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Disclaimer

The statements and conclusions in this Report are those of the contractor and not necessarily
those of the California Air Resources Board. The mention of commercial products, their
source, or their use in connection with material reported herein is not to be construed as
actual or implied endorsement of such products.
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Project Summary/Abstract

This study evaluated the effects of ambient air pollution on type 2 diabetes (T2D)-related
outcomes across the disease continuum, from onset to mortality, using three statewide data
sources in California: the California Health Interview Survey (CHIS), the Department of Health
Care Access and Information (HCAI) hospital and emergency department (ED) discharge data,
and mortality data from the California Department of Public Health (CDPH). The analysis
covered 2010-2019 and focused on three major pollutants—nitrogen dioxide (NO), fine
particulate matter (PM2s), and ozone (O3).

Using CHIS data, we assessed both the incidence of T2D and the use of diabetes medications
among adults. Higher annual exposures to air pollution were consistently associated with
elevated odds of newly reported diabetes and greater medication use. For T2D incidence, NO,
PM: 5, and O3 all showed positive associations across lag years, with the strongest and most
consistent effects observed for PM> 5 and O3 (p < 0.001). For medication use, odds ratios (ORs)
for NO; remained stable from lag 0 to lag 3 years (=1.018) per interquartile change (IQR), while
Os showed a slight increase (=1.034 to 1.036) and PM2 5 exhibited a slightly higher - rise (<1.070
to 1.073), per IQR increase of respective exposure. These findings suggest that air pollution
exposure may both trigger diabetes onset and worsen disease control among those already
diagnosed.

Analyses based on HCALI data revealed similar patterns for acute healthcare utilization.
Short-term increases in NO2 and PM; 5 were associated with higher risks of T2D-related ED
visits and hospital admissions. Among hospitalized patients, pollutant exposure was also linked
to longer length of stay (LOS), a continuous outcome, indicating greater clinical severity. PM> s
showed the strongest associations, with risks elevated across all lag periods, while NO2
demonstrated smaller but consistent effects. Transient effects were observed, with associations
slightly attenuating from lag 0 to lag 3 days. O3 exhibited mixed associations, with some
analyses showing modest positive effects while others indicated weaker or nonsignificant
relationships. Stratified analyses by demographic and socioeconomic characteristics (including
race-ethnicity, age, and insurance type) confirmed that these associations were robust across
groups, with minority populations showing greater vulnerability.

Mortality analyses using CDPH data further confirmed the adverse impacts of air pollution
on diabetes outcomes. Higher annual average NO> and PM> 5 exposures in the 12 months prior to
date of death were significantly associated with increased diabetes-related deaths, consistent with
their roles in disease progression and systemic inflammation.

Taken together, findings across three separate datasets demonstrate that exposure to ambient
air pollutants, particularly PM2 s and NO>, contributes to the onset, exacerbation, and progression
of T2D. These results underscore the broad public health importance of air quality improvement
in reducing the burden of diabetes in California. Corresponding health economic analyses
indicate that reducing ambient concentrations of these pollutants could yield substantial
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economic benefits, including billions of dollars annually in avoided medical expenditures and
billions of dollars in terms of the value of statistical lives saved. Reducing emissions from traffic
and other pollution sources could yield substantial health benefits, particularly for populations
already at elevated risk for diabetes and related complications.
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Lay-Person Summary

Type 2 diabetes is a serious and growing health problem in California. While diet, physical
activity, and genetics are well-known risk factors, this study shows that air pollution also plays
an important role in the development and worsening of diabetes. Using large, statewide health
data from California between 2010 and 2019, this study examined how exposure to common air
pollutants, including traffic-related gases, fine particles in the air, ozone, and several toxic air
pollutants, affects people across the full course of diabetes, from first diagnosis to medication
use, emergency room visits, hospitalizations, and death.

The results consistently showed that people living in areas with higher air pollution were
more likely to develop diabetes, more likely to require diabetes medications, and more likely to
experience serious complications requiring emergency care or hospitalization. Higher pollution
levels were also linked to longer hospital stays and increased risk of death from diabetes-related
causes. Fine particulate matter, which comes largely from traffic, industry, and wildfire smoke,
showed the strongest and most consistent health effects.

Importantly, the study found that not all populations are affected equally. Communities
already facing social and economic disadvantages, including racial and ethnic minority groups
and people without stable health insurance, experienced greater health impacts from the same
pollution levels, highlighting existing environmental and health inequities across California.

Taken together, these findings show that air pollution is not just a respiratory or
cardiovascular issue, it also worsens diabetes and increases the burden on individuals, families,
and the healthcare system. Improving air quality, especially in heavily polluted and underserved
communities, could help prevent new cases of diabetes, reduce complications for those already
living with the disease, and lower healthcare costs statewide. Substantial economic benefits
could be achieved, including billions of dollars annually in avoided medical expenditures and
billions of dollars in terms of the value of lives saved. This study underscores the importance of
clean air policies as part of long-term strategies to protect public health and reduce chronic
disease in California.
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Executive Summary

a. Background

Type 2 diabetes (T2D) continues to be a major and growing public health concern in
California and worldwide. Beyond traditional risk factors such as obesity, age, and genetics,
emerging research has increasingly identified environmental exposures — particularly air
pollution — as important contributors to diabetes incidence, complications, and mortality.
Despite accumulating evidence linking fine particulate matter (PM3 5) and nitrogen dioxide
(NO») to metabolic and cardiovascular outcomes, limited work has comprehensively assessed
their effects on multiple diabetes-related health outcomes using diverse population-level data
sources across time. This project aimed to address these gaps by integrating statewide health
datasets to evaluate the short- and long-term impacts of air pollution on T2D-related outcomes.

b. Objective

The study sought to examine the associations between ambient air pollutants (NO2, PM2 s,
and O3) and multiple T2D-related outcomes, including disease incidence, medication use,
emergency department (ED) visits, hospital admissions, hospital length of stay (LOS), and
mortality. Specific goals were to assess (1) whether short- and long-term exposures to air
pollution increased risks for T2D health endpoints, (2) whether these effects varied across
demographic and socioeconomic groups, and (3) how pollutant-specific lag patterns reflected the
temporal nature of exposure-response relationships.

¢. Methods

Analyses were conducted using three California-representative health datasets from 2010—
2019, combined with high-resolution spatiotemporal exposure assessment, representing one of
the first statewide evaluations of diabetes-related health outcomes using linked population-level
health and advanced air pollution modeling data.

CHIS (California Health Interview Survey) provided individual-level data to model T2D
incidence and medication use, both treated as a binary outcome. Logistic regression models were
used to estimate associations with annual exposure to criteria pollutants (NO2, PM2.s and Os3) and
five air toxics (benzene, chromium, nickel, lead, 1,3-butadiene) adjusting for demographic,
socioeconomic, and behavioral covariates.

HCALI (California Department of Health Care Access and Information) hospital discharge and
ED datasets were used to assess short-term effects of daily pollutant variations on acute
healthcare utilization, including ED visits, hospital admissions (binary outcome), and LOS
(continuous outcome). Conditional logistic regression with distributed lag models (lags 0-3
days) was applied within a case-crossover framework, in which each case was self-matched to
control days occurring on the same day of the week one to four weeks prior to the event..
Stratified analyses by race-ethnicity, insurance type, region, sex, and age were also conducted.
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CDPH (California Department of Public Health) death records were analyzed to estimate the
associations between annual pollutant exposure and diabetes-related mortality using conditional
logistic regression approaches, in which each diabetes-related death was matched to controls
drawn from the same CDPH population who were still alive at the time of death, based on year
and month of birth, sex, and race—ethnicity..

Pollutant exposure metrics were assigned using data derived from PI's modeled fields, and all
analyses incorporated population weighting or covariate adjustment to minimize bias.

d. Results

Across the multiple statewide health datasets analyzed, we observed consistent evidence that
ambient air pollution was associated with elevated risk of adverse T2D-related outcomes. While
effect magnitudes and temporal patterns varied across pollutants and endpoints, the overarching
signal was robust: short- and long-term exposures to several criteria pollutants and air toxics
were linked to increased incidence, medication use, acute care utilization, and mortality among
individuals with or at risk for diabetes.

CHIS data showed that long-term exposure to NO2, PM2 s, and O3 was significantly
associated with increased T2D medication use and incidence. While NO; effects remained stable
across lag years, PMb> s exhibited the steepest increase in risk from lag 0 to lag 3, suggesting
greater toxicity. O3 effects were smaller but consistently positive across lags, indicating a modest
contribution to T2D morbidity. Lags reflect single-day lag effects (e.g., lag0 for the same
day/year, lag3 for three days/years before).

Analyses of CHIS data indicate that long-term exposure to multiple ambient air toxics is
consistently associated with increased T2D incidence and greater diabetes medication use across
California. Across survey years and lag structures, all five toxics were linked to higher odds of
incident T2D, with particularly strong and persistent associations for nickel and benzene,
moderate but stable associations for lead and chromium, and generally positive associations for
1,3-butadiene that strengthened in later periods.

HCALI data revealed robust and coherent patterns for acute healthcare utilization. Increases in
NO: and PM> 5 were significantly associated with elevated risks of T2D-related ED visits and
hospital admissions, as well as longer LOS among hospitalized patients, implying greater disease
severity. PM; 5 effects were generally the strongest, with NO> showing smaller but steady effects
across lag days. A modest attenuation from lag 0 to lag 3 was observed, indicating transient but
clinically relevant effects within a few days of exposure. In contrast, O3 associations were mixed.
While small positive associations were detected for hospital admissions and LOS at lag 0,
inverse or null effects appeared at later lags, suggesting differential mechanisms or potential
confounding by seasonal and photochemical factors. Stratified analyses confirmed that minority
populations, especially Hispanic and Black individuals, tended to experience greater pollutant-
related risks.

14|Page



CDPH mortality data further supported the long-term health burden of air pollution, showing
statistically significant increases in diabetes-related mortality with higher annual mean
concentrations of PM» s and NO,. These findings align with national evidence linking fine
particles and traffic-related pollutants to chronic metabolic and vascular stress.

Health economic analyses further demonstrated that reductions in ambient air pollution
would yield substantial economic benefits related to Type 2 diabetes. Based on modeled changes
in diabetes incidence, medication use, emergency department visits, hospitalizations, and
mortality, lowering pollutant concentrations by one interquartile range of their observed
distributions was associated with large avoidable costs across California. Annual medical
expenditure savings were estimated to be approximately $1.4 billion for PM2 5, $245 million for
NO3, and $1.2 billion for Os,. In addition, reductions in long-term exposure to PM2 s and NO»
were associated with sizable avoided losses in the value of statistical life, totaling several billion
dollars annually.

Overall, the consistency of findings across three separate datasets underscores a robust and
causal relationship between ambient air pollution and multiple stages of T2D progression—from
disease onset and treatment dependence to acute exacerbations and death.

e. Conclusion

This integrated statewide analysis demonstrates that air pollution, particularly PM2 s, NO2
and air toxics has a significant and measurable impact on T2D health outcomes across clinical
severity levels. The effects were strongest for PM; s, modest but stable for NO», and mixed for
Os. Short-term exposures primarily influenced acute healthcare utilization, while long-term
exposures contributed to disease development and mortality. The transient lag structure suggests
that pollutant-induced exacerbations occur rapidly following exposure, emphasizing the
importance of timely public health interventions during pollution peaks. Importantly, the
observed health impacts translate into substantial economic consequences. These economic
benefits reinforce the public health relevance of air quality regulations, demonstrating that
improvements in air pollution can reduce healthcare system burden.

These findings reinforce the need for continued efforts to reduce air pollution exposure,
especially in vulnerable communities disproportionately affected by both diabetes and
environmental burden. The combined epidemiologic and economic evidence demonstrates that
air quality improvements reduce the health and healthcare burden of Type 2 diabetes in
California. Policymakers, healthcare providers, and environmental agencies should consider
integrating air quality control with chronic disease prevention strategies to mitigate the growing
public health impact of diabetes in California.
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Background

Type 2 diabetes (T2D) has emerged as one of the most prevalent and costly chronic diseases
worldwide, imposing a growing burden on healthcare systems and communities. Characterized
by insulin resistance and impaired glucose regulation, T2D contributes to cardiovascular disease,
renal complications, neuropathy, and premature death.! In the United States, diabetes affects
over 38 million people, with nearly 95% of cases classified as T2D.> California, the most
populous and environmentally diverse state, bears a particularly heavy burden. Data from the
California Health Interview Survey (CHIS) show that approximately 8% adults in the state has
been diagnosed with diabetes (see Table 12), with prevalence disproportionately higher among
Hispanic, Black, and lower-income populations. Although established risk factors such as age,
obesity, diet, physical inactivity, and family history remain central to T2D development,
accumulating evidence points to air pollution as an important, modifiable environmental
determinant.®!° Epidemiologic and toxicologic studies over the past two decades have
demonstrated that exposure to airborne pollutants, especially fine particulate matter (PM2.5) and
nitrogen dioxide (NO), can adversely affect metabolic function.!? These pollutants induce
systemic inflammation, oxidative stress, and endothelial dysfunction, which are key pathways in
insulin resistance and glucose dysregulation.'"!> Long-term exposure to PM> s has been linked to
increased diabetes incidence and mortality,'%!*!> while NO,, a marker of traffic-related
pollution, has also been associated with higher risk of diabetes onset and hospital admissions
related to metabolic disorders.!®"!® The role of ozone (O3) in diabetes-related outcomes remains
less consistent. As a secondary pollutant formed through photochemical reactions between
nitrogen oxides and volatile organic compounds, Os is well known for its respiratory toxicity.!
However, its systemic metabolic impacts are complex. Some studies report that O3 exposure may
20-22 while
others find weaker or even inverse relationships.>*2° These inconsistencies may arise from

trigger oxidative stress and systemic inflammation, exacerbating insulin resistance,

confounding by seasonality, temperature, or spatial averaging of exposure estimates.

Importantly, many prior studies examining air pollution and diabetes have relied on relatively
coarse spatial resolution, often coarser than 1 km,?”?° which may not adequately capture local
variation in pollution exposure, especially in urban areas where concentrations vary sharply over
short distances. Such exposure misclassification can bias risk estimates toward the null,
obscuring true associations. To address this limitation, the present study leverages newly
developed high-resolution air pollution exposure surfaces that provide daily concentrations of
PM; 5, NO,, and O3 at a 100 m grid resolution across California for more than thirty years (1989—
2021).%° These fine-scale surfaces integrate satellite observations, ground monitoring,
meteorological data, and built environment characteristics to generate spatially and temporally
resolved estimates that more accurately reflect individual and community-level exposures.
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California offers a unique natural laboratory for this investigation, given its environmental
diversity, persistent air quality challenges, and comprehensive health data infrastructure. Despite
major progress in air quality control, many regions, particularly in Central Valley and urban
basins, continue to experience pollutant levels exceeding state and federal standards. Moreover,
air pollution exposures and health burdens are unequally distributed: low-income and minority
communities often experience higher exposure levels and limited access to healthcare,
contributing to health disparities. Understanding how chronic and short-term air pollution
exposures influence T2D outcomes in this context is essential for advancing environmental
health equity and guiding evidence-based public health policies.

Previous research has typically focused on isolated health outcomes, such as diabetes
incidence or mortality, and often relied on single datasets or limited geographic coverage. Few
studies have integrated multiple statewide databases to investigate the full continuum of
diabetes-related outcomes, from disease onset and medication use to acute care utilization and
mortality. To fill this gap, this project combines three major California datasets to examine how
both long-term and short-term air pollution exposures affect T2D outcomes:

e CHIS data is used to evaluate long-term annual associations with T2D incidence and
medication use, reflecting disease development and management in the community.

e Healthcare Access and Information (HCAI) data is used to assess short-term daily
associations with emergency department (ED) visits, hospital admissions, and length of
stay (LOS), capturing acute exacerbations and healthcare utilization patterns.

e (alifornia Department of Public Health (CDPH) mortality data is used to investigate
long-term annual associations with diabetes-related deaths, representing the ultimate
burden of chronic exposure.

By integrating these complementary data sources with high-resolution exposure assessment,
this project provides one of the most comprehensive evaluations to date of air pollution’s impact
on T2D in California. The study not only quantifies pollutant-specific risks across a spectrum of
outcomes but also examines population heterogeneity by demographic and socioeconomic
factors. The findings are expected to inform public health strategies, healthcare planning, and air
quality regulations aimed at reducing environmental health disparities and mitigating the burden
of diabetes statewide.

Study Objectives

The objective of this study is to comprehensively evaluate the impacts of ambient air
pollution on T2D outcomes across California by examining multiple stages of disease
development, progression, and severity. Specifically, the study aims to quantify associations
between long-term and short-term exposure to key ambient air pollutants and diabetes-related
outcomes, including disease incidence, medication use, acute healthcare utilization, and
mortality. By leveraging high-resolution spatial and temporal exposure estimates, the study seeks
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to reduce exposure misclassification and better characterize pollutant-specific effects across
different exposure windows. In addition, the study aims to assess how these associations vary
across demographic, socioeconomic, and geographic subgroups, thereby identifying populations
that may be disproportionately affected by air pollution—related diabetes risks. Through the
integration of multiple statewide health datasets, this work is intended to provide a
comprehensive evidence base to support air quality management, public health planning, and
policies aimed at reducing the burden of diabetes and advancing environmental health equity in
California. Finally, the study seeks to estimate the potential healthcare utilization and economic
impacts associated with air pollution—related diabetes outcomes, providing insight into the
broader public health and economic benefits of improved air quality.

Project Tasks
Task 1. Literature Review

T2D: Epidemiology, Global Burden, and Pathophysiology

T2D is one of the most prevalent and costly chronic diseases worldwide. It is estimated that
more than 530 million adults live with T2D globally, accounting for nearly 10 percent of the adult
population.’! The International Diabetes Federation projects this number to rise to over 700 million
by 2045, with the greatest increases expected in low- and middle-income countries undergoing
rapid urbanization.’!*? In the United States, approximately 38 million adults have diabetes, of
whom about 90 to 95 percent have T2D.?*3% An additional ~100 million adults are estimated to
have prediabetes, reflecting a large population at high risk for disease progression.*® Despite major
advances in prevention and therapy, T2D remains a leading cause of death and disability
worldwide.

The global burden of T2D extends beyond its high prevalence. It contributes substantially to
cardiovascular disease, chronic kidney disease, visual impairment, and lower-limb amputation.
T2D is also a leading cause of premature mortality, responsible for more than 6 million deaths
annually. The economic consequences are significant, with global healthcare expenditures of
approximately 1 trillion USD each year.?’ The rise in T2D incidence parallels increases in obesity,
physical inactivity, and unhealthy diets, yet social, environmental, and genetic determinants also
contribute. The burden is unequally distributed, with disadvantaged populations experiencing
higher incidence and poorer outcomes due to limited access to preventive care and treatment.*®

The pathophysiology of T2D is characterized by a progressive decline in insulin sensitivity
and pancreatic beta-cell function. In the early stages, insulin resistance develops in skeletal muscle,
adipose tissue, and liver, leading to impaired glucose uptake and increased hepatic glucose
production.®® The pancreas compensates by producing more insulin, but this compensatory phase
eventually fails due to beta-cell stress, mitochondrial dysfunction, and apoptosis.*’ Chronic
hyperglycemia, oxidative stress, and lipotoxicity further exacerbate cellular injury, creating a cycle
that accelerates disease progression. These metabolic abnormalities lead to chronic inflammation,
endothelial dysfunction, and atherosclerosis, which underlie many of the vascular complications
of T2D.*!
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In addition to genetic predisposition and lifestyle factors, emerging evidence indicates that
environmental exposures influence the onset and course of T2D.*** Pollutants such as fine
particulate matter, nitrogen dioxide, and airborne toxics can induce systemic inflammation and
oxidative stress, processes that are central to insulin resistance and beta-cell failure.*> These
mechanisms align with the broader concept of the exposome, which encompasses the cumulative
effects of environmental, behavioral, and social factors across the life course. Understanding how
these external exposures contribute to T2D pathophysiology is essential for developing
comprehensive prevention strategies that extend beyond traditional behavioral interventions.***’

In California, the burden of T2D mirrors the national and global trends but is amplified by the
state’s demographic, socioeconomic, and environmental diversity. More than 3.2 million adults in
California have diagnosed T2D, and an estimated 5.9 million have prediabetes.***® The prevalence
is highest in the Central Valley and parts of Southern California, particularly the Inland Empire
(Riverside and San Bernardino counties), Imperial County, and inland portions of Los Angeles
County.*’ The economic cost to the state is profound, exceeding 45 billion USD annually in direct
and indirect expenses.*® As one of the most polluted states in the nation, California offers a critical
context for studying how environmental and social determinants intersect with metabolic disease
risk.

