California Environmental Protection Agency

EXECUTIVE ORDER A-014-0836

OB Air Resources Board

New Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles Page 1 of 2

Pursuant to the authority vested in the Air Resources Board by Health and Safety Code (HSC), Div. 26, Part 5, Chap. 2; and pursuant to the authority vested in the undersigned by HSC Sections 39515 & 39516 and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED:

That the following exhaust and evaporative emission control systems produced by the manufacturer are certified as described below. Production vehicles shall be in all material respects the same as those for which certification is granted.

YEAR	TEST GROUP VEHICLE TYPE		EXHAUST EMISSION STANDARD CATEGORY	USEFUL L	IFE (miles)	FUEL TYPE Gasoline		
2014	ETYXT02.7BEH	LDT: <6000# GVW, 0-3750#	"LEV II" Ultra Low Emission	EXH / EVAP				
		LVW	Vehicle (LEV II ULEV)	120K	150K			
No.	ECS &	SPECIAL FEATURES	10000	EVAPORATIVE FAMILY (EVAF)				
1	TWC(2), AFS	S,HO2S, SFI, AIR, OBD(P)	ETYXR0165					
*		*	*		2.7			
*		*	*					

See the Attachment for Vehicle Models, Evaporative Family, Engine Displacement, Emission Control Systems, Phase-In Standards, OBD Compliance, Emission Standards and Certification Levels, and Abbreviations.

BE IT FURTHER RESOLVED:

That the exhaust and the evaporative emission standards and the certification emission levels for the listed vehicles are as listed on the Attachment. Compliance with the 50° Fahrenheit testing requirement may have been met based on the manufacturer's submitted compliance plan in lieu of testing. Any debit in the manufacturer's "NMOG or NMOG+NOx, as applicable, Fleet Average" (PC or LDT or MDPV) or "Vehicle Equivalent Credit" (MDV) compliance plan shall be equalized as required.

BE IT FURTHER RESOLVED:

That for the listed vehicle models, the manufacturer has attested to compliance with Title 13, California Code of Regulations, (13 CCR) Sections 1965 [emission control labels], 1968.2 [on-board diagnostic, full or partial compliance], 2035 et seq. [emission control warranty], 2235 [fuel tank fill pipes and openings] (gasoline and alcohol fueled vehicles only), and "High-Altitude Requirements" and "Inspection and Maintenance Emission Standards" (California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model PC, LDT and MDV).

BE IT FURTHER RESOLVED:

The test group listed in this Executive Order is certified conditionally on the manufacturer providing data to demonstrate compliance with California's greenhouse gas fleet average emission standard (CA GHG Standard) specified in Title 13. California Code of Regulations, (13 CCR) Section 1961.1 and the incorporated California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles. amended March 29, 2010 (CA Test Procedures). The manufacturer has elected, under 13 CCR Section 1961.1(a)(1)(A)(ii) and under Section E.2.5.1(ii) of the CA Test Procedures, to demonstrate compliance with the CA GHG Standard by demonstrating compliance with the National greenhouse gas program (National GHG Program). Therefore, the test group listed in this Executive Order is certified conditionally further on the manufacturer complying with the requirements specified in said provisions in 13 CCR, and Sections E.2.5.1(ii) and H.4.5(b) and H.4.5(c) of the CA Test Procedures (among other things, concerning data and information submission, timing, and format as specified by the Executive Officer). Failure to comply with the certification requirements to demonstrate compliance with CA GHG Standard by demonstrating compliance with the National GHG Program under said provisions in 13 CCR and CA Test Procedures may be cause for the Executive Officer to revoke the Executive Order. Vehicles in the revoked Executive Order shall be deemed uncertified and subject to penalties authorized under California law. Notwithstanding the requirement herein, a manufacturer that becomes, after MY2009, a large-volume manufacturer, as defined in 13 CCR Section 1900, is not required to comply with the CA GHG Standard until the beginning of the fourth model-year from becoming a large-volume manufacturer. Additionally, notwithstanding the requirement herein, a small-volume manufacturer, independent low-volume manufacturer, or intermediate volume-manufacturer, as defined in 13 CCR Section 1900, is not required to comply with CA GHG Standard during model-years (MY) 2012 through 2015.

Vehicles certified under this Executive Order shall conform to all applicable California emission regulations. The Bureau of Automotive Repair will be notified by copy of this Executive Order.

innos Erik White, Chief

Mobile Source Operations Division

California Environmental Protection Agency

OB Air Resources Board

TOYOTA MOTOR CORPORATION

EXECUTIVE ORDER A-014-0836

New Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles Page 2 of 2

ATTACHMENT

EXHAUST AND EVAPORATIVE EMISSION STANDARDS AND CERTIFICATION LEVELS

(For bi-, dual- or flexible-fueled vehicles, the STD and CERT in parentheses are those applicable to testing on gasoline test fuel.)

