Hrs ASTM " Score	120	500 4 10 10	500 2 10 8	500 9 10 10	500 4 10 10	

a - Gardner Holdtb - Solidified or gelledc - Cannot determine due to extremely hard settling

<sup>d - Powder mixed with water
e - Cannot determine - powdery surface
f - Must be sprayed</sup>

Appendix IIL

TEST DATA

Class 4A-Z	METAL	Zinc - Rich					
	Color→ From→	30 Gry (22)	CARB 33 Gry (22)	35 Gry (22)		Conven 31 Grn (22)	tional 34 Gry (22)
Viscosity Parts A/B Initial 4 wks/120°F Mixed Paint	KU	(a) 65/Z5 65/Z6 126	(b) 53 51 74	(b) 83 74 98		(a) 53/G 53/H 72	(b) 53 Gel 72
Storage - 4 wks/120°F, Separation Skinning Settling Redispersion	Score	9/10 10/10 10/10 10/10	8 10 8 8	6 10 8 8		9/10 9/10 9/10 9/10	- - - -
Pot Life	Hrs	24	30+	30+		30+	1.5
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 0.3 16 16	0.1 0.1 0.3 0.3	16 16 48 48		0.4 0.4 16	0.2 0.2 0.2 0.2
Application Ease	Score	10	10	10		10	10
Opacity	90	100	10	10		10	10
Adhesion	ફ	100	100	98		100	100
Enamel Holdout	%	67	30	81		42	42
Salt Fog Blisters - body " at X Corrosion Creep at X	Hrs ASTM " Score mm	53	1000 10 10 10	95		1000 10 10 10 0	1000 10 10 10 0
Acc. Weathering - 500 Chalking Checking & cracking	hrs ASTM	9 10	9 10	6 10		6 10	8 10

Gardner Holdt Liquid portion to which powder portion is added a b

Appendix IIM

TEST DATA

Class 4B

EXTERIOR WOOD PRIMERS

		CARB					Conventional				
		3	5	_11_	41_	44	9	15	18	47	
	Color→ From→		(36)	(13)	(22)	(9)	White (36)	(13)	(21)	_ (9)	
Viscosity Initial 4 wks/l20°F	KU	79 86	86 95	72 72	95 108	85 95	80 95	73 82	106 128	69 69	
Storage - 4 wk/l20°F Separation Skinning Settling Redispersion	Score	6 10 8 9	9 10 8 9	4 10 8 4	9 6 10 9	9 8 10 10	6 10 9 8	6 10 9 8	8 2 8 8	9 10 8 9	
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.2 0.5 0.7	0.4 0.5 0.6 6.7	0.4 0.4 1.4 1.4	0.4 1.4 5.5 5.5	0.1 0.4 0.6 0.6	1.0 16 16 16	0.4 7.0 55 55	1.5 7.0 48 48	2.0 24 72 72	
Application Ease	Score	10	10	10	10	10	10	10	10	10	
Opacity	0 0	95	96	94	96	82	95	91	92	86	
Adhesion	0/0	100	100	100	100	100	100	98	100	100	
Bleeding	Score	6	4	8	6	4	8	6	6	8	
Enamel Holdout	00	96	86	74	96	54	95	97	91	55	
Accelerated Weathering Color change Gloss change Chalking Checking Cracking	Hrs Score " ASTM	500 10 10 8 10	310 10 10 8 10 6	500 10 10 9 10	500 8 9 9	500 6 6 9 10 10	310 10 10 8 10 8	500 8 6 8 10	240 6 9 8 10 8	310 9 8 8 10 6	

Class 4C

INTERIOR WALL PRIMERS

•				CARB			•	Cc	nv.
	g - 1	12	<u> 19</u>	22	_25_	45		16	46
	Color→ From→	White (13)	(7)	(4)	(22)	<u>(</u> 9)		White (13)	→ (9)
Viscosity	KU								
Initial		90	83	91	76	94		98	85
4 wks/120°F	•	95	90	100	79	104		100	84
Storage - 4 wk/120	°F, Score			-					
Separation		4	9	9	9	9	•	6	8
Skinning		10	10	10	10	-6		2	10
Settling		2	10	10	10	10		8	9
Redispersion		4	9	9	10	10		6	9
Drying Time	Hrs								
Set to touch		0.4	0.3	0.2	0.2	0.4		0.7	0.4
Tack free		0.4	0.3	0.6	0.2	0.4		1.0	1.0
Dry hard		1.0	0.7	1.5	1.5	0.5		1.5	1.0
Dry thru		1.0	0.7	1.5	1.5	0.5		3.0	1.4
Application Ease	Score	10	10	10	10	10		10	10
Opacity	ଚ	90	91	90	90	94		94	89
Adhesion	8	100	100	100 -	100	100		100	100
Enamel Holdout	%	96	90	94	78	86		90	75

