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Project Summary/Abstract 
This study evaluated the effects of ambient air pollution on type 2 diabetes (T2D)–related 

outcomes across the disease continuum, from onset to mortality, using three statewide data 
sources in California: the California Health Interview Survey (CHIS), the Department of Health 
Care Access and Information (HCAI) hospital and emergency department (ED) discharge data, 
and mortality data from the California Department of Public Health (CDPH). The analysis 
covered 2010–2019 and focused on three major pollutants—nitrogen dioxide (NO2), fine 
particulate matter (PM2.5), and ozone (O3). 

Using CHIS data, we assessed both the incidence of T2D and the use of diabetes medications 
among adults. Higher annual exposures to air pollution were consistently associated with 
elevated odds of newly reported diabetes and greater medication use. For T2D incidence, NO2, 
PM2.5, and O3 all showed positive associations across lag years, with the strongest and most 
consistent effects observed for PM2.5 and O3 (p < 0.001). For medication use, odds ratios (ORs) 
for NO2 remained stable from lag 0 to lag 3 years (≈1.018) per interquartile change (IQR), while 
O3 showed a slight increase (≈1.034 to 1.036) and PM2.5 exhibited a slightly higher - rise (≈1.070 
to 1.073), per IQR increase of respective exposure. These findings suggest that air pollution 
exposure may both trigger diabetes onset and worsen disease control among those already 
diagnosed. 

Analyses based on HCAI data revealed similar patterns for acute healthcare utilization. 
Short-term increases in NO2 and PM2.5 were associated with higher risks of T2D-related ED 
visits and hospital admissions. Among hospitalized patients, pollutant exposure was also linked 
to longer length of stay (LOS), a continuous outcome, indicating greater clinical severity. PM2.5 
showed the strongest associations, with risks elevated across all lag periods, while NO2 
demonstrated smaller but consistent effects. Transient effects were observed, with associations 
slightly attenuating from lag 0 to lag 3 days. O3 exhibited mixed associations, with some 
analyses showing modest positive effects while others indicated weaker or nonsignificant 
relationships. Stratified analyses by demographic and socioeconomic characteristics (including 
race-ethnicity, age, and insurance type) confirmed that these associations were robust across 
groups, with minority populations showing greater vulnerability. 

Mortality analyses using CDPH data further confirmed the adverse impacts of air pollution 
on diabetes outcomes. Higher annual average NO2 and PM2.5 exposures in the 12 months prior to 
date of death were significantly associated with increased diabetes-related deaths, consistent with 
their roles in disease progression and systemic inflammation. 

Taken together, findings across three separate datasets demonstrate that exposure to ambient 
air pollutants, particularly PM2.5 and NO2, contributes to the onset, exacerbation, and progression 
of T2D. These results underscore the broad public health importance of air quality improvement 
in reducing the burden of diabetes in California. Corresponding health economic analyses 
indicate that reducing ambient concentrations of these pollutants could yield substantial 
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economic benefits, including billions of dollars annually in avoided medical expenditures and 
billions of dollars in terms of the value of statistical lives saved. Reducing emissions from traffic 
and other pollution sources could yield substantial health benefits, particularly for populations 
already at elevated risk for diabetes and related complications. 
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Lay-Person Summary 
Type 2 diabetes is a serious and growing health problem in California. While diet, physical 

activity, and genetics are well-known risk factors, this study shows that air pollution also plays 
an important role in the development and worsening of diabetes. Using large, statewide health 
data from California between 2010 and 2019, this study examined how exposure to common air 
pollutants, including traffic-related gases, fine particles in the air, ozone, and several toxic air 
pollutants, affects people across the full course of diabetes, from first diagnosis to medication 
use, emergency room visits, hospitalizations, and death. 

The results consistently showed that people living in areas with higher air pollution were 
more likely to develop diabetes, more likely to require diabetes medications, and more likely to 
experience serious complications requiring emergency care or hospitalization. Higher pollution 
levels were also linked to longer hospital stays and increased risk of death from diabetes-related 
causes. Fine particulate matter, which comes largely from traffic, industry, and wildfire smoke, 
showed the strongest and most consistent health effects. 

Importantly, the study found that not all populations are affected equally. Communities 
already facing social and economic disadvantages, including racial and ethnic minority groups 
and people without stable health insurance, experienced greater health impacts from the same 
pollution levels, highlighting existing environmental and health inequities across California. 

Taken together, these findings show that air pollution is not just a respiratory or 
cardiovascular issue, it also worsens diabetes and increases the burden on individuals, families, 
and the healthcare system. Improving air quality, especially in heavily polluted and underserved 
communities, could help prevent new cases of diabetes, reduce complications for those already 
living with the disease, and lower healthcare costs statewide. Substantial economic benefits 
could be achieved, including billions of dollars annually in avoided medical expenditures and 
billions of dollars in terms of the value of lives saved. This study underscores the importance of 
clean air policies as part of long-term strategies to protect public health and reduce chronic 
disease in California. 
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Executive Summary 
a. Background 

Type 2 diabetes (T2D) continues to be a major and growing public health concern in 
California and worldwide. Beyond traditional risk factors such as obesity, age, and genetics, 
emerging research has increasingly identified environmental exposures — particularly air 
pollution — as important contributors to diabetes incidence, complications, and mortality. 
Despite accumulating evidence linking fine particulate matter (PM2.5) and nitrogen dioxide 
(NO2) to metabolic and cardiovascular outcomes, limited work has comprehensively assessed 
their effects on multiple diabetes-related health outcomes using diverse population-level data 
sources across time. This project aimed to address these gaps by integrating statewide health 
datasets to evaluate the short- and long-term impacts of air pollution on T2D-related outcomes. 

b. Objective 

The study sought to examine the associations between ambient air pollutants (NO2, PM2.5, 
and O3) and multiple T2D-related outcomes, including disease incidence, medication use, 
emergency department (ED) visits, hospital admissions, hospital length of stay (LOS), and 
mortality. Specific goals were to assess (1) whether short- and long-term exposures to air 
pollution increased risks for T2D health endpoints, (2) whether these effects varied across 
demographic and socioeconomic groups, and (3) how pollutant-specific lag patterns reflected the 
temporal nature of exposure-response relationships. 

c. Methods 

Analyses were conducted using three California-representative health datasets from 2010–
2019, combined with high-resolution spatiotemporal exposure assessment, representing one of 
the first statewide evaluations of diabetes-related health outcomes using linked population-level 
health and advanced air pollution modeling data. 

CHIS (California Health Interview Survey) provided individual-level data to model T2D 
incidence and medication use, both treated as a binary outcome. Logistic regression models were 
used to estimate associations with annual exposure to criteria pollutants (NO2, PM2.5 and O3) and 
five air toxics (benzene, chromium, nickel, lead, 1,3-butadiene) adjusting for demographic, 
socioeconomic, and behavioral covariates. 

HCAI (California Department of Health Care Access and Information) hospital discharge and 
ED datasets were used to assess short-term effects of daily pollutant variations on acute 
healthcare utilization, including ED visits, hospital admissions (binary outcome), and LOS 
(continuous outcome). Conditional logistic regression with distributed lag models (lags 0–3 
days) was applied within a case-crossover framework, in which each case was self-matched to 
control days occurring on the same day of the week one to four weeks prior to the event.. 
Stratified analyses by race-ethnicity, insurance type, region, sex, and age were also conducted. 
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CDPH (California Department of Public Health) death records were analyzed to estimate the 
associations between annual pollutant exposure and diabetes-related mortality using conditional 
logistic regression approaches, in which each diabetes-related death was matched to controls 
drawn from the same CDPH population who were still alive at the time of death, based on year 
and month of birth, sex, and race–ethnicity.. 

Pollutant exposure metrics were assigned using data derived from PI's modeled fields, and all 
analyses incorporated population weighting or covariate adjustment to minimize bias. 

d. Results 

Across the multiple statewide health datasets analyzed, we observed consistent evidence that 
ambient air pollution was associated with elevated risk of adverse T2D-related outcomes. While 
effect magnitudes and temporal patterns varied across pollutants and endpoints, the overarching 
signal was robust: short- and long-term exposures to several criteria pollutants and air toxics 
were linked to increased incidence, medication use, acute care utilization, and mortality among 
individuals with or at risk for diabetes. 

CHIS data showed that long-term exposure to NO2, PM2.5, and O3 was significantly 
associated with increased T2D medication use and incidence. While NO2 effects remained stable 
across lag years, PM2.5 exhibited the steepest increase in risk from lag 0 to lag 3, suggesting 
greater toxicity. O3 effects were smaller but consistently positive across lags, indicating a modest 
contribution to T2D morbidity. Lags reflect single-day lag effects (e.g., lag0 for the same 
day/year, lag3 for three days/years before). 

Analyses of CHIS data indicate that long-term exposure to multiple ambient air toxics is 
consistently associated with increased T2D incidence and greater diabetes medication use across 
California. Across survey years and lag structures, all five toxics were linked to higher odds of 
incident T2D, with particularly strong and persistent associations for nickel and benzene, 
moderate but stable associations for lead and chromium, and generally positive associations for 
1,3-butadiene that strengthened in later periods. 

HCAI data revealed robust and coherent patterns for acute healthcare utilization. Increases in 
NO2 and PM2.5 were significantly associated with elevated risks of T2D-related ED visits and 
hospital admissions, as well as longer LOS among hospitalized patients, implying greater disease 
severity. PM2.5 effects were generally the strongest, with NO2 showing smaller but steady effects 
across lag days. A modest attenuation from lag 0 to lag 3 was observed, indicating transient but 
clinically relevant effects within a few days of exposure. In contrast, O3 associations were mixed. 
While small positive associations were detected for hospital admissions and LOS at lag 0, 
inverse or null effects appeared at later lags, suggesting differential mechanisms or potential 
confounding by seasonal and photochemical factors. Stratified analyses confirmed that minority 
populations, especially Hispanic and Black individuals, tended to experience greater pollutant-
related risks. 
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CDPH mortality data further supported the long-term health burden of air pollution, showing 
statistically significant increases in diabetes-related mortality with higher annual mean 
concentrations of PM2.5 and NO2. These findings align with national evidence linking fine 
particles and traffic-related pollutants to chronic metabolic and vascular stress. 

Health economic analyses further demonstrated that reductions in ambient air pollution 
would yield substantial economic benefits related to Type 2 diabetes. Based on modeled changes 
in diabetes incidence, medication use, emergency department visits, hospitalizations, and 
mortality, lowering pollutant concentrations by one interquartile range of their observed 
distributions was associated with large avoidable costs across California. Annual medical 
expenditure savings were estimated to be approximately $1.4 billion for PM2.5, $245 million for 
NO2, and $1.2 billion for O3,. In addition, reductions in long-term exposure to PM2.5 and NO2 
were associated with sizable avoided losses in the value of statistical life, totaling several billion 
dollars annually. 

Overall, the consistency of findings across three separate datasets underscores a robust and 
causal relationship between ambient air pollution and multiple stages of T2D progression—from 
disease onset and treatment dependence to acute exacerbations and death. 

e. Conclusion 

This integrated statewide analysis demonstrates that air pollution, particularly PM2.5, NO2 
and air toxics has a significant and measurable impact on T2D health outcomes across clinical 
severity levels. The effects were strongest for PM2.5, modest but stable for NO2, and mixed for 
O3. Short-term exposures primarily influenced acute healthcare utilization, while long-term 
exposures contributed to disease development and mortality. The transient lag structure suggests 
that pollutant-induced exacerbations occur rapidly following exposure, emphasizing the 
importance of timely public health interventions during pollution peaks. Importantly, the 
observed health impacts translate into substantial economic consequences. These economic 
benefits reinforce the public health relevance of air quality regulations, demonstrating that 
improvements in air pollution can reduce healthcare system burden.  

These findings reinforce the need for continued efforts to reduce air pollution exposure, 
especially in vulnerable communities disproportionately affected by both diabetes and 
environmental burden. The combined epidemiologic and economic evidence demonstrates that 
air quality improvements reduce the health and healthcare burden of Type 2 diabetes in 
California. Policymakers, healthcare providers, and environmental agencies should consider 
integrating air quality control with chronic disease prevention strategies to mitigate the growing 
public health impact of diabetes in California. 
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Background 
Type 2 diabetes (T2D) has emerged as one of the most prevalent and costly chronic diseases 

worldwide, imposing a growing burden on healthcare systems and communities. Characterized 
by insulin resistance and impaired glucose regulation, T2D contributes to cardiovascular disease, 
renal complications, neuropathy, and premature death.1–4 In the United States, diabetes affects 
over 38 million people, with nearly 95% of cases classified as T2D.5 California, the most 
populous and environmentally diverse state, bears a particularly heavy burden. Data from the 
California Health Interview Survey (CHIS) show that approximately 8% adults in the state has 
been diagnosed with diabetes (see Table 12), with prevalence disproportionately higher among 
Hispanic, Black, and lower-income populations. Although established risk factors such as age, 
obesity, diet, physical inactivity, and family history remain central to T2D development, 
accumulating evidence points to air pollution as an important, modifiable environmental 
determinant.6–10 Epidemiologic and toxicologic studies over the past two decades have 
demonstrated that exposure to airborne pollutants, especially fine particulate matter (PM2.5) and 
nitrogen dioxide (NO2), can adversely affect metabolic function.10 These pollutants induce 
systemic inflammation, oxidative stress, and endothelial dysfunction, which are key pathways in 
insulin resistance and glucose dysregulation.11,12 Long-term exposure to PM2.5 has been linked to 
increased diabetes incidence and mortality,10,13–15 while NO2, a marker of traffic-related 
pollution, has also been associated with higher risk of diabetes onset and hospital admissions 
related to metabolic disorders.16–18 The role of ozone (O3) in diabetes-related outcomes remains 
less consistent. As a secondary pollutant formed through photochemical reactions between 
nitrogen oxides and volatile organic compounds, O3 is well known for its respiratory toxicity.19 
However, its systemic metabolic impacts are complex. Some studies report that O3 exposure may 
trigger oxidative stress and systemic inflammation, exacerbating insulin resistance,20–22 while 
others find weaker or even inverse relationships.23–26 These inconsistencies may arise from 
confounding by seasonality, temperature, or spatial averaging of exposure estimates. 

Importantly, many prior studies examining air pollution and diabetes have relied on relatively 
coarse spatial resolution, often coarser than 1 km,27–29 which may not adequately capture local 
variation in pollution exposure, especially in urban areas where concentrations vary sharply over 
short distances. Such exposure misclassification can bias risk estimates toward the null, 
obscuring true associations. To address this limitation, the present study leverages newly 
developed high-resolution air pollution exposure surfaces that provide daily concentrations of 
PM2.5, NO2, and O3 at a 100 m grid resolution across California for more than thirty years (1989–
2021).30 These fine-scale surfaces integrate satellite observations, ground monitoring, 
meteorological data, and built environment characteristics to generate spatially and temporally 
resolved estimates that more accurately reflect individual and community-level exposures. 
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California offers a unique natural laboratory for this investigation, given its environmental 
diversity, persistent air quality challenges, and comprehensive health data infrastructure. Despite 
major progress in air quality control, many regions, particularly in Central Valley and urban 
basins, continue to experience pollutant levels exceeding state and federal standards. Moreover, 
air pollution exposures and health burdens are unequally distributed: low-income and minority 
communities often experience higher exposure levels and limited access to healthcare, 
contributing to health disparities. Understanding how chronic and short-term air pollution 
exposures influence T2D outcomes in this context is essential for advancing environmental 
health equity and guiding evidence-based public health policies. 

Previous research has typically focused on isolated health outcomes, such as diabetes 
incidence or mortality, and often relied on single datasets or limited geographic coverage. Few 
studies have integrated multiple statewide databases to investigate the full continuum of 
diabetes-related outcomes, from disease onset and medication use to acute care utilization and 
mortality. To fill this gap, this project combines three major California datasets to examine how 
both long-term and short-term air pollution exposures affect T2D outcomes: 

• CHIS data is used to evaluate long-term annual associations with T2D incidence and 
medication use, reflecting disease development and management in the community. 

• Healthcare Access and Information (HCAI) data is used to assess short-term daily 
associations with emergency department (ED) visits, hospital admissions, and length of 
stay (LOS), capturing acute exacerbations and healthcare utilization patterns. 

• California Department of Public Health (CDPH) mortality data is used to investigate 
long-term annual associations with diabetes-related deaths, representing the ultimate 
burden of chronic exposure. 

By integrating these complementary data sources with high-resolution exposure assessment, 
this project provides one of the most comprehensive evaluations to date of air pollution’s impact 
on T2D in California. The study not only quantifies pollutant-specific risks across a spectrum of 
outcomes but also examines population heterogeneity by demographic and socioeconomic 
factors. The findings are expected to inform public health strategies, healthcare planning, and air 
quality regulations aimed at reducing environmental health disparities and mitigating the burden 
of diabetes statewide. 

Study Objectives 
The objective of this study is to comprehensively evaluate the impacts of ambient air 

pollution on T2D outcomes across California by examining multiple stages of disease 
development, progression, and severity. Specifically, the study aims to quantify associations 
between long-term and short-term exposure to key ambient air pollutants and diabetes-related 
outcomes, including disease incidence, medication use, acute healthcare utilization, and 
mortality. By leveraging high-resolution spatial and temporal exposure estimates, the study seeks 
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to reduce exposure misclassification and better characterize pollutant-specific effects across 
different exposure windows. In addition, the study aims to assess how these associations vary 
across demographic, socioeconomic, and geographic subgroups, thereby identifying populations 
that may be disproportionately affected by air pollution–related diabetes risks. Through the 
integration of multiple statewide health datasets, this work is intended to provide a 
comprehensive evidence base to support air quality management, public health planning, and 
policies aimed at reducing the burden of diabetes and advancing environmental health equity in 
California. Finally, the study seeks to estimate the potential healthcare utilization and economic 
impacts associated with air pollution–related diabetes outcomes, providing insight into the 
broader public health and economic benefits of improved air quality. 

Project Tasks 

Task 1. Literature Review 

T2D: Epidemiology, Global Burden, and Pathophysiology 

T2D is one of the most prevalent and costly chronic diseases worldwide. It is estimated that 
more than 530 million adults live with T2D globally, accounting for nearly 10 percent of the adult 
population.31 The International Diabetes Federation projects this number to rise to over 700 million 
by 2045, with the greatest increases expected in low- and middle-income countries undergoing 
rapid urbanization.31,32 In the United States, approximately 38 million adults have diabetes, of 
whom about 90 to 95 percent have T2D.33–35 An additional ~100 million adults are estimated to 
have prediabetes, reflecting a large population at high risk for disease progression.36 Despite major 
advances in prevention and therapy, T2D remains a leading cause of death and disability 
worldwide. 
 

The global burden of T2D extends beyond its high prevalence. It contributes substantially to 
cardiovascular disease, chronic kidney disease, visual impairment, and lower-limb amputation. 
T2D is also a leading cause of premature mortality, responsible for more than 6 million deaths 
annually. The economic consequences are significant, with global healthcare expenditures of 
approximately 1 trillion USD each year.37 The rise in T2D incidence parallels increases in obesity, 
physical inactivity, and unhealthy diets, yet social, environmental, and genetic determinants also 
contribute. The burden is unequally distributed, with disadvantaged populations experiencing 
higher incidence and poorer outcomes due to limited access to preventive care and treatment.38 
 

The pathophysiology of T2D is characterized by a progressive decline in insulin sensitivity 
and pancreatic beta-cell function. In the early stages, insulin resistance develops in skeletal muscle, 
adipose tissue, and liver, leading to impaired glucose uptake and increased hepatic glucose 
production.39 The pancreas compensates by producing more insulin, but this compensatory phase 
eventually fails due to beta-cell stress, mitochondrial dysfunction, and apoptosis.40 Chronic 
hyperglycemia, oxidative stress, and lipotoxicity further exacerbate cellular injury, creating a cycle 
that accelerates disease progression. These metabolic abnormalities lead to chronic inflammation, 
endothelial dysfunction, and atherosclerosis, which underlie many of the vascular complications 
of T2D.41 
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In addition to genetic predisposition and lifestyle factors, emerging evidence indicates that 
environmental exposures influence the onset and course of T2D.42,43 Pollutants such as fine 
particulate matter, nitrogen dioxide, and airborne toxics can induce systemic inflammation and 
oxidative stress, processes that are central to insulin resistance and beta-cell failure.42 These 
mechanisms align with the broader concept of the exposome, which encompasses the cumulative 
effects of environmental, behavioral, and social factors across the life course. Understanding how 
these external exposures contribute to T2D pathophysiology is essential for developing 
comprehensive prevention strategies that extend beyond traditional behavioral interventions.44,45 
 

In California, the burden of T2D mirrors the national and global trends but is amplified by the 
state’s demographic, socioeconomic, and environmental diversity. More than 3.2 million adults in 
California have diagnosed T2D, and an estimated 5.9 million have prediabetes.46–48 The prevalence 
is highest in the Central Valley and parts of Southern California, particularly the Inland Empire 
(Riverside and San Bernardino counties), Imperial County, and inland portions of Los Angeles 
County.47 The economic cost to the state is profound, exceeding 45 billion USD annually in direct 
and indirect expenses.46 As one of the most polluted states in the nation, California offers a critical 
context for studying how environmental and social determinants intersect with metabolic disease 
risk. 
 

Overview of Air Pollution, Pollutants, and Exposure Assessment 

Air pollution is a complex mixture of gases and particles emitted from both natural and 
anthropogenic sources. Major anthropogenic contributors include fossil-fuel combustion from 
transportation, industry, and power generation, while natural sources such as wildfires, windblown 
dust, and sea spray can also contribute substantially to regional air quality. The United States 
Environmental Protection Agency (EPA) classifies six “criteria” pollutants—particulate matter 
(PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), carbon monoxide 
(CO), and lead (Pb), which are regulated under the National Ambient Air Quality Standards 
(NAAQS). Of these, fine particulate matter (PM2.5) and O3 are most frequently linked to adverse 
health outcomes. PM₂.₅ consists of particles smaller than 2.5 micrometers in diameter that can 
penetrate deeply into the respiratory tract and enter the systemic circulation, while ozone is a highly 
reactive gas formed through photochemical reactions between nitrogen oxides and volatile organic 
compounds under sunlight.49 
 

The composition of air pollution varies by region, season, and source type. In urban settings, 
traffic-related emissions are dominant, producing a mixture of elemental carbon, organic carbon, 
nitrates, sulfates, and trace metals. Industrial sources and power plants contribute sulfur 
compounds and secondary particles formed from gaseous precursors such as sulfur dioxide and 
nitrogen oxides. In California, geographic features such as mountain basins and temperature 
inversions exacerbate pollutant accumulation, particularly in the Central Valley and Southern 
California. These regions often experience some of the highest annual PM2.5 concentrations in the 
United States. Wildfire smoke has also emerged as an increasingly important contributor, adding 
substantial episodic increases in PM₂.₅ and toxic organic compounds. Seasonal patterns are evident, 
with wintertime PM dominated by combustion sources and summertime pollution driven largely 
by photochemical formation of ozone and secondary aerosols. 
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In addition to criteria pollutants, air contains numerous hazardous air pollutants (HAPs) or “air 
toxics,” including volatile organic compounds, polycyclic aromatic hydrocarbons (PAHs), and 
metals such as nickel, chromium, cadmium, and lead. These compounds are emitted from 
industrial processes, fuel combustion, and chemical manufacturing. Many air toxics are 
carcinogenic or neurotoxic and can cause endocrine and metabolic disturbances even at low 
concentrations. The Air Toxics Hot Spots Program in California has identified toxic compounds 
of concern, with benzene, 1,3-butadiene, formaldehyde, and diesel particulate matter representing 
major contributors to health risk.50 Recent research also highlights the role of ultrafine particles, 
microplastics, and secondary organic aerosols as emerging pollutants of potential concern.51–53 
These pollutants are not currently regulated by federal air-quality standards but may contribute to 
chronic systemic inflammation and oxidative stress, underscoring the need for continued 
monitoring and research. 
 

Air pollution exposure is assessed using a combination of monitoring networks, satellite 
observations, and atmospheric modeling.54 Ground-based monitoring stations operated by the U.S. 
Environmental Protection Agency and state agencies provide direct measurements of key 
pollutants such as PM2.5, NO2, and O3 at high temporal resolution. To fill spatial gaps between 
monitors, chemical transport models (such as CMAQ and GEOS-Chem) and land-use regression 
models incorporate meteorology, emissions inventories, traffic data, and topography to estimate 
concentrations across broader geographic areas.54 Satellite-derived aerosol optical depth and trace 
gas retrievals further enhance spatial coverage, especially in regions lacking ground monitors.55 
Increasingly, hybrid models that integrate monitoring, satellite, and modeled data are used to 
produce high-resolution (1 km or finer) daily estimates suitable for epidemiologic analyses. These 
methods enable linkage of environmental exposures with health outcomes while accounting for 
spatial and temporal variability in pollutant distributions. 

Emerging linkage between air pollution and T2D 

Over the past two decades, a growing body of evidence has revealed that air pollution is not 
only a respiratory or cardiovascular hazard but also a metabolic risk factor associated with 
T2D.42,43 Epidemiologic studies conducted across North America, Europe, and Asia consistently 
show higher T2D incidence and prevalence in populations exposed to elevated levels of PM2.5,56 
NO2,57 and traffic-related pollutants. Early ecological studies first demonstrated a geographic 
correlation between PM2.5 concentrations and T2D prevalence, which was later confirmed in 
longitudinal cohort analyses with individual-level exposure data.43 These findings have been 
replicated in diverse populations and persisted after adjustment for body mass index, physical 
activity, and socioeconomic status, suggesting an independent contribution of air pollution to 
metabolic disease risk. 