Overview of Air Pollution, Pollutants, and Exposure Assessment

Air pollution is a complex mixture of gases and particles emitted from both natural and
anthropogenic sources. Major anthropogenic contributors include fossil-fuel combustion from
transportation, industry, and power generation, while natural sources such as wildfires, windblown
dust, and sea spray can also contribute substantially to regional air quality. The United States
Environmental Protection Agency (EPA) classifies six “criteria” pollutants—particulate matter
(PM1o and PM35), nitrogen dioxide (NO2), sulfur dioxide (SO.), ozone (O3), carbon monoxide
(CO), and lead (Pb), which are regulated under the National Ambient Air Quality Standards
(NAAQS). Of these, fine particulate matter (PM>.s) and O3 are most frequently linked to adverse
health outcomes. PM2.s consists of particles smaller than 2.5 micrometers in diameter that can
penetrate deeply into the respiratory tract and enter the systemic circulation, while ozone is a highly
reactive gas formed through photochemical reactions between nitrogen oxides and volatile organic
compounds under sunlight.*’

The composition of air pollution varies by region, season, and source type. In urban settings,
traffic-related emissions are dominant, producing a mixture of elemental carbon, organic carbon,
nitrates, sulfates, and trace metals. Industrial sources and power plants contribute sulfur
compounds and secondary particles formed from gaseous precursors such as sulfur dioxide and
nitrogen oxides. In California, geographic features such as mountain basins and temperature
inversions exacerbate pollutant accumulation, particularly in the Central Valley and Southern
California. These regions often experience some of the highest annual PM> 5 concentrations in the
United States. Wildfire smoke has also emerged as an increasingly important contributor, adding
substantial episodic increases in PM..s and toxic organic compounds. Seasonal patterns are evident,
with wintertime PM dominated by combustion sources and summertime pollution driven largely
by photochemical formation of 0zone and secondary aerosols.
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In addition to criteria pollutants, air contains numerous hazardous air pollutants (HAPs) or “air
toxics,” including volatile organic compounds, polycyclic aromatic hydrocarbons (PAHs), and
metals such as nickel, chromium, cadmium, and lead. These compounds are emitted from
industrial processes, fuel combustion, and chemical manufacturing. Many air toxics are
carcinogenic or neurotoxic and can cause endocrine and metabolic disturbances even at low
concentrations. The Air Toxics Hot Spots Program in California has identified toxic compounds
of concern, with benzene, 1,3-butadiene, formaldehyde, and diesel particulate matter representing
major contributors to health risk.>® Recent research also highlights the role of ultrafine particles,
microplastics, and secondary organic aerosols as emerging pollutants of potential concern.’!>3
These pollutants are not currently regulated by federal air-quality standards but may contribute to
chronic systemic inflammation and oxidative stress, underscoring the need for continued
monitoring and research.

Air pollution exposure is assessed using a combination of monitoring networks, satellite
observations, and atmospheric modeling.>* Ground-based monitoring stations operated by the U.S.
Environmental Protection Agency and state agencies provide direct measurements of key
pollutants such as PM>s, NO», and O3 at high temporal resolution. To fill spatial gaps between
monitors, chemical transport models (such as CMAQ and GEOS-Chem) and land-use regression
models incorporate meteorology, emissions inventories, traffic data, and topography to estimate
concentrations across broader geographic areas.>* Satellite-derived aerosol optical depth and trace
gas retrievals further enhance spatial coverage, especially in regions lacking ground monitors.>
Increasingly, hybrid models that integrate monitoring, satellite, and modeled data are used to
produce high-resolution (1 km or finer) daily estimates suitable for epidemiologic analyses. These
methods enable linkage of environmental exposures with health outcomes while accounting for
spatial and temporal variability in pollutant distributions.

Emerging linkage between air pollution and T2D

Over the past two decades, a growing body of evidence has revealed that air pollution is not
only a respiratory or cardiovascular hazard but also a metabolic risk factor associated with
T2D.*>* Epidemiologic studies conducted across North America, Europe, and Asia consistently
show higher T2D incidence and prevalence in populations exposed to elevated levels of PMz s,
NO>,”” and traffic-related pollutants. Early ecological studies first demonstrated a geographic
correlation between PMa s concentrations and T2D prevalence, which was later confirmed in
longitudinal cohort analyses with individual-level exposure data.*’ These findings have been
replicated in diverse populations and persisted after adjustment for body mass index, physical
activity, and socioeconomic status, suggesting an independent contribution of air pollution to
metabolic disease risk.

Mechanistic and clinical studies provide biological plausibility for this association. Chronic
exposure to air pollutants induces systemic oxidative stress, low-grade inflammation, and
endothelial injury, which disrupt insulin signaling and glucose regulation.****#>-3 Inhaled fine
particles can promote the release of inflammatory cytokines and reactive oxygen species that
impair pancreatic beta-cell function and increase insulin resistance in peripheral tissues.*® Air
pollution has also been linked to altered lipid metabolism, mitochondrial dysfunction, and
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activation of the hypothalamic—pituitary—adrenal axis, all of which contribute to impaired glucose
homeostasis.®® These mechanisms parallel those implicated in obesity-related metabolic
dysfunction, suggesting that air pollution acts synergistically with traditional risk factors to
accelerate the development of T2D.

The emerging recognition of air pollution as a metabolic stressor has significant public health
implications. The global prevalence of T2D continues to rise despite advances in lifestyle and
pharmacologic prevention, indicating that environmental exposures may undermine traditional
control strategies. Populations residing in urban and industrialized areas face continuous exposure
to pollutant mixtures that include not only regulated criteria pollutants but also air toxics such as
benzene, 1,3-butadiene, and polycyclic aromatic hydrocarbons.®! These exposures
disproportionately affect socioeconomically disadvantaged and racially marginalized communities,
amplifying existing health disparities. Understanding the pathways through which air pollution
contributes to T2D provides a foundation for developing integrated prevention frameworks that
combine clinical, environmental, and policy interventions to reduce the burden of metabolic
disease.

Biologic Mechanisms linking air pollution with T2D mellitus

The pathways through which ambient air pollutants influence T2D risk and outcomes are
complex and involve a cascade of local, systemic, and organ-specific processes (Figure 1).38
Exposure to PM> 5, PM19, NO>, and O3 initiates biological responses that impair insulin sensitivity,
disrupt glucose metabolism, and promote the development and progression of T2D and its
complications.*>#

Air pollution exposure first triggers oxidative stress and inflammatory signaling within the
respiratory tract. Reactive oxygen species and reactive nitrogen species are generated by pollutant
particles and gases, activating toll-like receptors and other sensing pathways. This initiates the
release of inflammatory cytokines, chemokines, and acute phase reactants that spread beyond the
lungs and enter systemic circulation. Endothelial barrier disruption and neurohumoral activation,
including stimulation of the hypothalamic—pituitary—adrenal axis and sympathetic nervous system
imbalance, further amplify these early inflammatory responses.

The biological signals initiated in the lungs are then transmitted throughout the body.
Circulating oxidized lipids, acylcarnitines, microparticles, and cytokines contribute to insulin
resistance in peripheral tissues. Experimental studies have demonstrated that exposure to
concentrated particulate matter increases plasma free fatty acids and inflammatory markers,®
while antioxidant interventions can mitigate these effects.® Pollutants may also translocate
directly into the bloodstream, adding to the systemic oxidative and inflammatory burden.®

Downstream effects occur in several insulin-responsive organs. In adipose tissue, chronic
exposure to air pollution recruits pro-inflammatory monocytes and macrophages, shifting immune
balance toward a Th1/M1 phenotype that promotes inflammation, impaired lipolysis, and insulin
resistance. In the liver, exposure induces steatohepatitis-like changes with altered lipid metabolism,
endoplasmic reticulum stress, and disrupted insulin signaling.!! In skeletal muscle, endothelial
dysfunction and reduced glucose transporter (GLUT4) activity impair insulin-stimulated glucose
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uptake.® In the central nervous system, hypothalamic inflammation, blood-brain barrier
disruption, and altered autonomic regulation contribute to impaired energy balance, elevated
cortisol, and disrupted circadian rhythms.%%¢7

Additional mechanisms have also been identified. Pollution can reduce thermogenic activity
in brown adipose tissue, lowering energy expenditure through mitochondrial and transcriptional
dysregulation.®’ Chronic particulate matter exposure promotes chromatin remodeling and
methylation changes in genes linked to inflammation and insulin resistance, effects that may be
partially reversible after exposure reduction.’’ Circadian rhythm disruption has emerged as another
common feature of pollutant exposure, contributing to the development of metabolic syndrome.
Neurohormonal activation, including heightened sympathetic activity and hypothalamic—
pituitary—adrenal stimulation, raises blood pressure and catecholamine levels, worsening insulin
resistance and accelerating T2D progression.®®
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Figure 1. Mechanisms of PM» s-mediated metabolic and cardiovascular effects (obtained from
Rajagopalan et al. Lancet Diab Endoc 2024)

Review studies linking long-term exposure to air pollution and T2D

Long-term exposure to ambient air pollutants such as PMa 5, NO, and O3 has been increasingly
linked to the development of T2D. Large prospective cohorts and administrative database studies
across North America, Europe, and Asia have shown consistent associations between chronic
PM;5 and NO> exposure and higher incidence of T2D. These pollutants may impair glucose
homeostasis and insulin sensitivity through systemic inflammation, oxidative stress, and
endothelial dysfunction. Long-term exposure can also alter adipose tissue metabolism, promote
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low-grade chronic inflammation, and accelerate vascular and metabolic aging, all of which are
central to T2D pathophysiology.

Evidence is strongest for PM,s, where concentration—response relationships have been
observed even at levels below current regulatory standards. Although findings for O3 are more
variable, some studies suggest it may contribute to impaired glucose regulation through oxidative
mechanisms, particularly in warmer seasons or in combination with co-pollutants. Importantly,
these associations remain significant after adjusting for individual and neighborhood-level
socioeconomic factors, suggesting an independent role of air pollution in T2D risk. Overall, the
growing epidemiologic evidence highlights long-term exposure to air pollutants as a modifiable
environmental determinant of T2D, underscoring the need for stringent air quality standards and
targeted prevention efforts.

Several systematic reviews and meta analyses have examined the associations between long-
term exposure to air pollutants and T2D, generally showing similar directionality of associations
and similar effect sizes.”%%7>

Azizi et al. " conducted a global systematic review and meta-analysis to evaluate the
association between ambient PM> s and PMjo and T2D. A comprehensive literature search was
performed on November 4, 2022, using four major databases: PubMed, Embase, Web of Science,
and Scopus. The search strategy was designed through a structured, multi-step process and
restricted to English-language, human studies reporting original epidemiologic research. Reviews,
animal studies, clinical trials, and
studies of indoor air pollution were \i‘ Identification of studies via databases and reg
excluded. Eligible studies were []
required to examine outdoor PM; s
or PM o exposure in relation to T2D
prevalence or incidence, or related

Records identified from: screening.
Databases (n = 4) Duplicate records removed

Records removed before
g Registers (n = 4510) (n=1553)

glycemic endpoints, and to report 1

effeCt eStimateS SuCh as Odds ratiOS Records screened Records excluded (Title/Abstract)
. . . (n =2957 ) F——»| (n=2881)

or risk ratios. A wide range of

observational study designs was |

eligible, including cohort, case-

. £
Control’ CrOSS-SeCthHal, panel, g Full-text articles asseassed for Full-text articles excluded: (n =30)
. . eligibility (n =76) ——»
time-series, and case-crossover
studies. Across all databases, 4,510 |
records were 1n1t1a11y identified. Studies included in qualitative Full-text articles excluded: (n =2)
. synthesis (N = 46) —
After removal of 1,553 duplicates,
2,957 titles and abstracts were |
Screened’ leadlng to eXCIUSIOn Of Stud ies inchuded in quantitative
2,881 non-relevant studies. e iy

Seventy-six full-text articles were
assessed for eligibility, all of which evaluated PM» s or PM o in relation to T2D outcomes and were
included in the qualitative synthesis. Of these, 46 studies met predefined quality criteria and were
retained for quantitative meta-analysis. The included studies spanned 2010 to 2022, with more
than half published after 2018, reflecting rapid recent growth in the literature. Research was
conducted across 18 countries, with substantial geographic diversity. Meta-analysis showed that
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each 10 pg/m? increase in PM2 s was associated with a 9% higher odds of prevalent T2D (OR =
1.09, 95% CI: 1.05-1.14) and a 9% higher risk of incident T2D (HR = 1.09, 95% CI: 1.02—1.17).
For PMo, the odds of prevalent T2D were increased by 13% per 10 pg/m* (OR = 1.13, 95% CI:
1.06—1.19), while the risk of incident T2D rose by 10-24% depending on study inclusion (HR =
1.10-1.24). Subgroup analyses suggested stronger associations in North America for PM; s and in
Asia for PMo (Figure 2). Mechanistic evidence supports biological plausibility through systemic
inflammation, oxidative stress, and endoplasmic reticulum stress, which together impair insulin
signaling, damage pancreatic 3-cells, and promote insulin resistance. Other pollutants are less well
studied. A recent systematic review and meta-analysis of five studies examining long-term O3
exposure and T2D reported that each 10 pg/m? increase in ambient O3 was associated with a 6%
higher risk of T2D (pooled effect estimate 1.06; 95% CI 1.02—1.11).”” In addition, a 2014 meta-
analysis of prospective and cross-sectional studies found that each 10 ng/m? increase in long-term
exposure to NO; was associated with 13% increase in hazards of incident T2D (pooled adjusted
hazard ratio 1.13; 95% CI 1.01-1.22) across prospective cohorts, with moderate heterogeneity and
consistent adjustment for major confounders including age, sex, body mass index, and smoking.”
It is important to note that many of the studies examining long-term exposures and incident T2D
were conducted over a decade ago, preceding major shifts in emission sources, regulatory
standards, and wildfire frequency.
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Figure 2. Association between PM:.s (a) and PM o (b) exposure and T2D incidence. (Azizi et al.
2025)
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Studies linking short-term exposure to air pollution and T2D

Short-term fluctuations in ambient air pollution can acutely influence glycemic control,
metabolic stability, and the risk of diabetes-related complications. Acute increases in PMa 5, PMio,
NO», and O3 have been associated with short-term metabolic deterioration and increased healthcare
utilization among individuals with or at risk for diabetes. These pollutants can provoke systemic
inflammation, oxidative stress, endothelial dysfunction, and sympathetic activation within hours
of exposure. Such physiologic responses can raise circulating glucose, increase insulin resistance,
and impair vascular tone, triggering metabolic decompensation in vulnerable populations. In those
with pre-existing diabetes, these mechanisms may precipitate hyperglycemic crises, cardiovascular
events, infections, and other acute complications that require emergency care.

We conducted a systematic review of short-term air pollution exposure and type 2 diabetes—
related outcomes using a comprehensive search of PubMed, Embase, and MEDLINE for human
studies published in English between January 2000 and June 2025. The search identified 3,250
records, of which 423 were screened by title, 101 underwent abstract review, and 77 met inclusion
criteria after full screening. The included studies
spanned 22 countries, with the largest contributions | vt o soarcing
from China, Canada, Italy, and the United States, (n = 3250) ‘
providing broad geographic representation.

Identification

Records removed before screening:
Duplicate records removed
(n = 2827)

The evidence base is dominated by time-series
studies (approximately 30) and time-stratified case- Tocords scrosned
crossover designs (approximately 25), with smaller
numbers of cohort or panel studies, cross-sectional or
ecological analyses, and other specialized

(n=423)

Records excluded
(n = 322)

Abstracts assessed for eligibility
(n=101)

approaches. Most studies evaluated acute exposure Abstracts excluded

Full-text arlicles assessed [or eligibility
(n=77)

windows from same-day through lag 3 to 5 days, with =
some extending to lag 7 to 14 days. Common analytic

methods included generalized additive models,

Poisson or quasi-Poisson regression, conditional logistic regression, and distributed lag nonlinear
models, allowing assessment of both immediate and delayed effects.

PMb> s was by far the most frequently studied pollutant, followed by PMio, NO», and O3, often
in multi-pollutant models. Several studies also examined PM components, wildfire or dust-related
events, composite air quality indices, and co-exposures such as temperature or traffic noise.
Exposures were most commonly expressed as per 10 pg/m?® increases, daily mean concentrations,
interquartile range increments, or short-term moving averages.

Primary outcomes focused on mortality, hospitalizations, and emergency department visits,
particularly for diabetes, cardiovascular disease, and respiratory conditions. Secondary analyses
frequently explored effect modification by age, sex, comorbidities, season, and socioeconomic
context, with fewer studies examining biomarkers or metabolomic outcomes. Overall, the short-
term literature consistently relies on robust time-series and case-crossover designs to demonstrate
that acute increases in air pollution are associated with higher risks of diabetes-related morbidity
and mortality, while also highlighting heterogeneity by pollutant, outcome, and population
subgroup.

Studies included for data extraction
(n=77)
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Across pollutants, PM»s5 was the most frequently studied in relation to diabetes-related
hospitalizations” (including a study on length of stay and hospitalization cost®®), physician
visits,}” ambulance dispatch/paramedic assessment,®® and mortality.®*° Most studies evaluated
PM..s concentration, but some studies evaluated wildfire specific PM..s.*%°! Generally most,”"
81.83.8587.89.91 but not all,’*** studies have shown positive relationships between PM» 5 and diabetes
outcomes. Typical findings indicated that each 10 pg/m? (or interquartile range/standard deviation)
increase in PMz s corresponded to a 0.5% to 3% rise in acute healthcare encounters or mortality.”~
81.84.89.90 For PM, 5 and diabetes-related outcomes, lag 0-2 days’*828388-%0 jg the most common and
significant window analyzed across studies, however, some studies extended it longer to 3 days, 5
days,’” 7 days®? and up to 16 days (moving average exposure).*® In studies comparing different
lags, generally shorter lags (0-2 days) corresponded to stronger effect size,”’80-838%90 however,
some studies showed longer lags have stronger effects (lag 6-8 days®!*"). Heterogeneity was
examined in some studies: by temperature,” season,?”*>% age,?%92%4 gender,*”? comorbidities,®
regional variation,®** wildfire vs non-wildfire PM..s.! The results were heterogenous overall. In
one study, PM> 5 effects were noted to be strongest at low and moderate temperatures, indicating
climate-modified heterogeneity.”” In another study, stronger associations were noted in cold
seasons and among younger and male subgroups.®’

Other studies have examined the association between PM;jo with diabetes outcomes:

hospitalizations,:8490:9293.9395 hogpitalization characteristics including cost/length of stay,®
emergency department visits,”® and mortality.,”*”*® often examined together with PM 5. Overall,
most,3+83:90929597.98 byt not all,**** studies have shown positive relationship between PMio and
diabetes outcomes. short-term PMio exposure associated with increased diabetes-related
hospitalizations, emergency visits, and mortality, typically in the range of 0.3%—3% per 10 pg/m?
increase.
Fewer studies examined SO and diabetes outcomes.5>8486:90.92.93.96.98 Some studies have shown
positive relationship with adverse events (mortality”®/hospitalizations®*®/length of stay®®) while
others did not.”>** Among the positive studies, An interquartile range or 10 pg/m? rise in SOz
concentration corresponded to roughly 0.5% to 3.8% higher T2D-related hospitalizations or deaths,
with the most pronounced effects observed within 0-3 days of exposure.?>3+%%% In one study, the
association between SOz and T2D hospitalizations remained significant after adjustment for O3
but became null when PM» s was included in the model. Similarly, another study found that the
SO>~T2D mortality relationship was independent of NO», yet adjustment for either PM2.5 or PMio
eliminated the association.”® Lag-specific analyses further indicated that the effect of SO2 on T2D
hospitalizations peaked at a lag of 3 days in one study®* and at a lag of 1 day on T2D mortality in
another.”

For NO,, studies have examined outpatient visits,"”*® ED  visits,”
hospitalizations,>8486.9293.9699 and mortality.?7%**%8, Across 12 studies, short-term exposure to
nitrogen dioxide was consistently linked with adverse diabetes-related outcomes, including
increased hospitalizations, outpatient visits, and mortality. For example, in Lanzhou, China, Ye et
al. reported a 3.4% increase in T2D outpatient visits per 10 pg/m? rise in NO; (lag 0-3 days)®’; Yin
et al.!% observed a 3.96% (per IQR of NO,) increase in diabetes mortality at lag 0-2 days across
all administrative regions in China;* Zhang et al. found a 2.2% increase in diabetes
hospitalizations per 10 ug/m3 at lag 0-4 days;”” and Gariazzo et al. reported a 7.3% increase
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metabolic mortality per 10 pg/m® of NO: in Italy (lag 0-5 days).”* Most studies employed time-
series or case-crossover designs with lags typically spanning 0—7 days. Generally, shorter lag was
associated with stronger effect.®? The observed relationship was linear or near-linear.®>%
Associations were generally independent of other pollutants such as PMas, PMio, SO2, CO, and
0.8 Younger individuals,®” and those exposed during colder seasons’® were often more
vulnerable. Collectively, these findings underscore NO; as a significant contributor to short-term
diabetes-related health burdens across diverse geographic regions.