Appendix IIP

TEST DATA

Class 7

TILE - LIKE GLAZE COATINGS

				CA	RB		Conventional					
	a 1	1	2	5	6	12	16	9	10_	11	<u>15</u>	
		→ Wht > (1)	TR (1)	Wht (16)	Wht (21)	Wht (16)	TR (5)	White (16)	(16)	(21)	(1)	
Viscosity Initial Part A/B Paint 4 wks/120°F (Part A/	KU 'B)	106/137 109 131/150	144/83 120 150/92	98/56 74 108/74	150/56 150 150/95	69/X ^{(a} 140 150/X	150/M ^(a) 136 150/N	118/5 77 150/5	99	140/79 120 150/82	112/62 96 125/62	
Storage - 4 wk/l20°F Separation Skinning Settling Redispersion	Score	4/8 10/10 2/8 1/8	9/10 10/10 10/10 10/10	8/10 10/10 10/10 9/10	10/10 10/10 10/10 10/10	10/10 10/10 9/10 9/10	10/10 10/10 10/10 10/10	9/1 10/1 10/1 9/1	0 10/ - 0 10/ -	9/10 10/10 10/10 9/10	6/10 10/10 10/9 9/10	1 28 1
Pot Life	Hrs	0.4	2	4	7+	48	2	7	'+ 7+	6	16	
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	3.5 16 16 16	4.5 16 16 16	2.0 16 16 16	2.0 5.5 16 16	0.3 3.0 24 24	3.0 16 16 16	0.3 1.3 2.5 2.5	6.0 6.0	1.8 4.8 16 16	0.5 1.3 2.5 2.5	
Application Ease	Score	9	9	9	. 8	9	10	9	10	9	10	
Gloss - 60° Retention (UV)	Score	42 8	98 8	75 10	92 10	28 10	95 8	7 4		94 8	80 10	

a - Gardner Holdt

TR - Tile Red

Appendix IIP

TEST DATA

Class 7

TILE - LIKE GLAZE COATINGS (cont)

				CA	RB		Conventional					
	-	1	2	_5_	6	12	16 TR	9	10	_11_	15	
	Color —		TR	Wht	Wht	Wht		White			-	
	From	- → (1)	(1)	(16)	(21)	(16)	(5)	(16)	(16)	(21)	(1)	
Adhesion	9	100	100	100	100	100	100	100	80	100	100	
Flexibility - Pass	Inch	1+	1+	1/8	1/8	1/8	1+	1/8	1/8	1/8	1/8	
Taber Abrasion	mgm .	. 58	34	23	17	35	40	30	41	13	35	
Water Resistance	Hrs	. 672	672	672	672	192	672	168	672	672	672	
Blistering	ASTM	10	10	10	10		10		10	10	10	
Color change	Score	10	10	- 9	10		10		10	10	10	
Gloss change	11	10	10	10	10		10		10	10	10	.1.
Hardness	11	10	10	10	10		10		10	10	10	29-
Color Retention	Score	2	4	8	2	· 2 ·	8	2	9	2	2	