Mechanistic and clinical studies provide biological plausibility for this association. Chronic 
exposure to air pollutants induces systemic oxidative stress, low-grade inflammation, and 
endothelial injury, which disrupt insulin signaling and glucose regulation.42,43,49,58 Inhaled fine 
particles can promote the release of inflammatory cytokines and reactive oxygen species that 
impair pancreatic beta-cell function and increase insulin resistance in peripheral tissues.59 Air 
pollution has also been linked to altered lipid metabolism, mitochondrial dysfunction, and 
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activation of the hypothalamic–pituitary–adrenal axis, all of which contribute to impaired glucose 
homeostasis.60 These mechanisms parallel those implicated in obesity-related metabolic 
dysfunction, suggesting that air pollution acts synergistically with traditional risk factors to 
accelerate the development of T2D. 

The emerging recognition of air pollution as a metabolic stressor has significant public health 
implications. The global prevalence of T2D continues to rise despite advances in lifestyle and 
pharmacologic prevention, indicating that environmental exposures may undermine traditional 
control strategies. Populations residing in urban and industrialized areas face continuous exposure 
to pollutant mixtures that include not only regulated criteria pollutants but also air toxics such as 
benzene, 1,3-butadiene, and polycyclic aromatic hydrocarbons.61 These exposures 
disproportionately affect socioeconomically disadvantaged and racially marginalized communities, 
amplifying existing health disparities. Understanding the pathways through which air pollution 
contributes to T2D provides a foundation for developing integrated prevention frameworks that 
combine clinical, environmental, and policy interventions to reduce the burden of metabolic 
disease. 

Biologic Mechanisms linking air pollution with T2D mellitus 

The pathways through which ambient air pollutants influence T2D risk and outcomes are 
complex and involve a cascade of local, systemic, and organ-specific processes (Figure 1).58 
Exposure to PM2.5, PM10, NO2, and O3 initiates biological responses that impair insulin sensitivity, 
disrupt glucose metabolism, and promote the development and progression of T2D and its 
complications.42,49 

Air pollution exposure first triggers oxidative stress and inflammatory signaling within the 
respiratory tract. Reactive oxygen species and reactive nitrogen species are generated by pollutant 
particles and gases, activating toll-like receptors and other sensing pathways. This initiates the 
release of inflammatory cytokines, chemokines, and acute phase reactants that spread beyond the 
lungs and enter systemic circulation. Endothelial barrier disruption and neurohumoral activation, 
including stimulation of the hypothalamic–pituitary–adrenal axis and sympathetic nervous system 
imbalance, further amplify these early inflammatory responses. 
 

The biological signals initiated in the lungs are then transmitted throughout the body. 
Circulating oxidized lipids, acylcarnitines, microparticles, and cytokines contribute to insulin 
resistance in peripheral tissues. Experimental studies have demonstrated that exposure to 
concentrated particulate matter increases plasma free fatty acids and inflammatory markers,62 
while antioxidant interventions can mitigate these effects.63 Pollutants may also translocate 
directly into the bloodstream, adding to the systemic oxidative and inflammatory burden.64 
 

Downstream effects occur in several insulin-responsive organs. In adipose tissue, chronic 
exposure to air pollution recruits pro-inflammatory monocytes and macrophages, shifting immune 
balance toward a Th1/M1 phenotype that promotes inflammation, impaired lipolysis, and insulin 
resistance. In the liver, exposure induces steatohepatitis-like changes with altered lipid metabolism, 
endoplasmic reticulum stress, and disrupted insulin signaling.11 In skeletal muscle, endothelial 
dysfunction and reduced glucose transporter (GLUT4) activity impair insulin-stimulated glucose 
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uptake.65 In the central nervous system, hypothalamic inflammation, blood–brain barrier 
disruption, and altered autonomic regulation contribute to impaired energy balance, elevated 
cortisol, and disrupted circadian rhythms.66,67 
 

Additional mechanisms have also been identified. Pollution can reduce thermogenic activity 
in brown adipose tissue, lowering energy expenditure through mitochondrial and transcriptional 
dysregulation.67 Chronic particulate matter exposure promotes chromatin remodeling and 
methylation changes in genes linked to inflammation and insulin resistance, effects that may be 
partially reversible after exposure reduction.67 Circadian rhythm disruption has emerged as another 
common feature of pollutant exposure, contributing to the development of metabolic syndrome. 
Neurohormonal activation, including heightened sympathetic activity and hypothalamic–
pituitary–adrenal stimulation, raises blood pressure and catecholamine levels, worsening insulin 
resistance and accelerating T2D progression.68 
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Figure 1. Mechanisms of PM2.5-mediated metabolic and cardiovascular effects (obtained from 
Rajagopalan et al. Lancet Diab Endoc 2024) 
 

Review studies linking long-term exposure to air pollution and T2D 

Long-term exposure to ambient air pollutants such as PM2.5, NO2, and O3 has been increasingly 
linked to the development of T2D. Large prospective cohorts and administrative database studies 
across North America, Europe, and Asia have shown consistent associations between chronic 
PM2.5 and NO2 exposure and higher incidence of T2D. These pollutants may impair glucose 
homeostasis and insulin sensitivity through systemic inflammation, oxidative stress, and 
endothelial dysfunction. Long-term exposure can also alter adipose tissue metabolism, promote 
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low-grade chronic inflammation, and accelerate vascular and metabolic aging, all of which are 
central to T2D pathophysiology. 
 

Evidence is strongest for PM2.5, where concentration–response relationships have been 
observed even at levels below current regulatory standards. Although findings for O3 are more 
variable, some studies suggest it may contribute to impaired glucose regulation through oxidative 
mechanisms, particularly in warmer seasons or in combination with co-pollutants. Importantly, 
these associations remain significant after adjusting for individual and neighborhood-level 
socioeconomic factors, suggesting an independent role of air pollution in T2D risk. Overall, the 
growing epidemiologic evidence highlights long-term exposure to air pollutants as a modifiable 
environmental determinant of T2D, underscoring the need for stringent air quality standards and 
targeted prevention efforts. 
 

Several systematic reviews and meta analyses have examined the associations between long-
term exposure to air pollutants and T2D, generally showing similar directionality of associations 
and similar effect sizes.7,69–75  

Azizi et al. 76 conducted a global systematic review and meta-analysis to evaluate the 
association between ambient PM2.5 and PM10 and T2D. A comprehensive literature search was 
performed on November 4, 2022, using four major databases: PubMed, Embase, Web of Science, 
and Scopus. The search strategy was designed through a structured, multi-step process and 
restricted to English-language, human studies reporting original epidemiologic research. Reviews, 
animal studies, clinical trials, and 
studies of indoor air pollution were 
excluded. Eligible studies were 
required to examine outdoor PM2.5 
or PM10 exposure in relation to T2D 
prevalence or incidence, or related 
glycemic endpoints, and to report 
effect estimates such as odds ratios 
or risk ratios. A wide range of 
observational study designs was 
eligible, including cohort, case-
control, cross-sectional, panel, 
time-series, and case-crossover 
studies. Across all databases, 4,510 
records were initially identified. 
After removal of 1,553 duplicates, 
2,957 titles and abstracts were 
screened, leading to exclusion of 
2,881 non-relevant studies. 
Seventy-six full-text articles were 
assessed for eligibility, all of which evaluated PM2.5 or PM10 in relation to T2D outcomes and were 
included in the qualitative synthesis. Of these, 46 studies met predefined quality criteria and were 
retained for quantitative meta-analysis. The included studies spanned 2010 to 2022, with more 
than half published after 2018, reflecting rapid recent growth in the literature. Research was 
conducted across 18 countries, with substantial geographic diversity.  Meta-analysis showed that 
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each 10 μg/m³ increase in PM2.5 was associated with a 9% higher odds of prevalent T2D (OR = 
1.09, 95% CI: 1.05–1.14) and a 9% higher risk of incident T2D (HR = 1.09, 95% CI: 1.02–1.17). 
For PM10, the odds of prevalent T2D were increased by 13% per 10 μg/m³ (OR = 1.13, 95% CI: 
1.06–1.19), while the risk of incident T2D rose by 10–24% depending on study inclusion (HR = 
1.10–1.24). Subgroup analyses suggested stronger associations in North America for PM2.5 and in 
Asia for PM10 (Figure 2).  Mechanistic evidence supports biological plausibility through systemic 
inflammation, oxidative stress, and endoplasmic reticulum stress, which together impair insulin 
signaling, damage pancreatic β-cells, and promote insulin resistance. Other pollutants are less well 
studied. A recent systematic review and meta-analysis of five studies examining long-term O3 
exposure and T2D reported that each 10 µg/m³ increase in ambient O3 was associated with a 6% 
higher risk of T2D (pooled effect estimate 1.06; 95% CI 1.02–1.11).77 In addition, a 2014 meta-
analysis of prospective and cross-sectional studies found that each 10 µg/m³ increase in long-term 
exposure to NO2 was associated with 13% increase in hazards of incident T2D (pooled adjusted 
hazard ratio 1.13; 95% CI 1.01–1.22) across prospective cohorts, with moderate heterogeneity and 
consistent adjustment for major confounders including age, sex, body mass index, and smoking.78 
It is important to note that many of the studies examining long-term exposures and incident T2D 
were conducted over a decade ago, preceding major shifts in emission sources, regulatory 
standards, and wildfire frequency. 



26 | P a g e  
 

 
Figure 2. Association between PM₂.₅ (a) and PM10 (b) exposure and T2D incidence. (Azizi et al. 
2025) 
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Studies linking short-term exposure to air pollution and T2D 

Short-term fluctuations in ambient air pollution can acutely influence glycemic control, 
metabolic stability, and the risk of diabetes-related complications. Acute increases in PM2.5, PM10, 
NO2, and O3 have been associated with short-term metabolic deterioration and increased healthcare 
utilization among individuals with or at risk for diabetes. These pollutants can provoke systemic 
inflammation, oxidative stress, endothelial dysfunction, and sympathetic activation within hours 
of exposure. Such physiologic responses can raise circulating glucose, increase insulin resistance, 
and impair vascular tone, triggering metabolic decompensation in vulnerable populations. In those 
with pre-existing diabetes, these mechanisms may precipitate hyperglycemic crises, cardiovascular 
events, infections, and other acute complications that require emergency care. 
 

 We conducted a systematic review of short-term air pollution exposure and type 2 diabetes–
related outcomes using a comprehensive search of PubMed, Embase, and MEDLINE for human 
studies published in English between January 2000 and June 2025. The search identified 3,250 
records, of which 423 were screened by title, 101 underwent abstract review, and 77 met inclusion 
criteria after full screening. The included studies 
spanned 22 countries, with the largest contributions 
from China, Canada, Italy, and the United States, 
providing broad geographic representation. 

The evidence base is dominated by time-series 
studies (approximately 30) and time-stratified case-
crossover designs (approximately 25), with smaller 
numbers of cohort or panel studies, cross-sectional or 
ecological analyses, and other specialized 
approaches. Most studies evaluated acute exposure 
windows from same-day through lag 3 to 5 days, with 
some extending to lag 7 to 14 days. Common analytic 
methods included generalized additive models, 
Poisson or quasi-Poisson regression, conditional logistic regression, and distributed lag nonlinear 
models, allowing assessment of both immediate and delayed effects. 

PM2.5 was by far the most frequently studied pollutant, followed by PM10, NO2, and O3, often 
in multi-pollutant models. Several studies also examined PM components, wildfire or dust-related 
events, composite air quality indices, and co-exposures such as temperature or traffic noise. 
Exposures were most commonly expressed as per 10 μg/m³ increases, daily mean concentrations, 
interquartile range increments, or short-term moving averages. 

Primary outcomes focused on mortality, hospitalizations, and emergency department visits, 
particularly for diabetes, cardiovascular disease, and respiratory conditions. Secondary analyses 
frequently explored effect modification by age, sex, comorbidities, season, and socioeconomic 
context, with fewer studies examining biomarkers or metabolomic outcomes. Overall, the short-
term literature consistently relies on robust time-series and case-crossover designs to demonstrate 
that acute increases in air pollution are associated with higher risks of diabetes-related morbidity 
and mortality, while also highlighting heterogeneity by pollutant, outcome, and population 
subgroup. 
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Across pollutants, PM2.5 was the most frequently studied in relation to diabetes-related 
hospitalizations79–85 (including a study on length of stay and hospitalization cost86),  physician 
visits,87 ambulance dispatch/paramedic assessment,88 and mortality.89,90 Most studies evaluated 
PM₂.₅ concentration, but some studies evaluated wildfire specific PM₂.₅.88,91 Generally most,79–

81,83,85,87,89,91 but not all,92–94 studies have shown positive relationships between PM2.5 and diabetes 
outcomes. Typical findings indicated that each 10 µg/m³ (or interquartile range/standard deviation) 
increase in PM2.5 corresponded to a 0.5% to 3% rise in acute healthcare encounters or mortality.79–

81,84,89,90 For PM2.5 and diabetes-related outcomes, lag 0–2 days79,82,83,88–90 is the most common and 
significant window analyzed across studies, however, some studies extended it longer to 3 days, 5 
days,87  7 days92 and up to 16 days (moving average exposure).86 In studies comparing different 
lags, generally shorter lags (0-2 days) corresponded to stronger effect size,79,80,85,89,90 however, 
some studies showed longer lags have stronger effects (lag 6-8 days81,87). Heterogeneity was 
examined in some studies: by temperature,79 season,87,92,93 age,90,92,94 gender,90,92  comorbidities,89 
regional variation,89,94 wildfire vs non-wildfire PM₂.₅.91 The results were heterogenous overall. In 
one study, PM2.5 effects were noted to be strongest at low and moderate temperatures, indicating 
climate-modified heterogeneity.79 In another study, stronger associations were noted in cold 
seasons and among younger and male subgroups.87  
 

Other studies have examined the association between PM10 with diabetes outcomes: 
hospitalizations,81,84,90,92,93,93,95 hospitalization characteristics including cost/length of stay,86 
emergency department visits,96 and mortality.,94,97,98 often examined together with PM2.5. Overall, 
most,84,85,90,92,95,97,98 but not all,86,93 studies have shown positive relationship between PM10 and 
diabetes outcomes. short-term PM10 exposure associated with increased diabetes-related 
hospitalizations, emergency visits, and mortality, typically in the range of 0.3%–3% per 10 µg/m³ 
increase.  
 
Fewer studies examined SO2 and diabetes outcomes.82,84,86,90,92,93,96,98 Some studies have shown 
positive relationship with adverse events (mortality98/hospitalizations82,84/length of stay86) while 
others did not.92,93,96 Among the positive studies, An interquartile range or 10 µg/m³ rise in SO2 
concentration corresponded to roughly 0.5% to 3.8% higher T2D-related hospitalizations or deaths, 
with the most pronounced effects observed within 0–3 days of exposure.82,84,90,98 In one study, the 
association between SO2 and T2D hospitalizations remained significant after adjustment for O3 
but became null when PM2.5 was included in the model. Similarly, another study found that the 
SO₂–T2D mortality relationship was independent of NO2, yet adjustment for either PM2.5 or PM10 
eliminated the association.90 Lag-specific analyses further indicated that the effect of SO2 on T2D 
hospitalizations peaked at a lag of 3 days in one study84 and at a lag of 1 day on T2D mortality in 
another.90 
 

For NO2, studies have examined outpatient visits,87,99 ED visits,99 
hospitalizations,82,84,86,92,93,96,99 and mortality.89,90,94,98. Across 12 studies, short-term exposure to 
nitrogen dioxide was consistently linked with adverse diabetes-related outcomes, including 
increased hospitalizations, outpatient visits, and mortality. For example, in Lanzhou, China, Ye et 
al. reported a 3.4% increase in T2D outpatient visits per 10 µg/m³ rise in NO2 (lag 0-3 days)87; Yin 
et al.100 observed a 3.96% (per IQR of NO2) increase in diabetes mortality at lag 0–2 days across 
all administrative regions in China;89 Zhang et al. found a 2.2% increase in diabetes 
hospitalizations per 10 ug/m3 at lag 0-4 days;92 and Gariazzo et al. reported a 7.3% increase 
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metabolic mortality per 10 µg/m³ of NO₂ in Italy (lag 0-5 days).94 Most studies employed time-
series or case-crossover designs with lags typically spanning 0–7 days. Generally, shorter lag was 
associated with stronger effect.82 The observed relationship was linear or near-linear.82,89 
Associations were generally independent of other pollutants such as PM2.5, PM10, SO2, CO, and 
O3.82   Younger individuals,87 and those exposed during colder seasons92 were often more 
vulnerable.  Collectively, these findings underscore NO2 as a significant contributor to short-term 
diabetes-related health burdens across diverse geographic regions.  
 

The studies on O3 exposure examined a range of short-term diabetes-related outcomes, 
including hospitalizations for T2D or its complications,82,83,92,93,96,99 outpatient visits for 
diabetes,87,99 emergency department,99 and mortality from diabetes and related complications.89 
Together, these studies assessed both acute healthcare utilization and fatal outcomes as indicators 
of short-term metabolic stress and diabetes exacerbation associated with ambient ozone exposure. 
Across the studies examining O3 and diabetes outcomes, evidence points to heterogeneous and 
non-consistent associations. Some studies showed positive relationships between O3 and diabetes 
outcomes. In a study in Lanzhou, China, Ye et al. showed positive relationship between O3 and 
outpatient visits for diabetes (per 10 ug/m3 increase in maximum of 8h averaged O3 in a day (O₃8h) 
at lag05 (RR 1.012, 95% CI: 1.001, 1.023).87 In another study in all administrative regions in China, 
each 47.3 ug/m3 of O3 (maximum effect at lag 0-2 days) was associated 2.15% increase in diabetes 
mortality, but this was only observed at concentrations exceeding 60 ug/m3.89 However, large 
studies in Canada,99 China,82,83,92 South Korea96 and Bulgaria93 showed no associations between 
O3 and adverse diabetes outcomes. Inconsistencies across studies may stem from differences in 
exposure metrics, population characteristics, and regional factors. Ozone levels vary by season and 
meteorology, and its effects may appear only above certain thresholds. Co-pollutant confounding, 
differences in healthcare access, and variation in study design further contribute to the mixed 
findings. 
 
Air Toxics and T2D 

Human epidemiologic studies consistently demonstrate associations between exposure to air 
toxics, particularly polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) 
such as benzene and 1,3-butadiene, and persistent organic pollutants including dioxins and dioxin-
like compounds, and impaired glucose homeostasis, insulin resistance, prediabetes, and T2D. 
Much of this evidence derives from population-based studies using biomarker-based exposure 
assessment, including urinary or serum metabolites measured in large surveys such as NHANES, 
as well as occupational and environmentally exposed cohorts.101–103 

Across multiple studies, higher internal doses of PAHs are associated with increased odds of 
diabetes and insulin resistance, with consistent findings for metabolites of naphthalene, fluorene, 
phenanthrene, and pyrene.101,104,105 These associations are observed in the general population, 
occupational cohorts such as coke oven workers, and meta-analyses, and are often dose 
dependent.103,105 Subgroup analyses frequently suggest stronger associations among women, 
younger adults, nonsmokers, and individuals without obesity, indicating susceptibility beyond 
traditional metabolic risk factors.102,106 

Dioxins and dioxin-like compounds, including TCDD and dioxin-like PCBs, have been linked 
to diabetes prevalence and incidence in environmentally exposed populations and occupational 
cohorts. Studies of residents near industrial contamination or waste incineration sites, as well as 
military cohorts exposed during the Vietnam War, report higher diabetes risk with increasing serum 
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dioxin burden.107–109 Meta-analytic evidence indicates elevated risk in both sexes, with potential 
modification by exposure intensity and exposure mode.110 These epidemiologic findings are 
supported by mechanistic reviews highlighting aryl hydrocarbon receptor–mediated disruption of 
metabolic regulation.111,112 
 

Emerging population-level evidence also implicates volatile organic compounds, including 
benzene and 1,3-butadiene, in dysregulation of glucose metabolism. Recent analyses of U.S. 
population data demonstrate associations between urinary metabolites of 1,3-butadiene and indices 
of glucose homeostasis, prediabetes, and diabetes, with mediation by inflammatory and hepatic 
pathways such as alkaline phosphatase.113 Exposome-wide association studies further suggest that 
mixtures of VOCs contribute to insulin resistance risk.114 
 

Mechanistically, these human associations are biologically plausible. Air toxics are linked to 
insulin resistance, beta-cell dysfunction, oxidative stress, and chronic low-grade inflammation, 
often involving activation of the aryl hydrocarbon receptor, suppression of PPAR signaling, 
endocrine disruption, and perturbation of lipid and glucose metabolism.111,112,114 
 

Taken together, the human literature provides consistent evidence that exposure to multiple air 
toxics is associated with increased risk of T2D. These findings extend beyond criteria air pollutants 
and suggest that combustion-related toxicants and persistent organic pollutants contribute 
meaningfully to the global diabetes burden, operating through metabolic and inflammatory 
pathways that complement traditional cardiometabolic risk factors. 
 

Gaps in knowledge 

Although global evidence links long-term air pollution exposure to T2D, contemporary data 
from the United States remain limited, especially in regions characterized by complex pollutant 
mixtures and wildfire events. Many landmark studies were conducted over a decade ago, preceding 
major shifts in emission sources, regulatory standards, and wildfire frequency. As a result, there is 
a scarcity of recent data evaluating how modern pollutant profiles—particularly fine particulate 
matter enriched with combustion byproducts—affect diabetes risk in the current U.S. context. 
California, where wildfire smoke now represents a dominant and episodically extreme exposure 
source, lacks comprehensive epidemiologic studies quantifying short-term metabolic impacts. The 
evolving composition of PM2.5 and co-pollutants from wildfire events may have distinct biological 
effects, yet few clinical studies have examined this within contemporary diabetic populations. 
 

Another major limitation is the lack of research in racially, ethnically, and socioeconomically 
diverse U.S. populations, particularly those most affected by both diabetes and environmental 
burdens. Many existing datasets are derived from homogenous cohorts in Europe or older 
administrative data that inadequately capture the demographic and environmental complexity of 
California. Moreover, while evidence for chronic exposure and diabetes incidence is robust, the 
level of evidence linking short-term pollutant fluctuations to acute diabetes outcomes remains 
relatively weak and inconsistent. Few studies have integrated high-resolution exposure modeling 
with administrative health data to evaluate temporal lags, dose–response relationships, and 
modifiers such as temperature or wildfire smoke. Addressing these gaps through a California-
based study using refined estimates of criteria pollutants and real-world diabetes outcomes would 
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fill critical voids in the current literature and provide insights relevant to contemporary 
environmental and public health challenges 

 

Task 2. Develop daily air pollution models and surfaces for criteria pollutants 

Methodology 
Acquiring and processing air pollution data from regulatory monitoring 

We acquired and processed daily air pollution data and their spatial locations from the U.S. 
Environmental Protection Agency (https://aqs.epa.gov/aqsweb/airdata/download_files.html). The 
regulatory data measurements were obtained from monitoring sites equipped with standardized 
instruments for measuring air pollutants. Specifically, NO2 was measured using instruments 
coded as 42602, which typically involve chemiluminescence techniques, recognized for their 
accuracy in detecting nitrogen dioxide levels in ambient air. PM2.5 concentrations were measured 
using Federal Reference Method (FRM) or Federal Equivalent Method (FEM) instruments coded 
as 88101, which involve either gravimetric or continuous monitoring techniques to capture fine 
particulate matter in the air. Ozone (O3) measurements were conducted using instruments coded 
as 44201, which commonly utilize ultraviolet photometry to accurately measure ozone 
concentrations. In California, the spatial distribution of the regulatory air quality monitoring data 
for NO2, PM2.5 and O3 are presented in Figure 3 (left for NO2, middle for PM2.5 and right for O3) 
and the respective unique number of regulatory sites is presented in Table 1.  

The trend for NO2 measurement sites shows a slight decline during the early 1990s, with the 
number of unique sites decreasing from 151 in 1990 to 147 in 2000. This downward trend 
continued until 2006, when the number of monitoring sites reached its lowest point. After 2006, 
the number of unique NO2 measurement sites fluctuated between 127 and 135, suggesting 
variability in monitoring efforts. Overall, there is no consistent upward or downward trend in 
NO2 monitoring, indicating that the focus on this pollutant has varied over the years. The total 
number of unique NO2 air quality monitors is 277. In contrast, the trend for PM2.5 reveals a clear 
upward trajectory in the number of unique measurement sites. Starting with 183 sites in 1999, 
the number steadily increased to 252 by 2021. This growth is particularly evident from 2000 
onward, demonstrating a growing recognition of the importance of this pollutant and dedicated 
resources to understanding and mitigating its impacts. The total number of unique PM2.5 air 
quality monitors is 331. For O3, the trend indicates a generally stable pattern with a gradual 
increase in monitoring sites over time. The number of unique O3 measurement sites increased 
from 194 in 1990 to 198 in 2008, with some fluctuations throughout the years. Although the 
overall growth in O3 monitoring efforts is less pronounced than that of PM2.5, it still 
demonstrates a steady commitment to tracking this pollutant. The total number of unique O3 air 
quality monitors is 379.  
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In our modeling process, we also applied fixed site saturation monitoring data in our analysis. 
A detailed description of the saturation monitoring data can be found in Supplementary File 3 
and in a previously published paper.115 

 
Figure 3. The spatial distributions of the regulatory monitors for NO2 (left panel), PM2.5 (middle 
panel), and O3 (right panel) over the observable time periods. 
 
Table 1. The unique number of regulatory monitoring sites with the respective effective 
measurements of NO2, PM2.5 and O3 across the study period. 