The studies on O3 exposure examined a range of short-term diabetes-related outcomes,
including hospitalizations for T2D or its complications,?>8+9293969 outpatient visits for
diabetes,?””” emergency department,” and mortality from diabetes and related complications.®
Together, these studies assessed both acute healthcare utilization and fatal outcomes as indicators
of short-term metabolic stress and diabetes exacerbation associated with ambient ozone exposure.
Across the studies examining O3 and diabetes outcomes, evidence points to heterogeneous and
non-consistent associations. Some studies showed positive relationships between O3 and diabetes
outcomes. In a study in Lanzhou, China, Ye et al. showed positive relationship between Oz and
outpatient visits for diabetes (per 10 ug/m3 increase in maximum of 8h averaged O3 in a day (Os8h)
at lag05 (RR 1.012, 95% CI: 1.001, 1.023).%” In another study in all administrative regions in China,
each 47.3 ug/m3 of O3 (maximum effect at lag 0-2 days) was associated 2.15% increase in diabetes
mortality, but this was only observed at concentrations exceeding 60 ug/m>®*® However, large
studies in Canada,” China,?*%3*? South Korea”® and Bulgaria®® showed no associations between
Os and adverse diabetes outcomes. Inconsistencies across studies may stem from differences in
exposure metrics, population characteristics, and regional factors. Ozone levels vary by season and
meteorology, and its effects may appear only above certain thresholds. Co-pollutant confounding,
differences in healthcare access, and variation in study design further contribute to the mixed
findings.

Air Toxics and T2D

Human epidemiologic studies consistently demonstrate associations between exposure to air
toxics, particularly polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs)
such as benzene and 1,3-butadiene, and persistent organic pollutants including dioxins and dioxin-
like compounds, and impaired glucose homeostasis, insulin resistance, prediabetes, and T2D.
Much of this evidence derives from population-based studies using biomarker-based exposure
assessment, including urinary or serum metabolites measured in large surveys such as NHANES,
as well as occupational and environmentally exposed cohorts.!0-10%

Across multiple studies, higher internal doses of PAHs are associated with increased odds of
diabetes and insulin resistance, with consistent findings for metabolites of naphthalene, fluorene,
phenanthrene, and pyrene.!?:194195 These associations are observed in the general population,
occupational cohorts such as coke oven workers, and meta-analyses, and are often dose
dependent.'®*!% Subgroup analyses frequently suggest stronger associations among women,
younger adults, nonsmokers, and individuals without obesity, indicating susceptibility beyond
traditional metabolic risk factors.!0%1

Dioxins and dioxin-like compounds, including TCDD and dioxin-like PCBs, have been linked
to diabetes prevalence and incidence in environmentally exposed populations and occupational
cohorts. Studies of residents near industrial contamination or waste incineration sites, as well as
military cohorts exposed during the Vietnam War, report higher diabetes risk with increasing serum
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dioxin burden.'"1% Meta-analytic evidence indicates elevated risk in both sexes, with potential
modification by exposure intensity and exposure mode.'!® These epidemiologic findings are
supported by mechanistic reviews highlighting aryl hydrocarbon receptor—mediated disruption of
metabolic regulation.!!:!1?

Emerging population-level evidence also implicates volatile organic compounds, including
benzene and 1,3-butadiene, in dysregulation of glucose metabolism. Recent analyses of U.S.
population data demonstrate associations between urinary metabolites of 1,3-butadiene and indices
of glucose homeostasis, prediabetes, and diabetes, with mediation by inflammatory and hepatic
pathways such as alkaline phosphatase.!!* Exposome-wide association studies further suggest that
mixtures of VOCs contribute to insulin resistance risk.''*

Mechanistically, these human associations are biologically plausible. Air toxics are linked to
insulin resistance, beta-cell dysfunction, oxidative stress, and chronic low-grade inflammation,
often involving activation of the aryl hydrocarbon receptor, suppression of PPAR signaling,
endocrine disruption, and perturbation of lipid and glucose metabolism,!!!-112:114

Taken together, the human literature provides consistent evidence that exposure to multiple air
toxics is associated with increased risk of T2D. These findings extend beyond criteria air pollutants
and suggest that combustion-related toxicants and persistent organic pollutants contribute
meaningfully to the global diabetes burden, operating through metabolic and inflammatory
pathways that complement traditional cardiometabolic risk factors.

Gaps in knowledge

Although global evidence links long-term air pollution exposure to T2D, contemporary data
from the United States remain limited, especially in regions characterized by complex pollutant
mixtures and wildfire events. Many landmark studies were conducted over a decade ago, preceding
major shifts in emission sources, regulatory standards, and wildfire frequency. As a result, there is
a scarcity of recent data evaluating how modern pollutant profiles—particularly fine particulate
matter enriched with combustion byproducts—affect diabetes risk in the current U.S. context.
California, where wildfire smoke now represents a dominant and episodically extreme exposure
source, lacks comprehensive epidemiologic studies quantifying short-term metabolic impacts. The
evolving composition of PM> 5 and co-pollutants from wildfire events may have distinct biological
effects, yet few clinical studies have examined this within contemporary diabetic populations.

Another major limitation is the lack of research in racially, ethnically, and socioeconomically
diverse U.S. populations, particularly those most affected by both diabetes and environmental
burdens. Many existing datasets are derived from homogenous cohorts in Europe or older
administrative data that inadequately capture the demographic and environmental complexity of
California. Moreover, while evidence for chronic exposure and diabetes incidence is robust, the
level of evidence linking short-term pollutant fluctuations to acute diabetes outcomes remains
relatively weak and inconsistent. Few studies have integrated high-resolution exposure modeling
with administrative health data to evaluate temporal lags, dose-response relationships, and
modifiers such as temperature or wildfire smoke. Addressing these gaps through a California-
based study using refined estimates of criteria pollutants and real-world diabetes outcomes would
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fill critical voids in the current literature and provide insights relevant to contemporary
environmental and public health challenges

Task 2. Develop daily air pollution models and surfaces for criteria pollutants

Methodology
Acquiring and processing air pollution data from regulatory monitoring

We acquired and processed daily air pollution data and their spatial locations from the U.S.
Environmental Protection Agency (https://ags.epa.gov/aqsweb/airdata/download_files.html). The
regulatory data measurements were obtained from monitoring sites equipped with standardized
instruments for measuring air pollutants. Specifically, NO> was measured using instruments
coded as 42602, which typically involve chemiluminescence techniques, recognized for their
accuracy in detecting nitrogen dioxide levels in ambient air. PM2. 5 concentrations were measured
using Federal Reference Method (FRM) or Federal Equivalent Method (FEM) instruments coded
as 88101, which involve either gravimetric or continuous monitoring techniques to capture fine
particulate matter in the air. Ozone (O3) measurements were conducted using instruments coded
as 44201, which commonly utilize ultraviolet photometry to accurately measure ozone
concentrations. In California, the spatial distribution of the regulatory air quality monitoring data
for NO2, PM2 s and O; are presented in Figure 3 (left for NO2, middle for PM2 s and right for Os)
and the respective unique number of regulatory sites is presented in Table 1.

The trend for NO> measurement sites shows a slight decline during the early 1990s, with the
number of unique sites decreasing from 151 in 1990 to 147 in 2000. This downward trend
continued until 2006, when the number of monitoring sites reached its lowest point. After 2006,
the number of unique NO> measurement sites fluctuated between 127 and 135, suggesting
variability in monitoring efforts. Overall, there is no consistent upward or downward trend in
NO:> monitoring, indicating that the focus on this pollutant has varied over the years. The total
number of unique NO> air quality monitors is 277. In contrast, the trend for PM> s reveals a clear
upward trajectory in the number of unique measurement sites. Starting with 183 sites in 1999,
the number steadily increased to 252 by 2021. This growth is particularly evident from 2000
onward, demonstrating a growing recognition of the importance of this pollutant and dedicated
resources to understanding and mitigating its impacts. The total number of unique PM; 5 air
quality monitors is 331. For O3, the trend indicates a generally stable pattern with a gradual
increase in monitoring sites over time. The number of unique O3 measurement sites increased
from 194 in 1990 to 198 in 2008, with some fluctuations throughout the years. Although the
overall growth in O3z monitoring efforts is less pronounced than that of PMa s, it still
demonstrates a steady commitment to tracking this pollutant. The total number of unique O3 air
quality monitors is 379.
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In our modeling process, we also applied fixed site saturation monitoring data in our analysis.
A detailed description of the saturation monitoring data can be found in Supplementary File 3
and in a previously published paper.'!'
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Figure 3. The spatial distributions of the regulatory monitors for NO> (left panel), PM s (middle
panel), and O3 (right panel) over the observable time periods.

Table 1. The unique number of regulatory monitoring sites with the respective effective
measurements of NO», PM 5 and O3 across the study period.
Number of Unique Sites

Year

NO2 PMz.s Os
1989 182
1990 151 194
1991 150 201
1992 149 205
1993 159 199
1994 164 208
1995 163
1996 159
1997 156
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1998 154

1999 148 183

2000 147

2001 153

2006 127 186
2007 129 213 195
2008 136 221 198
2009 130 225 192
2010 132 228 194
2011 127 229 196
2012 132 248 198
2013 129 242 190
2014 132 246 189
2015 133 240 185
2016 135 238 185
2017 132 240 184
2018 129 246 180
2019 128 241 181
2020 124 247 182
2021 127 252 178
Total 277 331 379

Acquiring and processing air pollution data from Google Streetcar monitoring

Google Streetcar had mobile monitoring of the three criteria pollutants across San Francisco
Bay (counties of Alameda, Contra Costa, San Francisco and San Mateo), Los Angeles County,
and Central Valley regions (see: https://www.google.com/earth/outreach/special-projects/air-

quality/). The Google Streetcar mobile measurements for each region are highly spatially

autocorrelated due to the intense sampling of air pollutants on its road network. To ensure that
our models captured a wide range of variability in road traffic patterns while minimizing the

influence of spatial autocorrelation, we selected 150 road segments for each region through a

location-allocation algorithm.!'® The location-allocation algorithm is deterministic and was

intentionally used to ensure spatially representative coverage of traffic conditions within each

region without spatial autocorrelation rather than to support inference at the individual road-
segment level. Because the objective was to characterize regional traffic patterns for exposure

modeling, rather than to evaluate the effect of specific segments, we were not interested in

33|Page


https://www.google.com/earth/outreach/special-projects/air-quality/
https://www.google.com/earth/outreach/special-projects/air-quality/

percentage of mobile sampling being used and did not conduct sensitivity analyses based on
alternative segment selections. Spatial autocorrelation can lead to inflated model performance
metrics and reduced generalizability by over-representing certain areas or patterns. By using the
location-allocation algorithm, we distributed the selected road segments more evenly across each
region, reducing clustering and ensuring that our models are better representative of the broader
spatial patterns across California. This approach helped in developing more robust and
interpretable models by preventing overfitting localized traffic conditions. A total of 150 road
segments with each road segment having at least 100 measurements was selected for each of the
four regions: Alameda and Contra Costa; San Francisco and San Mateo; Los Angeles, and
Central Valley. Each region had (1) 50 road segments selected from locations within 500 m of
highways allowing truck traffic, or within 500 m of major California ports (i.e., goods movement
corridors or GMCs), (2) 50 road segments selected from locations within 500 m of highways not
allowing truck traffic or within 300 m of major roadways (i.e., non-goods movement corridors or
NGMCs), and (3) locations not encompassed in the first and second parts (i.e., control areas or
CTRLs). The detailed selection process is documented in Supplementary File 3. A total of 150
segments were selected in each of four regions (600 total), yielding 8,345 daily traffic
measurements. These data were used in conjunction with substantially larger datasets from
regulatory monitoring (676,612 daily measurements) and saturation monitoring (4,893 daily
measurements), ensuring that exposure estimates were not driven by the selected segments alone
but reflected broader regional traffic variability.

The Google Streetcar measured NO; and O3 concentrations in the unit of ppb — the same as
regulatory monitoring; however, PM» s concentrations were in total number of particles instead
of the typical concentrations in pug m™. The daily concentration of PM, s in pg m™ of road
segment i of traffic corridor k on day j was estimated through:

Cijk = Gijr* R /G (1)

— —

where C; j . and G; . represent the converted and original measures. R, ; and G, are
respectively the mean PMz s concentrations in pg m™ from all the regulatory monitors and the
mean PM; 5 particle numbers from all the selected 50 road segments for day ; in corridor k. The
PMb 5 concentrations were estimated separately for each region.

Acquiring and processing air pollution predictors from the observation period

For the predictors (Table 2), the availability of daily traffic data varied across 12 California
Department of Transportation (Caltrans) districts, with the earliest traffic data available from
2000 to 2005. We used the data collected by the Caltrans Performance Measurement System
(PeMS) to derive roadway daily traffic. PeMS data are collected in real-time from nearly 40,000
individual detectors spanning the freeway system across all major metropolitan areas of the State
of California and provide an Archived Data User Service that provides over fifteen years of data
for historical analysis. The detector measured traffic flow covered ~5 % highway segments, and
we summed hourly traffic to daily traffic for all the stations across California. The interconnected
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steps were then used to derive daily traffic for all the California highways. Please refer to the
Supplementary File 3 for the details of traffic assignment.

The land use data was derived from the statewide parcel data in 2019, combined by the
California Air Resources Board (CARB) from individual County Assessor’s Offices, and we
considered them consistent across all the years. The land cover data was acquired from the
National Land Cover Database (NLCD) at five-year intervals (2001, 2006, 2011, 2016, and
2019)!'"7. The assumption was that land cover remained constant until the subsequent available
measurement. Vegetation dynamics were assessed through the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument-derived data, specifically the Normalized Difference
Vegetation Index (NDVI)!!8, computed at 16-day intervals since 2000. We assumed the
vegetation index remained constant from its previous measurements within 16 days. Daily
meteorological data were acquired from the GridMet dataset!!®, covering 1989 to 2021 at a 4 km
spatial resolution. For satellite remote sensing data, daily measurements from the Ozone
Monitoring Instrument (OMI)!?° for NO, and O3 were accessible from 2005 to 2021. The aerosol
optical depth (AOD) data'?! was available from 2000 to 2021.

Table 2. LUR predictors and available time periods in the modeling process.

Traffic® CalTrans 30m Daily 2005-2021 1989-2004
Land use’ CARB 30 m One time 2019 Use 2019
Land cover* NLCD 30m Every 5 years 2001-2019 Use 2001
Vegetation index ~ MODIS 250 m Every 16 2000-2021 1989-1999
(NDVI)*€ days

Meteorological GridMet 4 km Daily 1989-2021 None
data*

AOD data® MAIAC 1 km Daily 2000-2021 1989-1999
OMI-NO; data® NASA’s OMI 25 km Daily 2005-2021 1989-2004
OMI-O3 data® NASA’s OMI 25 km Daily 2005-2021 1989-2004
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Distance to ESRI 30m One time 2018 None
highway and
major roadways'

Distance to coast USGS 30 m One time 2015 None
Elevation from USGS 30 m One time 2015 None
digital elevation

model’

Distance to ports’ ESRI 30 m One time 2018 None

%: Traffic data are derived from the California Department of Transportation (CalTrans)

% Land use data are provided by the California Air Resources Board (CARB), which combined
the parcel data from all the 58 counties in California.

¥: Land cover data is derived from the NLCD (National Land Cover Database) provided by the
U.S. Geological Survey (USGS).

€: The NDVI (Normalized Difference Vegetation Index) data is provided by MODIS (Moderate
Resolution Imaging Spectroradiometer) from NASA's Earth Observing System (EOS).

£: The meteorological data is sourced from GridMet provided by the University of Idaho.

“MAIAC AOD data: Data from the Multi-angle Implementation of Atmospheric Correction
(MAIAC) algorithm using MODIS Terra and Aqua satellites; OMI-NO> and OMI-NO3 data are
derived from the National Aeronautics and Space Administration Ozone Monitoring Instrument.

" Traditional predictors include distance to the nearest highway and major roadway derived from
the ESRI Street data layer for 2018, distance to coast and elevation data derived from the USGS
for 2015, and distance to major ports derived from the ESRI data layer for 2018.

Developing daily air pollution models through ML integrated LUR approach

The Deletion/Substitution/Addition (D/S/A) algorithm initiates the selection process by
starting with a base model, typically the intercept-only model unless a different starting point is
specified. The algorithm then iteratively adds, deletes, or substitutes terms to improve the
model's predictive performance. During each iteration, potential modifications to the model, such
as adding polynomial terms or interaction effects, are evaluated based on a predefined criterion,
usually the reduction of the cross-validated error or the improvement in another model
performance metric. The selection process continues iteratively, with the algorithm testing
various combinations of terms and retaining the modifications that lead to the greatest
improvement in model performance. This process is similar to a guided search through the space
of possible models, where each step is evaluated to ensure it moves toward a better fit. The
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algorithm halts its iterations when no further modifications result in a significant improvement in
the model's performance, according to the predefined stopping criteria. These criteria could
include a threshold for the minimum improvement in cross-validated R-squared or reaching a
maximum number of iterations (15 in our research). At this point, the model with the optimal
combination of terms is selected as the final model, representing the best balance between
complexity and predictive accuracy. To enhance the interpretability of our modeling results, we
limited the predictors to linear terms and avoided interaction terms.

For regulatory and saturation monitoring data, each was treated independently, randomized,
and divided into 10 equal folds without considering spatial or temporal constraints. The Google
Streetcar data, which spans multiple regions, was randomized and divided into 10 folds
separately for each region. These region-specific folds were then merged with the corresponding
folds from the other regions, as well as with the 10 randomized folds from the regulatory and
saturation monitoring datasets. This approach ensured that each of the 10 folds contained a
balanced mix of data from all monitoring types and regions. One subsample was then retained as
validation data, while the remaining 9 subsamples served as training data during the modeling
process. This cross-validation process was repeated 10 times, with each subsample used once as
validation data.

In developing the daily LUR models for NO,, PM> s, and O3, we constructed respective
models using only available observable data for both predictors and air quality measures.
Collinearity diagnostics, including pairwise correlations and variance inflation factors (VIFs),
were used to identify and avoid retaining highly correlated variables. The D/S/A framework
further mitigates multicollinearity by iteratively removing redundant predictors during the
deletion and substitution steps, favoring parsimonious models that maximize predictive
performance while maintaining interpretability. No algorithms of temporal extensions to the
predictors were applied during the modeling process. The modeling results, however, were
applied to all the predictors across all the years to predict daily NO2, PM2s and O3 concentrations
for the 1989-2021 period.

Results

D/S/A integrated LUR models covering the available observational periods.

Table 3-5 present the daily LUR models, capturing the available observational time periods
for NO,, PM3 5, and Os. In the case of NO» (Table 3), the consistent year-after-year decline in
concentrations observed during the study period was reflected in the variable “year”, and this
could be attributed to the regulatory efforts to reduce traffic NO2 emissions. The recurrent pattern
of lower concentrations during weekends compared to weekdays suggests potential reductions in
human activities on roadways. Additionally, the positive correlation between higher OMI-NO>
values and increased NO; concentrations underscores the significance of remote sensing
observations in capturing spatial variability. Traffic density emerged as a significant factor, as
areas with greater vehicular activity exhibited greater NO emissions and higher concentrations.
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Moreover, weather conditions played a crucial role, with higher relative humidity, wind speed,
and temperature contributing to lower NO: concentrations. Conversely, increased precipitation
was linked to higher NO> levels, highlighting the interplay between meteorological conditions
and NO; dynamics. Residential areas were found to have lower NO» concentrations, as well as in
the developed open spaces. Low and high-intensity developments, on the other hand, were
associated with greater NO> concentrations, indicating the positive association of urban
development with NO» levels. The availability of green spaces, indicated by higher vegetation
index, shrub cover, and wetlands, recognized as pollution sinks was associated with lower NO2
concentrations. Conversely, a higher proportion of impervious surfaces was correlated with
increased NO?2 levels. Additionally, locations farther from ports displayed lower NO»
concentrations, indicating elevated NO2 levels near ports. The NO> model had an adjusted R? of
0.84 in variance explained.