Appendix IIQ

TEST DATA

Class 8

WATERPROOFING COATINGS

			CARB							Conventional			
	Color		<u>4</u> Clr (24)	6 Wht (17)	8 Wht (12)	13 Gry (3)	14 Blk (3)	15 Blk (20)	7 Wht (17)	11 Clr (1)	12 Clr (1)		
Viscosity Initial 4 wks/120°F	KU	(a) A- (b)	(a) A - (b)	82 150	108 (c)	140 Gel	92 128	126 150	118 · 150	(a) (d) A- A-/A-	(a) (d) B K/A-		
Storage - 4 wk/120°F Separation Skinning Settling Redispersion	Score	- - -	 	9 10 2 2	- - - -	<u>-</u> - - -	9 9 10 9	10 9 10 9	10 8 10 10	10/10 10/10 10/10 10/10	10/10 10/10 10/10 10/10	- 0	
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	1.1 1.1 1.1 1.1	1.2 2.0 2.0 2.0	0.2 0.2 0.2 0.2	0.2 0.6 0.6 0.6	3.8 7.0 24 24	1.0 500 500 500	1.0 500 500 500	0.2 0.2 2.0 2.0	1.5 72 72 120	0.5 1.3 2.5 2.5	. 1	
Application Ease	Score	10	10	10	10	. 6	10	10	10	10	10		

Clr - Clear Blk - Black

Appendix IIQ

TEST DATA

Class 8

WATERPROOFING COATINGS (cont)

				CARB						Conventional			
		3	4	6	8	$\frac{13}{\text{Gry}}$	$\frac{14}{Blk}$	15		7_	11	12	
	Color→		Clr	Wht	Wht		Blk	Blk		Wht	$\overline{\mathtt{Clr}}$	Clr	
	From →	(24)	(24)	(17)	(12)	(3)	(3)	(20)		(17)	(1)	(1)	
Adhesion	96	100	100	100	100	100	100	100		100	100	100	
		•								•			
Opacity	90	Clr	Clr	82	3	100	100	100		76	Clr	Clr	
Water Absorption	%	10.5	11.0	4.1	5.5	5.3	3.8	3.8	•	2.7	8.9	2.8	
Macce Tabble Centre	O .	10.5	11.0	-2 •	3.3	3.3	3.0			2.	0.5	2.0	
Water Resistance	Hrs	500	500	500	500	500	24	500		500	500	500	
Color change	Score	10	10	9	. 6	10		8		10	10	9	
Gloss change	11	10	10	10	6	10.		8		10	10	10	
Hardness	11	10	10	10	4	0		0	•	6	10	10	
Recovery	11	_	-	· -	10	4		0		10	-		
Acc. Weathering -	- 500 hrs					•							
Color change	Score	10	9	8	10	9	10	10		8	8	10	
Gloss change	11	10	10	10	10	9	4	10		10	10	9	
Chalking	11	10	2	8	10	10	10	10		6	9	10	
Check. & Crack.	11	10	10	10	10	10	10	10		10	10	10	
212311 2 224011			4 0										

a - Gardner Holdt

b - Gel particles

c - Solidified

d - Two component

Appendix IIR

TEST DATA						Ligh	t Duty	
Class 9A	MAINTENAN	ICE TOPCO	CARB					
		$\xrightarrow{\text{Red}} \frac{1}{\text{Red}}$ $\longrightarrow (23)$	2 Blue (23)	3 Wht (23)	4 Wht (31)	15 Wht (36)	27 Wht (21)	$\frac{28}{\text{Red}}$ (21)
Viscosity Initial 4 wks/120°F	KU	82 150	70 83	97 Gel	86 97	64 61	86 98	64 Gel
Storage - 4 wk/120°F Separation Skinning Settling Redispersion	Score	10 10 9 9	9 10 10 10	- - -	10 10 10 10	4 10 6 8	10 10 10 10	- - - -
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 16 24 32	0.3 4 4 4	0.3 3.5 3.5 3.5	0.3 3.0 3.0 3.0	0.2 2.5 5.0 5.0	0.2 0.4 3.0 3.0	0.2 1.0 3.5 3.5
Application Ease	Score	10	10	8	10	9	10	10
Opacity	00	93	81	97	99	94	97	80
Gloss - 60°		46	67	31	38	74	75	64
Adhesion	%	80	100	100	100	100	100	80
Flexibility-Pass	Inch	1/8	1/8	1/8	1/8	1/8	1/8	1/8
Acc. Weathering - 500 Color change Gloss change Chalking Check. & Crack.) hrs Score " ASTM	10 9 10 10	10 8 8 10	10 9 9 10	10 9 9 10	10 10 8 10	9 9 10 10	* 9 9 10