	Ox FLEET GE [g/mi]		@ RAF=* RAF = *	NMOG or	HCHO=fo	nane; NMOG rmaldehyde; I	PM=particul	ate matter, F	RAF=react	tivity adjust	ment fact	or; 2/3 D [g/te	est]=2/3 day	diumal+	
CERT	STD	NMOG NMHC		NMHC	mi=mile:)	RL [g/mi]=run (=1000 miles	: F=dearees	Fahrenheit	SFTP=su	seaj=on-ba	ard refue	est procedur	covery; g=gi e	ram; mg =mili	igram
0.078	0.407	CERT [g/mi]		STD [g/mi]	CO [g/mi]		NOx [g/mi]				HO [mg/mi]	PM [g/		Hwy NO)x [g/mi]
0.076	0.107				CERT	STD	CERT	STD	CEF	RT S	TD	CERT	STD	CERT	STE
State -	@ 50K	0.009	*	0.040	0.2	1.7	0.01	0.05	*		8.	* *	*	0.005	0.0
	@UL	0.012	*	0.055	0.3	2.1	0.01	0.07	*		11.	*	0.01	0.01	0.0
a	50°F & 4K	*	· *	*	*	*	*	*	*		*	*	*	*	*
CO [g/mi]			X 9.	NMHC+NC (compo		CO [g (comp		NMHC+ [g/mi] [l			[g/mi] 506]		C+NOx [SC03]		[g/mi] 203]
@ 20°F	20°F & 50K			CERT	STD	CERT	STD	CERT	STD	CERT	STD	CERT	STD	CERT	STE
ERT	2.4	SFTP @ 4	000 miles	*	*	*	*	0.01	0.14	0.1	8.0	0.02	0.20	0.2	2.7
STD	10.0	SFTP	@* miles	*	*	*	*	*	*	*	*	*	*	*	*
Evaporative Family			urnal + Hot s/test) @ U				Running Loss (grams/mile) @ UL			On-Board Refueling Vapor Recovery (grams/gallon) @ I					
			CERT	ST	D	CERT	S	TD	CERT	г	STD		CERT		STD
ETYXR0165P22		0.23	0.0	65	0.25 0.85 0.004		0.05	0.01		0.20					
*		*	1		* * *		*	*		*					
*		*			*		*		* *		*		*		
*			*			*		*	*		*		*		*
=not app	licable; UL=	useful life;	PC=passer	iger car; LC	T=light-o	duty truck; I	DT1=LD	T_6000#C	WR,0	-3750#L\	/W; LD	T2=LDT<6	000#GVW	/R,3751-57	50#LV
LDT3=LD 10000#G\ ALVW=ad WU=warm oxidation of AFS=Wide sensor; EC sequential diagnostic	T 6001-850 /WR; MDV djusted LVW n-up catalyst; CT e range/line GR= exhaust I/ multiport fi ;; DOR= dire	0#GVWR,3 5=MDV 100 /; LEV=low t; NAC=NO OX/PTOX= ar/heated a t gas recirc uel injection ect ozone re	751-5750#/ emission ve x adsorption continuous ir-fuel ratio ulation; EGF n; DFI=direc educing; HC	ALVW; LDT SVWR; EC catalyst; S /periodic tra sensor; NC C=EGR co t fuel inject T=Hydroca	4=LDT 6 S= emiss V=ultra L SCR-U or ap oxidize DXS= NO boler; AIR ion; TC/S rbon Trap	001-8500# ion control EV; SULEV SCRC/SC er; DPF = D x sensor; F X/AIRE=sec SC= turbo/s b; BCAN=b	GVWR,57 system; S /=super U R-N or S biesel Part DQS=rec condary ai super chan bleed carb	751-8500# TD= stan ULEV; TW CRC-NH3 icculate Fil ductant qu r injection rger; CAC on caniste	ALVW; dard; CE C/OC=3- = selecti ter (activ ality sen (belt dri =charge er; prefix	MDV=me ERT= cer -way/oxid ive cataly /e); HO2 sor; NH3 ven)/(ele air coole 2=parall	edium-d tification lizing ca tic redu S/O2S= S = Am ctric driv er; OBD	uty vehicle h; LVW=loa talyst; AD ction-urea heated/oxy monia sen ven); PAIR (F)/(P)(B)	; MDV4=N aded vehic STWC=ad /ammonia; /gen senso sor; PMS= :=pulsed A =full/partia	MDV 8501- cle weight; sorbing TV ; NH3OC=; or; WR-HO =particulate IR; SFI/MI al/both on-b	VC; ammoni 2S or e matter F]=