For PM2 s (Table 4), throughout the study period, its concentrations consistently decreased,
mirroring the trend observed for NO,. The study identified a positive correlation between higher
aerosol optical depth (AOD) values and elevated PM» 5 concentrations, suggesting that increased
aerosol presence in the atmosphere is associated with higher particulate matter levels. Increased
traffic density emerged as a contributing factor to higher PM» 5 concentrations, emphasizing the
impact of vehicular emissions on air quality. Weather factors such as higher relative humidity,
wind speed, and temperature were associated with lower PM» s concentrations. Developed open
spaces were linked to reduced PM2 5 concentrations, and so were areas characterized by a higher
vegetation index, shrub cover, barren land, and water bodies, emphasizing the role of natural
features in mitigating air pollution. Barren land refers to areas that have little to no vegetation
cover and is often characterized by exposed soil or rock!??. Industrial land use, however, was
associated with higher PM> s concentrations, pointing to the impact of industrial activities on
particulate matter emissions. In contrast to NO;, greater residential areas were linked to higher
PM2: s concentrations, potentially attributed to background concentrations. In densely populated
regions, the increased density of housing, traffic, and other activities can lead to elevated PM> s
background concentrations. Additionally, the urban heat island effect and limited air circulation
in residential areas can hinder the dispersion of pollutants, allowing background PMo s levels to
rise. Additionally, locations farther from the coast were associated with higher PM s
concentrations, indicating a spatial relationship between proximity to the coast and particulate
matter levels. The final PM> s model had a predictive performance of 0.65.

In contrast to the patterns observed for NO> and PM; 5, O3 concentrations exhibited
predominantly opposing relationships (Table 5). The variable "year" did not show a significant
association with O3 concentrations, indicating the absence of an annual trend in O3 levels.
Weekends were characterized by higher O3 concentrations than weekdays, revealing a distinct
opposite temporal pattern. Higher OMI-O3 values were linked to greater O3 concentrations,
emphasizing the positive association of remote sensing observations with measured ozone levels.
Surprisingly, greater traffic was associated with lower O3 concentrations, suggesting a nuanced
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photochemical process (i.e., scavenger effect, see details in discussion of Figure 4) between
vehicular emissions and ozone dynamics. Weather factors such as higher relative humidity, wind
speed, and atmospheric pressure correlated with elevated O3 concentrations, underscoring the
influence of meteorological conditions on ozone levels. Land use patterns also played a role,
with government & institutional, commercial, and waterbody areas associated with higher O3
concentrations, while barren land, crops, and wetlands were linked to lower O3 concentrations.
Developed low, medium, and high-intensity developments were associated with lower ozone
concentrations, suggesting potentially lower concentrations in urban areas. Low-intensity
development includes areas with sparse residential or commercial buildings, such as small towns
or suburban neighborhoods. Medium-intensity development encompasses areas with more
concentrated buildings and infrastructure, typically found in denser suburban or urban areas with
moderate residential and commercial activities. High-intensity development represents the most
densely built areas, including central business districts and urban centers with significant
residential, commercial, and industrial structures'??. Moreover, greater distances from highways
were associated with higher O3 concentrations, highlighting a similar scavenger effect between
proximity to highways and ozone levels. The final O3 model had a predictive performance of

0.92.

Table 3. Daily NO> model covering available observational periods.

Coefficient Estimates  std. Error  Statistic ~ P-Value
Year -0.166543  0.002916 -57.117810 <0.001
Season [Fall] 365.054890 5.843852 62.468199 <0.001
Season [Spring] 361.935364 5.842652 61.947107 <0.001
Season [Summer] 361.980633 5.841784 61.964058 <0.001
Season [Winter] 365.626222 5.844764 62.556198 <0.001
Week [Weekend] -2.980948 0.024376 -122.29108 <0.001
NO:; from OMI 8.50E-16  3.63E-18 234.413151 <0.001
Vehicle Kilometers Traveled (VKT) 0.000083  0.000001 117.218964 <0.001
(350m)

Minimum Relative Humidity (%) -0.135210  0.000722 -187.14711 <0.001
Wind Velocity at 10m (m/s) -1.079110  0.007579 -142.38620 <0.001
Minimum Temperature (K) -0.052602  0.002938 -17.906301 <0.001
Precipitation (mm, daily total) 0.034221  0.002549 13.425262 <0.001
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Roadway Area (ha) (50m) 0.422647  0.009005 46.934432 <0.001
Residential (ha) (350m) -0.007278  0.000145 -50.070525 <0.001
Waterbody (ha) (50m) -1.886457  0.049965 -37.755221 <0.001
Developed Open Space (ha) (50m) -0.142732  0.009172 -15.561964 <0.001
Developed Low Intensity (ha) (400m) 0.010865  0.000159 68.359609 <0.001
Developed High Intensity (ha) (5000m) 0.000104  0.000001  73.034457 <0.001
Shrubs (ha) (3250m) -0.000073  0.000002 -34.732591 <0.001
Wetlands (ha) (550m) -0.033821 0.000833 -40.579188 <0.001
NDVI -0.000149 0.000011 -13.104524 <0.001
Percent Impervious (%) (50m) 0.037625  0.000605 62.143918 <0.001
Distance to Ports (m) -0.000002  0.000000 -10.090608 <0.001
Distance to Highway (m) -0.000091  0.000003 -29.413285 <0.001
Observations 321297

R? / R? adjusted. 0.836/0.836

Table 4. Daily PM» s model covering available observational periods.

Coefficient Estimates  std. Error Statistic  P-Value
Year -0.139709  0.003115 -44.847889 <0.001
Season [Fall] 360.125186 6.244769  57.668292  <0.001
Season [Spring] 356.974440 6.245309 57.158809  <0.001
Season [Summer] 358.493294 6.246059 57.395114  <0.001
Season [Winter] 360.534093 6.244547 57.735832  <0.001
AOD (albedo) 0.044977  0.000221 203.299221 <0.001
Vehicle Kilometers Traveled (VKT) (350m)  0.000012  0.000001  16.793841  <0.001
Wind Velocity (m/s) -1.239394  0.006771 -183.031784 <0.001
Minimum Temperature (K) -0.239641 0.002586 -92.662860 <0.001
Minimum Relative Humidity (%) -0.059829  0.000649 -92.242887 <0.001
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Roadway Area (ha) (5000m) 0.000024  0.000002 13.114503 <0.001
Industrial (ha) (1850m) 0.000513  0.000024 21.714939 <0.001
Residential (ha) (850m) 0.001185  0.000029 41.076124 <0.001
Unknown Land Use (ha) (450m) -0.002008  0.000150 -13.387931 <0.001
Agricultural (ha) (50m) -0.311401  0.014300 -21.776931 <0.001
NDVI -0.000394  0.000010 -39.979943 <0.001
Barren Land (ha) (3000m) -0.001291  0.000013  -99.546262 <0.001
Barren Land (ha) (50m) -0.982108  0.074570 -13.170308 <0.001
Shrub Land (ha) (200m) -0.029789  0.000822 -36.232176 <0.001
Developed Open Space (ha) (4950m) -0.000037  0.000002 -16.515144 <0.001
Waterbody (ha) (1750m) -0.000578  0.000020 -29.560264 <0.001
Distance to Highway (m) -0.000029  0.000003  -8.723557  <0.001
Distance to Coast (m) 0.000017  0.000000  88.728793  <0.001
Elevation (m) -0.002428  0.000053 -46.003552 <0.001
Observations 633277

R?/R? adjusted 0.652/0.652

Table 5. Daily O3z model covering available observational periods.

Coefficient Estimates  std. Error  Statistic  P-Value
Season [Fall] -14.458252 1.093975 -13.216251 <0.001
Season [Spring] -7.053920 1.104199  -6.388269  <0.001
Season [Summer] -11.324983 1.112992 -10.175261 <0.001
Season [Winter] -15.288623 1.087035 -14.064514 <0.001
Week [Weekend] 1.485925 0.029979 49.566212  <0.001
O3 from OMI 0.046811  0.000557 84.056414 <0.001
Vehicle Kilometers Traveled (VKT) (350m) -0.000055 0.000001 -50.399347 <0.001
Vapor Pressure (kPa) 6.030856  0.020439 295.059906 <0.001
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Minimum Temperature (K) 0.098247 0.003827 25.669391 <0.001
Wind Velocity at 10m (m/s) 0.540921 0.008509 63.571245 <0.001
Government & Institutional (ha) (1800m) 0.000064  0.000007  9.086732  <0.001
Commercial (ha) (3200m) 0.000012  0.000009  1.249078 0.212
Waterbody (ha) (700m) 0.009638  0.000155 62.234975 <0.001
Developed Low Intensity (ha) (200m) -0.060691  0.000715 -84.924620 <0.001
Developed Medium Intensity (ha) (150m) -0.110609  0.000777 -142.421056 <0.001
Developed High Intensity (ha) (100m) -0.249156  0.001589 -156.768640 <0.001
Barren Land (ha) (250m) -0.058906 0.001805 -32.632019 <0.001
Crops (ha) (5000m) -0.000085 0.000001 -158.369440 <0.001
Wetlands (ha) (1600m) -0.003933  0.000053 -73.970854 <0.001
Distance to Highway (m) 0.000020  0.000002  12.767938  <0.001
Observations 513030

R?/ R? adjusted 0.923/0.923

Daily air pollution surfaces

Figure 4 shows the aggregated annual concentration surfaces of NO- for four decennial years,
including 1990, 2000, 2010, and 2020. The spatial patterns clearly show the decrease in NO»
concentrations throughout the years, especially in the urban areas. To identify degrees of
reduction throughout California, we used regulatory monitors for NO2, PM; 5, and O3 (Figure 3)
to identify average decennial concentrations for the State. This approach is reasonable given the

state regulatory monitors are designed to ensure comprehensive spatial coverage, capturing the
diverse environmental conditions across the state, including coastal, inland, and mountainous
regions. By incorporating monitoring points from both urban and rural areas, it enables the
examination of the urban-rural gradient in air pollution. These holistic statewide air quality
monitors also allow for the identification of spatial patterns, hotspots, and potential disparities in

pollution concentrations. Though some points are duplicated due to multiple pollutants being
measured at the same time, they reflect the importance of those points in geographic placement
strategies. Moreover, utilizing data from 1410 monitoring sites enhances the statistical robustness
of the analysis, providing a more accurate assessment of statewide air pollution levels. Using
those 1410 locations, we found that the average NO> concentrations decreased from 18.1 ppb in
1990 to 14.1 ppb in 2000, and decreased to 9.7 ppb in 2010 and 8.0 ppb in 2020. For PM> s,
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similar trends were identified for the four decennial years but with a much smaller decrease
(Figure 5). A striking change in 2020 was that the PM2 s levels increased significantly in Central
Valley while other places decreased, especially in Los Angeles, which experienced the greatest
decline. We suspect the significant increase in PM3 5 levels in Central Valley in 2020 was due to
the significant impact of wildfires.'?* Using the locations of the 1410 regulatory monitors, we
found that the average PM. 5 concentrations decreased from 14.2 pg m= in 1990 to 12.0 pg m™
in 2000, and further decreased to 9.9 ug m in 2010 but increased to 12.2 ug m™ in 2020. The
increase in wildfire frequency and intensity in California'>*"'?> will further increase PMa s levels,
though regulatory actions have significantly reduced traffic and industry-related PM> s.

For Os (Figure 6), we did not see any apparent trend, but we did identify that urban
metropolitan areas, such as the San Francisco Bay and Los Angeles Metro, had relatively lower
O; concentrations compared to rural areas. This is very likely due to the O3 scavenger effect!?®.
The scavenger effect involves the removal or reduction of 0zone from the atmosphere due to the
presence of specific pollutants or conditions. These pollutants can act as scavengers by reacting
with ozone molecules, leading to a decrease in overall 0zone concentrations. Common
scavengers of ozone include nitrogen oxides (NOx), carbon monoxide (CO), volatile organic
compounds (VOCs), and particulate matter. In urban environments, where these pollutants are
often abundant due to human activities such as combustion processes and industrial emissions,
the scavenger effect can be more pronounced. Nitrogen oxides, particularly NO, can react with
ozone in the presence of sunlight to form nitric oxide (NO) and oxygen (O2). This process
reduces the overall ozone levels in the atmosphere. VOCs and carbon monoxide can also
participate in ozone-depleting reactions. These compounds can undergo photochemical reactions
that consume ozone while generating other pollutants. Using a total of 1410 spatial points from
regulatory monitors, we found that the overall O3 level did not change significantly through
those four decennial years: the average O3 concentrations decreased from 38.2 ppb in 1990 to
37.8 ppb in 2000, and slightly increased to 38.1 ppb in 2010 and 39.3 ppb in 2020.

Further, we provided daily air pollution surfaces for NO2, PM> s, and O3 for January 1st,
2019, and compared them with the corresponding nearest centennial annual surfaces (Figures 4-
6). We found that for NO», the daily surface closely matched the spatial patterns of the annual
surface. For PMz s, the patterns were also similar, though there was a significant increase in the
Sierra region (eastern part of the map), suggesting a potential impact from wildfires. For O3,
while the general patterns were consistent in Northern California, the LA metropolitan area in
Southern California showed higher O3 concentrations on the daily map, which were less
prominent in the annual data. Given the significant seasonal variability of O3, we also compared
seasonal means and observed notable differences both between seasons and relative to the annual
averages. These comparisons indicate that while spatial patterns were largely consistent from
daily to annual concentrations, there were notable differences in daily spatial patterns,
particularly for PMz s and O3, likely due to the impact of temporal factors like wildfires and
weather.
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Figure 4. Decennial years of NO, surfaces among the over 30- years study period.
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Figure 5. Decennial years of PMz s surfaces among the over 30- years study period.
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Figure 6. Decennial years of O3 surfaces among the over 30- years study period.

Task 3. Develop air pollution models and surfaces for air toxics

Methodology

We applied the same deletion/substitution/addition machine learning LUR algorithms as used
in the criteria pollutants for California. Air toxics, which include hazardous air pollutants (HAPs)
such as chromium, nickel, lead and zinc, as well as volatile organic compounds (VOCs) like 1,3-
butadiene and benzene, were incorporated in our air pollution modeling.

Description of air toxics regulatory monitoring data

The air toxics data used in our analysis was obtained from the CARB’s speciation data and
span from 1996 to 2021; however, measurements are sparse and irregular over time. This
comprehensive dataset provides information on several key pollutants that are monitored for
their hazardous effects on health and the environment. Benzene, a volatile organic compound
commonly emitted by vehicle exhaust and industrial processes, was monitored at 54 unique sites.
A total of 384 observations were recorded, providing insights into the spatial and temporal
variations in benzene concentrations. These observations represent individual sampling events
rather than continuous monitoring and are concentrated largely within the past decade, with some
calendar years having no measurements at all. Importantly, this data density is consistent with,
and in fact exceeds, what is commonly used in traditional annual LUR studies, which are often
developed using a single measurement per site. Similarly, 1,3-butadiene, another VOC associated
with vehicular emissions and industrial activities, was measured at 91 unique sites with 899 total
observations, the highest number of sites among the pollutants in this dataset. Chromium, a
heavy metal linked to industrial processes like metal plating and combustion, was monitored at
46 unique sites, with 366 total observations. Nickel, often associated with industrial activities
such as metal smelting, was also measured at 46 unique sites, with the same number of
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observations as chromium. Lead, once commonly emitted from leaded gasoline and various
industrial activities, was similarly monitored at 46 unique sites, with a total of 366 observations.
Zinc, another heavy metal commonly released by industrial processes and vehicle emissions, was
monitored at the same 46 sites, with 366 total observations. While often associated with
industrial processes and vehicle emissions, Zinc may also have a significant contribution from
agricultural activities and forest management practices. In agriculture, zinc can be released into
the air as a result of the use of fertilizers and pesticides that contain zinc compounds.
Additionally, soil erosion, which can occur in agricultural settings, may contribute to airborne
zinc particles. In forest management, the burning of biomass or the use of zinc-containing
pesticides for pest control can also contribute to zinc emissions.

Development of potential predictors for air toxics modeling
Pollutant specific emissions

For this project, we utilized emissions estimates from California’s toxics emissions inventory,
covering stationary sources from 1996 to 2021. These emissions data encompass both point
sources reported by facility operators or air districts under the Air Toxics “Hot Spots” Program
(AB 2588) and aggregated point sources estimated by the California Air Resources Board
(CARB) and local air districts. This comprehensive dataset provided a long-term perspective on
emissions trends and variability. To ensure accurate spatial representation, point source locations
were geocoded using ArcGIS geocoding services based on the street addresses provided. This
step allowed for precise mapping of emission sources, enhancing the spatial fidelity of the
dataset. In addition to the individual air toxics emissions, we included total organic gases (TOG)
and reactive organic gases (ROG) data from CARB's emissions inventory. These broader organic
compound categories complemented the detailed toxics data, providing a more holistic view of
emissions relevant to air quality and exposure assessments.

All emission data were transformed into annual raster formats with a resolution of 100 m.
This high-resolution rasterization process enabled a detailed spatial representation of emissions,
capturing their distribution and intensity over time. The resulting rasters served as key inputs for
developing annual air toxics models and pollutant concentration surfaces. By integrating this
detailed emissions data into the modeling process, we were able to use spatially and temporally
resolved predictors to better understand and assess air toxics distributions.

Remote sensing Sentinel bands and ratios

In our LUR models for air toxics, Sentinel-2 spectral bands and their ratios are used as
predictors to account for the spatial distribution of surface characteristics that influence pollutant
levels'?’. These bands, ranging from visible to shortwave infrared (SWIR) wavelengths, capture
variations in land cover, vegetation, and urbanization, which correlate with air pollutant
concentrations.

For lead, significant coefficients were observed by'?” in the Blue (B2) band and the band
ratio B6/B8, suggesting that these features effectively capture spatial variability associated with
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sources or sinks of lead pollution. Specifically, the Blue band (B2) positively correlates with lead
concentrations, indicating a potential link with urban or industrial surface characteristics. The
ratio B6/BS is also significant, highlighting differences between vegetation and urban structures
that may influence the spatial distribution of lead.

For zinc, key predictors included the Green (B3) band and band ratios B3/B8 and B6/B8. The
Green band positively correlates with zinc, potentially reflecting surface characteristics
associated with urban vegetation or metallic surfaces that influence zinc deposition. The negative
coefficient of B3/B8 suggests an inverse relationship with vegetation density, while B6/B8
indicates that NIR-based spectral differences capture spatial variation in zinc pollution.

Overall, the integration of Sentinel-2 spectral data enhances the spatial resolution of air
pollution modeling by leveraging the detailed information on land cover and surface
characteristics to improve the prediction of air toxic distributions.

Traditional LUR predictors

For the development of our LUR models for nitrogen dioxide (NO), particulate matter
(PM25), and ozone (O3), we utilized a wide range of integrated, comprehensive data sources that
provided crucial spatial and temporal information. These sources included traffic data, land use
and land cover data, meteorological conditions, vegetation dynamics, and satellite data. Please
refer to the criteria pollutants for the predictors considered. Now, we are extending the use of
these same predictors to model air toxics, ensuring a robust framework for understanding the
spatial distribution of hazardous pollutants.

Traffic data are a critical input in air pollution modeling, particularly for pollutants like NO>
and PM s, which are heavily influenced by vehicle emissions. This data includes information on
traffic volume and road networks. Traffic data helps identify areas with high vehicular emissions,
which are significant contributors to local air quality, especially in urban environments. By
incorporating this data into the models, we can account for the impact of transportation-related
emissions on air toxics, as pollutants like benzene, 1,3-butadiene, and other air toxics are often
linked to motor vehicle exhaust.

Land use and land cover data provide essential information about how different types of land
cover and land use activities influence air quality. Land use refers to how land is utilized (e.g.,
residential, industrial, commercial, or agricultural), while land cover pertains to the physical
surface of the land (e.g., urban areas, forests, grasslands, or water bodies). This data allows us to
understand the relationship between human activity, land transformation, and pollution patterns.
In the case of air toxics, land use and land cover data can help pinpoint areas of high pollution
exposure, such as industrial zones, high-density residential areas, or regions affected by
agricultural practices.

Meteorological conditions are a crucial factor in the dispersion and transformation of air
pollutants. We incorporated data on temperature, wind speed, wind direction, humidity, and
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atmospheric pressure, which all influence how pollutants travel, dilute, and react in the
atmosphere. For example, wind patterns can carry pollutants from high-emission areas to other
regions, while temperature and humidity influence the formation of secondary pollutants such as
ozone. In air toxics modeling, meteorological data helps account for how local weather
conditions can impact the spread and concentration of hazardous pollutants, providing a more
dynamic and accurate representation of air quality.

Vegetation dynamics also play a significant role in air pollution modeling. Vegetation can act
as both a sink and a source for certain pollutants. For instance, plants can absorb some pollutants
through their stomata, reducing local pollutant concentrations. Conversely, land management
practices such as deforestation, urbanization, or changes in vegetation cover can alter the natural
processes that help mitigate air pollution. By including vegetation dynamics in our models, we
can account for how vegetation types and coverage influence the dispersion of air toxics,
particularly in rural or suburban areas where vegetation plays a more prominent role in air
quality.