^{*} Blistered and wrinkled

Appendix IIS

TEST DATA						Lic	ght Duty		
Class 9A		MAINTE	NANCE TO	PCOATS		Conventional			
•	Color→ From→		7 Blu (23)	8 Wht (23)	9 Wht (31)	16 Wht (15)	29 Wht (21)	30 Red (21)	
Viscosity Initial 4 wks/120°F	KU	77 89	71 87	76 80	70 74	78 Gel	79 112	79 104	
Storage - 4wks/120°F Separation Skinning Settling Redispersion	Score	6 10 10 9	8 10 10 10	4 10 10 9	4 10 10 9	- - - -	10 0 10 10	10 0 10 10	
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.6 16 16 16	0.7 16 16 16	0.7 16 16 16	0.9 4.0 4.0 4.0	0.6 1.8 2.0 2.0	0.6 16 16 16	0.6 16 16 16	
Application Ease	Score	10	10	10	10	10	10	10	
Opacity	%	100	100	98	99	100	95	77	
Gloss - 60°		85	79	87	77	79	75	63	
Adhesion	%	100	100	100	100	100	100	100	
Flexibility - Pass	Inch	1/8	1/8	1/8	1/8	1/8	1/8	1/8	
Acc. Weathering - 500 Color change Gloss change Chalking Check. & Crack.	hrs Score " ASTM	8 6 6 10	8 6 6 10	8 6 6 10	8 6 6 10	9 6 8 10	9 9 9 10	6 4 9 10	

Class 9B

MAINTENANCE TOPCOATS

One Package

				C.P.	IRB			4.	Conver	ntional	* .
	Color→ From→	5 Wht (36)	11 Wht (33)	13 Gry (33)	17 Wht (11)	25 Gry (34)	26 Wht (30)	10 Wht (36)	12 Wht (33)	14 Gry (33)	18 Wht (11)
Viscosity Initial 4 wks/120°F	KU	82 93	76 72	71 60	79 150	94 95	83 89	70 108	78 · 76	71 77	102 120
Storage - 4 wks/120 Separation Skinning Settling Redispersion	°F Score	6 10 9 10	6 10 6 8	6 10 2 2	8 10 10 9	6 10 8 8	8 10 10 10	4 10 6 6	8 10 9 9	9 10 10 10	9 10 10 9
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.4 2 2 2	0.5 15 24 24	0.4 0.6 0.8 0.8	16 16 16 16	16 168 216 216	0.1 0.3 0.4 0.4	0.9 6.0 6.5 16	0.4 4.0 7.0 7.0	0.2 0.2 0.8 0.8	0.9 6.0 16 16
Application Ease	Score	10	10	10	10	10	10	10	10	10	10
Opacity	96	100	97	100	98	100	97	86	98	100	98
Gloss - 60°		53	87	88	75	7	45	89	92	86	89
Adhesion	9	100	100	100	100	80	100	95	100	100	80
Flexibility - Pass	Inch	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
Taber Abrasion	mgm	15	57	51	83	35	29	36	38	70	64

-34-

Appendix IIT

TEST DATA

Class 9B			MAI	NTENANCE	TOPCOATS	(cont)			,	One F	ackage	
				CA	RB					Conver	ntional	
	Color		11 Wht (33)	13 Gry (33)	<u>17</u> Wht (I1)	25 Gry (34)	26 Wht (30)		10 Wht (36)	12 Wht (33)	14 Gry (33)	18 Wht (11)
RESISTANCE TO -							(b)	• .				
Water	Hrs	168	72	288	120	24	500		144	. 168	288	24
Xylol	Hrs	168	3	24	1	1 .	1		1	3	24	1
Mineral Spirits Color change Gloss change Hardness Recovery	Hrs Score " "	500 8 8 6 8	500 0 8 4 8	500 6 6 2 6	500 10 6 8 10	72	500 9 10 8 10		500 0 0 6 8	500 0 9 2 6	500 8 8 8 8	500 6 8 10
Alcohol	Hrs	2	24	24	1	72	500		1	2	24	1
HCl (5%)	Hrs	5	24	24	500	500	1	Postantina	192	48	48	120
 Salt Fog (a) Blisters - Body " at X Corrosion Creep at X	Hrs ASTM " Score Creep	64	136	500 10 10 6 2	400	500 10 10 8 2	300		64	136	(c)	210
(a) Acc. Weathering Color change Gloss change Chalking Check. & Crack.	Hrs Score "	10 10 9 10	10 6 10 10	8 4 8 10	9 8 8 10	6 10 9 10	9 10 10		8 8 6 10	10 6 9 10	(c)	9 6 8 10