Year 
Number of Unique Sites 

NO2 PM2.5 O3 
1989 

  
182 

1990 151 
 

194 

1991 150 
 

201 

1992 149 
 

205 

1993 159 
 

199 

1994 164 
 

208 

1995 163 
  

1996 159 
  

1997 156 
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1998 154 
  

1999 148 183 
 

2000 147 
  

2001 153 
  

2006 127 
 

186 

2007 129 213 195 

2008 136 221 198 

2009 130 225 192 

2010 132 228 194 

2011 127 229 196 

2012 132 248 198 

2013 129 242 190 

2014 132 246 189 

2015 133 240 185 

2016 135 238 185 

2017 132 240 184 

2018 129 246 180 

2019 128 241 181 

2020 124 247 182 

2021 127 252 178 

Total 277 331 379 

 

Acquiring and processing air pollution data from Google Streetcar monitoring 

Google Streetcar had mobile monitoring of the three criteria pollutants across San Francisco 
Bay (counties of Alameda, Contra Costa, San Francisco and San Mateo), Los Angeles County, 
and Central Valley regions (see: https://www.google.com/earth/outreach/special-projects/air-
quality/). The Google Streetcar mobile measurements for each region are highly spatially 
autocorrelated due to the intense sampling of air pollutants on its road network. To ensure that 
our models captured a wide range of variability in road traffic patterns while minimizing the 
influence of spatial autocorrelation, we selected 150 road segments for each region through a 
location-allocation algorithm.116 The location-allocation algorithm is deterministic and was 
intentionally used to ensure spatially representative coverage of traffic conditions within each 
region without spatial autocorrelation rather than to support inference at the individual road-
segment level. Because the objective was to characterize regional traffic patterns for exposure 
modeling, rather than to evaluate the effect of specific segments, we were not interested in 

https://www.google.com/earth/outreach/special-projects/air-quality/
https://www.google.com/earth/outreach/special-projects/air-quality/
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percentage of mobile sampling being used and did not conduct sensitivity analyses based on 
alternative segment selections. Spatial autocorrelation can lead to inflated model performance 
metrics and reduced generalizability by over-representing certain areas or patterns. By using the 
location-allocation algorithm, we distributed the selected road segments more evenly across each 
region, reducing clustering and ensuring that our models are better representative of the broader 
spatial patterns across California. This approach helped in developing more robust and 
interpretable models by preventing overfitting localized traffic conditions.  A total of 150 road 
segments with each road segment having at least 100 measurements was selected for each of the 
four regions: Alameda and Contra Costa; San Francisco and San Mateo; Los Angeles, and 
Central Valley. Each region had (1) 50 road segments selected from locations within 500 m of 
highways allowing truck traffic, or within 500 m of major California ports (i.e., goods movement 
corridors or GMCs), (2) 50 road segments selected from locations within 500 m of highways not 
allowing truck traffic or within 300 m of major roadways (i.e., non-goods movement corridors or 
NGMCs), and (3) locations not encompassed in the first and second parts (i.e., control areas or 
CTRLs). The detailed selection process is documented in Supplementary File 3. A total of 150 
segments were selected in each of four regions (600 total), yielding 8,345 daily traffic 
measurements. These data were used in conjunction with substantially larger datasets from 
regulatory monitoring (676,612 daily measurements) and saturation monitoring (4,893 daily 
measurements), ensuring that exposure estimates were not driven by the selected segments alone 
but reflected broader regional traffic variability. 

The Google Streetcar measured NO2 and O3 concentrations in the unit of ppb – the same as 
regulatory monitoring; however, PM2.5 concentrations were in total number of particles instead 
of the typical concentrations in µg m-3. The daily concentration of PM2.5 in µg m-3 of road 
segment i of traffic corridor k on day j was estimated through: 

 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐺𝐺𝑖𝑖,𝑗𝑗,𝑘𝑘 ∗ 𝑅𝑅𝚥𝚥,𝑘𝑘� /𝐺𝐺𝚥𝚥,𝑘𝑘�                 (1) 

where 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝐺𝐺𝑖𝑖,𝑗𝑗,𝑘𝑘 represent the converted and original measures. 𝑅𝑅𝚥𝚥,𝑘𝑘�  and 𝐺𝐺𝚥𝚥,𝑘𝑘�  are 
respectively the mean PM2.5 concentrations in µg m-3 from all the regulatory monitors and the 
mean PM2.5 particle numbers from all the selected 50 road segments for day j in corridor k. The 
PM2.5 concentrations were estimated separately for each region. 

Acquiring and processing air pollution predictors from the observation period 

For the predictors (Table 2), the availability of daily traffic data varied across 12 California 
Department of Transportation (Caltrans) districts, with the earliest traffic data available from 
2000 to 2005. We used the data collected by the Caltrans Performance Measurement System 
(PeMS) to derive roadway daily traffic. PeMS data are collected in real-time from nearly 40,000 
individual detectors spanning the freeway system across all major metropolitan areas of the State 
of California and provide an Archived Data User Service that provides over fifteen years of data 
for historical analysis. The detector measured traffic flow covered ~5 % highway segments, and 
we summed hourly traffic to daily traffic for all the stations across California. The interconnected 
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steps were then used to derive daily traffic for all the California highways. Please refer to the 
Supplementary File 3 for the details of traffic assignment. 

The land use data was derived from the statewide parcel data in 2019, combined by the 
California Air Resources Board (CARB) from individual County Assessor’s Offices, and we 
considered them consistent across all the years. The land cover data was acquired from the 
National Land Cover Database (NLCD) at five-year intervals (2001, 2006, 2011, 2016, and 
2019)117. The assumption was that land cover remained constant until the subsequent available 
measurement. Vegetation dynamics were assessed through the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument-derived data, specifically the Normalized Difference 
Vegetation Index (NDVI)118, computed at 16-day intervals since 2000. We assumed the 
vegetation index remained constant from its previous measurements within 16 days. Daily 
meteorological data were acquired from the GridMet dataset119, covering 1989 to 2021 at a 4 km 
spatial resolution. For satellite remote sensing data, daily measurements from the Ozone 
Monitoring Instrument (OMI)120 for NO2 and O3 were accessible from 2005 to 2021. The aerosol 
optical depth (AOD) data121 was available from 2000 to 2021. 

 

Table 2. LUR predictors and available time periods in the modeling process. 

Variables Source Spatial 
Resolution 

Temporal 
Resolution Time Period Extension 

Period 

Trafficδ CalTrans 30 m Daily 2005-2021 1989-2004 

Land useθ CARB 30 m One time 2019 Use 2019 

Land cover¥ NLCD 30 m Every 5 years 2001-2019 Use 2001 

Vegetation index 
(NDVI) € 

MODIS 250 m Every 16 
days 

2000-2021 1989-1999 

Meteorological 
data£  

GridMet 4 km Daily 1989-2021 None 

AOD dataξ MAIAC 1 km Daily 2000-2021 1989-1999 

OMI-NO2 dataξ NASA’s OMI 25 km Daily 2005-2021 1989-2004 

OMI-O3 dataξ NASA’s OMI 25 km Daily 2005-2021 1989-2004 
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Distance to 
highway and 
major roadwaysǂ 

ESRI 30 m One time 2018 None 

Distance to coastǂ USGS 30 m One time 2015 None 

Elevation from 
digital elevation 
modelǂ 

USGS 30 m One time 2015 None 

Distance to portsǂ ESRI 30 m One time 2018 None 

δ: Traffic data are derived from the California Department of Transportation (CalTrans) 
θ: Land use data are provided by the California Air Resources Board (CARB), which combined 
the parcel data from all the 58 counties in California. 
¥: Land cover data is derived from the NLCD (National Land Cover Database) provided by the 
U.S. Geological Survey (USGS). 
€: The NDVI (Normalized Difference Vegetation Index) data is provided by MODIS (Moderate 
Resolution Imaging Spectroradiometer) from NASA's Earth Observing System (EOS). 
£: The meteorological data is sourced from GridMet provided by the University of Idaho. 
ξ: MAIAC AOD data: Data from the Multi-angle Implementation of Atmospheric Correction 
(MAIAC) algorithm using MODIS Terra and Aqua satellites; OMI-NO2 and OMI-NO3 data are 
derived from the National Aeronautics and Space Administration Ozone Monitoring Instrument. 
ǂ: Traditional predictors include distance to the nearest highway and major roadway derived from 
the ESRI Street data layer for 2018, distance to coast and elevation data derived from the USGS 
for 2015, and distance to major ports derived from the ESRI data layer for 2018. 

 

Developing daily air pollution models through ML integrated LUR approach 

 The Deletion/Substitution/Addition (D/S/A) algorithm initiates the selection process by 
starting with a base model, typically the intercept-only model unless a different starting point is 
specified. The algorithm then iteratively adds, deletes, or substitutes terms to improve the 
model's predictive performance. During each iteration, potential modifications to the model, such 
as adding polynomial terms or interaction effects, are evaluated based on a predefined criterion, 
usually the reduction of the cross-validated error or the improvement in another model 
performance metric. The selection process continues iteratively, with the algorithm testing 
various combinations of terms and retaining the modifications that lead to the greatest 
improvement in model performance. This process is similar to a guided search through the space 
of possible models, where each step is evaluated to ensure it moves toward a better fit. The 
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algorithm halts its iterations when no further modifications result in a significant improvement in 
the model's performance, according to the predefined stopping criteria. These criteria could 
include a threshold for the minimum improvement in cross-validated R-squared or reaching a 
maximum number of iterations (15 in our research). At this point, the model with the optimal 
combination of terms is selected as the final model, representing the best balance between 
complexity and predictive accuracy. To enhance the interpretability of our modeling results, we 
limited the predictors to linear terms and avoided interaction terms.  

For regulatory and saturation monitoring data, each was treated independently, randomized, 
and divided into 10 equal folds without considering spatial or temporal constraints. The Google 
Streetcar data, which spans multiple regions, was randomized and divided into 10 folds 
separately for each region. These region-specific folds were then merged with the corresponding 
folds from the other regions, as well as with the 10 randomized folds from the regulatory and 
saturation monitoring datasets. This approach ensured that each of the 10 folds contained a 
balanced mix of data from all monitoring types and regions. One subsample was then retained as 
validation data, while the remaining 9 subsamples served as training data during the modeling 
process. This cross-validation process was repeated 10 times, with each subsample used once as 
validation data. 

In developing the daily LUR models for NO2, PM2.5, and O3, we constructed respective 
models using only available observable data for both predictors and air quality measures. 
Collinearity diagnostics, including pairwise correlations and variance inflation factors (VIFs), 
were used to identify and avoid retaining highly correlated variables. The D/S/A framework 
further mitigates multicollinearity by iteratively removing redundant predictors during the 
deletion and substitution steps, favoring parsimonious models that maximize predictive 
performance while maintaining interpretability. No algorithms of temporal extensions to the 
predictors were applied during the modeling process. The modeling results, however, were 
applied to all the predictors across all the years to predict daily NO2, PM2.5 and O3 concentrations 
for the 1989-2021 period. 

Results 
D/S/A integrated LUR models covering the available observational periods. 

Table 3-5 present the daily LUR models, capturing the available observational time periods 
for NO2, PM2.5, and O3. In the case of NO2 (Table 3), the consistent year-after-year decline in 
concentrations observed during the study period was reflected in the variable “year”, and this 
could be attributed to the regulatory efforts to reduce traffic NO2 emissions. The recurrent pattern 
of lower concentrations during weekends compared to weekdays suggests potential reductions in 
human activities on roadways. Additionally, the positive correlation between higher OMI-NO2 
values and increased NO2 concentrations underscores the significance of remote sensing 
observations in capturing spatial variability. Traffic density emerged as a significant factor, as 
areas with greater vehicular activity exhibited greater NO2 emissions and higher concentrations. 
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Moreover, weather conditions played a crucial role, with higher relative humidity, wind speed, 
and temperature contributing to lower NO2 concentrations. Conversely, increased precipitation 
was linked to higher NO2 levels, highlighting the interplay between meteorological conditions 
and NO2 dynamics. Residential areas were found to have lower NO2 concentrations, as well as in 
the developed open spaces. Low and high-intensity developments, on the other hand, were 
associated with greater NO2 concentrations, indicating the positive association of urban 
development with NO2 levels. The availability of green spaces, indicated by higher vegetation 
index, shrub cover, and wetlands, recognized as pollution sinks was associated with lower NO2 
concentrations. Conversely, a higher proportion of impervious surfaces was correlated with 
increased NO2 levels. Additionally, locations farther from ports displayed lower NO2 
concentrations, indicating elevated NO2 levels near ports. The NO2 model had an adjusted R2 of 
0.84 in variance explained. 

For PM2.5 (Table 4), throughout the study period, its concentrations consistently decreased, 
mirroring the trend observed for NO2. The study identified a positive correlation between higher 
aerosol optical depth (AOD) values and elevated PM2.5 concentrations, suggesting that increased 
aerosol presence in the atmosphere is associated with higher particulate matter levels. Increased 
traffic density emerged as a contributing factor to higher PM2.5 concentrations, emphasizing the 
impact of vehicular emissions on air quality. Weather factors such as higher relative humidity, 
wind speed, and temperature were associated with lower PM2.5 concentrations. Developed open 
spaces were linked to reduced PM2.5 concentrations, and so were areas characterized by a higher 
vegetation index, shrub cover, barren land, and water bodies, emphasizing the role of natural 
features in mitigating air pollution. Barren land refers to areas that have little to no vegetation 
cover and is often characterized by exposed soil or rock122. Industrial land use, however, was 
associated with higher PM2.5 concentrations, pointing to the impact of industrial activities on 
particulate matter emissions. In contrast to NO2, greater residential areas were linked to higher 
PM2.5 concentrations, potentially attributed to background concentrations. In densely populated 
regions, the increased density of housing, traffic, and other activities can lead to elevated PM2.5 
background concentrations. Additionally, the urban heat island effect and limited air circulation 
in residential areas can hinder the dispersion of pollutants, allowing background PM2.5 levels to 
rise. Additionally, locations farther from the coast were associated with higher PM2.5 
concentrations, indicating a spatial relationship between proximity to the coast and particulate 
matter levels. The final PM2.5 model had a predictive performance of 0.65. 

In contrast to the patterns observed for NO2 and PM2.5, O3 concentrations exhibited 
predominantly opposing relationships (Table 5). The variable "year" did not show a significant 
association with O3 concentrations, indicating the absence of an annual trend in O3 levels. 
Weekends were characterized by higher O3 concentrations than weekdays, revealing a distinct 
opposite temporal pattern. Higher OMI-O3 values were linked to greater O3 concentrations, 
emphasizing the positive association of remote sensing observations with measured ozone levels. 
Surprisingly, greater traffic was associated with lower O3 concentrations, suggesting a nuanced 
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photochemical process (i.e., scavenger effect, see details in discussion of Figure 4) between 
vehicular emissions and ozone dynamics. Weather factors such as higher relative humidity, wind 
speed, and atmospheric pressure correlated with elevated O3 concentrations, underscoring the 
influence of meteorological conditions on ozone levels. Land use patterns also played a role, 
with government & institutional, commercial, and waterbody areas associated with higher O3 
concentrations, while barren land, crops, and wetlands were linked to lower O3 concentrations. 
Developed low, medium, and high-intensity developments were associated with lower ozone 
concentrations, suggesting potentially lower concentrations in urban areas. Low-intensity 
development includes areas with sparse residential or commercial buildings, such as small towns 
or suburban neighborhoods. Medium-intensity development encompasses areas with more 
concentrated buildings and infrastructure, typically found in denser suburban or urban areas with 
moderate residential and commercial activities. High-intensity development represents the most 
densely built areas, including central business districts and urban centers with significant 
residential, commercial, and industrial structures122. Moreover, greater distances from highways 
were associated with higher O3 concentrations, highlighting a similar scavenger effect between 
proximity to highways and ozone levels. The final O3 model had a predictive performance of 
0.92. 

Table 3. Daily NO2 model covering available observational periods. 
Coefficient Estimates std. Error Statistic P-Value 

Year -0.166543 0.002916 -57.117810 <0.001 

Season [Fall] 365.054890 5.843852 62.468199 <0.001 

Season [Spring] 361.935364 5.842652 61.947107 <0.001 

Season [Summer] 361.980633 5.841784 61.964058 <0.001 

Season [Winter] 365.626222 5.844764 62.556198 <0.001 

Week [Weekend] -2.980948 0.024376 -122.29108 <0.001 

NO2 from OMI 8.50E-16 3.63E-18 234.413151 <0.001 

Vehicle Kilometers Traveled (VKT) 
(350m) 

0.000083 0.000001 117.218964 <0.001 

Minimum Relative Humidity (%) -0.135210 0.000722 -187.14711 <0.001 

Wind Velocity at 10m (m/s) -1.079110 0.007579 -142.38620 <0.001 

Minimum Temperature (K) -0.052602 0.002938 -17.906301 <0.001 

Precipitation (mm, daily total) 0.034221 0.002549 13.425262 <0.001 
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Roadway Area (ha) (50m) 0.422647 0.009005 46.934432 <0.001 

Residential (ha) (350m) -0.007278 0.000145 -50.070525 <0.001 

Waterbody (ha) (50m) -1.886457 0.049965 -37.755221 <0.001 

Developed Open Space (ha) (50m) -0.142732 0.009172 -15.561964 <0.001 

Developed Low Intensity (ha) (400m) 0.010865 0.000159 68.359609 <0.001 

Developed High Intensity (ha) (5000m) 0.000104 0.000001 73.034457 <0.001 

Shrubs (ha) (3250m) -0.000073 0.000002 -34.732591 <0.001 

Wetlands (ha) (550m) -0.033821 0.000833 -40.579188 <0.001 

NDVI -0.000149 0.000011 -13.104524 <0.001 

Percent Impervious (%) (50m) 0.037625 0.000605 62.143918 <0.001 

Distance to Ports (m) -0.000002 0.000000 -10.090608 <0.001 

Distance to Highway (m) -0.000091 0.000003 -29.413285 <0.001 

Observations 321297 
R2 / R2 adjusted. 0.836 / 0.836 

 

Table 4. Daily PM2.5 model covering available observational periods. 
Coefficient Estimates std. Error Statistic P-Value 

Year -0.139709 0.003115 -44.847889 <0.001 

Season [Fall] 360.125186 6.244769 57.668292 <0.001 

Season [Spring] 356.974440 6.245309 57.158809 <0.001 

Season [Summer] 358.493294 6.246059 57.395114 <0.001 

Season [Winter] 360.534093 6.244547 57.735832 <0.001 

AOD (albedo) 0.044977 0.000221 203.299221 <0.001 

Vehicle Kilometers Traveled (VKT) (350m) 0.000012 0.000001 16.793841 <0.001 

Wind Velocity (m/s) -1.239394 0.006771 -183.031784 <0.001 

Minimum Temperature (K) -0.239641 0.002586 -92.662860 <0.001 

Minimum Relative Humidity (%) -0.059829 0.000649 -92.242887 <0.001 
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Roadway Area (ha) (5000m) 0.000024 0.000002 13.114503 <0.001 

Industrial (ha) (1850m) 0.000513 0.000024 21.714939 <0.001 

Residential (ha) (850m) 0.001185 0.000029 41.076124 <0.001 

Unknown Land Use (ha) (450m) -0.002008 0.000150 -13.387931 <0.001 

Agricultural (ha) (50m) -0.311401 0.014300 -21.776931 <0.001 

NDVI -0.000394 0.000010 -39.979943 <0.001 

Barren Land (ha) (3000m) -0.001291 0.000013 -99.546262 <0.001 

Barren Land (ha) (50m) -0.982108 0.074570 -13.170308 <0.001 

Shrub Land (ha) (200m) -0.029789 0.000822 -36.232176 <0.001 

Developed Open Space (ha) (4950m) -0.000037 0.000002 -16.515144 <0.001 

Waterbody (ha) (1750m) -0.000578 0.000020 -29.560264 <0.001 

Distance to Highway (m) -0.000029 0.000003 -8.723557 <0.001 

Distance to Coast (m) 0.000017 0.000000 88.728793 <0.001 

Elevation (m) -0.002428 0.000053 -46.003552 <0.001 

Observations 633277 
R2 / R2 adjusted 0.652 / 0.652 

 

Table 5. Daily O3 model covering available observational periods. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] -14.458252 1.093975 -13.216251 <0.001 

Season [Spring] -7.053920 1.104199 -6.388269 <0.001 

Season [Summer] -11.324983 1.112992 -10.175261 <0.001 

Season [Winter] -15.288623 1.087035 -14.064514 <0.001 

Week [Weekend] 1.485925 0.029979 49.566212 <0.001 

O3 from OMI 0.046811 0.000557 84.056414 <0.001 

Vehicle Kilometers Traveled (VKT) (350m) -0.000055 0.000001 -50.399347 <0.001 

Vapor Pressure (kPa) 6.030856 0.020439 295.059906 <0.001 
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Minimum Temperature (K) 0.098247 0.003827 25.669391 <0.001 

Wind Velocity at 10m (m/s) 0.540921 0.008509 63.571245 <0.001 

Government & Institutional (ha) (1800m) 0.000064 0.000007 9.086732 <0.001 

Commercial (ha) (3200m) 0.000012 0.000009 1.249078 0.212 

Waterbody (ha) (700m) 0.009638 0.000155 62.234975 <0.001 

Developed Low Intensity (ha) (200m) -0.060691 0.000715 -84.924620 <0.001 

Developed Medium Intensity (ha) (150m) -0.110609 0.000777 -142.421056 <0.001 

Developed High Intensity (ha) (100m) -0.249156 0.001589 -156.768640 <0.001 

Barren Land (ha) (250m) -0.058906 0.001805 -32.632019 <0.001 

Crops (ha) (5000m) -0.000085 0.000001 -158.369440 <0.001 

Wetlands (ha) (1600m) -0.003933 0.000053 -73.970854 <0.001 

Distance to Highway (m) 0.000020 0.000002 12.767938 <0.001 

Observations 513030 
R2 / R2 adjusted 0.923 / 0.923 

 

Daily air pollution surfaces 

Figure 4 shows the aggregated annual concentration surfaces of NO2 for four decennial years, 
including 1990, 2000, 2010, and 2020. The spatial patterns clearly show the decrease in NO2 
concentrations throughout the years, especially in the urban areas. To identify degrees of 
reduction throughout California, we used regulatory monitors for NO2, PM2.5, and O3 (Figure 3) 
to identify average decennial concentrations for the State. This approach is reasonable given the 
state regulatory monitors are designed to ensure comprehensive spatial coverage, capturing the 
diverse environmental conditions across the state, including coastal, inland, and mountainous 
regions. By incorporating monitoring points from both urban and rural areas, it enables the 
examination of the urban-rural gradient in air pollution. These holistic statewide air quality 
monitors also allow for the identification of spatial patterns, hotspots, and potential disparities in 
pollution concentrations. Though some points are duplicated due to multiple pollutants being 
measured at the same time, they reflect the importance of those points in geographic placement 
strategies. Moreover, utilizing data from 1410 monitoring sites enhances the statistical robustness 
of the analysis, providing a more accurate assessment of statewide air pollution levels. Using 
those 1410 locations, we found that the average NO2 concentrations decreased from 18.1 ppb in 
1990 to 14.1 ppb in 2000, and decreased to 9.7 ppb in 2010 and 8.0 ppb in 2020. For PM2.5, 
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similar trends were identified for the four decennial years but with a much smaller decrease 
(Figure 5). A striking change in 2020 was that the PM2.5 levels increased significantly in Central 
Valley while other places decreased, especially in Los Angeles, which experienced the greatest 
decline. We suspect the significant increase in PM2.5 levels in Central Valley in 2020 was due to 
the significant impact of wildfires.123 Using the locations of the 1410 regulatory monitors, we 
found that the average PM2.5 concentrations decreased from 14.2 µg m-3 in 1990 to 12.0 µg m-3 
in 2000, and further decreased to 9.9 µg m-3 in 2010 but increased to 12.2 µg m-3 in 2020. The 
increase in wildfire frequency and intensity in California123–125 will further increase PM2.5 levels, 
though regulatory actions have significantly reduced traffic and industry-related PM2.5.  

For O3 (Figure 6), we did not see any apparent trend, but we did identify that  urban 
metropolitan areas, such as the San Francisco Bay and Los Angeles Metro, had relatively lower 
O3 concentrations compared to rural areas. This is very likely due to the O3 scavenger effect126. 
The scavenger effect involves the removal or reduction of ozone from the atmosphere due to the 
presence of specific pollutants or conditions. These pollutants can act as scavengers by reacting 
with ozone molecules, leading to a decrease in overall ozone concentrations. Common 
scavengers of ozone include nitrogen oxides (NOx), carbon monoxide (CO), volatile organic 
compounds (VOCs), and particulate matter. In urban environments, where these pollutants are 
often abundant due to human activities such as combustion processes and industrial emissions, 
the scavenger effect can be more pronounced. Nitrogen oxides, particularly NO2, can react with 
ozone in the presence of sunlight to form nitric oxide (NO) and oxygen (O2). This process 
reduces the overall ozone levels in the atmosphere. VOCs and carbon monoxide can also 
participate in ozone-depleting reactions. These compounds can undergo photochemical reactions 
that consume ozone while generating other pollutants. Using a total of 1410 spatial points from 
regulatory monitors, we found that the overall O3 level did not change significantly through 
those four decennial years: the average O3 concentrations decreased from 38.2 ppb in 1990 to 
37.8 ppb in 2000, and slightly increased to 38.1 ppb in 2010 and 39.3 ppb in 2020. 