Finally, satellite data provides a powerful tool for capturing large-scale spatial patterns of
land cover, vegetation, and even pollutant concentrations. Satellite imagery, often available at
high resolution, can be used to monitor changes in land use, track vegetation dynamics, and even
estimate pollutant levels from space. For example, vegetation indices derived from satellite data,
such as the Normalized Difference Vegetation Index (NDVI), can offer insights into the density
and health of vegetation in a given area. Furthermore, satellite-based remote sensing can assist in
monitoring emissions from point sources, providing another layer of data to refine the modeling
of air toxics.

Deletion/Substitution/Addition (D/S/A) LUR modeling techniques

For the annual air toxics modeling, we applied a similar approach to the one used in
developing daily air pollution models for NO,, PM 5, and Os. However, as air toxics data is only
available from CARB's speciation data and EMFAC emissions data are annual, our focus shifted
to developing annual surfaces rather than daily models. This shift in temporal resolution
necessitated some adjustments to the modeling process, but the core methodology remained
consistent.

The modeling for air toxics follows the D/S/A algorithm, which begins with a base model,
typically an intercept-only model, unless otherwise specified. The algorithm then iteratively
modifies the model by adding, deleting, or substituting terms to improve its predictive
performance. In each iteration, potential model modifications—such as incorporating polynomial
terms or testing different combinations of predictors—are evaluated against a predefined
criterion, typically focused on improving cross-validated error or another performance metric.
This iterative process tests various combinations of terms, retaining only those that result in the
greatest improvement in model accuracy. The algorithm continues to iterate until no significant
improvement is observed in model performance, based on predefined stopping criteria. These
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criteria could include reaching a threshold for improvement in cross-validated R-squared or
completing a maximum number of iterations, which was set to 15 in our previous work. Once the
algorithm converges, the optimal model is selected, representing the best balance between model
complexity and predictive accuracy. To maintain model interpretability, we restricted the
predictors to linear terms, avoiding interaction effects.

For cross-validation, the same approach used in the daily LUR models for NO,, PM> 5, and
O3 was applied, where data was randomized and divided into 10 equal folds. This ensures a
balanced mix of data in each fold, helping to avoid overfitting while maintaining model
robustness. This cross-validation process ensured the air toxics models were optimized for
predictive accuracy across different regions and temporal scales.

In summary, while the transition to annual air toxics modeling required some adjustments to
the temporal framework, the D/S/A algorithm and the methodology for selecting optimal
predictors remained largely the same as for NO2, PM2 s, and Os. This consistent approach
allowed us to develop reliable models for predicting the distribution of hazardous air pollutants
across time and space.

Results

The model for benzene (Table 6) had an Adjusted R? of 0.806, indicating that the model
accounts for 80.6% of the variability in the data. This relatively high explanatory power
demonstrates that the model captures the dominant spatial determinants of benzene levels and
provides a statistically robust representation of benzene exposure patterns across California.. The
year variable, with a negative coefficient, suggests that benzene concentrations have generally
declined over the years. Among the land use predictors, developed open space within 1500 m has
a negative and significant association with benzene levels. Developed high-intensity land use at a
5000 m buffer distance shows a positive effect on benzene. Further, the developed medium-
intensity areas within 50 m show a significant positive effect, indicating that more densely
developed areas tend to have higher benzene levels. Certain wetland areas also show significant
relationships with benzene concentrations. For example, wetlands within 1500 m are negatively
associated with benzene, suggesting that wetlands may help mitigate benzene levels, possibly
due to vegetation and land cover features. However, wetlands within 4200 m show a positive
relationship with benzene, reflecting a more distant influence of wetland areas on benzene
concentrations. Urban-related variables, such as impervious surface percentage within 1250 m
and residential areas within 2550 m, have a positive association with benzene levels, indicating
that increased urbanization and impervious surfaces contribute to higher benzene concentrations.
On the industrial front, industrial areas within 150 m are negatively associated with benzene,
which could be due to specific regulatory controls or other factors like plume effect. However,
industrial areas at larger distances (4200 m) have a positive effect. Key environmental variables,
such as wind velocity at 10 m, have a strong negative relationship with benzene concentrations,
suggesting that higher wind speeds may help disperse benzene and lower local concentrations.
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Maximum temperature shows a positive relationship with benzene, indicating that warmer
temperatures might lead to higher benzene levels, which is consistent with the fact that benzene
is a volatile organic compound that can increase in warmer conditions.

The model for 1,3-butadiene (Table 7) had an adjusted R? of 0.619, demonstrating a moderate
ability to explain the variability in 1,3-butadiene levels. The dataset includes 899 observations
from various sites, ensuring a broad representation of environmental conditions. A clear
decreasing trend in 1,3-butadiene concentrations over time highlights the impact of regulations
and improved emission controls. Industrial and vehicular activities are major contributors to
ambient levels. Proximity to industrial areas is associated with higher concentrations, confirming
the role of industrial emissions as a primary source. Interestingly, industrial activity at slightly
larger distances shows a negative association, potentially due to dispersion effects. Vehicle-
related predictors, such as vehicle kilometers traveled, also play a significant role, reaffirming
the importance of transportation emissions. Land use and vegetation have notable effects.
Grasslands and areas with higher vegetation indices are linked to lower concentrations of 1,3-
butadiene, suggesting that vegetation helps mitigate pollution levels, possibly through pollutant
deposition or reduced emissions. In contrast, open land near measurement sites is associated with
higher concentrations, which could reflect emissions from unregulated sources. Organic gases
are also key predictors. ROG within close proximity are linked to lower 1,3-butadiene
concentrations, likely due to chemical reactions or differing sources. However, at larger
distances, ROG levels are positively associated with 1,3-butadiene concentrations, indicating
more complex spatial and transport processes. TOG shows a positive relationship, consistent
with their role in combustion-related emissions. Meteorological factors, including wind speed
and temperature, significantly influence 1,3-butadiene concentrations. Higher wind speeds are
associated with lower concentrations, as dispersion reduces pollutant buildup. Conversely, higher
temperatures are linked to increased concentrations, potentially due to enhanced emissions or
chemical reactions.

The chromium (Table 8) model had an adjusted R? of 0.758, indicating strong explanatory
power. Based on 366 observations, the analysis highlights several key predictors related to land
use, industrial activity, and other environmental characteristics. Land-use variables show varying
relationships with chromium concentrations. Developed open spaces close to measurement sites
are associated with lower chromium levels, suggesting their role in reducing pollution exposure.
However, at greater distances, these spaces show a positive association, indicating that chromium
emissions may disperse from distant developed areas. Similarly, low-intensity developed areas
near the sites are associated with higher chromium levels, reflecting the potential impact of
moderate urban activities. At larger distances, these areas have a mitigating effect, which may
reflect dispersion effects or reduced direct emissions. Natural land uses also play a role. Forested
and shrub lands show positive associations with chromium concentrations, which could indicate
deposition of airborne chromium from other sources rather than local emissions. These findings
emphasize the complex role of vegetation in pollutant dynamics. Built environmental
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characteristics, such as impervious surfaces and residential areas, are significant contributors to
chromium levels. Higher percentages of impervious surfaces in proximity to measurement sites
are strongly linked to elevated chromium concentrations, consistent with the role of urbanized
areas in generating and retaining pollution. Residential areas also contribute positively,
suggesting the influence of household and localized activities. Industrial activities are significant
predictors of chromium levels. Proximity to industrial areas is associated with higher chromium
concentrations, affirming the impact of industrial emissions. Interestingly, industrial activity at
slightly greater distances has a negative association, possibly reflecting dispersion effects.

The nickel (Table 9) model explains a substantial portion of the variability in ambient nickel
concentrations, with an adjusted R? of 0.698 based on 366 observations. The results indicate
several significant predictors related to temporal trends, land use, atmospheric conditions, and
environmental factors. Year shows a negative association with nickel levels, reflecting a
decreasing trend over time, possibly due to improved regulations or reduced industrial emissions.
Aerosol Optical Depth (AOD), a measure of atmospheric pollution, is positively associated with
nickel concentrations, suggesting that higher aerosol levels contribute to increased ambient
nickel. The Sentinel reflectance ratio, related to surface characteristics, has a negative effect,
indicating that lower reflectance is linked to reduced nickel concentrations, potentially reflecting
differences in land cover or emissions sources. Land use features show varying impacts
depending on the type and proximity of the area. Developed open spaces demonstrate mixed
effects; closer distances are associated with higher nickel levels, while intermediate distances
exhibit a negative association, likely reflecting dispersion patterns or land-use intensity. High-
intensity developed areas, particularly those very close to measurement locations, exhibit a
strong positive association, likely reflecting emissions from industrial or urban activities.
Similarly, cultivated land at greater distances shows a positive relationship, indicating
contributions from agricultural regions, possibly due to fertilizer use or soil disturbance.
Vegetative features, such as tree canopy cover near the measurement sites, show a negative
association with nickel concentrations, suggesting that vegetation can play a role in mitigating
pollution levels. The location category variable (with values 1 to 3), representing proximity to
roadways, has a significant negative association with nickel concentrations. Locations within 500
m of highways (category 1) and those within 300 m of major roadways (category 2) generally
experience higher nickel levels compared to control areas far from highways and major
roadways (category 3). This pattern reflects the contribution of vehicular emissions to nickel
concentrations.

The lead model (Table 10), with an adjusted R? of 0.585 based on 366 observations, captures
key factors influencing ambient lead concentrations. Year exhibits a significant negative
association with lead levels, indicating a decline over time, likely reflecting the effectiveness of
regulatory measures such as the phase-out of leaded gasoline and stricter industrial emissions
controls. Sentinel band 11 reflectance at 100 m, representing specific surface properties, shows a
positive association with lead concentrations, suggesting that reflectance characteristics of
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certain surfaces may influence the deposition or re-emission of lead. Land use and land cover
variables reveal complex spatial relationships with lead concentrations. Developed open space at
intermediate distances (1750 m) has a significant negative association, while developed low-
intensity areas within 400 m exhibit a strong positive effect, highlighting the influence of
urbanization and human activities on lead levels. High-intensity developed areas at farther
distances (1850 m) also show a positive association, suggesting contributions from densely built
environments. Industrial areas within 50 m have a substantial positive impact, underlining their
role as key sources of lead pollution, likely from manufacturing processes or emissions.
Cultivated land demonstrates mixed effects based on distance, with negative associations at
closer proximities (1300 m) and positive effects at farther distances (1700 m and 4100 m). These
results may reflect the combined influence of agricultural practices, including the historical use
of lead-based pesticides, and spatial patterns of atmospheric lead deposition. Tree canopy cover
within 150 m exhibits a significant negative association, indicating that vegetation may help
reduce lead concentrations by capturing airborne particles. Wind velocity at 10 m is negatively
associated with lead levels, likely due to enhanced dispersion of pollutants under windy
conditions.

The zinc (Table 11) model, with an adjusted R? of 0.902, demonstrates a highly robust
explanation of spatial and temporal variation in ambient zinc concentrations. Based on 366
observations, the model highlights several predictors related to land use and land cover, water
features, and meteorological influences, as well as the influence of time and anthropogenic
activities. The year variable shows a significant positive association with zinc levels, indicating
an increasing trend in concentrations over time. This could reflect growing zinc emissions from
activities such as industrial production, urban development, agricultural use and forest
management. Land use variables reveal the substantial impact of urbanization and agricultural
practices on zinc concentrations. Developed open space has scale-dependent effects, with a
significant positive association at 550 m and 4900 m, but a negative effect at 1650 m. This
pattern may reflect the spatial heterogeneity of zinc sources, including construction activities,
vehicular emissions, and material weathering in urban environments. Developed low-intensity
areas within 100 m show a particularly strong positive association with zinc levels, likely
reflecting contributions from residential land use, such as roofing materials, paints, and vehicle-
related emissions. Industrial land within 300 m also has a significant positive effect, further
underscoring the role of industrial activities as major contributors to zinc pollution. Agricultural
and forested areas are also significant predictors, pointing to the dual influence of agricultural
use and forest management on zinc concentrations. Cultivated land within 1300 m has a
significant negative association, potentially due to localized zinc absorption by crops or soil
processes. However, cultivated land at farther distances, such as 2750 m, has a pronounced
positive association, reflecting agricultural runoff and emissions contributing to regional zinc
deposition. Forest land within 100 m shows a positive association, possibly linked to forest
management practices, including the use of zinc-containing fertilizers or burning of biomass
(e.g., wildfires). Similarly, shrub land at 1750 m and tree canopy at 3400 m positively influence
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zinc levels, suggesting that vegetated areas may play a role in trapping or re-emitting zinc
through biogeochemical processes. Other significant predictors include roadway areas within
1050 m, which are positively associated with zinc concentrations, likely due to tire and brake
wear, as well as roadway dust resuspension. Commercial land use shows mixed effects, with a
negative association at 1550 m and a positive association at 2850 m, reflecting variations in

commercial activities and their contribution to zinc emissions.

Table 6. The Benzene (ppb — parts per billion) annual land use regression model for the State of

California.
Predictors Estimates Statistic p
(Intercept) 71.1444530829 6.460868056 <0.001
Year -0.0460644573 -8.187001384 <0.001
Developed open space (ha) (1500m) -0.0003038868 -9.20768114 <0.001
Developed low-intensity (ha) (50m) 0.1046491564 6.108446398 <0.001
Developed low-intensity (ha) (150m) 0.0095996898 2.581800578 0.01
Developed low-intensity (ha) (400m) -0.0040680773 -7.39114508 <0.001
Developed medium-intensity (ha) (50m) 0.0750590130 9.494233321 <0.001
Developed high-intensity (ha) (100m) 0.0091059982 3.24671851 0.001
Developed high-intensity (ha) (5000m) 0.0000233851 10.09621313 <0.001
Barren land (ha) (3650m) 0.0001646350 1.513935759 0.131
Wetlands (ha) (1500m) -0.0006293209 -4.169578405 <0.001
Wetlands (ha) (4200m) 0.0000765548 5.221485589 <0.001
Percent impervious (%) (1250m) 0.0049819000 6.492024697 <0.001
Residential (ha) (2550m) 0.0001292767 15.79280818 <0.001
Commercial (ha) (400m) 0.0007969469 4.086255787 <0.001
Open land (ha) (4050m) 0.0000447860 12.98661681 <0.001
Agricultural (ha) (650m) 0.0003945438 2.859741801 0.004
Industrial (ha) (150m) -0.0062452995 -2.986573997 0.003
Industrial (ha) (4200m) 0.0000341314 8.618888805 <0.001
Roadway area (ha) (400m) 0.0027072548 7.338750856 <0.001
Wind velocity at 10m (m/s) -0.4824059638 -8.830365082 <0.001
Maximum temperature (K) 0.0740398482 8.81029949 <0.001
Observations 384
R2 / RZ adjusted 0.817/0.806

Table 7. The 1,3 Butadiene (ppt - parts per trillion) annual land use regression model for the State

of California.
Predictors Estimates Statistic p
(Intercept) 31117.6648826934 11.64674359 <0.001
Year -21.1249730190 -19.38089739 <0.001
Barren land (ha) (4600m) -0.0469201251 -2.167769104 0.03
Grass land (ha) (500m) -0.6775093539 -5.129792766 <0.001
Normalized difference vegetation index (NDVI) -0.0424093861 -4.420047065 <0.001
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Reactive organic gases (ROG in Kg) (350m) -25.1894794709 -4.523940379 <0.001
Reactive organic gases (ROG in Kg) (800m) -2.9373635888 -2.93857921 0.003
Reactive organic gases (ROG in Kg) (1750m) 1.5820924780 9.938395905 <0.001
Reactive organic gases (ROG in Kg) (5000m) 0.0789423273 3.453985634 0.001
Total organic gases (TOG in Kg) (450m) 19.5173083814 6.458797477 <0.001
Industrial (ha) (100m) 25.0402701651 6.830834645 <0.001
Industrial (ha) (250m) -4.7079719446 -7.984294052 <0.001
Open land (ha) (50m) 16.0480573790 2.957217315 0.003
Open land (ha) (3100m) 0.0049091507 2.688184263 0.007
Unknown land use (ha) (1150m) -0.1412559852 -4.712224558 <0.001
Wind velocity at 10m (m/s) -104.8729264054 -5.294000198 <0.001
Minimum temperature (K) 22.4987766572 3.637364344 <0.001
Maximum temperature (K) 18.9826049436 4543141132 <0.001
Distance to ports (m) 0.0007354483 4515508873 <0.001
Vehicle kilometer traveled (VKT) (350m) 0.0012401077 3.276795231 0.001

Observations 899

R?/ R adjusted 0.627/0.619

Table 8. The Chromium (ug m — microgram per cubic meter) annual land use regression model

for the State of California.

Predictors Estimates Statistic p
(Intercept) -0.0009652030 -3.421993114 0.001
Developed open space (ha) (750m) -0.0000026233 -5.148937014 <0.001
Developed open space (ha) (4950m) 0.0000001187 7.855805639 <0.001
Developed low-intensity (ha) (750m) 0.0000011149 4834187597 <0.001
Developed low-intensity (ha) (4350m) -0.0000000776 -5.356293607 <0.001
Forest land (ha) (1700m) 0.0000000804 3.278770817 0.001
Shrub land (ha) (3500m) 0.0000000227 3.44944059% 0.001
Percent impervious (%) (700m) 0.0000542740 13.2018244 <0.001
Residential (ha) (250m) 0.0000033797 2.733756416 0.007
Industrial (ha) (50m) 0.0150493090 6.183608152 <0.001
Industrial (ha) (100m) -0.0006743840 -6.219904697 <0.001
Industrial (ha) (1850m) -0.0000007260 -5.478485644 <0.001
Observations 366
R? / R2 adjusted 0.765/0.758

Table 9. The Nickel (ug m™ — microgram per cubic meter) annual land use regression model for

the State of California.

Predictors Estimates Statistic p
(Intercept) 0.0925145525 4.818773481 <0.001
Year -0.0000457830 -4,800933522 <0.001
Aerosol Optical Depth (AOD) 0.0000042343 3.156966846 0.002
Sentinel reflectance ratio of band 3 to band 8 (2200m) -0.0005806226 -2.149175643 0.032
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Water (ha) (600m) 0.0000378123 2.45276961 0.015
Developed open space (ha) (750m) 0.0000012524 2.699465104 0.007
Developed open space (ha) (1650m) -0.0000013001 -8.293587973 <0.001
Developed open space (ha) (4800m) 0.0000001079 8.329239371 <0.001
Developed low-intensity (ha) (150m) -0.0000153411 -3.105717724 0.002
Developed low-intensity (ha) (550m) 0.0000046813 7.733307247 <0.001
Developed low-intensity (ha) (3000m) -0.0000000709 -3.663505516 <0.001
Developed high-intensity (ha) (50m) 0.0000640834 3.593088787 <0.001
Developed high-intensity (ha) (800m) 0.0000012760 6.070259799 <0.001
Developed high-intensity (ha) (2100m) -0.0000001901 -4.30779798 <0.001
Forest land (ha) (100m) 0.0000160534 1.938139917 0.053
Forest land (ha) (500m) -0.0000003772 -1.515190092 0.131
Cultivated land (ha) (5000m) 0.0000000275 6.504952433 <0.001
Tree canopy (%) (50m) -0.0000134758 -3.157904608 0.002
Unknown land use (ha) (4500m) 0.0000000053 2.458329336 0.014
Daily precipitation (mm) 0.0000597377 1.649510182 0.1
Location category -0.0002111528 -4.722682297 <0.001
Observations 366

R?/ R adjusted 0.714/0.698

Table 10. The Lead (ug m™ — microgram per cubic meter) annual land use regression model for

the State of California.