a - Primedb - Slight rustingc - Not tested. Topcoat lifted the primer

Appendix IIU

TEST DATA

Class 9C		2 Compor	2 Component				
				ntional			
	Color - From -	$ \begin{array}{c} 19 \\ \longrightarrow \overline{Wht} \\ \longrightarrow (22) \end{array} $	20 Bge (22)	22 Wht (28)	24 Wht (18)	21 Bge (22)	23 Wht (28)
Viscosity Parts A & B Initial 4 wks/120°F Mixed Paint	KU ·	(a) 125/C 150/D 90	(a) 116/Z4 140/Z5 150	(a) 108/N 126/N 88	112/89 120/116 93	127/92 150/104 100	72/72 104/72 72
Storage - 4 wks/120°F Separation Skinning Settling Redispersion	, Score	8/10 10/10 10/10 9/10	8/10 10/10 10/10 9/10	6/10 10/10 6/10 6/10	10/6 10/10 10/6 10/6	8/9 10/10 6/10 6/10	4/6 10/10 6/10 6/8
Pot Life	Hrs	24	3.5	24	30+	24	30
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	2.5 16 16 16	0.2 5.0 5.5 5.5	0.6 7.0 16 16	0.1 16 24 24	0.2 0.5 2.5 2.5	0.3 0.6 1.5 1.5
Application Ease	Score	10	. 10	10	10	10	10
Opacity	%	95	99	94	86	95	88
Gloss - 60°		63	6	20	55	7	4
Adhesion	%	100	100	100	100	100	100
Flexibility - Pass	Inch	1/8	1/8	3/4	1/8	1/8	1/8
Taber Abrasion	mgm	102	105	38	73	108	85

Appendix II U

TEST DATA

Class 9C		MAINTENAN	CE TOPCO	2 Compo	nent		
			CZ	ARB		Convent	ional
	Color	$\begin{array}{ccc} & \underline{19} \\ & \underline{Wht} \\ & (22) \end{array}$	20 Bge (22)	22 Wht (28)	24 Wht (18)	<u>21</u> Bge (22)	23 Wht (28)
RESISTANCE TO -							
Water	Hrs	500 ^(b)	48	500 ^(b)	24	(b) 500	432
Xylol	Hrs	1	500	24	500	500	500
Mineral Spirits - Blistering Color change Gloss change Hardness	500 hrs ASTM Score "	10 10 10 10	10 10 10 10	10 8 10 10	10 10 10 10	10 10 10 10	10 10 10 10
Alcohol	Hrs	1	500	· 5	1	500	500
HCL (5%)	Hrs	500	1	96	1	72	5
(c) Salt Fog Blisters - Body " at X Corrosion Creep at X	Hrs ASTM " Score mm	500 10 10 6 2	18	500 10 10 6 2	24	500 10 10 6 2	500 10 10 6 2
Acc. Weathering Color change Gloss change Chalking Check. & Crack.) - 500 hrs Score " ASTM	8 6 4 10	8 9 4 10	9 10 4 10	8 6 4 10	6 10 4 10	8 10 4 10

a - Gardner Holdt

Bge - Beige

b - No significant effect

c - Primed

Appendix IIW

TEST DATA

Class 11

SWIMMING POOL PAINTS

		1	CARB 3	$\frac{\text{Conv.}}{2}$
	Color \rightarrow From \rightarrow	White (20)	(27)	7→ (20)
Viscosity Initial 4 wks/120°F	KU	93 140	80 85	72 74
Storage - 4 wk/120°F, Separation Skinning Settling Redispersion	Score	8 4 10 9	6 8 10 9	6 10 10 8
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	0.3 0.4 0.4 0.6	0.3 0.4 0.4 0.6	0.2 0.3 0.3 0.3
Application Ease	Score	10	10	10
Opacity	0%	96	94	94
Adhesion	90	100	100	90
Water Resistance - 10	00 hours	No Eff.	No Eff.	No Eff.
Resistance to 0.01% Sodium Hypochlorite -700		No Eff.	No Eff.	No Eff.
Accelerated Weatherin				
-500 Color change Gloss change Chalking Checking Cracking	hrs Score Score ASTM ASTM	10 10 10 10	8 6 10 10	10 10 10 10