DT3=LD 0000#G\ ALVW=ad VU=warm oxidation of AFS=Wide sensor; EC sequential liagnostic	T 6001-850 /WR; MDV djusted LVW n-up catalyst catalyst; CT e range/line GR= exhaust I/ multiport fi	0#GVWR,3 5=MDV 100 /; LEV=low t; NAC=NO OX/PTOX= ar/heated a t gas recirc uel injection ect ozone re	i751-5750#/ 01-14000#(emission ve x adsorptior continuous iir-fuel ratio ulation; EGF ducing; HC s; LPG=liqu	ALVW; LDT GVWR; EC shicle; ULE n catalyst; S /periodic tra sensor; NO C=EGR cc t fuel inject T=Hydroca efied petrol	4=LDT 6 S= emiss V=ultra L SCR-U or ap oxidize DXS= NO Doler; AIR ion; TC/S rbon Trap eum gas;	001-8500# ion control EV; SULEV SCRC/SC er; DPF = D x sensor; F X/AIRE=sec SC= turbo/s b; BCAN=b	GVWR,57 system; S /=super L R-N or S biesel Part BDQS=rec condary ai super chan leed carb %" Ethanc	751-8500# TD= stan ULEV; TWO CRC-NH3 icculate Fil ductant qu r injection rger; CAC on caniste il ("15%"gi	ALVW; dard; CE C/OC=3- = selecti ter (activ ality sen (belt dri =charge er; prefix asoline)	MDV=me ERT= cer -way/oxic ive cataly /e); HO2: sor; NH3 ven)/(ele air coole 2=parall Fuel;	edium-d tification lizing ca ttic redu S/O2S= S = Am ctric driv er; OBD el; (2) su	uty vehicle h; LVW=loa talyst; AD: ction-urea heated/oxy monia sen ven); PAIR (F)/(P)(B): uffix=series	; MDV4=N aded vehic STWC=ad /ammonia; /gen senso sor; PMS= :=pulsed A =full/partia	MDV 8501- cle weight; sorbing TV ; NH3OC=; or; WR-HO =particulate IR; SFI/MI al/both on-b	VC; ammoni 2S or e matter FI=
DT3=LD 0000#G\ ALVW=ad WU=warm xxidation of AFS=Wide sensor; EC sequential liagnostic compresse	T 6001-850 /WR; MDV djusted LVW n-up catalyst; CT e range/line GR= exhaust I/ multiport fi ;; DOR= dire	0#GVWR,3 5=MDV 100 /; LEV=low t; NAC=NO OX/PTOX= ar/heated a t gas recirc uel injection ect ozone re	i751-5750#/ 01-14000#(emission ve x adsorptior continuous iir-fuel ratio ulation; EGF ducing; HC s; LPG=liqu	ALVW; LDT SVWR; EC: bhicle; ULE catalyst; S /periodic tra- sensor; NC RC=EGR cc t fuel inject T=Hydrocca efied petrol 14 MOD	4=LDT 6 S= emiss V=ultra L SCR-U or ap oxidize DXS= NO Doler; AIR ion; TC/S rbon Trap eum gas;	001-8500# ion control EV; SULEV SCRC/SC er; DPF = D x sensor; F VAIRE=sec SC= turbo/s ; ECAN=b ; E85="859 AR: VE	GVWR,57 system; S /=super L R-N or S biesel Part BDQS=rec condary ai super chan leed carb %" Ethanc	751-8500# TD= stan ULEV; TWO CRC-NH3 icculate Fil ductant qu r injection rger; CAC on caniste il ("15%"gi	ALVW; dard; CE C/OC=3= = selecti ter (activ ality sen (belt dri =charge r; prefix asoline)	MDV=me ERT= cer -way/oxic ive cataly /e); HO2: sor; NH3 ven)/(ele air coole 2=parall Fuel;	edium-d tification lizing ca tric redu S/O2S=: S = Am ctric driv er; OBD el; (2) su ATIO	uty vehicle h; LVW=loa talyst; AD: ction-urea heated/oxy monia sen ven); PAIR (F)/(P)(B): uffix=series	; MDV4=N aded vehic STWC=ad /ammonia; ygen sensc sor; PMS= =pulsed A =full/partia s; CNG/L	ADV 8501- cle weight; sorbing TV ; NH3OC=; pr; WR-HO =particulate IR; SFI/MI I//both on-t NG=	VC; ammoni 2S or e matter FI=