Predictors Estimates Statistic p
(Intercept) 0.1786862844 2.853946155 0.005
Year -0.0000879009 -2.826373007 0.005
Sentinel band 11 reflectance (%) (100m) 0.0000010686 3.048932125 0.002
Water (ha) (550m) 0.0000824566 1.507671915 0.133
Developed open space (ha) (1750m) -0.0000010025 -4.125566514 <0.001
Developed low-intensity (ha) (400m) 0.0000067087 4.44248285 <0.001
Developed high-intensity (ha) (1850m) 0.0000002179 2.168973687 0.031
Shrub land (ha) (100m) -0.0000184916 -1.493241436 0.136
Cultivated land (ha) (1300m) -0.0000112322 -5.260807218 <0.001
Cultivated land (ha) (1700m) 0.0000063385 6.671948391 <0.001
Cultivated land (ha) (4100m) 0.0000002204 3.950092096 <0.001
Tree canopy (%) (150m) -0.0000240071 -2.077729624 0.038
Residential (ha) (50m) 0.0001268974 1.42360566 0.155
Commercial (ha) (50m) -0.0001516211 -1.779575967 0.076
Commercial (ha) (850m) -0.0000035623 -2.816310915 0.005
Commercial (ha) (1600m) 0.0000011326 1.700822505 0.09
Industrial (ha) (50m) 0.0080694047 2.300571321 0.022
Daily precipitation (mm) 0.0004079364 3.204730598 0.001
Vapor pressure deficit (kPa) -0.0006627179 -1.673587572 0.095
Wind velocity at 10m (m/s) -0.0004811740 -2.813558467 0.005
Distance to ports (m) -0.0000000019 -1.560162738 0.12
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Observations 366
R2 / R2 adjusted 0.608/0.585

Table 11. The Zinc (ug m™ — microgram per cubic meter) annual land use regression model for
the State of California.

Predictors Estimates Statistic p
(Intercept) -0.7633161249 -4.717188522 <0.001
Year 0.0003761687 4678444883 <0.001
Water (ha) (600m) 0.0026681203 7.642488406 <0.001
Water (ha) (650m) -0.0024089350 -7.281817116 <0.001
Water (ha) (950m) 0.0003425548 10.06154186 <0.001
Water (ha) (1100m) -0.0001080435 -9.297688355 <0.001
Developed open space (ha) (550m) 0.0000395784 7.932539305 <0.001
Developed open space (ha) (1650m) -0.0000155901 -14.24917187 <0.001
Developed open space (ha) (4900m) 0.0000008815 9.760316747 <0.001
Developed low-intensity (ha) (100m) 0.0005624142 9.413001078 <0.001
Developed low-intensity (ha) (1100m) 0.0000029328 3.200835573 0.001
Forest land (ha) (100m) 0.0001372166 2.944495893 0.003
Shrub land (ha) (1750m) 0.0000006002 3.713286452 <0.001
Cultivated land (ha) (1300m) -0.0000566748 -13.28121271 <0.001
Cultivated land (ha) (2750m) 0.0000139214 28.73397069 <0.001
Tree canopy (%) (3400m) 0.0001456838 5.016416366 <0.001
Commercial (ha) (1550m) -0.0000126516 -11.18764605 <0.001
Commercial (ha) (2850m) 0.0000034115 5.848703078 <0.001
Industrial (ha) (300m) 0.0001951988 11.73936751 <0.001
Roadway area (ha) (1050m) 0.0000086079 7.391120595 <0.001
Observations 366
R2 / RZ adjusted 0.907/0.902

Task 4. Data acquisition of human subjects’ data for 2010-2019

The UCB research team acquired three primary datasets to assess the impacts of air pollution
on metabolic health outcomes across California from 2010 to 2019. These datasets include: (1)
the CHIS data for diabetes incidence and medication use, (2) the HCAI data for diabetes-related
emergency department (ED) visits and hospitalizations, and (3) the CDPH Vital Records for
diabetes-related mortality. All datasets were obtained at the individual level, with CHIS and
CDPH data including residential addresses and HCAI data linked at the five-digit ZIP code level.
The CHIS data were acquired for years 2011-2019 for every two years and stored in the
University of California, Los Angeles (UCLA) Center for Health Policy Research (CHPR).
University of California, Berkeley (UCB) designed R code for CHPR staff to run the analysis.
For the data provided by HCAI and CDPH, Institutional Review Board (IRB) approval was
obtained to ensure the secure and ethical use of human subject data by authorized UCB
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researchers. We submitted applications to both the UCB Institutional Review Board (for reliance
on State Committee for Protection of Human Subjects - CPHS) and the California Health and
Human Services Committee, both of which reviewed and approved our research protocol.
Following approval, we worked with HCAI and CDPH to acquire related data under a strict data-
use agreement to protect confidentiality and the acquired data were stored on secure UCB Secure
Research Data Center (SRDC) servers in compliance with the Health Insurance Portability and
Accountability Act (HIPAA) and state requirements.

The CHIS dataset, the largest state health survey in the U.S., provided detailed, population-
representative data on California residents. UCB identified survey participants diagnosed with
T2D between 2011 and 2019. Variables extracted included latitude/longitude of home address,
age, gender, race-ethnicity, insurance status, body mass index (BMI), smoking status, diabetes
medication use (e.g., insulin injections or oral medications), and hemoglobin A1C checks. These
data enabled the team to examine population-level diabetes incidence, treatment behaviors, and
disparities across demographic groups and geographic areas.

The HCAI dataset provided comprehensive statewide records of T2D mellitus (ICD-9 code
250; ICD-10 code E11) for both ED visits and hospitalizations. Collected variables included
patient five-digit ZIP code, date of admission and discharge, length of stay, age, gender, race-
ethnicity, Elixhauser comorbidity index (derived from diagnosis codes), facility number, payer
category, preferred language, principal procedure, and care type. Similarly, the CDPH Vital
Records dataset captured mortality events where diabetes was listed as the primary or
contributory cause of death. Variables included residential address, date of death, age, gender,
race-ethnicity, smoking status, BMI, and insurance information. To further characterize diabetes-
related deaths, UCB also obtained data on underlying causes of death when diabetes was listed as
a secondary cause.

Task 5. Identify concentration-response relationships between air pollution exposures and
five health endpoints

Task 5 was designed to comprehensively evaluate how air pollution exposures are associated
with multiple diabetes-related health outcomes across different temporal scales and population
subgroups. Specifically, this task aimed to (1) quantify exposure-response relationships using
appropriate short-term and long-term exposure windows, (2) assess lagged exposure patterns to
characterize current versus delayed effects, and (3) identify population groups exhibiting greater
vulnerability. Long-term exposure analyses were conducted for diabetes incidence, medication
use (using CHIS data), and diabetes-related mortality (using CDPH Vital Records), while short-
term exposure analyses were conducted for diabetes-related emergency department visits,
hospitalizations, and length of stay using HCAI data.

Assigning air pollution exposure to locations of subjects

For CHIS, surveys were conducted biennially (approximately every two years). The daily air
pollution exposure (NO2, PM2 5, O3) was therefore aggregated to annual metrics and assigned
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retrospectively to each census tract back to 1989. The annual air toxics surfaces were assigned to
the census tract in a way like the aggregated annual criteria pollutants. High-resolution (100 m)
pollution surfaces were aggregated to census tracts using block-group population-weighted
means to approximate population exposure within each tract. Exposures were assigned back to
1989 specifically because the development of T2D may have occurred long before survey years.
One year before the year of incidence of a survey participant was treated as air pollution
exposure for that participant. Incidence records with onset prior to 1990 were excluded due to
lack of exposure data available.

For HCALI, geolocation was available at the five-digit ZIP level. Daily 100 m pollution
estimates were aggregated to ZIP-level daily means via block-group population weighting. For
each ED visit, patients were assigned the same-day exposure (lag 0) and lagged exposures for
days 1-3 (lag 1-3). For case-crossover analyses, we generated four control periods for each
event (1, 2, 3, and 4 weeks prior, matched on weekday) and assigned the corresponding ZIP-level
exposures. The same procedure was applied to inpatient visits.

For CDPH mortality data (2014-2021), residential addresses were geocoded to obtain precise
spatial locations. For each decedent, a one-year rolling mean of NO2 and PM2 s concentrations
prior to the date of death was calculated and assigned as the individual’s air pollution exposure.
Each death record was matched to one to two living controls selected from the same CDPH
dataset, matched on month and year of birth and race-ethnicity to minimize confounding by age
and demographic factors. For these matched controls, the corresponding one-year rolling mean
exposures were assigned using the same procedure, based on their geocoded residential
addresses and the same temporal exposure windows.

Statistical analysis

Associations between air pollution exposure and multiple health outcomes were evaluated
separately for the CHIS, HCAI, and CDPH datasets, using modeling approaches suited to each
outcome type and data structure.

To model T2D onset using CHIS data, adult respondents (=18 years) who reported a diabetes

diagnosis were defined as cases, with the self-reported age at diagnosis used to estimate the
diagnosis year. Respondents without diabetes served as potential controls. To approximate a
population-based risk set, control observations were expanded across years from survey year
back to 1990, maintaining age consistency. Up to two controls per case were matched on age,
sex, and race-ethnicity to form matched sets. Five-year calendar bins were defined to evaluate
potential temporal trends in associations. Conditional logistic regression models were fitted to
estimate the effect of air pollution exposure on the odds of incident T2D within each matched
set, accounting for matching factors. Covariates included age at diagnosis, sex, race-ethnicity,
smoking status, BMI, English proficiency, and additional socioeconomic indicators. Although
sex and race-ethnicity were used as matching variables, they were additionally included as
covariates in the regression models because matching was not exact for all cases (i.e., some cases
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had zero, one, or two matched controls). Including these variables as covariates helps account for
residual confounding due to incomplete matching and preserves adjustment for these factors
across all observations.

Models were fitted separately for each lag (0-3 years) and each 5-year period, as well as for
the entire period combined. Effect estimates were expressed as odds ratios (ORs) with 95%
confidence intervals (CIs), reflecting the relative odds of T2D per interquartile range (IQR)
increase in air pollution exposure. Small sample bins (<30 observations) were excluded to ensure
stable estimates.

To model T2D medication use using CHIS data, respondents (=18 years) reporting current
use of any diabetes medication were defined as cases (event = 1), while respondents not
reporting medication use served as controls (event = 0). Lagged exposures were calculated for 0—
3 years prior to the survey year to assess potential cumulative effects. Conditional logistic
regression models were fitted to estimate the association between air pollution exposure and the
odds of diabetes medication use, stratified by survey year to account for temporal clustering.
Models incorporated CHIS survey weights to ensure population-representative inference and
adjusted for age, sex, race-ethnicity, smoking status, BMI, English proficiency, and other
relevant socioeconomic indicators. The person-level weights account for the complex survey
design, including unequal selection probabilities, nonresponse, and post-stratification to
statewide demographic benchmarks. These weights were incorporated directly into the regression
models so that estimated associations reflect population-level effects rather than sample-specific
patterns, with variance estimates appropriately accounting for the survey design. Separate
models were fitted for each lag period, and effect estimates were expressed as ORs with 95% Cls
per IQR increase in air pollution exposure. In this analysis, medication use was defined as a
binary outcome indicating whether a survey participant reported using diabetes medication
during the survey year, regardless of prior duration of use. The exposure window was therefore
aligned with the survey year to capture contemporaneous associations between air pollution
exposure and active medication use, rather than medication initiation or cumulative treatment
history. This approach is consistent with the structure and limitations of the CHIS data, which do
not provide detailed information on medication start dates or duration of use.

For diabetes-related ED visits and hospitalizations in HCAI (2010-2019), we implemented a
time-stratified case-crossover design to examine short-term associations with ambient air
pollution. This design compares each patient’s exposure on the day of the ED visit or hospital
admission (case period) with exposures on multiple control days within the same individual,
effectively controlling for time-invariant confounders such as sex, race-ethnicity, genetic
susceptibility, and underlying comorbidities. For each ED visit, control periods were selected at
1, 2, 3, and 4 weeks prior to the visit, matched on the same day of the week, thereby controlling
for day-of-week effects, seasonal trends, and long-term temporal confounding. Conditional
logistic regression models were fitted with the case day as the event period and the matched prior
days as control periods. Pollutant exposures were scaled by their IQR to standardize effect
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estimates. Models evaluated same-day exposure (lag 0) and lagged exposures up to three days
(lags 1-3) to capture both immediate and delayed effects. Analyses were conducted overall (20%
samples) and stratified by race-ethnicity (100% data), allowing assessment of potential
disparities in pollutant effects among White, Black, Hispanic, Asian, and Other groups. ORs and
95% confidence intervals were estimated per IQR increase in pollutant concentration.

For inpatient admissions, length of stay (LOS) was modeled as a continuous outcome to
evaluate whether short-term air pollution exposure influenced hospitalization duration. Due to
the right-skewed nature of LOS, generalized linear models (GLMs) with a gamma distribution
and log link function were applied. This modeling framework estimates the relative change or
mean ratio in LOS associated with air pollution exposure, rather than treating LOS as a binary
outcome or as a count of discrete events. The log link was used to accommodate the right-
skewed distribution of LOS and to provide interpretable multiplicative effects on the mean length
of stay. Exposure metrics included same-day (lag 0) and lagged (lags 1-3) pollutant
concentrations to capture immediate and delayed effects. Models were adjusted for demographic
factors (age, sex, race-ethnicity, language, and insurance type), ZIP code-level socioeconomic
characteristics (e.g., unemployment rate, educational attainment, median household income,
marital status), and meteorological variables (e.g., temperature, relative humidity and
precipitation). All covariates were included simultaneously within each model to achieve
rigorous confounding control, consistent with standard epidemiologic practice for health
outcomes such as length of stay. Demographic, socioeconomic, and meteorological variables
represent conceptually distinct domains and were retained a priori based on established
associations with both air pollution exposure and diabetes-related outcomes. Given the large
sample size and the use of GLMs with appropriate distributional assumptions, simultaneous
adjustment did not materially inflate variance or compromise model interpretability.

For diabetes-related mortality using the CDPH data (2014-2021), race-ethnicity was
reclassified into five categories (Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian,
Hispanic, and Other). Records with less than one year of residence in the county were excluded
to minimize exposure misclassification. Although all records originated from the CDPH
mortality data, diabetes-related deaths were treated as cases and were matched to controls drawn
from the same mortality registry who were still alive at the time of the case’s death, with
matching based on year and month of birth, sex, and race-ethnicity. Exposures were standardized
by their IQR to facilitate interpretation. Logistic regression models were used to estimate the
associations between air pollution exposures and the odds of mortality. Specifically, we fitted
separate models for PM2 s and NO», including covariates for age, sex, race-ethnicity, marital
status and education level. Here we examined long-term exposure, defined as the annual (365-
day) rolling average concentration of pollutants during the year preceding the date of death.
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Modelling incidence of diabetes and diabetes medication use from NOz, PM3.5 and O3 exposure
using CHIS data

The CHIS data were pooled from 2011-2019 (biennial waves) to characterize California
adults with T2D (Table 12). The analytic sample represents approximately 28.7 million adults, of
whom an estimated 2.30 million (8.02%, SE = 0.0017) reported having diabetes. Age distribution

of the diabetes population was concentrated among older adults: 55.9% were aged 3564 years,
41.5% were 65 years and older, and only 2.6% were aged 1834 years. Males accounted for
52.9% of the diabetes population and females 47.1%. By race and ethnicity, White adults
comprised 41.3% of the diabetes population, followed by Latino/Hispanic (35.7%), Asian/Other
(15.0%), African American (7.4%), and American Indian/Alaska Native (0.6%) groups.
Socioeconomic patterns showed that more than 55% had incomes at or above 200% of the

federal poverty level (FPL) (24.9% between 200-399% and 30.5% =400%). Regarding smoking

status, 34.4% of adults with diabetes were former smokers, 10.1% current smokers, and 55.5%
never smokers. Among adults with diabetes, 83.7% reported using some form of diabetes
medication, while 16.3% reported no medication use. Of those using medication, 24.8% used
insulin, 76.6% used medications, and 17.7% reported using both insulin and medications.

Table 12. The descriptive characteristics of CHIS Data (2011-2019 biennial waves)
Overall Population

Diabetes Population

Category Subgroup N % N %
(Weighted)  (Weighted) (Weighted) (Weighted)
18-34 9,123,602 31.8% 59,991 2.6%
Age Group 35-64 14,530,212 50.6% 1,286,966 55.9%
65+ 5,060,915 17.6% 956,558 41.5%
Sex Female 14,675,518 51.1% 1,085,792 47.1%
Male 14,039,210 48.9% 1,217,723 52.9%
Alfrican 1,599,553 5.6% 170,703 7.4%
American
American
Race/Ethnicity Indi.an/Alaska 134,617 0.5% 14,023 0.6%
Native
Asian/Other 4,668,553 16.3% 344,988 15.0%
Latino/Hispanic 12,075,073 42.1% 822,503 35.7%
White 10,236,932 35.7% 951,298 41.3%
<200% 9,813,701 34.2% 1,026,914 44.6%
FPL Category 200-399% 7,051,338 24.6% 574,602 24.9%
>400% 11,849,688 41.3% 702,000 30.5%
Current Smoker 3,269,317 11.4% 231,818 10.1%
Smoking Status Former Smoker 6,281,879 21.9% 792,197 34.4%
Never Smoker 19,163,532 66.7% 1,279,500 55.5%

Diabetes Mean

Prevalence (Proportion) o o 0.0802 (SE = 0.0017)

Medication Use No Medif:atipn — — 375,011 16.3%
Yes Medication — — 1,928,504 83.7%

Insulin Use No — — 1,731,913 75.2%
Yes — — 571,602 24.8%
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- N 0,
Pill Use No 539,686 23.4%

Yes — — 1,763,829 76.6%
Both No — — 1,896,588 82.3%
Medications Yes — — 406,927 17.7%

When examining the association between NO: exposure and the onset of T2D (Figure 7), we
found a statistically significant positive relationship when all years were combined. Across all
data (1990-2015), NO: exposure, normalized through its IQR, demonstrated a consistent
association with increased odds of T2D onset (lag 0 OR = 1.013; 95% CI: 1.008-1.017; p <
0.001), with similar magnitudes observed at lags 1-3 years, indicating stable health effects.
When stratified by diagnostic period, earlier years (19901995 and 1995-2000) showed no
significant associations between NO and diabetes onset (ORs = 1.00; 95% CIs including 1.00).
However, starting from 2000-2005, the relationship became statistically significant (lag 0 OR =
1.012; 95% CI: 1.003-1.022; p = 0.011), and the effect magnitude increased slightly in
subsequent years. The strongest associations were observed during 2005-2010 (lag 0 OR =
1.019; 95% CI: 1.009-1.029; p < 0.001), suggesting a strengthening of NO>’s impact on diabetes
onset over time. The 2010-2015 period also exhibited positive and significant associations (lag 0
OR =1.0154; 95% CI: 1.0001-1.0309; p = 0.048). Overall, the findings indicate a temporally
consistent and statistically significant relationship between ambient NO> exposure and increased
risk of T2D onset, particularly from 2000 onward. The growing strength of association in later
years may reflect higher exposure susceptibility, improved case detection, or higher precision of
residential address/lower exposure misclassification error.

On impact of PM2 s exposure on onset of T2D, a statistically significant and consistent
positive association was observed (Figure 8). Across all years combined (1990-2015), elevated
PM; 5 concentrations were strongly associated with increased odds of diabetes onset (lag 0 OR =
1.074; 95% CI: 1.061-1.087; p < 0.001). Similar magnitudes were observed for lags 1-3 years
(OR range: 1.075-1.077), indicating a stable and temporally robust effect. When stratified by
diagnostic period, the associations persisted across all time intervals but exhibited a pattern of
increasing effect magnitude over time. During 1990-1995, the effect was significant (lag 0 OR =
1.036; 95% CI: 1.001-1.072; p = 0.045). The associations became more significant by 1995—
2000 (lag 0 OR =1.081; 95% CI: 1.049-1.114; p <0.001) and remained robust through
subsequent periods. Between 2000 and 2005, the OR remained around 1.062 (95% CI: 1.037-
1.088; p <0.001), while from 2005 to 2010, the effect slightly increased (lag 0 OR = 1.075; 95%
CI: 1.051-1.100; p < 0.001). The strongest associations were observed during 2010-2015 (lag 0
OR =1.103; 95% CI: 1.071-1.136; p < 0.001), indicating a continued strengthening of the
pollutant’s impact on diabetes onset. Overall, PM» s exposure showed a statistically significant
and temporally consistent association with higher odds of T2D onset across all examined time
periods. The effect magnitude increased slightly over time, suggesting either heightened
population vulnerability, changes in PM». 5 composition, or improved detection of diabetes cases

62|Page



in later years. These findings reinforce the causal role of fine particulate air pollution in
metabolic disease development.