Further, we provided daily air pollution surfaces for NO2, PM2.5, and O3 for January 1st, 
2019, and compared them with the corresponding nearest centennial annual surfaces (Figures 4-
6). We found that for NO2, the daily surface closely matched the spatial patterns of the annual 
surface. For PM2.5, the patterns were also similar, though there was a significant increase in the 
Sierra region (eastern part of the map), suggesting a potential impact from wildfires. For O3, 
while the general patterns were consistent in Northern California, the LA metropolitan area in 
Southern California showed higher O3 concentrations on the daily map, which were less 
prominent in the annual data. Given the significant seasonal variability of O3, we also compared 
seasonal means and observed notable differences both between seasons and relative to the annual 
averages. These comparisons indicate that while spatial patterns were largely consistent from 
daily to annual concentrations, there were notable differences in daily spatial patterns, 
particularly for PM2.5 and O3, likely due to the impact of temporal factors like wildfires and 
weather.  
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Figure 4. Decennial years of NO2 surfaces among the over 30- years study period. 

 

 
Figure 5. Decennial years of PM2.5 surfaces among the over 30- years study period. 
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Figure 6. Decennial years of O3 surfaces among the over 30- years study period. 
 

Task 3. Develop air pollution models and surfaces for air toxics 

Methodology 

We applied the same deletion/substitution/addition machine learning LUR algorithms as used 
in the criteria pollutants for California. Air toxics, which include hazardous air pollutants (HAPs) 
such as chromium, nickel, lead and zinc, as well as volatile organic compounds (VOCs) like 1,3-
butadiene and benzene, were incorporated in our air pollution modeling. 

Description of air toxics regulatory monitoring data 

The air toxics data used in our analysis was obtained from the CARB’s speciation data and 
span from 1996 to 2021; however, measurements are sparse and irregular over time. This 
comprehensive dataset provides information on several key pollutants that are monitored for 
their hazardous effects on health and the environment. Benzene, a volatile organic compound 
commonly emitted by vehicle exhaust and industrial processes, was monitored at 54 unique sites. 
A total of 384 observations were recorded, providing insights into the spatial and temporal 
variations in benzene concentrations. These observations represent individual sampling events 
rather than continuous monitoring and are concentrated largely within the past decade, with some 
calendar years having no measurements at all. Importantly, this data density is consistent with, 
and in fact exceeds, what is commonly used in traditional annual LUR studies, which are often 
developed using a single measurement per site. Similarly, 1,3-butadiene, another VOC associated 
with vehicular emissions and industrial activities, was measured at 91 unique sites with 899 total 
observations, the highest number of sites among the pollutants in this dataset. Chromium, a 
heavy metal linked to industrial processes like metal plating and combustion, was monitored at 
46 unique sites, with 366 total observations. Nickel, often associated with industrial activities 
such as metal smelting, was also measured at 46 unique sites, with the same number of 
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observations as chromium. Lead, once commonly emitted from leaded gasoline and various 
industrial activities, was similarly monitored at 46 unique sites, with a total of 366 observations. 
Zinc, another heavy metal commonly released by industrial processes and vehicle emissions, was 
monitored at the same 46 sites, with 366 total observations. While often associated with 
industrial processes and vehicle emissions, Zinc may also have a significant contribution from 
agricultural activities and forest management practices. In agriculture, zinc can be released into 
the air as a result of the use of fertilizers and pesticides that contain zinc compounds. 
Additionally, soil erosion, which can occur in agricultural settings, may contribute to airborne 
zinc particles. In forest management, the burning of biomass or the use of zinc-containing 
pesticides for pest control can also contribute to zinc emissions. 

Development of potential predictors for air toxics modeling 

Pollutant specific emissions 

For this project, we utilized emissions estimates from California’s toxics emissions inventory, 
covering stationary sources from 1996 to 2021. These emissions data encompass both point 
sources reported by facility operators or air districts under the Air Toxics “Hot Spots” Program 
(AB 2588) and aggregated point sources estimated by the California Air Resources Board 
(CARB) and local air districts. This comprehensive dataset provided a long-term perspective on 
emissions trends and variability. To ensure accurate spatial representation, point source locations 
were geocoded using ArcGIS geocoding services based on the street addresses provided. This 
step allowed for precise mapping of emission sources, enhancing the spatial fidelity of the 
dataset. In addition to the individual air toxics emissions, we included total organic gases (TOG) 
and reactive organic gases (ROG) data from CARB's emissions inventory. These broader organic 
compound categories complemented the detailed toxics data, providing a more holistic view of 
emissions relevant to air quality and exposure assessments. 

All emission data were transformed into annual raster formats with a resolution of 100 m. 
This high-resolution rasterization process enabled a detailed spatial representation of emissions, 
capturing their distribution and intensity over time. The resulting rasters served as key inputs for 
developing annual air toxics models and pollutant concentration surfaces. By integrating this 
detailed emissions data into the modeling process, we were able to use spatially and temporally 
resolved predictors to better understand and assess air toxics distributions. 

Remote sensing Sentinel bands and ratios 

In our LUR models for air toxics, Sentinel-2 spectral bands and their ratios are used as 
predictors to account for the spatial distribution of surface characteristics that influence pollutant 
levels127. These bands, ranging from visible to shortwave infrared (SWIR) wavelengths, capture 
variations in land cover, vegetation, and urbanization, which correlate with air pollutant 
concentrations. 

For lead, significant coefficients were observed by127 in the Blue (B2) band and the band 
ratio B6/B8, suggesting that these features effectively capture spatial variability associated with 
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sources or sinks of lead pollution. Specifically, the Blue band (B2) positively correlates with lead 
concentrations, indicating a potential link with urban or industrial surface characteristics. The 
ratio B6/B8 is also significant, highlighting differences between vegetation and urban structures 
that may influence the spatial distribution of lead. 

For zinc, key predictors included the Green (B3) band and band ratios B3/B8 and B6/B8. The 
Green band positively correlates with zinc, potentially reflecting surface characteristics 
associated with urban vegetation or metallic surfaces that influence zinc deposition. The negative 
coefficient of B3/B8 suggests an inverse relationship with vegetation density, while B6/B8 
indicates that NIR-based spectral differences capture spatial variation in zinc pollution. 

Overall, the integration of Sentinel-2 spectral data enhances the spatial resolution of air 
pollution modeling by leveraging the detailed information on land cover and surface 
characteristics to improve the prediction of air toxic distributions. 

Traditional LUR predictors 

For the development of our LUR models for nitrogen dioxide (NO2), particulate matter 
(PM2.5), and ozone (O3), we utilized a wide range of integrated, comprehensive data sources that 
provided crucial spatial and temporal information. These sources included traffic data, land use 
and land cover data, meteorological conditions, vegetation dynamics, and satellite data. Please 
refer to the criteria pollutants for the predictors considered. Now, we are extending the use of 
these same predictors to model air toxics, ensuring a robust framework for understanding the 
spatial distribution of hazardous pollutants. 

Traffic data are a critical input in air pollution modeling, particularly for pollutants like NO2 
and PM2.5, which are heavily influenced by vehicle emissions. This data includes information on 
traffic volume and road networks. Traffic data helps identify areas with high vehicular emissions, 
which are significant contributors to local air quality, especially in urban environments. By 
incorporating this data into the models, we can account for the impact of transportation-related 
emissions on air toxics, as pollutants like benzene, 1,3-butadiene, and other air toxics are often 
linked to motor vehicle exhaust. 

Land use and land cover data provide essential information about how different types of land 
cover and land use activities influence air quality. Land use refers to how land is utilized (e.g., 
residential, industrial, commercial, or agricultural), while land cover pertains to the physical 
surface of the land (e.g., urban areas, forests, grasslands, or water bodies). This data allows us to 
understand the relationship between human activity, land transformation, and pollution patterns. 
In the case of air toxics, land use and land cover data can help pinpoint areas of high pollution 
exposure, such as industrial zones, high-density residential areas, or regions affected by 
agricultural practices. 

Meteorological conditions are a crucial factor in the dispersion and transformation of air 
pollutants. We incorporated data on temperature, wind speed, wind direction, humidity, and 
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atmospheric pressure, which all influence how pollutants travel, dilute, and react in the 
atmosphere. For example, wind patterns can carry pollutants from high-emission areas to other 
regions, while temperature and humidity influence the formation of secondary pollutants such as 
ozone. In air toxics modeling, meteorological data helps account for how local weather 
conditions can impact the spread and concentration of hazardous pollutants, providing a more 
dynamic and accurate representation of air quality. 

Vegetation dynamics also play a significant role in air pollution modeling. Vegetation can act 
as both a sink and a source for certain pollutants. For instance, plants can absorb some pollutants 
through their stomata, reducing local pollutant concentrations. Conversely, land management 
practices such as deforestation, urbanization, or changes in vegetation cover can alter the natural 
processes that help mitigate air pollution. By including vegetation dynamics in our models, we 
can account for how vegetation types and coverage influence the dispersion of air toxics, 
particularly in rural or suburban areas where vegetation plays a more prominent role in air 
quality. 

Finally, satellite data provides a powerful tool for capturing large-scale spatial patterns of 
land cover, vegetation, and even pollutant concentrations. Satellite imagery, often available at 
high resolution, can be used to monitor changes in land use, track vegetation dynamics, and even 
estimate pollutant levels from space. For example, vegetation indices derived from satellite data, 
such as the Normalized Difference Vegetation Index (NDVI), can offer insights into the density 
and health of vegetation in a given area. Furthermore, satellite-based remote sensing can assist in 
monitoring emissions from point sources, providing another layer of data to refine the modeling 
of air toxics. 

Deletion/Substitution/Addition (D/S/A) LUR modeling techniques 

For the annual air toxics modeling, we applied a similar approach to the one used in 
developing daily air pollution models for NO2, PM2.5, and O3. However, as air toxics data is only 
available from CARB's speciation data and EMFAC emissions data are annual, our focus shifted 
to developing annual surfaces rather than daily models. This shift in temporal resolution 
necessitated some adjustments to the modeling process, but the core methodology remained 
consistent. 

The modeling for air toxics follows the D/S/A algorithm, which begins with a base model, 
typically an intercept-only model, unless otherwise specified. The algorithm then iteratively 
modifies the model by adding, deleting, or substituting terms to improve its predictive 
performance. In each iteration, potential model modifications—such as incorporating polynomial 
terms or testing different combinations of predictors—are evaluated against a predefined 
criterion, typically focused on improving cross-validated error or another performance metric. 
This iterative process tests various combinations of terms, retaining only those that result in the 
greatest improvement in model accuracy. The algorithm continues to iterate until no significant 
improvement is observed in model performance, based on predefined stopping criteria. These 
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criteria could include reaching a threshold for improvement in cross-validated R-squared or 
completing a maximum number of iterations, which was set to 15 in our previous work. Once the 
algorithm converges, the optimal model is selected, representing the best balance between model 
complexity and predictive accuracy. To maintain model interpretability, we restricted the 
predictors to linear terms, avoiding interaction effects. 

For cross-validation, the same approach used in the daily LUR models for NO2, PM2.5, and 
O3 was applied, where data was randomized and divided into 10 equal folds. This ensures a 
balanced mix of data in each fold, helping to avoid overfitting while maintaining model 
robustness. This cross-validation process ensured the air toxics models were optimized for 
predictive accuracy across different regions and temporal scales. 

In summary, while the transition to annual air toxics modeling required some adjustments to 
the temporal framework, the D/S/A algorithm and the methodology for selecting optimal 
predictors remained largely the same as for NO2, PM2.5, and O3. This consistent approach 
allowed us to develop reliable models for predicting the distribution of hazardous air pollutants 
across time and space. 

Results 

The model for benzene (Table 6) had an Adjusted R² of 0.806, indicating that the model 
accounts for 80.6% of the variability in the data. This relatively high explanatory power 
demonstrates that the model captures the dominant spatial determinants of benzene levels and 
provides a statistically robust representation of benzene exposure patterns across California.. The 
year variable, with a negative coefficient, suggests that benzene concentrations have generally 
declined over the years. Among the land use predictors, developed open space within 1500 m has 
a negative and significant association with benzene levels. Developed high-intensity land use at a 
5000 m buffer distance shows a positive effect on benzene. Further, the developed medium-
intensity areas within 50 m show a significant positive effect, indicating that more densely 
developed areas tend to have higher benzene levels. Certain wetland areas also show significant 
relationships with benzene concentrations. For example, wetlands within 1500 m are negatively 
associated with benzene, suggesting that wetlands may help mitigate benzene levels, possibly 
due to vegetation and land cover features. However, wetlands within 4200 m show a positive 
relationship with benzene, reflecting a more distant influence of wetland areas on benzene 
concentrations. Urban-related variables, such as impervious surface percentage within 1250 m 
and residential areas within 2550 m, have a positive association with benzene levels, indicating 
that increased urbanization and impervious surfaces contribute to higher benzene concentrations. 
On the industrial front, industrial areas within 150 m are negatively associated with benzene, 
which could be due to specific regulatory controls or other factors like plume effect. However, 
industrial areas at larger distances (4200 m) have a positive effect. Key environmental variables, 
such as wind velocity at 10 m, have a strong negative relationship with benzene concentrations, 
suggesting that higher wind speeds may help disperse benzene and lower local concentrations. 
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Maximum temperature shows a positive relationship with benzene, indicating that warmer 
temperatures might lead to higher benzene levels, which is consistent with the fact that benzene 
is a volatile organic compound that can increase in warmer conditions. 

The model for 1,3-butadiene (Table 7) had an adjusted R² of 0.619, demonstrating a moderate 
ability to explain the variability in 1,3-butadiene levels. The dataset includes 899 observations 
from various sites, ensuring a broad representation of environmental conditions. A clear 
decreasing trend in 1,3-butadiene concentrations over time highlights the impact of regulations 
and improved emission controls. Industrial and vehicular activities are major contributors to 
ambient levels. Proximity to industrial areas is associated with higher concentrations, confirming 
the role of industrial emissions as a primary source. Interestingly, industrial activity at slightly 
larger distances shows a negative association, potentially due to dispersion effects. Vehicle-
related predictors, such as vehicle kilometers traveled, also play a significant role, reaffirming 
the importance of transportation emissions. Land use and vegetation have notable effects. 
Grasslands and areas with higher vegetation indices are linked to lower concentrations of 1,3-
butadiene, suggesting that vegetation helps mitigate pollution levels, possibly through pollutant 
deposition or reduced emissions. In contrast, open land near measurement sites is associated with 
higher concentrations, which could reflect emissions from unregulated sources. Organic gases 
are also key predictors. ROG within close proximity are linked to lower 1,3-butadiene 
concentrations, likely due to chemical reactions or differing sources. However, at larger 
distances, ROG levels are positively associated with 1,3-butadiene concentrations, indicating 
more complex spatial and transport processes. TOG shows a positive relationship, consistent 
with their role in combustion-related emissions. Meteorological factors, including wind speed 
and temperature, significantly influence 1,3-butadiene concentrations. Higher wind speeds are 
associated with lower concentrations, as dispersion reduces pollutant buildup. Conversely, higher 
temperatures are linked to increased concentrations, potentially due to enhanced emissions or 
chemical reactions. 

The chromium (Table 8) model had an adjusted R² of 0.758, indicating strong explanatory 
power. Based on 366 observations, the analysis highlights several key predictors related to land 
use, industrial activity, and other environmental characteristics. Land-use variables show varying 
relationships with chromium concentrations. Developed open spaces close to measurement sites 
are associated with lower chromium levels, suggesting their role in reducing pollution exposure. 
However, at greater distances, these spaces show a positive association, indicating that chromium 
emissions may disperse from distant developed areas. Similarly, low-intensity developed areas 
near the sites are associated with higher chromium levels, reflecting the potential impact of 
moderate urban activities. At larger distances, these areas have a mitigating effect, which may 
reflect dispersion effects or reduced direct emissions. Natural land uses also play a role. Forested 
and shrub lands show positive associations with chromium concentrations, which could indicate 
deposition of airborne chromium from other sources rather than local emissions. These findings 
emphasize the complex role of vegetation in pollutant dynamics. Built environmental 
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characteristics, such as impervious surfaces and residential areas, are significant contributors to 
chromium levels. Higher percentages of impervious surfaces in proximity to measurement sites 
are strongly linked to elevated chromium concentrations, consistent with the role of urbanized 
areas in generating and retaining pollution. Residential areas also contribute positively, 
suggesting the influence of household and localized activities. Industrial activities are significant 
predictors of chromium levels. Proximity to industrial areas is associated with higher chromium 
concentrations, affirming the impact of industrial emissions. Interestingly, industrial activity at 
slightly greater distances has a negative association, possibly reflecting dispersion effects. 

The nickel (Table 9) model explains a substantial portion of the variability in ambient nickel 
concentrations, with an adjusted R² of 0.698 based on 366 observations. The results indicate 
several significant predictors related to temporal trends, land use, atmospheric conditions, and 
environmental factors. Year shows a negative association with nickel levels, reflecting a 
decreasing trend over time, possibly due to improved regulations or reduced industrial emissions. 
Aerosol Optical Depth (AOD), a measure of atmospheric pollution, is positively associated with 
nickel concentrations, suggesting that higher aerosol levels contribute to increased ambient 
nickel. The Sentinel reflectance ratio, related to surface characteristics, has a negative effect, 
indicating that lower reflectance is linked to reduced nickel concentrations, potentially reflecting 
differences in land cover or emissions sources. Land use features show varying impacts 
depending on the type and proximity of the area. Developed open spaces demonstrate mixed 
effects; closer distances are associated with higher nickel levels, while intermediate distances 
exhibit a negative association, likely reflecting dispersion patterns or land-use intensity. High-
intensity developed areas, particularly those very close to measurement locations, exhibit a 
strong positive association, likely reflecting emissions from industrial or urban activities. 
Similarly, cultivated land at greater distances shows a positive relationship, indicating 
contributions from agricultural regions, possibly due to fertilizer use or soil disturbance. 
Vegetative features, such as tree canopy cover near the measurement sites, show a negative 
association with nickel concentrations, suggesting that vegetation can play a role in mitigating 
pollution levels. The location category variable (with values 1 to 3), representing proximity to 
roadways, has a significant negative association with nickel concentrations. Locations within 500 
m of highways (category 1) and those within 300 m of major roadways (category 2) generally 
experience higher nickel levels compared to control areas far from highways and major 
roadways (category 3). This pattern reflects the contribution of vehicular emissions to nickel 
concentrations. 

The lead model (Table 10), with an adjusted R² of 0.585 based on 366 observations, captures 
key factors influencing ambient lead concentrations. Year exhibits a significant negative 
association with lead levels, indicating a decline over time, likely reflecting the effectiveness of 
regulatory measures such as the phase-out of leaded gasoline and stricter industrial emissions 
controls. Sentinel band 11 reflectance at 100 m, representing specific surface properties, shows a 
positive association with lead concentrations, suggesting that reflectance characteristics of 
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certain surfaces may influence the deposition or re-emission of lead. Land use and land cover 
variables reveal complex spatial relationships with lead concentrations. Developed open space at 
intermediate distances (1750 m) has a significant negative association, while developed low-
intensity areas within 400 m exhibit a strong positive effect, highlighting the influence of 
urbanization and human activities on lead levels. High-intensity developed areas at farther 
distances (1850 m) also show a positive association, suggesting contributions from densely built 
environments. Industrial areas within 50 m have a substantial positive impact, underlining their 
role as key sources of lead pollution, likely from manufacturing processes or emissions. 
Cultivated land demonstrates mixed effects based on distance, with negative associations at 
closer proximities (1300 m) and positive effects at farther distances (1700 m and 4100 m). These 
results may reflect the combined influence of agricultural practices, including the historical use 
of lead-based pesticides, and spatial patterns of atmospheric lead deposition. Tree canopy cover 
within 150 m exhibits a significant negative association, indicating that vegetation may help 
reduce lead concentrations by capturing airborne particles. Wind velocity at 10 m is negatively 
associated with lead levels, likely due to enhanced dispersion of pollutants under windy 
conditions. 

The zinc (Table 11) model, with an adjusted R² of 0.902, demonstrates a highly robust 
explanation of spatial and temporal variation in ambient zinc concentrations. Based on 366 
observations, the model highlights several predictors related to land use and land cover, water 
features, and meteorological influences, as well as the influence of time and anthropogenic 
activities. The year variable shows a significant positive association with zinc levels, indicating 
an increasing trend in concentrations over time. This could reflect growing zinc emissions from 
activities such as industrial production, urban development, agricultural use and forest 
management. Land use variables reveal the substantial impact of urbanization and agricultural 
practices on zinc concentrations. Developed open space has scale-dependent effects, with a 
significant positive association at 550 m and 4900 m, but a negative effect at 1650 m. This 
pattern may reflect the spatial heterogeneity of zinc sources, including construction activities, 
vehicular emissions, and material weathering in urban environments. Developed low-intensity 
areas within 100 m show a particularly strong positive association with zinc levels, likely 
reflecting contributions from residential land use, such as roofing materials, paints, and vehicle-
related emissions. Industrial land within 300 m also has a significant positive effect, further 
underscoring the role of industrial activities as major contributors to zinc pollution. Agricultural 
and forested areas are also significant predictors, pointing to the dual influence of agricultural 
use and forest management on zinc concentrations. Cultivated land within 1300 m has a 
significant negative association, potentially due to localized zinc absorption by crops or soil 
processes. However, cultivated land at farther distances, such as 2750 m, has a pronounced 
positive association, reflecting agricultural runoff and emissions contributing to regional zinc 
deposition. Forest land within 100 m shows a positive association, possibly linked to forest 
management practices, including the use of zinc-containing fertilizers or burning of biomass 
(e.g., wildfires). Similarly, shrub land at 1750 m and tree canopy at 3400 m positively influence 
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zinc levels, suggesting that vegetated areas may play a role in trapping or re-emitting zinc 
through biogeochemical processes. Other significant predictors include roadway areas within 
1050 m, which are positively associated with zinc concentrations, likely due to tire and brake 
wear, as well as roadway dust resuspension. Commercial land use shows mixed effects, with a 
negative association at 1550 m and a positive association at 2850 m, reflecting variations in 
commercial activities and their contribution to zinc emissions. 

Table 6. The Benzene (ppb – parts per billion) annual land use regression model for the State of 
California. 

Predictors Estimates Statistic p 
(Intercept) 71.1444530829 6.460868056 <0.001 
Year -0.0460644573 -8.187001384 <0.001 
Developed open space (ha) (1500m) -0.0003038868 -9.20768114 <0.001 
Developed low-intensity (ha) (50m) 0.1046491564 6.108446398 <0.001 
Developed low-intensity (ha) (150m) 0.0095996898 2.581800578 0.01 
Developed low-intensity (ha) (400m) -0.0040680773 -7.39114508 <0.001 
Developed medium-intensity (ha) (50m) 0.0750590130 9.494233321 <0.001 
Developed high-intensity (ha) (100m) 0.0091059982 3.24671851 0.001 
Developed high-intensity (ha) (5000m) 0.0000233851 10.09621313 <0.001 
Barren land (ha) (3650m) 0.0001646350 1.513935759 0.131 
Wetlands (ha) (1500m) -0.0006293209 -4.169578405 <0.001 
Wetlands (ha) (4200m) 0.0000765548 5.221485589 <0.001 
Percent impervious (%) (1250m) 0.0049819000 6.492024697 <0.001 
Residential (ha) (2550m) 0.0001292767 15.79280818 <0.001 
Commercial (ha) (400m) 0.0007969469 4.086255787 <0.001 
Open land (ha) (4050m) 0.0000447860 12.98661681 <0.001 
Agricultural (ha) (650m) 0.0003945438 2.859741801 0.004 
Industrial (ha) (150m) -0.0062452995 -2.986573997 0.003 
Industrial (ha) (4200m) 0.0000341314 8.618888805 <0.001 
Roadway area (ha) (400m) 0.0027072548 7.338750856 <0.001 
Wind velocity at 10m (m/s) -0.4824059638 -8.830365082 <0.001 
Maximum temperature (K) 0.0740398482 8.81029949 <0.001 

Observations 384 
R2 / R2 adjusted 0.817 / 0.806 

 

Table 7. The 1,3 Butadiene (ppt - parts per trillion) annual land use regression model for the State 
of California. 

Predictors Estimates Statistic p 
(Intercept) 31117.6648826934 11.64674359 <0.001 
Year -21.1249730190 -19.38089739 <0.001 
Barren land (ha) (4600m) -0.0469201251 -2.167769104 0.03 
Grass land (ha) (500m) -0.6775093539 -5.129792766 <0.001 
Normalized difference vegetation index (NDVI) -0.0424093861 -4.420047065 <0.001 



54 | P a g e  
 

Reactive organic gases (ROG in Kg) (350m) -25.1894794709 -4.523940379 <0.001 
Reactive organic gases (ROG in Kg) (800m) -2.9373635888 -2.93857921 0.003 
Reactive organic gases (ROG in Kg) (1750m) 1.5820924780 9.938395905 <0.001 
Reactive organic gases (ROG in Kg) (5000m) 0.0789423273 3.453985634 0.001 
Total organic gases (TOG in Kg) (450m) 19.5173083814 6.458797477 <0.001 
Industrial (ha) (100m) 25.0402701651 6.830834645 <0.001 
Industrial (ha) (250m) -4.7079719446 -7.984294052 <0.001 
Open land (ha) (50m) 16.0480573790 2.957217315 0.003 
Open land (ha) (3100m) 0.0049091507 2.688184263 0.007 
Unknown land use (ha) (1150m) -0.1412559852 -4.712224558 <0.001 
Wind velocity at 10m (m/s) -104.8729264054 -5.294000198 <0.001 
Minimum temperature (K) 22.4987766572 3.637364344 <0.001 
Maximum temperature (K) 18.9826049436 4.543141132 <0.001 
Distance to ports (m) 0.0007354483 4.515508873 <0.001 
Vehicle kilometer traveled (VKT) (350m) 0.0012401077 3.276795231 0.001 

Observations 899 
R2 / R2 adjusted 0.627 / 0.619 

 

Table 8. The Chromium (µg m-3 – microgram per cubic meter) annual land use regression model 
for the State of California. 