Eff. - Effect

Class 13A

a - Two Component

MASTIC COATINGS - WATERPROOFING

		_		CAR	3	· .		Co	nv
		3 Wht (6)	4 Wht (6)	6 Wht (22)	10 Wht (12)	12 Blk (12)	13 Blk (12)	8 Blk (20)	9 Wht (12)
Viscosity Initial 4 wks/l20°F	KU	138 140	114 123	(a) 150 150/150	102 (b)	104 134	135 150	150 150	135 (b)
Storage - 4 wks/120° Separation Skinning Settling Redispersion	F Score	9 10 10 9	9 8 10 9	10/8 10/10 10/10 10/9	- - -	8 10 9 9	10 10 10 10	10 10 10 10	- - -
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	2.0 500 500 500	2.0 500 500 500	3.0 16 16 16	0.2 0.2 0.4 0.4	0.2 16 16 16	0.2 16 16 16	3.0 500 500 500	0.3 0.5 0.5 0.5
Application Ease	Score	8	8	4	10	10	10	6	10
Adhesion	8	100	100	100	100	100	100	100	100
Opacity	%	100	100	100	100	100	100	100	100
Water Absorption	8	3.3	1.9	0.1	4.3	6.3	6.8	0.6	1.0
Water Resistance Color change Gloss change Hardness Recovery	Hrs Score " "	24	24	500 8 8 0 0	500 10 10 6 8	500 10 10 4 9	500 10 10 4 9	500 8 8 0 0	500 10 10 4 8
Acc. Weathering - 50 Color change Gloss change Chalking Check. & Crack.	0 hrs Score " ASTM	10 10 9 10	10 10 9 10	8 6 4 10	10 10 10 10	10 10 10 10	10 10 9 10	6 4 10 10	10 10 10

b - Solidified

) P

Appendix IIY

TEST DATA

Class 14

MULTICOLOR PAINTS

· .		$\frac{\text{CARB}}{1}$	$\frac{\text{Conv.}}{2}$
	From→	(2)	(37)
Viscosity Initial 4 wks/l20°F	KU	77 83	7 5 Gel
Storage - 4 wk/120°F, Separation Skinning Settling Redispersion	Score	10 10 10 10	· · · · · · · · · · · · · · · · · · ·
Drying Time Set to touch Tack free Dry hard Dry thru	Hrs	1.2 1.2 1.2 1.2	1.2 1.2 1.2 1.8
Application Ease	Score	10	
Appearance	Score	2 .	8
Opacity	%	77	99
Gloss - 60°		5	6
Adhesion	90	100	90
Flexibility - Pass	Inch	1/8	

Appendix III

TEST PROCEDURE

The following test methods were used, except as noted in the test conducted:

ASTM D ---- refers to methods described in Part 27 "Paint - Tests for Formulated Products and Applied Coatings" issued by the American Society for Testing and Materials, Philadelphia, PA.

Method ---- refers to tests described in Federal Standard No. 141A

"Methods for Testing of Paint, Varnish, Lacquer and Related

Materials" issued by the General Services Administration,

Washington, DC.

Other tests are described.

Package Qualities

- 1. Viscosity:
 - a) Pigmented Paints: Unit KU

 ASTM D-562 "Consistency of Paints Using the Stormer

 Viscometer"
 - b) Clear Liquids: Unit G/H

 Method 4271 "Viscosity of Transparent Liquids

 (Gardner Tubes)"
- 2. Viscosity Stability: Unit KU or G/H ASTM D-1849 "Package Stability of Paint". Viscosity was redetermined after storage.
- 3. Storage Stability: Unit Score
 ASTM D-1849 "Package Stability of Paint"

4. Pot Life: -

Unit - Hours

Eight ounces (8 oz) of the multi-component products were mixed in accordance with the supplier's instructions. They were periodically checked for workability. The same test was conducted with the powder paints after mixing with water.

Application

5. Drying Time: -

Unit - Hours

ASTM D-1640 "Drying, Curing or Film Formation of Organic Coatings at Room Temperature"

6. Application Ease: -

Unit - Score

The coating was brush-applied to an appropriate substrate and scored for relative ease of application.

Sample Nos 4-43, 14-1 and 14-2 had to be spray-applied.