Exposure to ambient O3 was also found to be positively associated with the onset of T2D,
though the magnitude of association was smaller than those observed for PM> s and NO» (Figure
9). When data from all study years (1990-2015) were combined, elevated O3 exposure was
significantly associated with increased odds of diabetes onset (lag 0 OR = 1.028; 95% CI: 1.017—
1.039; p <0.001). Similar effects were observed for lags 1-3 (OR range: 1.026—1.027; all p <
0.001), demonstrating a consistent relationship between O3z exposure and diabetes onset across
multiple lag structures. Analyses stratified by diagnosis period revealed that the Os—diabetes
association strengthened over time. In the earliest periods (1990—-1995 and 2000-2005),
associations were weak and statistically non-significant (e.g., 1990-1995 lag 0 OR = 1.006; 95%
CI: 0.973-1.040; p = 0.72). By 1995-2000, however, the relationship became significant, with
consistent positive associations across all lags (lag 0 OR = 1.033; 95% CI: 1.005-1.062; p =
0.020). This pattern continued and strengthened in later years, particularly between 2005 and
2010 (lag 0 OR =1.027; 95% CI: 1.007-1.049; p = 0.010) and peaked during 2010-2015, where
the associations were most pronounced (lag 0 OR = 1.060; 95% CI: 1.036-1.085; p < 0.001).
Overall, these results demonstrate a statistically significant and temporally consistent positive
association between ozone exposure and diabetes onset, particularly in more recent years. While
the magnitude of the O3 effect was modest compared to PM> s, the increasing strength and
consistency of the relationship over time suggest growing public health relevance and possibly
heightened population sensitivity or changes in ozone composition and exposure patterns.
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Figure 7. Impact of NO2 on onset of T2D
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03 Effect Estimate (IRR)
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Figure 9. Impact of Oz on onset of T2D

On impact of air pollution exposure on T2D medication use, consistent and statistically
significant associations were observed (Figure 10). Across NO2, PM; s, and O3, higher pollutant
concentrations were linked to increased odds of medication use, suggesting that air pollution may
contribute to worsening disease control or increased therapeutic demand among adults with T2D.

For NO,, the associations were positive but relatively stable across all lag periods, showing
little change from lag O to lag 3. The estimated odds ratios ranged narrowly from 1.018 (95% CI:
1.014-1.024; p < 0.001) at lag 0 to 1.018 (95% CI: 1.013-1.022; p < 0.001) at lag 3. These
consistent estimates indicate a modest yet persistent relationship between NO, exposure and
increased medication use. For PMa s, the associations were substantially stronger and exhibited a
slight upward trend across the lag structure. The odds ratios increased from 1.070 (95% CI:
1.060-1.081; p <0.001) at lag 0 to 1.073 (95% CI: 1.063—1.084; p <0.001) at lag 3, representing
the largest effect magnitude among the three pollutants. This pattern highlights the pronounced
impact of fine particulate matter on diabetes management intensity. For Os, the associations were
smaller in magnitude but showed a gradual increase from lag 0 to lag 3. The odds ratios rose
from 1.034 (95% CI: 1.026—1.041; p < 0.001) to 1.036 (95% CI: 1.028-1.043; p <0.001),
suggesting a mild cumulative effect over exposure windows.
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Overall, the analyses demonstrate that exposure to ambient air pollutants is associated with
greater likelihood of T2D medication use. The magnitude of effect followed the pattern PMz 5 >
03 > NO,, with PM; 5 showing the strongest and most consistent associations, while NO»
exhibited smaller but stable effects across all lag days.

Effect of Pollutant on Medication Use
NO2 03 PM2.5

1.08
1.06

1.04

B

Effect Estimate (IRR)

Exposure Lag Years

Lag Oyears ® 1year ® 2years 3 years

Figure 10. Impact of NO2, PM2 5 and O3 on T2D-related medication use

Modelling incidence of diabetes and diabetes medication use from air toxics exposure using
CHIS data

In the related CARB project 21RD004, we initially modeled ambient concentrations of six air
toxics, including benzene, chromium, nickel, lead, 1,3-butadiene, and zinc, at the monthly level.
We observed that sample size limitations in certain space-time strata constrained model stability
and performance. To address this, we aggregated the data to the annual level, which substantially
improved model performance. The resulting models explained between 59% and 90% of the
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adjusted variance across pollutants. Results from 21RD004 further indicated an inverse
association for zinc. Based on this evidence, zinc was excluded from the health outcome analyses
in this CARB project (22RD010).

Focusing on the remaining five air toxics, our analysis in this CARB project identified
consistent, statistically significant, and positive associations with both diabetes incidence and
diabetes medication use across California for all the survey years examined. These findings
reinforce the robustness of the observed relationships and support the relevance of these air
toxics to population-level metabolic health. Detailed modeling results are presented below, with
specific numerical results provided in Supplementary File 4 (Excel).

Air toxics and incidence of T2D

Long-term exposure to benzene was consistently associated with increased incidence of T2D,
with effect estimates strengthening markedly over successive diagnosis periods and remaining
robust across lag structures (lags 0-3). For individuals diagnosed between 1990 and 1995,
associations were elevate but not statistically significant (e.g., lag 0 OR = 1.11, 95% CI 0.99-
1.25). Beginning in the 1995-2000 period, benzene exposure was associated with a clear
elevation in diabetes risk (lag 0 OR = 1.28, 1.13-1.44), with similar magnitudes across
subsequent lags. Effect sizes increased further in later cohorts, reaching ORs of 1.33 (1.18-1.51)
for 2000-2005 and peaking during 2005-2010 (lag 0 OR = 1.60, 1.38-1.86). Elevated risks
persisted for diagnoses after 2010, with particularly strong associations observed during 2015-
2019 (lag 0 OR =2.04, 1.33-3.15). Across all years combined, benzene exposure was associated
with a 31-33% higher odds of incident diabetes depending on lag (e.g., lag 0 OR =1.33, 1.25-
1.41), demonstrating a stable and statistically robust relationship between benzene exposure and
diabetes onset.

Long-term exposure to chromium was also associated with increased incidence of T2D, with
statistically significant associations observed across most diagnosis periods and highly consistent
effect estimates across lag structures (lags 0-3). As with benzene, associations were elevated but
not statistically significant among individuals diagnosed between 1990 and 1995 (e.g., lag 0 OR
=1.11, 95% CI 0.98-1.27). Beginning in the 1995-2000 period, chromium exposure was
associated with a modest but significant elevation in diabetes incidence (lag 0 OR = 1.16, 1.04-
1.30), with nearly identical estimates across all lags. Effect sizes increased during 2000-2005,
reaching ORs of approximately 1.29 (95% CI 1.17-1.42), followed by sustained but smaller
associations in 2005-2010 (lag 0 OR = 1.17, 1.07-1.28). Associations attenuated and were not
statistically significant during 2010-2015, before strengthening again in the most recent period
(2015-2019), when chromium exposure was associated with a 38% higher odds of incident
diabetes (lag 0 OR =1.38, 1.16-1.65). In analyses pooling all years, chromium exposure was
associated with an 18% increase in diabetes incidence (lag 0 OR =1.18, 1.13-1.23), with
minimal variation across lag days, indicating a stable short-term exposure-response relationship.
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Long-term exposure to nickel was associated with markedly elevated incidence of T2D, with
effect sizes substantially larger than those observed for benzene or chromium and strong
consistency across lag days. Associations were modest and mostly non-significant in the earliest
diagnosis period (1990-1995), although one lag showed borderline significance (lag 2 OR = 1.33,
95% CI 1.01-1.74). From 1995 onward, nickel exposure was robustly associated with increased
diabetes incidence across nearly all periods. During 1995-2000, odds ratios exceeded 1.68 across
lags, reaching 1.72 at lag 0 (95% CI 1.32-2.25). Effect sizes increased further in 2000-2005 and
2005-2010, with ORs consistently around 1.80-1.85, indicating a strong and stable association
during these years. Associations attenuated and were not statistically significant during 2010-
2015, suggesting a temporary weakening of the exposure-response relationship. In contrast, the
most recent period (2015-2019) showed a pronounced resurgence, with very large effect
estimates that increased with longer lags, from OR = 2.80 at lag 0 (95% CI 1.56-5.01) to OR =
3.49 at lag 3 (95% CI 1.81-6.73), indicating heightened susceptibility or exposure contrast in
recent years. In analyses pooling all years, nickel exposure was associated with approximately a
64-66% increase in diabetes incidence across lags (e.g., lag 0 OR = 1.64, 95% CI 1.45-1.85),
underscoring nickel as a particularly potent air toxic in relation to diabetes onset and highlighting
its potential importance in the metabolic impacts of ambient air pollution.

Long-term exposure to lead was associated with a consistently elevated incidence of T2D
across most diagnosis periods, with effect sizes that were stable across lag structures, reflecting
its chronic rather than acute toxicity profile. In the earliest period (1990-1995), associations were
modest but not statistically significant (ORs ranging from approximately 1.04 to 1.06).
Beginning in 1995-2000, lead exposure was significantly associated with diabetes incidence,
with odds ratios around 1.19 across lags. Stronger and highly consistent associations were
observed during 2000-2005 and 2005-2010, with ORs clustered between 1.24 and 1.25,
indicating a roughly 24-25% higher risk. Although effect estimates attenuated slightly during
2010-2015 (ORs ~1.20-1.21), they remained statistically significant, and increased again in
2015-2019, with ORs around 1.27-1.28. In analyses pooling all years, long-term lead exposure
was significant and associated with an approximately 21% increase in diabetes incidence (ORs
~1.21 across lags), with minimal variation by lag.

Exposure to 1,3-butadiene was associated with elevated incidence of T2D, with effect
estimates that varied by calendar period but were generally positive and strengthened in later
years. In the earliest period (1990-1995), associations were modest and not statistically
significant (ORs approximately 0.93-1.07). During 1995-2000, modest positive associations
emerged, with ORs around 1.16-1.19, reaching borderline statistical significance at several lags.
Substantially stronger associations were observed in 2000-2005, when ORs ranged from
approximately 1.64 to 1.68 across lags, indicating a 60-70% higher incidence. Effects attenuated
somewhat in 2005-2010, with mixed significance at shorter lags but increasing ORs at longer
lags (up to ~1.38). Associations again strengthened in 2010-2015, with consistently significant
ORs of about 1.46-1.52 across lags. In analyses pooling all years, 1,3-butadiene exposure was
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associated with a 23-30% higher incidence of diabetes (ORs ~1.23-1.30), with slightly larger
estimates at longer lags.

Air toxics and medication use of T2D

Benzene exposure was positively associated with diabetes medication use in pooled CHIS
data from 2011-2019, with consistent and statistically significant effects across all examined
lags. At lag 0, benzene exposure was associated with a 25% higher likelihood of medication use
(OR =1.25, 95% CI: 1.19-1.30), with slightly attenuated but still robust associations observed at
longer lags. Odds ratios remained elevated at lag 1 (OR = 1.20, 95% CI: 1.16-1.25), lag 2 (OR =
1.19,95% CI: 1.15-1.23), and lag 3 (OR = 1.19, 95% CI: 1.15-1.23). The monotonic attenuation
across lags, coupled with uniformly narrow confidence intervals and highly significant p-values,
suggests that benzene exposure is strongly and persistently associated with increased diabetes
treatment utilization

Chromium exposure was modestly but consistently associated with increased diabetes
medication use. Across all lags, effect estimates were highly stable, indicating a persistent
relationship. At lag 0, chromium exposure was associated with a 7% higher likelihood of
medication use (OR =1.07, 95% CI: 1.04-1.11), with nearly identical estimates observed at lag 1
(OR =1.07, 95% CI: 1.04-1.11), lag 2 (OR = 1.07, 95% CI: 1.04-1.11), and lag 3 (OR = 1.07,
95% CI: 1.04-1.11). The minimal attenuation across lags and the narrow confidence intervals
suggest a stable short-term association between chromium exposure and diabetes medication
utilization.

Nickel exposure was strongly associated with increased diabetes medication use, with
consistently elevated odds across all short-term lags. The largest effect was observed at lag 0,
where nickel exposure was associated with a 32% higher likelihood of medication use (OR =
1.32, 95% CI: 1.24-1.40). Elevated associations persisted at lag 1 (OR = 1.24, 95% CI: 1.19-
1.30), lag 2 (OR = 1.25, 95% CI: 1.19-1.30), and lag 3 (OR = 1.22, 95% CI: 1.17-1.27), with all
estimates highly statistically significant. The modest attenuation across increasing lags suggests a
robust and sustained short-term relationship between nickel exposure and intensified diabetes
management.

Lead exposure was consistently associated with higher diabetes medication use, with
remarkably stable effect estimates across all short-term lags. At lag 0, lead exposure was
associated with a 16% increase in the odds of medication use (OR =1.16, 95% CI: 1.13-1.18),
and virtually identical associations were observed at lag 1 (OR =1.16, 95% CI: 1.13-1.18), lag 2
(OR =1.16, 95% CI: 1.13-1.18), and lag 3 (OR = 1.16, 95% CI: 1.13-1.18). All associations
were highly statistically significant.

Exposure to 1,3-butadiene was also positively associated with diabetes medication use in the
pooled CHIS data from 2011-2019, with increasing effect estimates across successive lags. At
lag 0, 1,3-butadiene exposure was associated with a 14% higher odds of medication use (OR =
1.14, 95% CI: 1.10-1.19). The association strengthened at lag 1 (OR =1.16, 95% CI: 1.11-1.22)
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and lag 2 (OR =1.17, 95% CI: 1.12-1.22), reaching the largest magnitude at lag 3 (OR =1.19,
95% CI: 1.14-1.25). All lag-specific estimates were statistically significant.

Modelling diabetes mellitus ED visits from NO2 and PM:.5 exposure using HCAI data

Between 2010 and 2019, the HCAI dataset included 39.3 million total emergency department
(ED) visits, of which 7.87 million visits remained after removing accidental causes and
duplicates (Table 13). The cleaned dataset consisted of 4,336,098 visits among White patients,
1,472,184 among Hispanic patients, 1,043,753 among Black patients, 548,355 among Asian
patients, and 467,991 among patients of Other racial/ethnic backgrounds. This large and
demographically diverse sample provides strong statistical power to examine race-ethnicity-
specific impacts of air pollution exposure on diabetes-related ED outcomes.

For air pollution, average NO> exposures were highest among Hispanic (8.91 ppb) and Black
(8.88 ppb) patients, followed by Asian (8.39 ppb), White (8.10 ppb), and Other (8.09 ppb)
groups. Similarly, mean PMz s exposures were slightly higher among Hispanic (8.84 pg m™) and
Black (8.76 ug m™) patients than among White (8.67 ug m), Asian (8.44 ug m>), and Other
(8.42 pg m?) patients. Both pollutants exhibited substantial variability, with NO> interquartile
ranges (IQRs) of 7.39—7.83 ppb and PM2 5 IQRs of 3.38-3.65 ug m™ across racial/ethnic groups,
reflecting exposure disparities and spatial heterogeneity across California communities.

Table 13. Sample size population and exposure statistics for ED visits.

Race Total ED Remove NO: (ppb) PM5 (ug m”)
Ethnicity Visits Acc1dents/ Mean Std IQR Mean Std IQR
Duplicates
Black 5,218,765 1,043,753 8.88 5.66 7.74 8.76 2.84 3.40
White 21,680,490 4,336,098 8.10 5.48 7.39 8.67 3.04 3.65
Asian 2,741,775 548,355 8.39 5.63 7.83 8.44 2.84 3.53
Hispanic 7,360,920 1,472,184 8.91 5.70 7.79 8.84 2.82 3.38
Other 2,339,955 467,991 8.09 5.47 7.52 8.42 2.95 3.60

Across the study period, NO2 exposure was associated with consistent, though modest,
statistically significant increases in diabetes-related ED visits (Figure 11). For each individual
lag, the estimated odds ratios changed very little as the number of matched controls increased
from 1:1 to 4:1. For example, at lag 0, the OR ranged only slightly from 1.0072 for 1:1 matching
to 1.0065 for 4:1 matching, indicating that the choice of control ratio had minimal impact on
effect estimates. Conversely, for each individual control ratio, the estimated effect decreased
gradually as the exposure lag increased from 0 to 3 days. For 1:1 matching, the OR declined
from 1.0072 at lag 0 to 1.0026 at lag 3, and similar modest declines were observed across other
matching ratios. Overall, these patterns suggest that recent NO; exposure (lag 0—1) has the
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strongest association with ED visits, while the influence of control matching strategy is minimal,
and longer lags show only slight attenuation of the effect.

Across racial and ethnic groups, NO> exposure was still consistently associated with
increased odds of diabetes-related ED visits, with some differences in magnitude by group
(Figure 12). For each group, increasing the number of matched controls from 1:1 to 4:1 led to a
gradual increase in estimated odds ratios, although the effect of additional controls was relatively
modest compared with inter-group differences. For example, at lag 0, the OR for Black
individuals increased from 1.026 (1:1) to 1.063 (4:1), whereas for Hispanic individuals the
corresponding increase was from 1.030 to 1.070, indicating that Hispanic and Other race-
ethnicity groups had the largest absolute effects. Across lags within each control ratio, effect
estimates generally decreased slightly as lag increased from 0 to 3 days. For instance, for 1:1
matching among Black individuals, the OR declined from 1.026 at lag 0 to 1.009 at lag 3,
showing modest attenuation over time. Overall, these patterns suggest that the impact of NO» is
strongest for recent exposure (lag 0—1), and the magnitude of effect varies by race-ethnicity, with
Hispanic, Asian, and Other groups showing the largest associations, while Black and White
groups had slightly lower but still significant increases in odds.

Overall NO2 Effects with Environmental Controls {2010-2019)
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Figure 11. The overall impact of NO» exposure on ED visits.
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Overall NO2 Effects with Environmental Controls (2010-2019)
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Figure 12. The overall impact of NOz exposure on ED visits stratified by race-ethnicity.

For PM; 5 exposure across all adults, it was also found to be associated with statistically
significant increased odds of diabetes-related ED visits over the study period (Figure 13). For
each lag, increasing the number of matched controls from 1:1 to 4:1 resulted in slight increases
in effect estimates, although the magnitude of change was small; for example, at lag 0, the OR
increased from 1.004 (1:1) to 1.006 (4:1), indicating that expanding the control set had minimal
impact on estimated associations. Across lags within a given control strategy, the effect estimates
showed modest attenuation over time: for 1:1 matching, the OR decreased from 1.004 at lag 0 to
1.001 at lag 2 and to 1.001 at lag 3. Overall, PM> 5 effects had the strongest associations
observed for concurrent exposure (lag 0) and slightly weaker associations for exposures over 1-3
days. These findings suggest that recent PM» s exposure may contribute to increased diabetes-
related ED visit risk.

Race-ethnicity—stratified analyses for PM> 5 exposure (Figure 14) also showed consistent
increased odds of diabetes-related ED visits across all groups, with the magnitude of effect
generally highest for Black and Hispanic adults. Increasing the number of matched controls from
1:1 to 4:1 led to small but consistent increases in estimated effects across all races; for example,
at lag 0, Black adults’ ORs increased from 1.022 (1:1) to 1.051 (4:1), and Hispanic adults’ ORs
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increased from 1.026 to 1.054. Across lags within a given control strategy, effect estimates
typically attenuated slightly over time: for 1:1 matching, Black adults’ OR decreased from 1.022
at lag 0 to 1.002 at lag 3, while similar modest declines were observed for White, Asian,
Hispanic, and Other adults. Overall, Black and Hispanic adults consistently exhibited the largest
associations with PMz 5 exposure, suggesting that these populations may experience relatively
higher risk of diabetes-related ED visits in response to fine particulate matter. The temporal
attenuation across lags and modest effect of control expansion indicate that recent exposure
contributes most strongly, with exposures over 1-3 days producing slightly weaker associations.

We also conducted similar analyses for individual years and with various stratification
strategies, including health insurance pay type, region, primary language spoken, race-ethnicity,
sex and age group. The details of those analyses are in Supplementary File 1.

PM2.5 ED visits effect by Control Strategy and Lag
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Figure 13. The overall impact of PM 5 exposure on ED visits.
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Overall PM2.5 Effects with Environmental Controls (2010-2019)
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Figure 14. The overall impact of PMz 5 exposure on ED visits stratified by race-ethnicity.

Modelling diabetes mellitus hospital admissions from NO;z and PM3.s exposure using HCAI data

Between 2010 and 2019, a total of approximately 29.07 million inpatient (IP) records were
identified in the HCAI dataset across all race and ethnicity groups, of which about 6.01 million
(20.7%) remained after removing records related to accidents and duplicate entries (Table 14).
The “Other” race-ethnicity category contributed the largest absolute number of hospitalizations
(5.38 million), contributed by its broader definition encompassing multi-racial and unspecified
individuals. Among other race-ethnicity categories, White patients accounted for the largest share
(379,619 visits), followed by Hispanic (112,559), Asian (69,845), and Black (67,871)
individuals.