Predictors Estimates Statistic p 
(Intercept) -0.0009652030 -3.421993114 0.001 
Developed open space (ha) (750m) -0.0000026233 -5.148937014 <0.001 
Developed open space (ha) (4950m) 0.0000001187 7.855805639 <0.001 
Developed low-intensity (ha) (750m) 0.0000011149 4.834187597 <0.001 
Developed low-intensity (ha) (4350m) -0.0000000776 -5.356293607 <0.001 
Forest land (ha) (1700m) 0.0000000804 3.278770817 0.001 
Shrub land (ha) (3500m) 0.0000000227 3.449440594 0.001 
Percent impervious (%) (700m) 0.0000542740 13.2018244 <0.001 
Residential (ha) (250m) 0.0000033797 2.733756416 0.007 
Industrial (ha) (50m) 0.0150493090 6.183608152 <0.001 
Industrial (ha) (100m) -0.0006743840 -6.219904697 <0.001 
Industrial (ha) (1850m) -0.0000007260 -5.478485644 <0.001 
Observations 366 
R2 / R2 adjusted 0.765 / 0.758 

 
Table 9. The Nickel (µg m-3 – microgram per cubic meter) annual land use regression model for 
the State of California. 

Predictors Estimates Statistic p 
(Intercept) 0.0925145525 4.818773481 <0.001 
Year -0.0000457830 -4.800933522 <0.001 
Aerosol Optical Depth (AOD) 0.0000042343 3.156966846 0.002 
Sentinel reflectance ratio of band 3 to band 8 (2200m) -0.0005806226 -2.149175643 0.032 
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Water (ha) (600m) 0.0000378123 2.45276961 0.015 
Developed open space (ha) (750m) 0.0000012524 2.699465104 0.007 
Developed open space (ha) (1650m) -0.0000013001 -8.293587973 <0.001 
Developed open space (ha) (4800m) 0.0000001079 8.329239371 <0.001 
Developed low-intensity (ha) (150m) -0.0000153411 -3.105717724 0.002 
Developed low-intensity (ha) (550m) 0.0000046813 7.733307247 <0.001 
Developed low-intensity (ha) (3000m) -0.0000000709 -3.663505516 <0.001 
Developed high-intensity (ha) (50m) 0.0000640834 3.593088787 <0.001 
Developed high-intensity (ha) (800m) 0.0000012760 6.070259799 <0.001 
Developed high-intensity (ha) (2100m) -0.0000001901 -4.30779798 <0.001 
Forest land (ha) (100m) 0.0000160534 1.938139917 0.053 
Forest land (ha) (500m) -0.0000003772 -1.515190092 0.131 
Cultivated land (ha) (5000m) 0.0000000275 6.504952433 <0.001 
Tree canopy (%) (50m) -0.0000134758 -3.157904608 0.002 
Unknown land use (ha) (4500m) 0.0000000053 2.458329336 0.014 
Daily precipitation (mm) 0.0000597377 1.649510182 0.1 
Location category -0.0002111528 -4.722682297 <0.001 
Observations 366 
R2 / R2 adjusted 0.714 / 0.698 

 

Table 10. The Lead (µg m-3 – microgram per cubic meter) annual land use regression model for 
the State of California. 

Predictors Estimates Statistic p 
(Intercept) 0.1786862844 2.853946155 0.005 
Year -0.0000879009 -2.826373007 0.005 
Sentinel band 11 reflectance (%) (100m) 0.0000010686 3.048932125 0.002 
Water (ha) (550m) 0.0000824566 1.507671915 0.133 
Developed open space (ha) (1750m) -0.0000010025 -4.125566514 <0.001 
Developed low-intensity (ha) (400m) 0.0000067087 4.44248285 <0.001 
Developed high-intensity (ha) (1850m) 0.0000002179 2.168973687 0.031 
Shrub land (ha) (100m) -0.0000184916 -1.493241436 0.136 
Cultivated land (ha) (1300m) -0.0000112322 -5.260807218 <0.001 
Cultivated land (ha) (1700m) 0.0000063385 6.671948391 <0.001 
Cultivated land (ha) (4100m) 0.0000002204 3.950092096 <0.001 
Tree canopy (%) (150m) -0.0000240071 -2.077729624 0.038 
Residential (ha) (50m) 0.0001268974 1.42360566 0.155 
Commercial (ha) (50m) -0.0001516211 -1.779575967 0.076 
Commercial (ha) (850m) -0.0000035623 -2.816310915 0.005 
Commercial (ha) (1600m) 0.0000011326 1.700822505 0.09 
Industrial (ha) (50m) 0.0080694047 2.300571321 0.022 
Daily precipitation (mm) 0.0004079364 3.204730598 0.001 
Vapor pressure deficit (kPa) -0.0006627179 -1.673587572 0.095 
Wind velocity at 10m (m/s) -0.0004811740 -2.813558467 0.005 
Distance to ports (m) -0.0000000019 -1.560162738 0.12 
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Observations 366 
R2 / R2 adjusted 0.608 / 0.585 

 

Table 11. The Zinc (µg m-3 – microgram per cubic meter) annual land use regression model for 
the State of California. 

Predictors Estimates Statistic p 
(Intercept) -0.7633161249 -4.717188522 <0.001 
Year 0.0003761687 4.678444883 <0.001 
Water (ha) (600m) 0.0026681203 7.642488406 <0.001 
Water (ha) (650m) -0.0024089350 -7.281817116 <0.001 
Water (ha) (950m) 0.0003425548 10.06154186 <0.001 
Water (ha) (1100m) -0.0001080435 -9.297688355 <0.001 
Developed open space (ha) (550m) 0.0000395784 7.932539305 <0.001 
Developed open space (ha) (1650m) -0.0000155901 -14.24917187 <0.001 
Developed open space (ha) (4900m) 0.0000008815 9.760316747 <0.001 
Developed low-intensity (ha) (100m) 0.0005624142 9.413001078 <0.001 
Developed low-intensity (ha) (1100m) 0.0000029328 3.200835573 0.001 
Forest land (ha) (100m) 0.0001372166 2.944495893 0.003 
Shrub land (ha) (1750m) 0.0000006002 3.713286452 <0.001 
Cultivated land (ha) (1300m) -0.0000566748 -13.28121271 <0.001 
Cultivated land (ha) (2750m) 0.0000139214 28.73397069 <0.001 
Tree canopy (%) (3400m) 0.0001456838 5.016416366 <0.001 
Commercial (ha) (1550m) -0.0000126516 -11.18764605 <0.001 
Commercial (ha) (2850m) 0.0000034115 5.848703078 <0.001 
Industrial (ha) (300m) 0.0001951988 11.73936751 <0.001 
Roadway area (ha) (1050m) 0.0000086079 7.391120595 <0.001 
Observations 366 
R2 / R2 adjusted 0.907 / 0.902 

 

Task 4. Data acquisition of human subjects’ data for 2010-2019 

 The UCB research team acquired three primary datasets to assess the impacts of air pollution 
on metabolic health outcomes across California from 2010 to 2019. These datasets include: (1) 
the CHIS data for diabetes incidence and medication use, (2) the HCAI data for diabetes-related 
emergency department (ED) visits and hospitalizations, and (3) the CDPH Vital Records for 
diabetes-related mortality. All datasets were obtained at the individual level, with CHIS and 
CDPH data including residential addresses and HCAI data linked at the five-digit ZIP code level. 
The CHIS data were acquired for years 2011-2019 for every two years and stored in the 
University of California, Los Angeles (UCLA) Center for Health Policy Research (CHPR). 
University of California, Berkeley (UCB) designed R code for CHPR staff to run the analysis. 
For the data provided by HCAI and CDPH, Institutional Review Board (IRB) approval was 
obtained to ensure the secure and ethical use of human subject data by authorized UCB 
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researchers. We submitted applications to both the UCB Institutional Review Board (for reliance 
on State Committee for Protection of Human Subjects - CPHS) and the California Health and 
Human Services Committee, both of which reviewed and approved our research protocol. 
Following approval, we worked with HCAI and CDPH to acquire related data under a strict data-
use agreement to protect confidentiality and the acquired data were stored on secure UCB Secure 
Research Data Center (SRDC) servers in compliance with the Health Insurance Portability and 
Accountability Act (HIPAA) and state requirements. 

The CHIS dataset, the largest state health survey in the U.S., provided detailed, population-
representative data on California residents. UCB identified survey participants diagnosed with 
T2D between 2011 and 2019. Variables extracted included latitude/longitude of home address, 
age, gender, race-ethnicity, insurance status, body mass index (BMI), smoking status, diabetes 
medication use (e.g., insulin injections or oral medications), and hemoglobin A1C checks. These 
data enabled the team to examine population-level diabetes incidence, treatment behaviors, and 
disparities across demographic groups and geographic areas. 

The HCAI dataset provided comprehensive statewide records of T2D mellitus (ICD-9 code 
250; ICD-10 code E11) for both ED visits and hospitalizations. Collected variables included 
patient five-digit ZIP code, date of admission and discharge, length of stay, age, gender, race-
ethnicity, Elixhauser comorbidity index (derived from diagnosis codes), facility number, payer 
category, preferred language, principal procedure, and care type. Similarly, the CDPH Vital 
Records dataset captured mortality events where diabetes was listed as the primary or 
contributory cause of death. Variables included residential address, date of death, age, gender, 
race-ethnicity, smoking status, BMI, and insurance information. To further characterize diabetes-
related deaths, UCB also obtained data on underlying causes of death when diabetes was listed as 
a secondary cause. 

Task 5. Identify concentration-response relationships between air pollution exposures and 
five health endpoints 

Task 5 was designed to comprehensively evaluate how air pollution exposures are associated 
with multiple diabetes-related health outcomes across different temporal scales and population 
subgroups. Specifically, this task aimed to (1) quantify exposure-response relationships using 
appropriate short-term and long-term exposure windows, (2) assess lagged exposure patterns to 
characterize current versus delayed effects, and (3) identify population groups exhibiting greater 
vulnerability. Long-term exposure analyses were conducted for diabetes incidence, medication 
use (using CHIS data), and diabetes-related mortality (using CDPH Vital Records), while short-
term exposure analyses were conducted for diabetes-related emergency department visits, 
hospitalizations, and length of stay using HCAI data. 

Assigning air pollution exposure to locations of subjects 

For CHIS, surveys were conducted biennially (approximately every two years). The daily air 
pollution exposure (NO2, PM2.5, O3) was therefore aggregated to annual metrics and assigned 
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retrospectively to each census tract back to 1989. The annual air toxics surfaces were assigned to 
the census tract in a way like the aggregated annual criteria pollutants. High-resolution (100 m) 
pollution surfaces were aggregated to census tracts using block-group population-weighted 
means to approximate population exposure within each tract. Exposures were assigned back to 
1989 specifically because the development of T2D may have occurred long before survey years. 
One year before the year of incidence of a survey participant was treated as air pollution 
exposure for that participant. Incidence records with onset prior to 1990 were excluded due to 
lack of exposure data available. 

For HCAI, geolocation was available at the five-digit ZIP level. Daily 100 m pollution 
estimates were aggregated to ZIP-level daily means via block-group population weighting. For 
each ED visit, patients were assigned the same-day exposure (lag 0) and lagged exposures for 
days 1–3 (lag 1–3). For case-crossover analyses, we generated four control periods for each 
event (1, 2, 3, and 4 weeks prior, matched on weekday) and assigned the corresponding ZIP-level 
exposures. The same procedure was applied to inpatient visits.  

For CDPH mortality data (2014–2021), residential addresses were geocoded to obtain precise 
spatial locations. For each decedent, a one-year rolling mean of NO2 and PM2.5 concentrations 
prior to the date of death was calculated and assigned as the individual’s air pollution exposure. 
Each death record was matched to one to two living controls selected from the same CDPH 
dataset, matched on month and year of birth and race-ethnicity to minimize confounding by age 
and demographic factors. For these matched controls, the corresponding one-year rolling mean 
exposures were assigned using the same procedure, based on their geocoded residential 
addresses and the same temporal exposure windows. 

Statistical analysis 

Associations between air pollution exposure and multiple health outcomes were evaluated 
separately for the CHIS, HCAI, and CDPH datasets, using modeling approaches suited to each 
outcome type and data structure. 

To model T2D onset using CHIS data, adult respondents (≥18 years) who reported a diabetes 

diagnosis were defined as cases, with the self-reported age at diagnosis used to estimate the 
diagnosis year. Respondents without diabetes served as potential controls. To approximate a 
population-based risk set, control observations were expanded across years from survey year 
back to 1990, maintaining age consistency. Up to two controls per case were matched on age, 
sex, and race-ethnicity to form matched sets. Five-year calendar bins were defined to evaluate 
potential temporal trends in associations. Conditional logistic regression models were fitted to 
estimate the effect of air pollution exposure on the odds of incident T2D within each matched 
set, accounting for matching factors. Covariates included age at diagnosis, sex, race-ethnicity, 
smoking status, BMI, English proficiency, and additional socioeconomic indicators. Although 
sex and race-ethnicity were used as matching variables, they were additionally included as 
covariates in the regression models because matching was not exact for all cases (i.e., some cases 
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had zero, one, or two matched controls). Including these variables as covariates helps account for 
residual confounding due to incomplete matching and preserves adjustment for these factors 
across all observations. 

Models were fitted separately for each lag (0-3 years) and each 5-year period, as well as for 
the entire period combined. Effect estimates were expressed as odds ratios (ORs) with 95% 
confidence intervals (CIs), reflecting the relative odds of T2D per interquartile range (IQR) 
increase in air pollution exposure. Small sample bins (<30 observations) were excluded to ensure 
stable estimates. 

To model T2D medication use using CHIS data, respondents (≥18 years) reporting current 
use of any diabetes medication were defined as cases (event = 1), while respondents not 
reporting medication use served as controls (event = 0). Lagged exposures were calculated for 0–
3 years prior to the survey year to assess potential cumulative effects. Conditional logistic 
regression models were fitted to estimate the association between air pollution exposure and the 
odds of diabetes medication use, stratified by survey year to account for temporal clustering. 
Models incorporated CHIS survey weights to ensure population-representative inference and 
adjusted for age, sex, race-ethnicity, smoking status, BMI, English proficiency, and other 
relevant socioeconomic indicators. The person-level weights account for the complex survey 
design, including unequal selection probabilities, nonresponse, and post-stratification to 
statewide demographic benchmarks. These weights were incorporated directly into the regression 
models so that estimated associations reflect population-level effects rather than sample-specific 
patterns, with variance estimates appropriately accounting for the survey design. Separate 
models were fitted for each lag period, and effect estimates were expressed as ORs with 95% CIs 
per IQR increase in air pollution exposure. In this analysis, medication use was defined as a 
binary outcome indicating whether a survey participant reported using diabetes medication 
during the survey year, regardless of prior duration of use. The exposure window was therefore 
aligned with the survey year to capture contemporaneous associations between air pollution 
exposure and active medication use, rather than medication initiation or cumulative treatment 
history. This approach is consistent with the structure and limitations of the CHIS data, which do 
not provide detailed information on medication start dates or duration of use. 

For diabetes-related ED visits and hospitalizations in HCAI (2010–2019), we implemented a 
time-stratified case-crossover design to examine short-term associations with ambient air 
pollution. This design compares each patient’s exposure on the day of the ED visit or hospital 
admission (case period) with exposures on multiple control days within the same individual, 
effectively controlling for time-invariant confounders such as sex, race-ethnicity, genetic 
susceptibility, and underlying comorbidities. For each ED visit, control periods were selected at 
1, 2, 3, and 4 weeks prior to the visit, matched on the same day of the week, thereby controlling 
for day-of-week effects, seasonal trends, and long-term temporal confounding. Conditional 
logistic regression models were fitted with the case day as the event period and the matched prior 
days as control periods. Pollutant exposures were scaled by their IQR to standardize effect 
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estimates. Models evaluated same-day exposure (lag 0) and lagged exposures up to three days 
(lags 1–3) to capture both immediate and delayed effects. Analyses were conducted overall (20% 
samples) and stratified by race-ethnicity (100% data), allowing assessment of potential 
disparities in pollutant effects among White, Black, Hispanic, Asian, and Other groups. ORs and 
95% confidence intervals were estimated per IQR increase in pollutant concentration. 

For inpatient admissions, length of stay (LOS) was modeled as a continuous outcome to 
evaluate whether short-term air pollution exposure influenced hospitalization duration. Due to 
the right-skewed nature of LOS, generalized linear models (GLMs) with a gamma distribution 
and log link function were applied. This modeling framework estimates the relative change or 
mean ratio in LOS associated with air pollution exposure, rather than treating LOS as a binary 
outcome or as a count of discrete events. The log link was used to accommodate the right-
skewed distribution of LOS and to provide interpretable multiplicative effects on the mean length 
of stay. Exposure metrics included same-day (lag 0) and lagged (lags 1–3) pollutant 
concentrations to capture immediate and delayed effects. Models were adjusted for demographic 
factors (age, sex, race-ethnicity, language, and insurance type), ZIP code-level socioeconomic 
characteristics (e.g., unemployment rate, educational attainment, median household income, 
marital status), and meteorological variables (e.g., temperature, relative humidity and 
precipitation). All covariates were included simultaneously within each model to achieve 
rigorous confounding control, consistent with standard epidemiologic practice for health 
outcomes such as length of stay. Demographic, socioeconomic, and meteorological variables 
represent conceptually distinct domains and were retained a priori based on established 
associations with both air pollution exposure and diabetes-related outcomes. Given the large 
sample size and the use of GLMs with appropriate distributional assumptions, simultaneous 
adjustment did not materially inflate variance or compromise model interpretability. 

For diabetes-related mortality using the CDPH data (2014–2021), race-ethnicity was 
reclassified into five categories (Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian, 
Hispanic, and Other). Records with less than one year of residence in the county were excluded 
to minimize exposure misclassification. Although all records originated from the CDPH 
mortality data, diabetes-related deaths were treated as cases and were matched to controls drawn 
from the same mortality registry who were still alive at the time of the case’s death, with 
matching based on year and month of birth, sex, and race-ethnicity. Exposures were standardized 
by their IQR to facilitate interpretation. Logistic regression models were used to estimate the 
associations between air pollution exposures and the odds of mortality. Specifically, we fitted 
separate models for PM2.5 and NO2, including covariates for age, sex, race-ethnicity, marital 
status and education level. Here we examined long-term exposure, defined as the annual (365-
day) rolling average concentration of pollutants during the year preceding the date of death. 
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Modelling incidence of diabetes and diabetes medication use from NO2, PM2.5 and O3 exposure 
using CHIS data 

The CHIS data were pooled from 2011–2019 (biennial waves) to characterize California 
adults with T2D (Table 12). The analytic sample represents approximately 28.7 million adults, of 
whom an estimated 2.30 million (8.02%, SE = 0.0017) reported having diabetes. Age distribution 
of the diabetes population was concentrated among older adults: 55.9% were aged 35–64 years, 
41.5% were 65 years and older, and only 2.6% were aged 18–34 years. Males accounted for 
52.9% of the diabetes population and females 47.1%. By race and ethnicity, White adults 
comprised 41.3% of the diabetes population, followed by Latino/Hispanic (35.7%), Asian/Other 
(15.0%), African American (7.4%), and American Indian/Alaska Native (0.6%) groups. 
Socioeconomic patterns showed that more than 55% had incomes at or above 200% of the 
federal poverty level (FPL) (24.9% between 200‒399% and 30.5% ≥400%). Regarding smoking 

status, 34.4% of adults with diabetes were former smokers, 10.1% current smokers, and 55.5% 
never smokers. Among adults with diabetes, 83.7% reported using some form of diabetes 
medication, while 16.3% reported no medication use. Of those using medication, 24.8% used 
insulin, 76.6% used medications, and 17.7% reported using both insulin and medications. 

Table 12. The descriptive characteristics of CHIS Data (2011-2019 biennial waves) 

Category Subgroup 
Overall Population Diabetes Population 

N 
(Weighted) 

% 
(Weighted)  

N 
(Weighted)  

% 
(Weighted)  

Age Group 
18–34 9,123,602 31.8% 59,991 2.6% 
35–64 14,530,212 50.6% 1,286,966 55.9% 
65+ 5,060,915 17.6% 956,558 41.5% 

Sex Female 14,675,518 51.1% 1,085,792 47.1% 
Male 14,039,210 48.9% 1,217,723 52.9% 

Race/Ethnicity 

African 
American 1,599,553 5.6% 170,703 7.4% 

American 
Indian/Alaska 
Native 

134,617 0.5% 14,023 0.6% 

Asian/Other 4,668,553 16.3% 344,988 15.0% 
Latino/Hispanic 12,075,073 42.1% 822,503 35.7% 
White 10,236,932 35.7% 951,298 41.3% 

FPL Category 
<200% 9,813,701 34.2% 1,026,914 44.6% 
200–399% 7,051,338 24.6% 574,602 24.9% 
≥400% 11,849,688 41.3% 702,000 30.5% 

Smoking Status 
Current Smoker 3,269,317 11.4% 231,818 10.1% 
Former Smoker 6,281,879 21.9% 792,197 34.4% 
Never Smoker 19,163,532 66.7% 1,279,500 55.5% 

Diabetes 
Prevalence 

Mean 
(Proportion) — — 0.0802 (SE = 0.0017) 

Medication Use No Medication — — 375,011 16.3% 
Yes Medication — — 1,928,504 83.7% 

Insulin Use No — — 1,731,913 75.2% 
Yes — — 571,602 24.8% 
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Pill Use No — — 539,686 23.4% 
Yes — — 1,763,829 76.6% 

Both 
Medications 

No — — 1,896,588 82.3% 
Yes — — 406,927 17.7% 

 

When examining the association between NO₂ exposure and the onset of T2D (Figure 7), we 
found a statistically significant positive relationship when all years were combined. Across all 
data (1990–2015), NO₂ exposure, normalized through its IQR, demonstrated a consistent 
association with increased odds of T2D onset (lag 0 OR = 1.013; 95% CI: 1.008–1.017; p < 
0.001), with similar magnitudes observed at lags 1–3 years, indicating stable health effects. 
When stratified by diagnostic period, earlier years (1990–1995 and 1995–2000) showed no 
significant associations between NO2 and diabetes onset (ORs ≈ 1.00; 95% CIs including 1.00). 
However, starting from 2000–2005, the relationship became statistically significant (lag 0 OR = 
1.012; 95% CI: 1.003–1.022; p = 0.011), and the effect magnitude increased slightly in 
subsequent years. The strongest associations were observed during 2005–2010 (lag 0 OR = 
1.019; 95% CI: 1.009–1.029; p < 0.001), suggesting a strengthening of NO2’s impact on diabetes 
onset over time. The 2010–2015 period also exhibited positive and significant associations (lag 0 
OR = 1.0154; 95% CI: 1.0001–1.0309; p = 0.048). Overall, the findings indicate a temporally 
consistent and statistically significant relationship between ambient NO2 exposure and increased 
risk of T2D onset, particularly from 2000 onward. The growing strength of association in later 
years may reflect higher exposure susceptibility, improved case detection, or higher precision of 
residential address/lower exposure misclassification error. 

On impact of PM2.5 exposure on onset of T2D, a statistically significant and consistent 
positive association was observed (Figure 8). Across all years combined (1990–2015), elevated 
PM2.5 concentrations were strongly associated with increased odds of diabetes onset (lag 0 OR = 
1.074; 95% CI: 1.061–1.087; p < 0.001). Similar magnitudes were observed for lags 1–3 years 
(OR range: 1.075–1.077), indicating a stable and temporally robust effect. When stratified by 
diagnostic period, the associations persisted across all time intervals but exhibited a pattern of 
increasing effect magnitude over time. During 1990–1995, the effect was significant (lag 0 OR = 
1.036; 95% CI: 1.001–1.072; p = 0.045). The associations became more significant by 1995–
2000 (lag 0 OR = 1.081; 95% CI: 1.049–1.114; p < 0.001) and remained robust through 
subsequent periods. Between 2000 and 2005, the OR remained around 1.062 (95% CI: 1.037–
1.088; p < 0.001), while from 2005 to 2010, the effect slightly increased (lag 0 OR = 1.075; 95% 
CI: 1.051–1.100; p < 0.001). The strongest associations were observed during 2010–2015 (lag 0 
OR = 1.103; 95% CI: 1.071–1.136; p < 0.001), indicating a continued strengthening of the 
pollutant’s impact on diabetes onset. Overall, PM2.5 exposure showed a statistically significant 
and temporally consistent association with higher odds of T2D onset across all examined time 
periods. The effect magnitude increased slightly over time, suggesting either heightened 
population vulnerability, changes in PM2.5 composition, or improved detection of diabetes cases 
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in later years. These findings reinforce the causal role of fine particulate air pollution in 
metabolic disease development. 