Note: All multicolor paints (Class 14) are sprayed.

Coating Appearance

7. Gloss: -

No Unit

ASTM D-523 "Specular Gloss"

8. Opacity: -

Unit - %

ASTM D-2805 "Hiding Power of Paints"

9. Enamel Holdout: -

Unit - %

The test primer was dried for 24 hours. An enamel was then applied on the primer and allowed to dry for 24 hours. The gloss of the enamel was then determined in accordance with ASTM D-523 (see above).

Enamel Holdout (%) = $\frac{\text{Gloss on Primer}}{\text{Gloss on Sealed Surface}}$ X 100

10. Bleeding: -

Unit - Score

The test primers were applied on red cedar and dried for one week. The relative degree of staining caused by bleeding from the cedar was observed and scored.

11. Appearance: -

Unit - Score

The multicolor paints (Class 14) were compared for relative appearance and definition of the multicolor pattern.

Coating Performance

12. Adhesion: -

Unit - %

ASTM D-3359 "Measuring Adhesion by Tape Test"

13. Flexibility: -

Unit - Inch

ASTM D-1737 "Elongation of Attached Organic Coatings with Cylindrical Mandrel Apparatus"

14. Taber Abrasion: -

Unit - mgm

Federal Method 6192 "Abrasion Resistance (Taber Abraser)"

15. Water Absorption: -

Unit - %

Preweighed appropriate substrate specimens were coated with the test paint and dried for one week. Groups 2 and 3 were tested on wood and submerged for 30 minutes. Groups 8 and 13 were tested on concrete and submerged for 72 hours. The panels were then wiped to remove excess water and reweighed.

Water Absorption (%) = $\frac{\text{Gain in Weight}}{\text{Weight before Immersion}} \times 100$

16. Immersion Resistance Tests: -

The following tests were conducted with completely coated substrate specimens partially immersed:

Cold water

Xylol (Xýlene)

Mineral spirits

Alcohol (100%)

Coatings which withstood the maximum period of exposure were evaluated for -

Blistering - ASTM D-714 "Evaluating Degree of Blistering of Paints"

Color change - Score

Gloss change - Score

Hardness - Initial and after recovery for

24 hours - Score

Coatings which failed prematurely were removed and the time until failure was recorded.

17. Spot Resistance Tests: -

The following tests were conducted by placing 1 mm of reagent on the test coating and keeping it covered to prevent evaporation.

Hot water

Alcohol (50%)

Butyl acetate

Hydrochloric acid (HCl) - 50% solution

Where possible, the coatings were evaluated as described in No. 16 above. If not, the time until failure was recorded.

Exposure Resistance

18. The coatings were exposed to ultraviolet light for two weeks and then compared with the unexposed coatings for -

Gloss Retention (change in gloss)

Unit - Score

Color Retention (change in color)

Unit - Score

19. Salt Fog (Corrosion Resistance): -

ASTM B-117 "Salt Spray (Fog) Testing"

Duplicate coated panels were exposed. Before exposure,

the panels were scored with an "X" to expose the steel.

Panels which withstood a minimum of 500 hours of exposure

were evaluated as follows:

Blistering - overall and along the "X"

ASTM D-714 "Evaluating Degree of Blistering of Paints"

Corrosion after stripping the paint - Score

Creep of corrosion from the "X" - mm

Panels which failed before the maximum period were removed and the time of exposure recorded.

20. Accelerated Weathering: -

ASTM G-53 "Recommended Practice for Operating Light and Water Apparatus for Exposure of Non-metallic Coatings"

Duplicate panels were exposed. Panels which were exposed for at least 500 hours were evaluated for the following changes -

Color change - Score

Gloss change - Score

Chalking - ASTM D-659 "Chalking of Exterior Paints"

Checking - ASTM D-660 "Checking of Exterior Paints"

Cracking - ASTM D-661 "Cracking of Exterior Paints"

Panels which failed prematurely were removed and the time of exposure recorded.

Score: -

The scoring system used was that developed by ASTM:

Score	Performance	or _.	Effect		
10	Perfect	Perfect			
9	Excellent	Excellent			
	Very good		Very slight		
6	Good		Slight		
4	Fair	•	Moderate		
2	Poor		Severe		
0	No value		Failed		