Exposure to ambient O3 was also found to be positively associated with the onset of T2D, 
though the magnitude of association was smaller than those observed for PM2.5 and NO2 (Figure 
9). When data from all study years (1990–2015) were combined, elevated O3 exposure was 
significantly associated with increased odds of diabetes onset (lag 0 OR = 1.028; 95% CI: 1.017–
1.039; p < 0.001). Similar effects were observed for lags 1–3 (OR range: 1.026–1.027; all p < 
0.001), demonstrating a consistent relationship between O3 exposure and diabetes onset across 
multiple lag structures. Analyses stratified by diagnosis period revealed that the O3–diabetes 
association strengthened over time. In the earliest periods (1990–1995 and 2000–2005), 
associations were weak and statistically non-significant (e.g., 1990–1995 lag 0 OR = 1.006; 95% 
CI: 0.973–1.040; p = 0.72). By 1995–2000, however, the relationship became significant, with 
consistent positive associations across all lags (lag 0 OR = 1.033; 95% CI: 1.005–1.062; p = 
0.020). This pattern continued and strengthened in later years, particularly between 2005 and 
2010 (lag 0 OR = 1.027; 95% CI: 1.007–1.049; p = 0.010) and peaked during 2010–2015, where 
the associations were most pronounced (lag 0 OR = 1.060; 95% CI: 1.036–1.085; p < 0.001). 
Overall, these results demonstrate a statistically significant and temporally consistent positive 
association between ozone exposure and diabetes onset, particularly in more recent years. While 
the magnitude of the O3 effect was modest compared to PM2.5, the increasing strength and 
consistency of the relationship over time suggest growing public health relevance and possibly 
heightened population sensitivity or changes in ozone composition and exposure patterns. 
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Figure 7. Impact of NO2 on onset of T2D 
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Figure 8. Impact of PM2.5 on onset of T2D 
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Figure 9. Impact of O3 on onset of T2D 
 

On impact of air pollution exposure on T2D medication use, consistent and statistically 
significant associations were observed (Figure 10). Across NO2, PM2.5, and O3, higher pollutant 
concentrations were linked to increased odds of medication use, suggesting that air pollution may 
contribute to worsening disease control or increased therapeutic demand among adults with T2D. 

For NO2, the associations were positive but relatively stable across all lag periods, showing 
little change from lag 0 to lag 3. The estimated odds ratios ranged narrowly from 1.018 (95% CI: 
1.014–1.024; p < 0.001) at lag 0 to 1.018 (95% CI: 1.013–1.022; p < 0.001) at lag 3. These 
consistent estimates indicate a modest yet persistent relationship between NO2 exposure and 
increased medication use. For PM2.5, the associations were substantially stronger and exhibited a 
slight upward trend across the lag structure. The odds ratios increased from 1.070 (95% CI: 
1.060–1.081; p < 0.001) at lag 0 to 1.073 (95% CI: 1.063–1.084; p < 0.001) at lag 3, representing 
the largest effect magnitude among the three pollutants. This pattern highlights the pronounced 
impact of fine particulate matter on diabetes management intensity. For O3, the associations were 
smaller in magnitude but showed a gradual increase from lag 0 to lag 3. The odds ratios rose 
from 1.034 (95% CI: 1.026–1.041; p < 0.001) to 1.036 (95% CI: 1.028–1.043; p < 0.001), 
suggesting a mild cumulative effect over exposure windows. 
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Overall, the analyses demonstrate that exposure to ambient air pollutants is associated with 
greater likelihood of T2D medication use. The magnitude of effect followed the pattern PM2.5 > 
O3 > NO2, with PM2.5 showing the strongest and most consistent associations, while NO2 
exhibited smaller but stable effects across all lag days. 

 

 
Figure 10. Impact of NO2, PM2.5 and O3 on T2D-related medication use 
 

Modelling incidence of diabetes and diabetes medication use from air toxics exposure using 
CHIS data 

In the related CARB project 21RD004, we initially modeled ambient concentrations of six air 
toxics, including benzene, chromium, nickel, lead, 1,3-butadiene, and zinc, at the monthly level. 
We observed that sample size limitations in certain space-time strata constrained model stability 
and performance. To address this, we aggregated the data to the annual level, which substantially 
improved model performance. The resulting models explained between 59% and 90% of the 
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adjusted variance across pollutants. Results from 21RD004 further indicated an inverse 
association for zinc. Based on this evidence, zinc was excluded from the health outcome analyses 
in this CARB project (22RD010). 

Focusing on the remaining five air toxics, our analysis in this CARB project identified 
consistent, statistically significant, and positive associations with both diabetes incidence and 
diabetes medication use across California for all the survey years examined. These findings 
reinforce the robustness of the observed relationships and support the relevance of these air 
toxics to population-level metabolic health. Detailed modeling results are presented below, with 
specific numerical results provided in Supplementary File 4 (Excel). 

Air toxics and incidence of T2D 

Long-term exposure to benzene was consistently associated with increased incidence of T2D, 
with effect estimates strengthening markedly over successive diagnosis periods and remaining 
robust across lag structures (lags 0-3). For individuals diagnosed between 1990 and 1995, 
associations were elevate but not statistically significant (e.g., lag 0 OR = 1.11, 95% CI 0.99-
1.25). Beginning in the 1995-2000 period, benzene exposure was associated with a clear 
elevation in diabetes risk (lag 0 OR = 1.28, 1.13-1.44), with similar magnitudes across 
subsequent lags. Effect sizes increased further in later cohorts, reaching ORs of 1.33 (1.18-1.51) 
for 2000-2005 and peaking during 2005-2010 (lag 0 OR = 1.60, 1.38-1.86). Elevated risks 
persisted for diagnoses after 2010, with particularly strong associations observed during 2015-
2019 (lag 0 OR = 2.04, 1.33-3.15). Across all years combined, benzene exposure was associated 
with a 31-33% higher odds of incident diabetes depending on lag (e.g., lag 0 OR = 1.33, 1.25-
1.41), demonstrating a stable and statistically robust relationship between benzene exposure and 
diabetes onset. 

Long-term exposure to chromium was also associated with increased incidence of T2D, with 
statistically significant associations observed across most diagnosis periods and highly consistent 
effect estimates across lag structures (lags 0-3). As with benzene, associations were elevated but 
not statistically significant among individuals diagnosed between 1990 and 1995 (e.g., lag 0 OR 
= 1.11, 95% CI 0.98-1.27). Beginning in the 1995-2000 period, chromium exposure was 
associated with a modest but significant elevation in diabetes incidence (lag 0 OR = 1.16, 1.04-
1.30), with nearly identical estimates across all lags. Effect sizes increased during 2000-2005, 
reaching ORs of approximately 1.29 (95% CI 1.17-1.42), followed by sustained but smaller 
associations in 2005-2010 (lag 0 OR = 1.17, 1.07-1.28). Associations attenuated and were not 
statistically significant during 2010-2015, before strengthening again in the most recent period 
(2015-2019), when chromium exposure was associated with a 38% higher odds of incident 
diabetes (lag 0 OR = 1.38, 1.16-1.65). In analyses pooling all years, chromium exposure was 
associated with an 18% increase in diabetes incidence (lag 0 OR = 1.18, 1.13-1.23), with 
minimal variation across lag days, indicating a stable short-term exposure-response relationship. 
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Long-term exposure to nickel was associated with markedly elevated incidence of T2D, with 
effect sizes substantially larger than those observed for benzene or chromium and strong 
consistency across lag days. Associations were modest and mostly non-significant in the earliest 
diagnosis period (1990-1995), although one lag showed borderline significance (lag 2 OR = 1.33, 
95% CI 1.01-1.74). From 1995 onward, nickel exposure was robustly associated with increased 
diabetes incidence across nearly all periods. During 1995-2000, odds ratios exceeded 1.68 across 
lags, reaching 1.72 at lag 0 (95% CI 1.32-2.25). Effect sizes increased further in 2000-2005 and 
2005-2010, with ORs consistently around 1.80-1.85, indicating a strong and stable association 
during these years. Associations attenuated and were not statistically significant during 2010-
2015, suggesting a temporary weakening of the exposure-response relationship. In contrast, the 
most recent period (2015-2019) showed a pronounced resurgence, with very large effect 
estimates that increased with longer lags, from OR = 2.80 at lag 0 (95% CI 1.56-5.01) to OR = 
3.49 at lag 3 (95% CI 1.81-6.73), indicating heightened susceptibility or exposure contrast in 
recent years. In analyses pooling all years, nickel exposure was associated with approximately a 
64-66% increase in diabetes incidence across lags (e.g., lag 0 OR = 1.64, 95% CI 1.45-1.85), 
underscoring nickel as a particularly potent air toxic in relation to diabetes onset and highlighting 
its potential importance in the metabolic impacts of ambient air pollution. 

Long-term exposure to lead was associated with a consistently elevated incidence of T2D 
across most diagnosis periods, with effect sizes that were stable across lag structures, reflecting 
its chronic rather than acute toxicity profile. In the earliest period (1990-1995), associations were 
modest but not statistically significant (ORs ranging from approximately 1.04 to 1.06). 
Beginning in 1995-2000, lead exposure was significantly associated with diabetes incidence, 
with odds ratios around 1.19 across lags. Stronger and highly consistent associations were 
observed during 2000-2005 and 2005-2010, with ORs clustered between 1.24 and 1.25, 
indicating a roughly 24-25% higher risk. Although effect estimates attenuated slightly during 
2010-2015 (ORs ~1.20-1.21), they remained statistically significant, and increased again in 
2015-2019, with ORs around 1.27-1.28. In analyses pooling all years, long-term lead exposure 
was significant and associated with an approximately 21% increase in diabetes incidence (ORs 
~1.21 across lags), with minimal variation by lag. 

Exposure to 1,3-butadiene was associated with elevated incidence of T2D, with effect 
estimates that varied by calendar period but were generally positive and strengthened in later 
years. In the earliest period (1990-1995), associations were modest and not statistically 
significant (ORs approximately 0.93-1.07). During 1995-2000, modest positive associations 
emerged, with ORs around 1.16-1.19, reaching borderline statistical significance at several lags. 
Substantially stronger associations were observed in 2000-2005, when ORs ranged from 
approximately 1.64 to 1.68 across lags, indicating a 60-70% higher incidence. Effects attenuated 
somewhat in 2005-2010, with mixed significance at shorter lags but increasing ORs at longer 
lags (up to ~1.38). Associations again strengthened in 2010-2015, with consistently significant 
ORs of about 1.46-1.52 across lags. In analyses pooling all years, 1,3-butadiene exposure was 
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associated with a 23-30% higher incidence of diabetes (ORs ~1.23-1.30), with slightly larger 
estimates at longer lags. 

Air toxics and medication use of T2D 

Benzene exposure was positively associated with diabetes medication use in pooled CHIS 
data from 2011-2019, with consistent and statistically significant effects across all examined 
lags. At lag 0, benzene exposure was associated with a 25% higher likelihood of medication use 
(OR = 1.25, 95% CI: 1.19-1.30), with slightly attenuated but still robust associations observed at 
longer lags. Odds ratios remained elevated at lag 1 (OR = 1.20, 95% CI: 1.16-1.25), lag 2 (OR = 
1.19, 95% CI: 1.15-1.23), and lag 3 (OR = 1.19, 95% CI: 1.15-1.23). The monotonic attenuation 
across lags, coupled with uniformly narrow confidence intervals and highly significant p-values, 
suggests that benzene exposure is strongly and persistently associated with increased diabetes 
treatment utilization 

Chromium exposure was modestly but consistently associated with increased diabetes 
medication use. Across all lags, effect estimates were highly stable, indicating a persistent 
relationship. At lag 0, chromium exposure was associated with a 7% higher likelihood of 
medication use (OR = 1.07, 95% CI: 1.04-1.11), with nearly identical estimates observed at lag 1 
(OR = 1.07, 95% CI: 1.04-1.11), lag 2 (OR = 1.07, 95% CI: 1.04-1.11), and lag 3 (OR = 1.07, 
95% CI: 1.04-1.11). The minimal attenuation across lags and the narrow confidence intervals 
suggest a stable short-term association between chromium exposure and diabetes medication 
utilization. 

Nickel exposure was strongly associated with increased diabetes medication use, with 
consistently elevated odds across all short-term lags. The largest effect was observed at lag 0, 
where nickel exposure was associated with a 32% higher likelihood of medication use (OR = 
1.32, 95% CI: 1.24-1.40). Elevated associations persisted at lag 1 (OR = 1.24, 95% CI: 1.19-
1.30), lag 2 (OR = 1.25, 95% CI: 1.19-1.30), and lag 3 (OR = 1.22, 95% CI: 1.17-1.27), with all 
estimates highly statistically significant. The modest attenuation across increasing lags suggests a 
robust and sustained short-term relationship between nickel exposure and intensified diabetes 
management. 

Lead exposure was consistently associated with higher diabetes medication use, with 
remarkably stable effect estimates across all short-term lags. At lag 0, lead exposure was 
associated with a 16% increase in the odds of medication use (OR = 1.16, 95% CI: 1.13-1.18), 
and virtually identical associations were observed at lag 1 (OR = 1.16, 95% CI: 1.13-1.18), lag 2 
(OR = 1.16, 95% CI: 1.13-1.18), and lag 3 (OR = 1.16, 95% CI: 1.13-1.18). All associations 
were highly statistically significant. 

Exposure to 1,3-butadiene was also positively associated with diabetes medication use in the 
pooled CHIS data from 2011-2019, with increasing effect estimates across successive lags. At 
lag 0, 1,3-butadiene exposure was associated with a 14% higher odds of medication use (OR = 
1.14, 95% CI: 1.10-1.19). The association strengthened at lag 1 (OR = 1.16, 95% CI: 1.11-1.22) 
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and lag 2 (OR = 1.17, 95% CI: 1.12-1.22), reaching the largest magnitude at lag 3 (OR = 1.19, 
95% CI: 1.14-1.25). All lag-specific estimates were statistically significant. 

Modelling diabetes mellitus ED visits from NO2 and PM2.5 exposure using HCAI data 

Between 2010 and 2019, the HCAI dataset included 39.3 million total emergency department 
(ED) visits, of which 7.87 million visits remained after removing accidental causes and 
duplicates (Table 13). The cleaned dataset consisted of 4,336,098 visits among White patients, 
1,472,184 among Hispanic patients, 1,043,753 among Black patients, 548,355 among Asian 
patients, and 467,991 among patients of Other racial/ethnic backgrounds. This large and 
demographically diverse sample provides strong statistical power to examine race-ethnicity-
specific impacts of air pollution exposure on diabetes-related ED outcomes. 

For air pollution, average NO2 exposures were highest among Hispanic (8.91 ppb) and Black 
(8.88 ppb) patients, followed by Asian (8.39 ppb), White (8.10 ppb), and Other (8.09 ppb) 
groups. Similarly, mean PM2.5 exposures were slightly higher among Hispanic (8.84 µg m-³) and 
Black (8.76 µg m-³) patients than among White (8.67 µg m-³), Asian (8.44 µg m-³), and Other 
(8.42 µg m-³) patients. Both pollutants exhibited substantial variability, with NO2 interquartile 
ranges (IQRs) of 7.39–7.83 ppb and PM2.5 IQRs of 3.38–3.65 µg m-³ across racial/ethnic groups, 
reflecting exposure disparities and spatial heterogeneity across California communities. 

 
 

Table 13. Sample size population and exposure statistics for ED visits. 
Race 

Ethnicity 
Total ED 

Visits 

Remove 
Accidents/ 
Duplicates 

NO2 (ppb) PM2.5 (ug m-3) 

Mean Std IQR Mean Std IQR 

Black 5,218,765 1,043,753 8.88 5.66 7.74 8.76 2.84 3.40 
White 21,680,490 4,336,098 8.10 5.48 7.39 8.67 3.04 3.65 
Asian 2,741,775 548,355 8.39 5.63 7.83 8.44 2.84 3.53 
Hispanic 7,360,920 1,472,184 8.91 5.70 7.79 8.84 2.82 3.38 
Other 2,339,955 467,991 8.09 5.47 7.52 8.42 2.95 3.60 

 

Across the study period, NO2 exposure was associated with consistent, though modest, 
statistically significant increases in diabetes-related ED visits (Figure 11). For each individual 
lag, the estimated odds ratios changed very little as the number of matched controls increased 
from 1:1 to 4:1. For example, at lag 0, the OR ranged only slightly from 1.0072 for 1:1 matching 
to 1.0065 for 4:1 matching, indicating that the choice of control ratio had minimal impact on 
effect estimates. Conversely, for each individual control ratio, the estimated effect decreased 
gradually as the exposure lag increased from 0 to 3 days. For 1:1 matching, the OR declined 
from 1.0072 at lag 0 to 1.0026 at lag 3, and similar modest declines were observed across other 
matching ratios. Overall, these patterns suggest that recent NO2 exposure (lag 0–1) has the 
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strongest association with ED visits, while the influence of control matching strategy is minimal, 
and longer lags show only slight attenuation of the effect. 

Across racial and ethnic groups, NO2 exposure was still consistently associated with 
increased odds of diabetes-related ED visits, with some differences in magnitude by group 
(Figure 12). For each group, increasing the number of matched controls from 1:1 to 4:1 led to a 
gradual increase in estimated odds ratios, although the effect of additional controls was relatively 
modest compared with inter-group differences. For example, at lag 0, the OR for Black 
individuals increased from 1.026 (1:1) to 1.063 (4:1), whereas for Hispanic individuals the 
corresponding increase was from 1.030 to 1.070, indicating that Hispanic and Other race-
ethnicity groups had the largest absolute effects. Across lags within each control ratio, effect 
estimates generally decreased slightly as lag increased from 0 to 3 days. For instance, for 1:1 
matching among Black individuals, the OR declined from 1.026 at lag 0 to 1.009 at lag 3, 
showing modest attenuation over time. Overall, these patterns suggest that the impact of NO2 is 
strongest for recent exposure (lag 0–1), and the magnitude of effect varies by race-ethnicity, with 
Hispanic, Asian, and Other groups showing the largest associations, while Black and White 
groups had slightly lower but still significant increases in odds. 

 

Figure 11. The overall impact of NO2 exposure on ED visits. 
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Figure 12. The overall impact of NO2 exposure on ED visits stratified by race-ethnicity. 
 

For PM2.5 exposure across all adults, it was also found to be associated with statistically 
significant increased odds of diabetes-related ED visits over the study period (Figure 13). For 
each lag, increasing the number of matched controls from 1:1 to 4:1 resulted in slight increases 
in effect estimates, although the magnitude of change was small; for example, at lag 0, the OR 
increased from 1.004 (1:1) to 1.006 (4:1), indicating that expanding the control set had minimal 
impact on estimated associations. Across lags within a given control strategy, the effect estimates 
showed modest attenuation over time: for 1:1 matching, the OR decreased from 1.004 at lag 0 to 
1.001 at lag 2 and to 1.001 at lag 3. Overall, PM2.5 effects had the strongest associations 
observed for concurrent exposure (lag 0) and slightly weaker associations for exposures over 1–3 
days. These findings suggest that recent PM2.5 exposure may contribute to increased diabetes-
related ED visit risk. 

Race-ethnicity–stratified analyses for PM2.5 exposure (Figure 14) also showed consistent 
increased odds of diabetes-related ED visits across all groups, with the magnitude of effect 
generally highest for Black and Hispanic adults. Increasing the number of matched controls from 
1:1 to 4:1 led to small but consistent increases in estimated effects across all races; for example, 
at lag 0, Black adults’ ORs increased from 1.022 (1:1) to 1.051 (4:1), and Hispanic adults’ ORs 
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increased from 1.026 to 1.054. Across lags within a given control strategy, effect estimates 
typically attenuated slightly over time: for 1:1 matching, Black adults’ OR decreased from 1.022 
at lag 0 to 1.002 at lag 3, while similar modest declines were observed for White, Asian, 
Hispanic, and Other adults. Overall, Black and Hispanic adults consistently exhibited the largest 
associations with PM2.5 exposure, suggesting that these populations may experience relatively 
higher risk of diabetes-related ED visits in response to fine particulate matter. The temporal 
attenuation across lags and modest effect of control expansion indicate that recent exposure 
contributes most strongly, with exposures over 1–3 days producing slightly weaker associations. 

We also conducted similar analyses for individual years and with various stratification 
strategies, including health insurance pay type, region, primary language spoken, race-ethnicity, 
sex and age group. The details of those analyses are in Supplementary File 1. 

 

 

Figure 13. The overall impact of PM2.5 exposure on ED visits. 
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Figure 14. The overall impact of PM2.5 exposure on ED visits stratified by race-ethnicity. 
 

Modelling diabetes mellitus hospital admissions from NO2 and PM2.5 exposure using HCAI data 

Between 2010 and 2019, a total of approximately 29.07 million inpatient (IP) records were 
identified in the HCAI dataset across all race and ethnicity groups, of which about 6.01 million 
(20.7%) remained after removing records related to accidents and duplicate entries (Table 14). 
The “Other” race-ethnicity category contributed the largest absolute number of hospitalizations 
(5.38 million), contributed by its broader definition encompassing multi-racial and unspecified 
individuals. Among other race-ethnicity categories, White patients accounted for the largest share 
(379,619 visits), followed by Hispanic (112,559), Asian (69,845), and Black (67,871) 
individuals.  

Across racial and ethnic groups, exposure levels showed modest variation. Mean NO2 
concentrations ranged from 8.20 ppb in White to 9.16 ppb in Hispanic patients, with IQRs 
between 7.5 and 8.2 ppb, suggesting moderate within-group variability. Similarly, mean PM2.5 
levels varied narrowly between 8.40 µg m-3 (Other) and 8.85 µg m-3 (Hispanic), with IQRs from 
3.3 to 3.7 µg m-3. Overall, both NO2 and PM2.5 exposures exhibited slightly higher averages 
among Hispanic and Black populations, reflecting potential spatial overlap between higher 
pollution burdens and these demographic communities.  
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Across the entire 2010–2019 study period, short-term exposure to NO2 was significantly 
associated with increased odds of hospital admissions for diabetes-related conditions (Figure 15). 
Conditional logistic regression models using daily data demonstrated a consistent and 
statistically significant positive relationship across all lag structures (0–3 days) and control 
strategies. Overall, each IQR increase in daily NO2 concentration was associated with a 1–5% 
higher odds of hospitalization, supporting a robust short-term causal impact of NO2 on acute 
metabolic health outcomes. 

When examined by control ratio, effect estimates showed a modest upward trend as the 
number of controls per case increased, indicating improved model precision with expanded 
control sampling. At lag 0, the OR increased from 1.018 (95% CI: 1.006–1.030) under the 1:1 
scheme to 1.053 (1.043–1.063) for the 4:1 scheme. A similar pattern was observed for lag 1 
(1.016–1.051) and lag 2 (1.011–1.046), while lag 3 estimates remained positive (1.013–1.044) 
though slightly attenuated. Across lags, the strongest associations were observed at lag 0 and lag 
1, suggesting that the adverse effects of NO2 exposure on hospitalization risk occur within 24–48 
hours of exposure. 

Across all race-ethnicity groups, short-term exposure to NO2 was significantly associated 
with increased odds of diabetes-related hospital admissions, indicating a robust and consistent 
adverse effect of daily NO2 exposure (Figure 16). The association remained statistically 
significant across all control strategies and lags (0–3 days), confirming a causal temporal 
relationship between acute NO2 exposure and hospitalization risk. Within each race-ethnicity 
group, the estimated ORs followed a consistent pattern, with the strongest effects observed at lag 
0–1 day, suggesting that NO2 exposure exerts the greatest influence within 24–48 hours prior to 
admission. Effect sizes increased modestly with more extensive control sampling (from 1:1 to 
4:1), indicating greater stability and precision of the estimated effects. For example, among 
White patients, ORs ranged from 1.019 (95% CI: 1.012–1.026) under 1:1 matching at lag 0 to 
1.048 (1.043–1.054) under 4:1 matching. Similar progressive increases were observed among 
Hispanic (1.023–1.061) and Asian (1.030–1.070) patients, reflecting consistent exposure-
response relationships across model specifications. When comparing across race-ethnicity 
categories, Asians and individuals classified as “Other” exhibited the largest effect estimates, 
with ORs exceeding 1.06 under the 4:1 lag 0 configuration, suggesting heightened susceptibility 
or greater exposure gradients in these populations. Hispanic and White populations showed 
slightly lower but still statistically significant effects, with ORs around 1.05‒1.06 for lag 0‒1. In 

contrast, Black patients demonstrated smaller effect magnitudes (OR ≈ 1.02‒1.05) and a slightly 

slower decline across lags, though still maintaining positive associations. 

Across all groups, effect estimates declined modestly with increasing lag days, consistent 
with the transient nature of air pollution impacts on acute hospital utilization. The persistence of 
significant associations through lag 3 in most groups supports a cumulative short-term exposure 
effect. Overall, the results demonstrate a statistically significant and temporally coherent causal 
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relationship between daily NO2 exposure and diabetes-related hospital admissions, with notable 
variability in effect magnitude by race-ethnicity, potentially reflecting differential vulnerability, 
exposure patterns, or contextual factors. 

For PM2.5, across the 2010–2019 study period, higher daily exposure was consistently and 
significantly associated with increased odds of diabetes-related hospital admissions (Figure 17). 
The associations were statistically robust across all matching control strategies and lag periods 
(0–3 days), indicating a persistent adverse impact of PM2.5 exposure on hospitalization risk. At 
lag 0, which represents exposure on the same day of admission, the estimated odds ratios 
increased gradually with broader control sampling—from 1.02 (95% CI: 1.01–1.03) under the 
1:1 control ratio to 1.04 (95% CI: 1.04–1.05) under 4:1 control. Similar incremental patterns 
were observed for lags 1 through 3, confirming that results were consistent and not sensitive to 
the control selection strategy. In terms of temporal trends, the strongest effects were generally 
observed for lag 0 and lag 1 in a way like those of NO2, indicating that PM2.5 exposure on the 
day of or one day prior to admission exerts the most immediate influence on hospital utilization. 
The magnitude of association diminished slightly over lags 2–3 but remained statistically 
significant through lag 3, supporting a short-term cumulative exposure effect. 

For PM2.5 impact on hospital admissions across race–ethnicity groups, short-term increases in 
PM2.5 concentration were consistently associated with a statistically significant increase in the 
odds of hospital admissions across all racial and ethnic categories (Figure 18). The associations 
remained robust across all lag structures (lags 0–3 days) and control strategies, underscoring a 
strong and stable causal relationship between daily PM2.5 exposure and elevated hospitalization 
risks. The magnitude of effect was modest but persistent, with ORs generally increasing with 
broader control strategies (from 1:1 to 4:1). Among racial and ethnic groups, Asians exhibited the 
strongest and most consistent associations. For lag 0, the ORs increased from 1.033 (95% CI: 
1.017–1.049) under the 1:1 control strategy to 1.064 (95% CI: 1.051–1.077) under the 4:1 
control strategy. Similar elevated risks persisted across lags 1–3, with ORs typically exceeding 
1.03, indicating heightened sensitivity of this group to fine particulate pollution. Black 
populations also demonstrated pronounced and statistically significant associations at early lags, 
with ORs at lag 0 ranging from 1.030 (95% CI: 1.015–1.046) to 1.060 (95% CI: 1.048–1.072) 
from matching 1:1 to 4:1, remaining elevated through lag 1 before gradually attenuating by lag 3. 
For Hispanic and White populations, the associations were similarly strong and consistent across 
all lags. Among Hispanics, lag 0 ORs rose from 1.019 (95% CI: 1.008–1.031) to 1.048 (95% CI: 
1.038–1.057) from matching 1:1 to 4:1 under broader matching strategies, with statistically 
significant elevations persisting through lag 3. Whites showed comparably stable effects, with 
lag 0 ORs ranging from 1.015 (95% CI: 1.009–1.021) to 1.037 (95% CI: 1.032–1.043) from 
matching 1:1 to 4:1. The Other category displayed significant but slightly smaller magnitudes, 
with ORs at lag 0 increasing from 1.028 (95% CI: 1.008–1.048) to 1.052 (95% CI: 1.035–1.069) 
from matching 1:1 to 4:1, again showing stability across lags 0–3.  
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In summary, PM2.5 exposure was a statistically significant and consistent predictor of 
increased hospital admissions across all examined racial and ethnic groups. The effects were 
strongest and most persistent among Asian and Black populations. These findings emphasize the 
widespread health burden of PM2.5 pollution and its disproportionate impacts across 
demographic subgroups. 

Table 14. Sample size population and exposure statistics for inpatient visits. 

Race 
Ethnicity 

Total ED 
Visits 

Remove 
Accidents/ 
Duplicates 

NO2 (ppb) PM2.5 (ug m-3) 

Mean Std IQR Mean Std IQR 

Black 339,355 67,871 9.15 5.73 7.95 8.74 2.79 3.34 

White 1,898,095 379,619 8.20 5.50 7.53 8.58 3.05 3.69 

Asian 349,225 69,845 8.96 5.82 8.15 8.57 2.78 3.45 

Hispanic 562,795 112,559 9.16 5.80 7.98 8.85 2.79 3.36 

Other 26,919,165 5,379,185 8.21 5.58 7.75 8.40 2.94 3.66 

 

 
Figure 15. The overall impact of NO2 exposure on hospital admissions. 
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Figure 16. The overall impact of NO2 exposure on hospital admissions stratified by race-
ethnicity. 
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Figure 17. The overall impact of PM2.5 exposure on hospital admissions. 
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Figure 18. The overall impact of PM2.5 exposure on hospital admissions stratified by race-
ethnicity. 

 

Modelling diabetes mellitus hospital LOS from NO2 and PM2.5 exposure using HCAI data 

For impact of NO2 on hospital LOS, exposure to higher daily concentrations of NO2 was 
associated with a statistically significant increase in hospitalizations (Figure 19). The relationship 
was robust and consistent across all examined lag periods, confirming a clear and positive causal 
association between short-term NO2 exposure and longer hospitalization durations. At lag 0, the 
mean ratio (MR) in LOS was 1.018 (95% CI: 1.017–1.019), representing the strongest effect 
across the lag structure. The association remained stable at lag 1 with an MR of 1.018 (95% CI: 
1.017–1.019) and showed a gradual decline in magnitude at lag 2 (MR = 1.016, 95% CI: 1.015–
1.017) and lag 3 (MR = 1.011, 95% CI: 1.010–1.012). Despite this attenuation, all associations 
remained statistically significant, indicating that elevated NO2 levels continued to exert 
measurable influence on hospitalization duration for up to three days following exposure. 

For impact of NO2 on LOS by race and ethnicity, the stratified analyses demonstrated that the 
positive association between daily NO2 exposure and increased hospitalizations was consistent 
across all major racial and ethnic groups, though the magnitude of the effect varied (Figure 20). 
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Among Black patients, NO2 exposure showed the strongest and most persistent relationship with 
LOS, with IRs ranging from 1.047 (95% CI: 1.037–1.058) at lag 0 to 1.033 (95% CI: 1.022–
1.043) at lag 3. These results indicate a robust and sustained increase in LOS up to three days 
after exposure. Similarly, White patients exhibited a consistent positive association, with IRs of 
1.028 (95% CI: 1.024–1.033) at lag 0 and 1.019 (95% CI: 1.014–1.024) at lag 3, suggesting 
slightly smaller but still statistically significant effects. For Hispanic patients, the association 
strengthened with lag, peaking at lag 3 (MR = 1.042, 95% CI: 1.034–1.051), indicating that 
exposure-related impacts may extend over multiple subsequent days. In contrast, Asian patients 
demonstrated a more variable pattern, with a marked increase at lag 1 (MR = 1.052, 95% CI: 
1.042–1.062) and lag 2 (MR = 1.035, 95% CI: 1.025–1.045), but a slight reduction below unity 
at lag 3, possibly reflecting population heterogeneity or smaller sample size. Finally, the Other 
race-ethnicity group showed highly stable and statistically significant effects across all lags, with 
IRs ranging from 1.021 to 1.022 for lags 0–2 and a moderate attenuation at lag 3 (MR = 1.016, 
95% CI: 1.015–1.017).  

For impact of PM2.5 on LOS, analyses revealed a consistent and statistically significant 
association between short-term exposure and prolonged hospitalization (Figure 21). Across all 
lag periods examined (lag 0–3 days), elevated daily PM2.5 concentrations were positively 
associated with longer hospital stays, indicating that short-term increases in ambient pollution 
levels contribute measurably to disease severity and extended inpatient recovery time. At lag 0, a 
one IQR increase in PM2.5 was associated with a 0.84% longer LOS (MR = 1.008, 95% CI: 
1.008–1.009), representing the strongest effect among the examined lags. The association 
modestly attenuated but persisted through subsequent days, showing statistically significant 
elevations at lag 1 (MR = 1.007, 95% CI: 1.006–1.008), lag 2 (MR = 1.005, 95% CI: 1.004–
1.005), and lag 3 (MR = 1.006, 95% CI: 1.005–1.006). 

For impact of PM2.5 on LOS by race-ethnicity, the association remained statistically 
significant for most groups, though the magnitude and temporal pattern of effects varied across 
populations (Figure 22). Overall, the findings suggest that short-term exposure to fine particulate 
pollution can consistently prolong hospital recovery duration, with stronger effects observed 
among some racial and ethnic groups. For individuals classified as White, PM2.5 exposure was 
consistently and significantly associated with longer hospital stays across all lag periods. The 
strongest association was observed at lag 0 (MR = 1.035, 95% CI: 1.031–1.039), indicating a 
3.5% increase in LOS per IQR increase in PM2.5. The effect slightly declined across lag 1–3 (MR 
range: 1.022–1.027) but remained statistically significant, suggesting a persistent short-term 
impact on hospitalization duration. Among Hispanic patients, PM2.5 also demonstrated 
significant positive associations with LOS, with a clear increasing trend over time. The estimated 
effects rose from 1.016 (95% CI: 1.008–1.024) at lag 0 to 1.089 (95% CI: 1.081–1.097) at lag 3, 
indicating that prolonged exposure or delayed physiological responses may compound the effects 
of PM2.5 in this population. This pronounced gradient highlights potential heightened 
vulnerability or delayed recovery among Hispanic patients. For Asian individuals, the 
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associations were smaller: the effect at lag 0 (MR = 1.018, 95% CI: 1.009–1.028) indicated a 
modest increase in LOS and the results at later lags were near or slightly below unity. In contrast, 
Black patients showed a distinct temporal pattern. At lags 0–1, the estimated MRs of expected 
LOS were slightly below 1 (e.g., lag 0 = 0.985, 95% CI: 0.976–0.994), indicating a modest 
reduction in expected length of stay immediately following exposure. In contrast, at lags 2–3, the 
associations became positive and statistically significant (e.g., lag 3 = 1.011, 95% CI: 1.003–
1.020), corresponding to an increase in expected LOS. This may indicate a delayed manifestation 
of PM2.5-related morbidity or differential care dynamics. Finally, among those categorized as 
Other, the association between PM2.5 and LOS was both highly consistent and statistically 
significant across all lags, with nearly identical estimates around 1.010 (95% CI range: 1.009–
1.011) from lag 0 to lag 3. This stability underscores a persistent, low-level increase in LOS 
attributable to particulate exposure across short-term windows. 

Taken together, these findings confirm that short-term PM2.5 exposure is significantly 
associated with extended hospital stays across all race-ethnicity groups, though the timing and 
magnitude of the effects vary, potentially reflecting differential exposure patterns, underlying 
health vulnerabilities, or access to care. 

 

Figure 19. The overall impact of NO2 exposure on hospital length of stay. 
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Figure 20. The overall impact of NO2 exposure on hospital length of stay stratified by race-
ethnicity. 
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Figure 21. The overall impact of PM2.5 exposure on hospital length of stay. 
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Figure 22. The overall impact of PM2.5 exposure on hospital length of stay stratified by race-
ethnicity. 

 

Like ED visits, we also conducted inpatient analyses for individual years (2010-2019 for 10 
years) across multiple stratification strategies, including health insurance pay type, region, 
primary language spoken, race-ethnicity, sex, and age group. Across all stratified analyses, the 
results consistently demonstrated a positive association between air pollution exposure, both NO2 
and PM2.5, and adverse hospital outcomes, including increased admissions and longer length of 
stay. Detailed results of these stratified analyses are presented in Supplementary File 2. 

Modelling diabetes mellitus ED visits and hospitalizations from O3 exposure using HCAI data 

 For T2D-related ED visits, O3 exposure demonstrated small and generally inconsistent 
associations across lag periods and matching strategies event after controlling for impact from 
NO2, PM2.5 and socioeconomic status (Figure 23). At lag 0, the estimated odds ratios ranged 
narrowly from 0.994 to 1.002 across different control strategies, with most 95% confidence 
intervals overlapping unity, indicating little to no immediate effect. Similar patterns persisted 
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through lag 1 to lag 3, with estimates fluctuating around the null (e.g., lag 1 range: 0.993–1.002; 
lag 3 range: 0.995–1.000). A slight downward trend was observed under higher control ratios 
(3:1 and 4:1 matching), where ORs dipped modestly below 1.0, suggesting a potential inverse or  
null effect at those settings. Overall, the findings suggest that short-term variations in ambient O3 
were not consistently associated with increased ED utilization among individuals with T2D. This 
contrasts with the clearer and stronger associations seen for NO2 and PM2.5, indicating that O3’s 
impact on acute diabetic morbidity may be weaker, context-dependent, or confounded by co-
pollutant interactions. The lack of a monotonic or lag-dependent pattern supports the 
interpretation that O3 effects on acute healthcare utilization may be modest and transient in this 
population. 

The estimated effects of O3 on T2D-related hospital admissions were generally small and 
mixed across lags and control strategies (Figure 24). Effect estimates ranged approximately from 
1.003 to 1.008, with most 95% confidence intervals spanning the null value. Significant 
associations were observed mainly under the more stringent control strategy (4-to-1 matching), 
where ORs reached 1.007 (95% CI: 1.001–1.013) at lag 1, 1.007 (95% CI: 1.001–1.013) at lag 2, 
and 1.008 (95% CI: 1.002–1.014) at lag 3, suggesting a modest but persistent positive 
relationship. In contrast, associations under less restrictive control strategies (1-to-1 or 2-to-1 
matching) tended to be weaker and nonsignificant, reflecting greater heterogeneity and potential 
confounding. The modest increase in effect magnitude from lag 0 through lag 3 implies that O3 
may exert slightly delayed effects relative to other pollutants, consistent with prior studies 
reporting subacute respiratory or inflammatory responses that manifest over several days. 
Compared with NO2 and PM2.5, the overall O3 effects were smaller and less consistent, likely due 
to the complex spatiotemporal behavior of O3, its inverse correlation with traffic-related 
pollutants in urban cores, and differences in exposure misclassification across seasons. 
Nonetheless, the presence of significant associations at multiple lags under the stricter analytic 
design indicates that O3 exposure may contribute incrementally to acute diabetes-related 
hospitalizations, albeit to a lesser extent than NO2 and PM2.5. 

For hospital LOS, O3 exposure showed a mixed temporal pattern with both positive and 
negative associations across lag days (Figure 25). At lag 0, O3 was associated with a modest but 
statistically significant increase in LOS (MR = 1.018, 95% CI: 1.017–1.019), suggesting that 
same-day exposure may exacerbate disease severity or delay recovery among hospitalized T2D 
patients. However, this effect reversed at lag 1 (MR = 0.991, 95% CI: 0.990–0.992) and 
remained below unity at lag 2 (MR = 0.996, 95% CI: 0.995–0.996), indicating possible 
compensatory recovery or adaptive physiological responses following exposure. By lag 3, the 
association attenuated toward the null (MR = 0.999, 95% CI: 0.999–1.000). This oscillating 
pattern likely reflects the transient and complex biological response to O3 exposure, where acute 
oxidative stress may initially worsen glycemic or inflammatory conditions, followed by short-
term resolution or hospital treatment effects that mitigate impact on LOS. Similar bidirectional 
effects have been reported in previous studies, suggesting that O3’s influence on clinical 
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outcomes may depend on exposure timing, co-pollutant interactions, and individual 
susceptibility. 

 

Figure 23. The impact of O3 exposure on ED visits after adjusting for NO2, PM2.5 and 
socioeconomic status impacts. 
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Figure 24. The impact of O3 exposure on hospital admissions after adjusting for NO2, PM2.5 and 
socioeconomic impacts. 
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Figure 25. The impact of O3 exposure on hospital LOS after adjusting for NO2, PM2.5 and 
socioeconomic status impacts. 
 

Modelling diabetes mortality from NO2 and PM2.5 exposure using CDPH Vital Records data 

 Mortality analyses using CDPH data from 2014–2021 revealed statistically significant 
positive associations between exposure to ambient air pollutants and the odds of all-cause 
mortality among California residents with T2D. For NO2, a 5.05 ppb IQR increase was 
associated with 0.6% higher odds of death (OR = 1.006; 95% CI: 1.000–1.013). Although the 
lower confidence bound approached unity, the consistent positive association suggests that 
exposure to NO2, an indicator of traffic-related pollution, contributes to increased mortality risk. 
In comparison, PM2.5 showed a markedly stronger relationship: each 2.86 µg m-3 IQR increase in 
PM2.5 exposure corresponded to 7.5% higher odds of death (OR = 1.075; 95% CI: 1.069–1.081). 
The larger magnitude and precision of the PM2.5 effect highlights its dominant contribution to 
mortality, consistent with extensive epidemiologic evidence linking fine particulates to 
cardiovascular, respiratory, and metabolic dysfunction. Overall, both pollutants were associated 
with elevated mortality odds, but PM2.5 exerted a substantially greater and more robust effect, 
emphasizing the need for continued air quality improvements targeting fine particulate sources to 
mitigate long-term health risks across California’s population. 
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Task 6. Estimate economic benefits from reducing air pollution exposures on metabolic 
health outcomes 

Based on the results of the preceding set of models for the pollutants NO2, PM2.5, and O3, this 
section uses standardized medical expenditure and value of statistical life (VSL) data to 
determine the economic benefits of reducing T2D by reducing the pollutants NO2, PM2.5, and O3 
by an interquartile. We present avoidable medical expenditures as well as the value of the overall 
avoidable loss of life.  

Methodology 

Constructing state-level economic burden requires integrating exposure–response functions 
(ERF) with cost-of-illness data. Using ERFs) presented in this report (each are indicated below 
when they are used), we determine potential impact fractions (PIF) from single pollutants to 
determine the incremental medical expenditures for T2D versus non-diabetic controls. Costs are 
adjusted to 2024 constant U.S. dollars to remove the effects of inflation. 

Potential impact fractions (PIFs) are the proportion of cases that are likely to be prevented if 
the exposure to the pollutant in question were eliminated by a particular proportion, assuming the 
observed association is unbiased.128 To do this, we assume the odds-ratios estimated for logistic 
case-control and conditional logistic case-control models are unbiased (e.g., each logistic or 
conditional logistic model is sufficiently adjusted) and that the outcome is sufficiently rare (e.g., 
≅ 10%) such that the relevant odds-ratio does not significantly overstate the risk-ratio such that 
𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼 ≈ 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼, where 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 is the odds-ratio and 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼 is the risk-ratio for an interquartile 
change in a given pollutant.129–131 The formula to calculate this can be derived from the equation 
of a distribution shift PIF where the distribution shift is uniform (e.g., interquartile), assuming 
𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼 ≈ 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼:128 

𝑃𝑃𝑃𝑃𝑃𝑃 = 1 −
1

𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼
  

where 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 is the odds-ratio for an interquartile change in a given pollutant as estimated from 
equations in the previous sections above. See Supplementary File 5 for the equation derivation. 
To determine economic benefits, we then multiply the relevant PIF by the relevant medical 
expenditure or value of a statistical life.132–138 This can be expressed as 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑀𝑀𝑀𝑀�  

where AME is avoidable medical expenditure, and 𝑀𝑀𝑀𝑀� is mean medical expenditure in California. 
We compute standard errors for AME based on the principles of the delta method as shown in 
Supplementary File 6. 
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Data 
Medical Expenditures 

Medical expenditure estimates data are based on recently released expenditure data for the 
years 2010-2019.117  All data are available from the Institute for Health Metrics and 
Evaluation,141 and the code used to develop the estimates is available via GitHub 
(https://github.com/ihmeuw/Resource_Tracking_US_DEX/tree/main/DEX_Capstone_2025). To 
compile this dataset, multiple administrative data sources were used that together reflect 
approximately 40 billion insurance claims and approximately 1 billion facility records across 
Medicare (including Medicare Advantage), Medicaid, private insurance, and out-of-pocket 
payments.117  Data were drawn from seven major medical claims sources including MarketScan, 
Kythera, the Health Care Cost Institute, the Agency for Healthcare Research and Quality’s 
Healthcare Cost and Utilization Project, and the Medical Expenditure Panel Survey.  

Expenditure data were classified by patient age, sex, type of care, payer, and county of 
residence. Type of care was classified as ambulatory, emergency department, home health, 
inpatient, nursing facilities, and medications. Payers were classified as Medicare, Medicaid, 
private, and out-of-pocket. Diagnoses were mapped to 148 standardized health conditions using 
ICD-9/10 codes and National Drug Codes, following the Global Burden of Disease 2019 
framework including T2D.139 Statistical adjustments were applied to correct for incomplete data 
(e.g., facilities reporting only charges) and to reallocate spending to comorbidities using 
penalized linear regression models.  

We only used California-specific age-standardized expenditures for our analysis, adjusted to 
2024 constant US dollars. The ERFs used in this analysis come from equations that each 
produced a single 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 per equation, so we use average annual medical expenditures in our 
analysis to determine the average annual potential medical expenditure savings due to reductions 
in each pollutant. We also present spending per capita, encounters per capita, and spending per 
encounter. The relevant estimates used are presented in Tables 18-21. 
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Table 18. Total Spending Summary Statistics for State-Level Medical Expenditure Data ($2024) 

  All Spending ($billion)  
Emergency Department 

($million) Inpatient ($billion)  
Prescribed 

Pharmaceuticals ($billion) 

Year  Mean 95%  CI Mean 95%  CI Mean 95%  CI Mean 95%  CI 
2010 17 16 17 236 223 236 1.4 1.2 1.5 4.1 3.8 4.2 
2011 19 17 19 248 223 273 1.5 1.4 1.7 4.1 3.8 4.3 
2012 19 17 20 260 236 285 1.5 1.4 1.7 4.1 4.0 4.3 
2013 19 17 20 273 248 298 1.5 1.4 1.7 4.2 4.0 4.5 
2014 20 19 20 273 248 298 1.5 1.4 1.6 4.7 4.6 5.0 
2015 21 20 21 298 285 310 1.7 1.6 1.7 5.0 4.8 5.2 
2016 21 21 22 310 298 322 1.7 1.6 1.9 5.0 4.8 5.2 
2017 21 20 22 310 298 347 1.7 1.5 2.0 5.0 4.6 5.1 
2018 21 20 22 322 285 347 1.9 1.6 2.1 5.0 4.7 5.2 
2019 21 21 22 360 335 372 2.0 2.0 2.1 5.1 5.0 5.3 

Table 19. Spending Per Capita Summary Statistics for State-Level Medical Expenditure Data ($2024) 

  All Spending ($)  
Emergency 

Department ($) Inpatient ($)  
Prescribed 

Pharmaceuticals ($) 
Year  Mean 95%  CI Mean 95%  CI Mean 95%  CI Mean 95%  CI 

2010 581.32 557.95 604.91 7.80 7.46 8.08 45.87 42.42 49.79 136.69 129.85 143.65 
2011 603.98 571.78 636.67 8.30 7.58 8.89 50.47 45.52 56.59 135.42 127.14 143.65 
2012 600.16 569.32 638.22 8.48 7.82 9.50 49.87 43.88 55.89 135.22 129.07 142.40 
2013 603.02 575.40 638.20 8.70 8.00 9.63 49.41 45.02 56.10 137.85 130.36 145.86 
2014 630.40 613.35 645.26 8.74 8.06 9.55 48.82 45.52 52.94 153.30 146.61 161.26 
2015 667.37 649.60 682.15 9.42 9.01 9.93 54.35 51.60 57.18 159.60 153.16 165.66 
2016 680.95 664.09 695.57 9.88 9.46 10.43 54.67 51.92 57.51 158.48 152.52 164.26 
2017 648.27 614.40 694.02 9.96 9.30 10.79 53.68 46.19 62.22 154.42 145.84 160.43 
2018 648.84 608.52 705.32 9.91 8.98 10.80 57.04 49.13 67.44 155.46 147.15 164.66 
2019 671.41 650.28 691.45 11.01 10.50 11.61 62.47 59.81 65.00 160.43 152.82 164.96 
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Value of a Statistical Life 

We use a standard Value of a Statistical Life (VSL), adjusted to 2024 constant US dollars, 
from CARB.(https://ww2.arb.ca.gov/sites/default/files/2021-
10/SCAQMD%20Mortality%20Risk%20Reduction%20Valuation.pdf). This value is $14.5 
million.  

Table 20. Encounters Per 1,000 Population Summary Statistics for State-Level Medical Expenditure Data  
  Emergency Department  Inpatient  Prescribed Pharmaceuticals 

Year  Mean 95%  CI Mean 95%  CI Mean 95%  CI 
2010 6.80 6.07 7.63 2.15 1.99 2.38 821.43 768.54 872.06 
2011 6.48 5.06 8.26 2.19 1.90 2.63 817.38 732.18 914.77 
2012 6.28 4.99 7.99 2.11 1.83 2.61 785.44 695.82 891.73 
2013 6.02 4.90 7.69 2.05 1.76 2.39 758.78 673.19 840.66 
2014 5.93 5.43 6.40 1.93 1.81 2.11 792.14 729.85 864.79 
2015 6.83 6.46 7.20 2.17 2.11 2.26 819.90 776.12 869.80 
2016 7.09 6.72 7.48 2.14 2.09 2.23 824.83 783.30 876.67 
2017 7.02 5.64 8.76 2.04 1.76 2.46 742.30 642.47 869.41 
2018 6.63 5.00 8.43 2.09 1.81 2.45 691.36 602.22 792.48 
2019 7.28 6.73 7.65 2.19 2.07 2.29 675.07 635.76 703.76 

Table 21. Spending Per Encounter Summary Statistics for State-Level Medical Expenditure Data ($2024) 

  Emergency Department ($) Inpatient ($)  Prescribed Pharmaceuticals ($) 
Year  Mean 95%  CI Mean 95%  CI Mean 95%  CI 

2010 770.60 664.27 857.70 18438.30 17313.38 19423.86 173.45 165.42 185.02 
2011 894.67 690.38 1139.96 20110.94 17692.69 22270.77 173.41 163.05 183.40 
2012 980.82 682.21 1286.62 20584.50 17074.92 23109.88 180.37 168.48 190.96 
2013 1056.95 822.03 1367.37 21001.26 18492.12 23498.99 190.18 178.19 199.79 
2014 1066.51 953.73 1193.76 21808.38 20681.71 23596.21 204.34 195.15 218.93 
2015 988.65 916.94 1061.23 21113.23 19874.10 22491.00 212.51 199.37 226.60 
2016 1006.27 933.41 1078.69 21524.42 20283.80 22955.00 213.01 199.70 227.53 
2017 1100.34 849.60 1457.97 22848.74 20243.12 25775.51 226.29 212.85 240.99 
2018 1133.51 883.55 1599.04 23621.26 21483.00 25983.33 228.41 215.86 248.94 
2019 1055.15 988.19 1156.83 24259.11 22843.28 25612.94 234.06 221.35 245.98 
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Mortality due to T2D 

We used CDC Wonder to determine the average number of deaths in California due to T2D 
from 2010 to 2019 (https://wonder.cdc.gov/ucd-icd10.html). We included ICD-10 Diagnosis 
Codes E11-E14, excluding E10 (code for insulin-dependent diabetes). The age-adjusted average 
rate for California across 2010-2019 was 20.07 per 100,000 per year. 

Results 

Table 22 presents the results of changes in incidence of T2D based on the previously 
presented models based on data from the California Health Interview Survey (CHIS). These 
analyses examine overall incidence since the estimated ORIQR does not differentiate by insurance 
type. To determine the medical expenditure impact, total costs for all categories of care 
(ambulatory, emergency department, home health, inpatient, nursing facilities, and medications) 
related to T2D were aggregated and used to determine the average annual medical expenditures 
for T2D attributed to each pollutant. Overall data can be expressed as total spending, spending 
per capita, encounters per capita, and spending per encounter.  

 

Table. 22. Avoidable Medical Spending/Use from Reduced Pollution, by Pollutant 

Pollutant 
 

PIF Estimated Savings from Interquartile Reduction of Pollutant (2024$) 

 
 Total Spending ($millions) 

(95% CI) 
Spending Per Capita ($) 

(95% CI) 
NO2 0.012 $245.29 (150.75, 339.82) $7.83 (4.81, 10.85) 

PM2.5 0.072 $1421.11 (1186.94, 1655.28) $45.38 (37.90, 52.86) 

O3 0.060 $1193 (737.88, 1650.01) $38.13 (23.56, 52.69) 

Note: 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 estimates used here (NO2 1.0125, 95% CI:1.0073, 1.0170; PM2.5 1.0771, 95% CI: 1.0640, 1.0904; O3 

1.064, 95% CI: 1.090, 1.039) come from the highest reported 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 for each pollutant listed in the CHIS Incidence 
Criteria Pollutants section of Supplementary File 4. 

 

The next set of results, Table 23-Table25, present impacts of pollutants on various subsets of 
medical expenditures, including medication, emergency department use, and inpatient care. 
These are used since we have separately modeled estimates for these subcategories of medical 
care utilization. Medication models were based on CHIS data, and emergency department and 
inpatient use models were based on data from HCAI.  

 

 

 

 

https://wonder.cdc.gov/ucd-icd10.html
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Table. 23. Avoidable Emergency Department Spending/Use from Reduced Pollution, by Pollutant 

Pollutant 
 

PIF Estimated Savings from Interquartile Reduction of Pollutant (2024$) 

 

 Total Spending 
($millions) 
(95% CI) 

Spending Per 
Capita ($) 
(95% CI) 

Encounters Per 
Capita 

(95% CI) 

Spending Per 
Encounter ($) 

(95% CI) 
NO2 0.007 $2.07 (1.17, 2.97) $0.07 (0.04, 0.09) 0.05 (0.03,0.07) $7.22 (3.84, 10.59) 

PM2.5 0.006 $1.83 (1.08, 2.58) $0.06 (0.03, 0.08) 0.04 (0.03, 0.06) $6.37 (3.53, 9.22) 

O3 0.002 $0.70 (-1.21, 2.61) $0.02 (-0.04, 0.08) 0.02 (-0.03, 0.06) $2.44 (-4.21, 9.10) 

Note: 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼estimates used here (NO2 1.0072, 95% CI:1.0041, 1.0103; PM2.5 1.0063, 95% CI: 1.0037, 1.0089; O3 
1.0024, 95% CI: 0.9958, 1.0090) come from the highest reported 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 for each pollutant listed in the HCAI ED 
Overall section of Supplementary File 4. 

 

Table. 24. Avoidable Inpatient Spending/Use from Reduced Pollution, by Pollutant 

Pollutant 
 

PIF Estimated Savings from Interquartile Reduction of Pollutant (2024$) 

 

 Total Spending 
($millions) 
(95% CI) 

Spending Per Capita 
($) 

(95% CI) 

Encounters Per 
Capita 

(95% CI) 

Spending Per 
Encounter ($) 

(95% CI) 
NO2 0.052 $86.11 (69.24, 102.98) $2.77 (2.23, 3.31) 0.11 (0.08, 0.13) $1132 (913, 1352) 

PM2.5 0.042 $69.46 (54.87, 84.05) $2.23 (1.77, 2.70) 0.08 (0.07, 0.10) $914 (724, 1104) 

O3 0.008 $12.81 (3.46, 22.16) $0.41 (011, 0.71) 0.02 (0.004, 0.03) $169 (46, 291) 

Note: 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 estimates used here (NO2 1.0555, 95% CI:1.0455, 1.0656; PM2.5 1.0443, 95% CI: 1.0356, 1.0530; O3 
1.0078, 95% CI: 1.0021, 1.0136) come from the highest reported 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 for each pollutant listed in the HCAI IP 
Overall section of Supplementary File 4. 

 

Table. 25. Avoidable Medication Spending/Use from Reduced Pollution, by Pollutant 

Pollutant 
 

PIF Estimated Savings from Interquartile Reduction of Pollutant (2024$) 

 

 Total Spending 
($millions) 
(95% CI) 

Spending Per  
Capita ($) 
(95% CI) 

Encounters Per 
Capita 

(95% CI) 

Spending Per 
Encounter ($) 

(95% CI) 
NO2 

  

0.003 $85.04 (61.67, 108.40) 
  

$2.74 (1.99, 3.50) 14.25 (10.16, 18.34) $3.75 (2.71, 4.80) 

PM2.5 

  

0.005 $315.15 (270.99, 359.32) 
  

$10.16 (7.35, 12.96) 52.81 (44.23, 61.40) $13.91 (11.88, 15.94) 

O3 

  

0.034 $15.82 (12.46, 19.19) 
  

$5.10 (2.97, 7.23) 26.51 (20.46, 32.56) $6.98 (5.47, 8.50) 
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Note: 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 estimates used here (NO2 1.0187, 95% CI:1.0136, 1.0239; PM2.5 1.0733, 95% CI: 1.0629, 1.0838; O3 
1.0355, 95% CI: 1.0279, 1.0431) come from the highest reported 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 for each pollutant listed in the CHIS 
Medication Criteria Pollutant section of Supplementary File 4. 

 

 

Finally, Table 26 presents the average annual VSL of avoidable deaths per due to T2D. 

 

Table 26. Average Annual Value of Statistical Lives (VSL) Lost Due to T2D, due to an 
Interquartile Change in Pollution, by Pollutant 

Pollutant Avoidable Lost VSL per 100,000 population from Reducing  
Pollutant by an Interquartile ($millions) 

NO2 $1.782 (-0.136, 3.699) 

PM2.5 $20.839 (19.289, 22.390) 

Note: 𝑂𝑂𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼 estimates used here (NO2 1.006, 95% CI:1.000, 1.013; PM2.5 1.075, 95% CI: 1.069, 1.081) come from 
the section above Modeling diabetes mortality from NO2 and PM2.5 exposure using CDPH Vital Records data.  

 

Limitations  

Note that the pollution levels in each interquartile are not consistent across time but rather 
reflect relative movements within each distribution of pollutant levels, where the distribution is 
changing over time. Thus, an interquartile movement within a narrower distribution of pollutant 
levels is less than an interquartile movement within a wider distribution of pollutant levels. The 
results are thus analyzing the average interquartile movement across the entire period, not 
specific levels of pollutants across the entire period. The models also model one pollutant at a 
time and assume no confounding from omitting other pollutants within each model.  

Regarding other cost information, including the cost of caregiving, productivity losses (e.g., 
loss of employment, works days lost due to illness or medical treatment, etc.), and changes in 
subjective health status due to T2D, estimates of the impact of pollutants on each of these, via 
changes in the incidence of T2D, would be needed, but were not available.  

No information could be provided on a per beneficiary basis.  Beneficiaries are defined based 
on common insurance type and no equations were estimated by insurance type. 

Regarding the assumption of unbiasedness that underlies the calculation of PIFs, a PIF is a 
counterfactual quantity (the proportion of cases that would be prevented under a specified 
intervention on exposure) so its identification requires strong assumptions beyond statistical 
significance, including consistency, positivity, and exchangeability/no unmeasured confounding 
in the underlying population. In a matched case–control framework estimated via conditional 
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logistic regression (CLR), the exposure coefficient is identified from within–matched-set 
contrasts; matching does not itself eliminate confounding and can induce selection/collider bias, 
which is why conditioning on the matched structure and adjusting for measured confounders is 
necessary.142–144 While we adjust for a broad set of observed individual and contextual 
covariates, residual confounding by unmeasured or mismeasured time-varying factors (e.g., 
comorbidities, health-care utilization shocks, co-exposures) may remain and could bias both the 
odds ratios and the implied PIFs. Moreover, CLR estimates a conditional odds ratio, whereas PIF 
is fundamentally risk-based and population-level. Since odds ratios are non-collapsible and 
effects may be heterogeneous across strata, conditional and marginal effects can differ even 
without confounding, so PIFs can be sensitive to how conditional estimates are 
mapped/standardized to the target population.145–147 Finally, PIF magnitudes can be affected by 
model specification (functional form and interactions), exposure definitions, and finite-
sample/sparse-data bias in logistic-type estimators,148,149 and PIF calculations from case–control 
data are sensitive to these assumptions.150–153 Nevertheless, our statistical approach has sought to 
minimize these sources of bias.  

 

Discussion 

In this project, diabetes-related health outcome modeling was implemented through a staged 
and prioritized analytic framework. We first focused on establishing robust concentration-
response relationships for single-pollutant exposures across five metabolic health endpoints, 
including diabetes incidence, medication use, diabetes-related emergency department visits, 
hospitalizations, length of stay, and mortality. These analyses were conducted not only for the 
full study period but also through year-specific models to characterize temporal heterogeneity. 
The scope and depth of these analyses, especially the combination of individual-level data, 
lagged exposure structures, and extensive stratification, required substantially greater effort than 
originally anticipated and ultimately exceeded the analytical capacity supported by the awarded 
budget. Using the CHIS, HCAI, and CDPH data collectively allowed a comprehensive 
assessment of both annual long-term and daily acute effects, capturing distinct but 
complementary health outcomes. 

Exposure modeling in this project provides the critical exposure foundation that underpins all 
subsequent epidemiologic and policy-relevant analyses in this project. Task 2 developed high-
resolution daily air pollution surfaces for criteria pollutants using an integrated machine 
learning–enhanced land use regression framework that combined regulatory monitoring, mobile 
Google Street View observations, and a rich set of spatial-temporal predictors. These models 
demonstrated strong explanatory performance and enabled assignment of daily exposures at fine 
spatial scales across California. The resulting exposure surfaces substantially reduced exposure 
misclassification relative to reliance on fixed-site monitoring alone and allowed for robust 
linkage with individual-level health records in Task 5, particularly for short-term outcomes such 
as emergency department visits, hospitalizations, and length of stay. 
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The relatively lower adjusted R2 for the PM2.5 model (0.65) still corresponds to a strong 
overall correlation (exceeding 0.80) between predicted and observed concentrations, indicating 
strong model performance. Compared with NO2, PM2.5 is influenced by a broader set of sources 
and processes, including regional transport, secondary formation, and episodic events such as 
wildfires, which are less tightly coupled to local land-use and traffic predictors typically used in 
LUR frameworks. Although additional regional or synoptic-scale predictors could further 
increase explanatory power, our primary objective was to characterize small-area spatial 
variability rather than maximize total variance explained. Accordingly, the model prioritizes 
local-scale predictors that are most relevant for exposure assignment in epidemiologic analyses. 

In our exposure modeling, the large numerical magnitude of the season coefficients reflects 
the scale and coding of the seasonal indicator variables rather than an outsized physical effect. 
Season was modeled as a binary indicator (0/1), so its contribution to predicted concentrations is 
either zero or approximately the coefficient value (≈356–360). In contrast, continuous predictors 
such as temperature have much smaller coefficients but operate over a substantially larger range 
(e.g., >300 Kelvin), yielding comparable or larger contributions to the linear predictor when 
multiplied by their observed values. Seasonal indicators in LUR models implicitly capture 
multiple unmeasured or partially measured processes that vary systematically over the year, 
including seasonal emission patterns (e.g., heating-related combustion, traffic activity), 
atmospheric chemistry, boundary-layer dynamics, and photochemical conditions that are not 
fully represented by individual meteorological variables. We explicitly evaluated 
multicollinearity during the D/S/A modeling process and retained seasonal terms only when they 
remained statistically significant and improved predictive performance after accounting for 
meteorology and other predictors. The D/S/A model controlled for collinearity, suggesting that 
the seasonal terms capture residual temporal structure rather than inflating coefficients through 
redundancy. 

We extended this exposure modeling framework from criteria pollutants to air toxics, 
addressing a major gap in statewide exposure assessment. By applying D/S/A LUR techniques 
and developing annual concentration surfaces for multiple hazardous air pollutants, this task 
characterized long-term spatial variability in air toxics exposures across California communities. 
Although the annual temporal resolution limited the application of air toxics exposures to acute 
outcomes, these models were essential for evaluating long-term metabolic outcomes using 
survey-based data, including diabetes incidence and medication use. Together, Tasks 2 and 3 
demonstrate the feasibility and value of integrating advanced exposure modeling techniques to 
capture both short-term and long-term pollutant variability relevant to different health endpoints. 

Findings from the CHIS data showed significant positive associations between annual 
exposure to NO2, PM2.5 and O3 and T2D incidence, indicating that exposure to these pollutants 
may contribute to diabetes onset. These associations were strongest in later diagnosis periods 
(2005–2015), corresponding with years of improved monitoring resolution and more consistent 
exposure patterns across California. In addition, long-term changes in atmospheric chemistry and 
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climate-related factors, such as rising temperatures, increased photochemical activity, and more 
frequent stagnation events, may have contributed to higher or more biologically relevant O3 
exposures, thereby amplifying detectable health effects in more recent periods. The results on 
medication use revealed a consistent pattern of higher odds of diabetes medication use with 
increasing NO2, PM2.5 and O3 levels, suggesting that exposure may worsen disease control or 
severity among diagnosed individuals. The magnitude of associations was greatest for PM2.5, 
followed by O3, with NO2 showing smaller but steady effects. This gradient mirrors the 
differential toxicity of these pollutants and aligns with evidence from other large-scale studies 
linking fine particulates to systemic inflammation, insulin resistance, and disease 
progression.11,12 

Results from the HCAI data further reinforce the acute impacts of air pollution on diabetes-
related health care utilization. Both NO2 and PM2.5 exposures were significantly associated with 
elevated risks of T2D-related ED visits and hospital admissions. Among those hospitalized, 
exposure to these pollutants also correlated with longer LOS, reflecting higher clinical severity 
and potentially slower recovery. The acute effects appeared transient, with effect estimates 
generally declining modestly from lag 0 to lag 3 days. This attenuation pattern suggests short-
term, reversible physiological responses, such as systemic oxidative stress and inflammatory 
pathways, that may peak quickly after exposure. While some studies have reported stronger 
effects over 3 days of lagged effect,12,154,155 our findings indicate that the largest effects occurred 
at lag 0, consistent with some research finding that pollutant exposure triggers near-immediate 
impacts on disease exacerbation or acute decompensation.96,156,157 This pattern suggests that 
short-term air pollution exposure may induce transient, reversible physiological disturbances 
rather than sustained systemic damage. Acute elevations in NO2 and PM2.5 can trigger rapid-
onset oxidative stress and pro-inflammatory responses, leading to endothelial dysfunction, 
altered glucose metabolism, and sympathetic activation within hours of exposure. These 
biological perturbations can exacerbate existing metabolic instability among individuals with 
diabetes, increasing the likelihood of emergency department visits or hospital admissions. The 
observed peak effect at lag 0 indicates that the body’s response to pollution may occur almost 
immediately, consistent with experimental and epidemiologic studies showing that exposure to 
combustion-related pollutants quickly elevates circulating inflammatory markers (e.g., C-
reactive protein, interleukin-6) and impairs insulin sensitivity.158 Nonetheless, the gradual 
attenuation across days supports a sustained, though diminishing, influence over short time 
windows. 

Further, across all stratified analyses, clear racial, ethnic, and linguistic disparities emerged in 
vulnerability to air pollution-related diabetes outcomes. Individuals classified in the “Other” 
race-ethnicity group consistently exhibited the highest susceptibility to NO2, particularly for 
acute outcomes such as diabetes-related emergency department visits and hospitalizations, while 
Hispanic populations showed the strongest vulnerability to PM2.5, especially in regions with 
higher particulate burdens such as Southern California and the Central Valley. Stratification by 
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primary language further reinforced these inequities: individuals in the “Other-language” group 
experienced the largest and most rapidly increasing risks for both NO2 and PM2.5 over time, 
followed by Spanish speakers, whereas English speakers consistently showed the lowest effects. 
In contrast, non-Hispanic White populations demonstrated the lowest pollution-related risks 
across pollutants and endpoints. Together, these findings indicate that racially diverse, Hispanic, 
and linguistically isolated communities experience a disproportionate burden of air pollution–
related diabetes risk, reflecting the combined influence of higher exposure levels, structural 
disadvantage, occupational risk, and reduced access to preventive and ongoing healthcare.  

Analyses using CDPH mortality data revealed that both NO2 and PM2.5 were significantly 
associated with increased odds of T2D-related deaths, reinforcing the health burden of chronic 
air pollution exposure. PM2.5 again showed the strongest effect estimates, consistent with its fine 
particulate nature and greater ability to penetrate deep into the lungs and systemic circulation. 
These findings are in line with numerous epidemiologic studies demonstrating robust 
associations between particulate matter and all-cause or cause-specific mortality, including those 
related to metabolic and cardiovascular complications.159–162 

Across all analyses involving acute effects, O3 showed more complex and mixed effects. 
While some analyses showed modestly positive associations, others, displayed weaker or even 
negative effects.23–26 Such inconsistencies are not uncommon in the literature and may be 
attributed to the spatial and temporal heterogeneity of O3 formation, its inverse relationship with 
NO2 in urban areas (due to titration by traffic emissions), and differential seasonal exposure 
patterns. Some prior studies have similarly reported null or inverse O3 effects for metabolic 
outcomes,163,164 whereas others observed positive associations, especially in regions with higher 
photochemical activity. The mixed findings in our study thus likely reflect both the complex 
chemistry of O3 and the interplay of co-pollutant exposures. 

Taken together, these results highlight a coherent message across datasets: long-term 
exposure to NO2 and PM2.5 elevates the risk of developing T2D, increases the likelihood of 
disease progression requiring medical treatment and mortality, while acute exposures exacerbate 
complications leading to higher ED visits, hospital admissions, and prolonged LOS. The 
consistency of these associations across data sources, lag structures, and population subgroups 
underscores the robustness of the observed relationships. 

This project also translated the exposure-response relationships identified in Task 5 into 
policy-relevant economic metrics, reinforcing the public health significance of the observed 
associations. By combining modeled concentration-response relationships with population 
exposure distributions, medical expenditure data, and established valuation approaches, this task 
provides a framework for estimating the economic benefits of reducing air pollution-related 
metabolic health burdens. Importantly, the economic analyses complement the epidemiologic 
findings by contextualizing health risks in terms directly relevant to regulatory decision-making, 
resource allocation, and cost-benefit considerations. These estimates underscore the substantial 
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societal value of reducing individual pollutant exposures that are consistently associated with 
diabetes-related morbidity and mortality. 

The robustness of our findings is supported by the exceptionally large, statewide datasets 
used in this study, encompassing millions of records across multiple independent health data 
sources. With sample sizes of this magnitude, alternative reasonable model specifications (e.g., 
different covariate sets, link functions, or lag structures) are expected to yield highly consistent 
results, as statistical uncertainty is substantially reduced and estimates are driven by stable 
population-level signals rather than sampling variability. In contrast, sensitivity of results to 
modeling choices reported in prior studies is largely attributable to smaller sample sizes, limited 
spatial coverage, or restricted temporal windows. Our analyses further demonstrate robustness 
through consistency across multiple health endpoints, pollutants, lag structures, and independent 
datasets, providing strong internal validation. This pattern aligns with the broader environmental 
epidemiology literature, which shows that when large population-based datasets and high-
resolution exposure models are used, effect estimates are generally stable across alternative 
specifications, with differences primarily observed in studies with limited statistical power or 
localized samples.  

From a policy and public health perspective, these findings emphasize the importance of 
continued air quality improvement efforts, especially targeting reductions in fine particulate and 
traffic-related pollutants. The disproportionate burden observed among minority and 
socioeconomically disadvantaged populations further highlights the need for equitable 
environmental health protections. Given the persistence of T2D as a major public health 
challenge, even modest pollutant-related increases in risk translate into substantial population-
level impacts. 

Simultaneous multi-pollutant health models were not implemented in this study because the 
primary objective was to quantify pollutant-specific concentration–response relationships rather 
than cumulative effects. The large majority of epidemiologic studies evaluating air pollution and 
metabolic health outcomes rely on single-pollutant models, which remain the standard approach 
for estimating interpretable and policy-relevant effect sizes for individual pollutants. Multi-
pollutant models, particularly those involving both criteria pollutants and air toxics, require 
specialized study designs to address collinearity, differential exposure error, and challenges in 
causal interpretation, and are more appropriately suited for cumulative impact exposure 
assessments. Because cumulative exposure assessment was not a stated objective of this project, 
and given the substantial additional methodological and computational demands required for 
valid multi-pollutant modeling, we focused on single-pollutant analyses in this work. 

  

Despite the strengths of this study, including statewide coverage, large sample sizes, and 
high-resolution exposure modeling, several limitations warrant consideration. First, exposure 
assignment for diabetes-related emergency department visits and hospitalizations relied on ZIP 



103 | P a g e  
 

code–level aggregation using population-weighted block group estimates. Although this 
approach captures small-area spatial variability, it may still misclassify individual-level 
exposures by not accounting for daily mobility, time–activity patterns, or indoor exposures. Such 
misclassification is expected to be largely nondifferential and would likely bias effect estimates 
toward the null. 

Second, the observational design of this study precludes definitive causal inference. Although 
the case-crossover framework controls for time-invariant individual characteristics and lag-based 
analyses support temporally plausible exposure–response relationships, causal interpretation 
remains subject to the assumptions inherent in observational epidemiology. 

Third, air toxics exposures were modeled at an annual temporal resolution and therefore 
could not be applied to short-term health outcomes such as emergency department visits, 
hospitalizations, or mortality analyzed using daily exposure windows. As a result, air toxics 
analyses were restricted to annual survey-based outcomes (diabetes incidence and medication 
use), limiting direct comparability with short-term criteria pollutant analyses. 

Fourth, single-pollutant models were used for health analyses. While this approach is 
consistent with the majority of the air pollution epidemiology literature and facilitates 
interpretability, it does not explicitly quantify joint or cumulative effects of simultaneous multi-
pollutant exposures. Multi-pollutant modeling requires specialized study designs and additional 
assumptions and was beyond the scope and resources of the current project. Future work will 
build on these results to address cumulative exposure and mixture effects. 

Further, the ‘Other’ category in our analysis aggregated race-ethnicity groups not classified 
as Black, White, Asian, or Hispanic. This category may include groups such as Native American, 
Pacific Islander, Middle Eastern, multiracial individuals, and others. Potential differences within 
these groups might influence the observed patterns and should be considered when interpreting 
the results. 

Conclusion 

This project provides a statewide evaluation of the impacts of ambient air pollution on T2D 
across the disease continuum, integrating high-resolution exposure modeling, large-scale 
epidemiologic analyses, and health economic valuation. Using multiple California-wide datasets, 
including CHIS incidence and medication use, HCAI hospital and emergency department 
records, and CDPH mortality data, this study offers a comprehensive assessment of how air 
pollution contributes to diabetes onset, disease management, acute complications, and mortality. 
The consistency of results across independent data sources strengthens confidence in the 
findings. 

The exposure modeling framework captured fine-scale spatial and temporal variability in 
NO2, PM2.5, O3, and selected air toxics, enabling population-level exposure assignment for 
millions of health records statewide. Despite limitations related to monitoring density for air 
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toxics, the models demonstrated strong performance and provided a robust foundation for 
subsequent health analyses. 

Across epidemiologic analyses, long-term exposure to NO2, PM2.5, and O3 was associated 
with increased T2D incidence and greater use of diabetes medications, indicating a role for air 
pollution in both disease development and worsening disease control. PM2.5 showed the strongest 
and most consistent associations across outcomes, while NO2 exhibited smaller but stable effects. 
O3 associations were more heterogeneous, likely reflecting its complex atmospheric chemistry 
and seasonal variability. 

Short-term exposure analyses using hospital and emergency department data showed that 
acute increases in NO2 and PM2.5 were associated with higher risks of T2D-related ED visits, 
hospital admissions, and longer hospital stays, suggesting that pollution can trigger clinically 
meaningful exacerbations. These effects were most pronounced shortly after exposure and 
attenuated over several days. Stratified analyses indicated that racial and ethnic minority 
populations often experienced greater pollution-related risks, highlighting persistent 
environmental health disparities. 

Mortality analyses further demonstrated that higher annual exposures to PM2.5 and NO2 in 
the year preceding death were associated with increased diabetes-related mortality, supporting 
the role of long-term air pollution exposure in disease progression and fatal outcomes. These 
findings are consistent with existing evidence linking particulate and traffic-related pollution to 
chronic cardiometabolic stress. 

The health economic analyses translated these health impacts into substantial societal costs. 
Reductions in PM2.5, NO2, and O3 were associated with large avoidable medical expenditures 
related to diabetes care, as well as significant reductions in the value of statistical lives lost due 
to diabetes-related mortality. PM2.5 reductions yielded the greatest economic benefits, reflecting 
its strong influence across multiple health endpoints. 

Overall, this integrated analysis demonstrates that ambient air pollution, particularly PM2.5 
and NO2, contributes meaningfully to the onset, progression, and economic burden of T2D in 
California. These findings highlight air quality improvement as an effective and equitable 
strategy for reducing diabetes-related morbidity, mortality, and healthcare costs, and support the 
integration of air pollution control into chronic disease prevention and public health policy. 
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