Across racial and ethnic groups, exposure levels showed modest variation. Mean NO>
concentrations ranged from 8.20 ppb in White to 9.16 ppb in Hispanic patients, with IQRs
between 7.5 and 8.2 ppb, suggesting moderate within-group variability. Similarly, mean PM> s
levels varied narrowly between 8.40 pg m (Other) and 8.85 pg m (Hispanic), with IQRs from
3.3t0 3.7 ug m>. Overall, both NO2 and PM> 5 exposures exhibited slightly higher averages
among Hispanic and Black populations, reflecting potential spatial overlap between higher
pollution burdens and these demographic communities.
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Across the entire 2010-2019 study period, short-term exposure to NO> was significantly
associated with increased odds of hospital admissions for diabetes-related conditions (Figure 15).
Conditional logistic regression models using daily data demonstrated a consistent and
statistically significant positive relationship across all lag structures (0—3 days) and control
strategies. Overall, each IQR increase in daily NO2 concentration was associated with a 1-5%
higher odds of hospitalization, supporting a robust short-term causal impact of NO> on acute
metabolic health outcomes.

When examined by control ratio, effect estimates showed a modest upward trend as the
number of controls per case increased, indicating improved model precision with expanded
control sampling. At lag 0, the OR increased from 1.018 (95% CI: 1.006—1.030) under the 1:1
scheme to 1.053 (1.043—1.063) for the 4:1 scheme. A similar pattern was observed for lag 1
(1.016-1.051) and lag 2 (1.011-1.046), while lag 3 estimates remained positive (1.013—1.044)
though slightly attenuated. Across lags, the strongest associations were observed at lag 0 and lag
1, suggesting that the adverse effects of NO> exposure on hospitalization risk occur within 24—48
hours of exposure.

Across all race-ethnicity groups, short-term exposure to NO2 was significantly associated
with increased odds of diabetes-related hospital admissions, indicating a robust and consistent
adverse effect of daily NO exposure (Figure 16). The association remained statistically
significant across all control strategies and lags (0-3 days), confirming a causal temporal
relationship between acute NO; exposure and hospitalization risk. Within each race-ethnicity
group, the estimated ORs followed a consistent pattern, with the strongest effects observed at lag
0-1 day, suggesting that NO» exposure exerts the greatest influence within 24—48 hours prior to
admission. Effect sizes increased modestly with more extensive control sampling (from 1:1 to
4:1), indicating greater stability and precision of the estimated effects. For example, among
White patients, ORs ranged from 1.019 (95% CI: 1.012—1.026) under 1:1 matching at lag 0 to
1.048 (1.043—1.054) under 4:1 matching. Similar progressive increases were observed among
Hispanic (1.023—-1.061) and Asian (1.030-1.070) patients, reflecting consistent exposure-
response relationships across model specifications. When comparing across race-ethnicity
categories, Asians and individuals classified as “Other” exhibited the largest effect estimates,
with ORs exceeding 1.06 under the 4:1 lag 0 configuration, suggesting heightened susceptibility
or greater exposure gradients in these populations. Hispanic and White populations showed

slightly lower but still statistically significant effects, with ORs around 1.05-1.06 for lag 0—1. In
contrast, Black patients demonstrated smaller effect magnitudes (OR =~ 1.02—-1.05) and a slightly

slower decline across lags, though still maintaining positive associations.
Across all groups, effect estimates declined modestly with increasing lag days, consistent
with the transient nature of air pollution impacts on acute hospital utilization. The persistence of

significant associations through lag 3 in most groups supports a cumulative short-term exposure
effect. Overall, the results demonstrate a statistically significant and temporally coherent causal
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relationship between daily NO, exposure and diabetes-related hospital admissions, with notable
variability in effect magnitude by race-ethnicity, potentially reflecting differential vulnerability,
exposure patterns, or contextual factors.

For PM; s, across the 2010-2019 study period, higher daily exposure was consistently and
significantly associated with increased odds of diabetes-related hospital admissions (Figure 17).
The associations were statistically robust across all matching control strategies and lag periods
(0-3 days), indicating a persistent adverse impact of PM» s exposure on hospitalization risk. At
lag 0, which represents exposure on the same day of admission, the estimated odds ratios
increased gradually with broader control sampling—from 1.02 (95% CI: 1.01-1.03) under the
1:1 control ratio to 1.04 (95% CI: 1.04—1.05) under 4:1 control. Similar incremental patterns
were observed for lags 1 through 3, confirming that results were consistent and not sensitive to
the control selection strategy. In terms of temporal trends, the strongest effects were generally
observed for lag 0 and lag 1 in a way like those of NOg, indicating that PM> s exposure on the
day of or one day prior to admission exerts the most immediate influence on hospital utilization.
The magnitude of association diminished slightly over lags 2—3 but remained statistically
significant through lag 3, supporting a short-term cumulative exposure effect.

For PM; s impact on hospital admissions across race—ethnicity groups, short-term increases in
PMb 5 concentration were consistently associated with a statistically significant increase in the
odds of hospital admissions across all racial and ethnic categories (Figure 18). The associations
remained robust across all lag structures (lags 0-3 days) and control strategies, underscoring a
strong and stable causal relationship between daily PM s exposure and elevated hospitalization
risks. The magnitude of effect was modest but persistent, with ORs generally increasing with
broader control strategies (from 1:1 to 4:1). Among racial and ethnic groups, Asians exhibited the
strongest and most consistent associations. For lag 0, the ORs increased from 1.033 (95% CI:
1.017-1.049) under the 1:1 control strategy to 1.064 (95% CI: 1.051-1.077) under the 4:1
control strategy. Similar elevated risks persisted across lags 1-3, with ORs typically exceeding
1.03, indicating heightened sensitivity of this group to fine particulate pollution. Black
populations also demonstrated pronounced and statistically significant associations at early lags,
with ORs at lag 0 ranging from 1.030 (95% CI: 1.015-1.046) to 1.060 (95% CI: 1.048-1.072)
from matching 1:1 to 4:1, remaining elevated through lag 1 before gradually attenuating by lag 3.
For Hispanic and White populations, the associations were similarly strong and consistent across
all lags. Among Hispanics, lag 0 ORs rose from 1.019 (95% CI: 1.008—-1.031) to 1.048 (95% CI:
1.038-1.057) from matching 1:1 to 4:1 under broader matching strategies, with statistically
significant elevations persisting through lag 3. Whites showed comparably stable effects, with
lag 0 ORs ranging from 1.015 (95% CI: 1.009-1.021) to 1.037 (95% CI: 1.032—1.043) from
matching 1:1 to 4:1. The Other category displayed significant but slightly smaller magnitudes,
with ORs at lag 0 increasing from 1.028 (95% CI: 1.008-1.048) to 1.052 (95% CI: 1.035-1.069)
from matching 1:1 to 4:1, again showing stability across lags 0-3.
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In summary, PM> 5 exposure was a statistically significant and consistent predictor of
increased hospital admissions across all examined racial and ethnic groups. The effects were
strongest and most persistent among Asian and Black populations. These findings emphasize the
widespread health burden of PM; 5 pollution and its disproportionate impacts across
demographic subgroups.

Table 14. Sample size population and exposure statistics for inpatient visits.

3
Race  Total ED  Remove NO; (ppb) PM s (ug m)
Ethnicity ~ Visits Accidents’ ) m Std IQR  Mean  Std IR
Duplicates c c
Black 339,355 67,871 9.15 573 7.95 874 279  3.34
White 1,898,095 379,619 820  5.50 7.53 858  3.05  3.69
Asian 349,225 69,845 896  5.82 8.15 857 278 345
Hispanic 562,795 112,559 9.16  5.80 7.98 885 279 336
Other 26,919,165 5,379,185 8.21 5.58 7.75 8.40 2.94 3.66
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Figure 15. The overall impact of NO; exposure on hospital admissions.
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Figure 18. The overall impact of PM2 5 exposure on hospital admissions stratified by race-
ethnicity.

Modelling diabetes mellitus hospital LOS from NOz and PM;.5 exposure using HCAI data

For impact of NOz on hospital LOS, exposure to higher daily concentrations of NO> was
associated with a statistically significant increase in hospitalizations (Figure 19). The relationship
was robust and consistent across all examined lag periods, confirming a clear and positive causal
association between short-term NO> exposure and longer hospitalization durations. At lag 0, the
mean ratio (MR) in LOS was 1.018 (95% CI: 1.017-1.019), representing the strongest effect
across the lag structure. The association remained stable at lag 1 with an MR of 1.018 (95% CI:
1.017-1.019) and showed a gradual decline in magnitude at lag 2 (MR = 1.016, 95% CI: 1.015—
1.017) and lag 3 (MR =1.011, 95% CI: 1.010-1.012). Despite this attenuation, all associations
remained statistically significant, indicating that elevated NO> levels continued to exert
measurable influence on hospitalization duration for up to three days following exposure.

For impact of NO2 on LOS by race and ethnicity, the stratified analyses demonstrated that the
positive association between daily NO; exposure and increased hospitalizations was consistent
across all major racial and ethnic groups, though the magnitude of the effect varied (Figure 20).
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Among Black patients, NO> exposure showed the strongest and most persistent relationship with
LOS, with IRs ranging from 1.047 (95% CI: 1.037-1.058) at lag 0 to 1.033 (95% CI: 1.022—
1.043) at lag 3. These results indicate a robust and sustained increase in LOS up to three days
after exposure. Similarly, White patients exhibited a consistent positive association, with IRs of
1.028 (95% CI: 1.024-1.033) at lag 0 and 1.019 (95% CI: 1.014-1.024) at lag 3, suggesting
slightly smaller but still statistically significant effects. For Hispanic patients, the association
strengthened with lag, peaking at lag 3 (MR = 1.042, 95% CI: 1.034-1.051), indicating that
exposure-related impacts may extend over multiple subsequent days. In contrast, Asian patients
demonstrated a more variable pattern, with a marked increase at lag 1 (MR = 1.052, 95% CI:
1.042-1.062) and lag 2 (MR = 1.035, 95% CI: 1.025—1.045), but a slight reduction below unity
at lag 3, possibly reflecting population heterogeneity or smaller sample size. Finally, the Other
race-ethnicity group showed highly stable and statistically significant effects across all lags, with
IRs ranging from 1.021 to 1.022 for lags 0—2 and a moderate attenuation at lag 3 (MR =1.016,
95% CI: 1.015-1.017).

For impact of PM2s on LOS, analyses revealed a consistent and statistically significant
association between short-term exposure and prolonged hospitalization (Figure 21). Across all
lag periods examined (lag 0-3 days), elevated daily PM» s concentrations were positively
associated with longer hospital stays, indicating that short-term increases in ambient pollution
levels contribute measurably to disease severity and extended inpatient recovery time. At lag 0, a
one IQR increase in PM; 5 was associated with a 0.84% longer LOS (MR = 1.008, 95% CI:
1.008-1.009), representing the strongest effect among the examined lags. The association
modestly attenuated but persisted through subsequent days, showing statistically significant
elevations at lag 1 (MR = 1.007, 95% CI: 1.006—1.008), lag 2 (MR = 1.005, 95% CI: 1.004—
1.005), and lag 3 (MR = 1.006, 95% CI: 1.005-1.006).

For impact of PM2 5 on LOS by race-ethnicity, the association remained statistically
significant for most groups, though the magnitude and temporal pattern of effects varied across
populations (Figure 22). Overall, the findings suggest that short-term exposure to fine particulate
pollution can consistently prolong hospital recovery duration, with stronger effects observed
among some racial and ethnic groups. For individuals classified as White, PM2 s exposure was
consistently and significantly associated with longer hospital stays across all lag periods. The
strongest association was observed at lag 0 (MR = 1.035, 95% CI: 1.031-1.039), indicating a
3.5% increase in LOS per IQR increase in PMz s. The effect slightly declined across lag 1-3 (MR
range: 1.022—1.027) but remained statistically significant, suggesting a persistent short-term
impact on hospitalization duration. Among Hispanic patients, PM2 5 also demonstrated
significant positive associations with LOS, with a clear increasing trend over time. The estimated
effects rose from 1.016 (95% CI: 1.008—1.024) at lag 0 to 1.089 (95% CI: 1.081-1.097) at lag 3,
indicating that prolonged exposure or delayed physiological responses may compound the effects
of PM2 5 in this population. This pronounced gradient highlights potential heightened
vulnerability or delayed recovery among Hispanic patients. For Asian individuals, the
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associations were smaller: the effect at lag 0 (MR =1.018, 95% CI: 1.009—-1.028) indicated a
modest increase in LOS and the results at later lags were near or slightly below unity. In contrast,
Black patients showed a distinct temporal pattern. At lags 0—1, the estimated MRs of expected
LOS were slightly below 1 (e.g., lag 0 = 0.985, 95% CI: 0.976-0.994), indicating a modest
reduction in expected length of stay immediately following exposure. In contrast, at lags 2—3, the
associations became positive and statistically significant (e.g., lag 3 =1.011, 95% CI: 1.003—
1.020), corresponding to an increase in expected LOS. This may indicate a delayed manifestation
of PM s-related morbidity or differential care dynamics. Finally, among those categorized as
Other, the association between PM» s and LOS was both highly consistent and statistically
significant across all lags, with nearly identical estimates around 1.010 (95% CI range: 1.009—
1.011) from lag 0 to lag 3. This stability underscores a persistent, low-level increase in LOS
attributable to particulate exposure across short-term windows.

Taken together, these findings confirm that short-term PM2 s exposure is significantly
associated with extended hospital stays across all race-ethnicity groups, though the timing and
magnitude of the effects vary, potentially reflecting differential exposure patterns, underlying
health vulnerabilities, or access to care.

Overall NO2 Effects with Environmental Controls (2010-2019)
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Figure 19. The overall impact of NO; exposure on hospital length of stay.
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Overall PM2.5 Effects with Environmental Controls (2010-2019)
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Figure 22. The overall impact of PMz 5 exposure on hospital length of stay stratified by race-
ethnicity.

Like ED visits, we also conducted inpatient analyses for individual years (2010-2019 for 10
years) across multiple stratification strategies, including health insurance pay type, region,
primary language spoken, race-ethnicity, sex, and age group. Across all stratified analyses, the
results consistently demonstrated a positive association between air pollution exposure, both NO-
and PM: s, and adverse hospital outcomes, including increased admissions and longer length of
stay. Detailed results of these stratified analyses are presented in Supplementary File 2.

Modelling diabetes mellitus ED visits and hospitalizations from O3 exposure using HCAI data

For T2D-related ED visits, O3 exposure demonstrated small and generally inconsistent
associations across lag periods and matching strategies event after controlling for impact from
NO2, PM2 5 and socioeconomic status (Figure 23). At lag 0, the estimated odds ratios ranged
narrowly from 0.994 to 1.002 across different control strategies, with most 95% confidence
intervals overlapping unity, indicating little to no immediate effect. Similar patterns persisted
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through lag 1 to lag 3, with estimates fluctuating around the null (e.g., lag 1 range: 0.993-1.002;
lag 3 range: 0.995-1.000). A slight downward trend was observed under higher control ratios
(3:1 and 4:1 matching), where ORs dipped modestly below 1.0, suggesting a potential inverse or
null effect at those settings. Overall, the findings suggest that short-term variations in ambient O3
were not consistently associated with increased ED utilization among individuals with T2D. This
contrasts with the clearer and stronger associations seen for NO> and PM; 5, indicating that O3’s
impact on acute diabetic morbidity may be weaker, context-dependent, or confounded by co-
pollutant interactions. The lack of a monotonic or lag-dependent pattern supports the
interpretation that O3 effects on acute healthcare utilization may be modest and transient in this
population.

The estimated effects of Oz on T2D-related hospital admissions were generally small and
mixed across lags and control strategies (Figure 24). Effect estimates ranged approximately from
1.003 to 1.008, with most 95% confidence intervals spanning the null value. Significant
associations were observed mainly under the more stringent control strategy (4-to-1 matching),
where ORs reached 1.007 (95% CI: 1.001-1.013) at lag 1, 1.007 (95% CI: 1.001-1.013) at lag 2,
and 1.008 (95% CI: 1.002-1.014) at lag 3, suggesting a modest but persistent positive
relationship. In contrast, associations under less restrictive control strategies (1-to-1 or 2-to-1
matching) tended to be weaker and nonsignificant, reflecting greater heterogeneity and potential
confounding. The modest increase in effect magnitude from lag 0 through lag 3 implies that O3
may exert slightly delayed effects relative to other pollutants, consistent with prior studies
reporting subacute respiratory or inflammatory responses that manifest over several days.
Compared with NO; and PM: s, the overall O3 effects were smaller and less consistent, likely due
to the complex spatiotemporal behavior of Os, its inverse correlation with traffic-related
pollutants in urban cores, and differences in exposure misclassification across seasons.
Nonetheless, the presence of significant associations at multiple lags under the stricter analytic
design indicates that O3 exposure may contribute incrementally to acute diabetes-related
hospitalizations, albeit to a lesser extent than NO, and PM; 5.

For hospital LOS, O3 exposure showed a mixed temporal pattern with both positive and
negative associations across lag days (Figure 25). At lag 0, O3 was associated with a modest but
statistically significant increase in LOS (MR = 1.018, 95% CI: 1.017-1.019), suggesting that
same-day exposure may exacerbate disease severity or delay recovery among hospitalized T2D
patients. However, this effect reversed at lag 1 (MR = 0.991, 95% CI: 0.990-0.992) and
remained below unity at lag 2 (MR = 0.996, 95% CI: 0.995-0.996), indicating possible
compensatory recovery or adaptive physiological responses following exposure. By lag 3, the
association attenuated toward the null (MR = 0.999, 95% CI: 0.999-1.000). This oscillating
pattern likely reflects the transient and complex biological response to O3 exposure, where acute
oxidative stress may initially worsen glycemic or inflammatory conditions, followed by short-
term resolution or hospital treatment effects that mitigate impact on LOS. Similar bidirectional
effects have been reported in previous studies, suggesting that O3’s influence on clinical
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outcomes may depend on exposure timing, co-pollutant interactions, and individual

susceptibility.

Overall O3 Effects with Environmental Controls (2010-2019)
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Figure 23. The impact of O3 exposure on ED visits after adjusting for NO», PM 5 and

socioeconomic status impacts.
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Figure 24. The impact of O3 exposure on hospital admissions after adjusting for NO2, PMz 5 and
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Figure 25. The impact of O3 exposure on hospital LOS after adjusting for NO2, PM2 s and
socioeconomic status impacts.

Modelling diabetes mortality from NO2 and PM2.5 exposure using CDPH Vital Records data

Mortality analyses using CDPH data from 2014-2021 revealed statistically significant
positive associations between exposure to ambient air pollutants and the odds of all-cause
mortality among California residents with T2D. For NO», a 5.05 ppb IQR increase was
associated with 0.6% higher odds of death (OR = 1.006; 95% CI: 1.000—1.013). Although the
lower confidence bound approached unity, the consistent positive association suggests that
exposure to NO2, an indicator of traffic-related pollution, contributes to increased mortality risk.
In comparison, PMa s showed a markedly stronger relationship: each 2.86 pg m™ IQR increase in
PM; 5 exposure corresponded to 7.5% higher odds of death (OR = 1.075; 95% CI: 1.069-1.081).
The larger magnitude and precision of the PM: s effect highlights its dominant contribution to
mortality, consistent with extensive epidemiologic evidence linking fine particulates to
cardiovascular, respiratory, and metabolic dysfunction. Overall, both pollutants were associated
with elevated mortality odds, but PM; 5 exerted a substantially greater and more robust effect,
emphasizing the need for continued air quality improvements targeting fine particulate sources to
mitigate long-term health risks across California’s population.
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Task 6. Estimate economic benefits from reducing air pollution exposures on metabolic
health outcomes

Based on the results of the preceding set of models for the pollutants NO2, PM> s, and O3, this
section uses standardized medical expenditure and value of statistical life (VSL) data to
determine the economic benefits of reducing T2D by reducing the pollutants NO>, PM» 5, and O3
by an interquartile. We present avoidable medical expenditures as well as the value of the overall
avoidable loss of life.

Methodology

Constructing state-level economic burden requires integrating exposure—response functions
(ERF) with cost-of-illness data. Using ERFs) presented in this report (each are indicated below
when they are used), we determine potential impact fractions (PIF) from single pollutants to
determine the incremental medical expenditures for T2D versus non-diabetic controls. Costs are
adjusted to 2024 constant U.S. dollars to remove the effects of inflation.

Potential impact fractions (PIFs) are the proportion of cases that are likely to be prevented if
the exposure to the pollutant in question were eliminated by a particular proportion, assuming the
observed association is unbiased.'?® To do this, we assume the odds-ratios estimated for logistic
case-control and conditional logistic case-control models are unbiased (e.g., each logistic or
conditional logistic model is sufficiently adjusted) and that the outcome is sufficiently rare (e.g.,
= 10%) such that the relevant odds-ratio does not significantly overstate the risk-ratio such that
RR;or = ORgRr, Wwhere OR)p is the odds-ratio and RR,p is the risk-ratio for an interquartile
change in a given pollutant.'>13! The formula to calculate this can be derived from the equation
of a distribution shift PIF where the distribution shift is uniform (e.g., interquartile), assuming
RRigr = ORjpp:"*®

PIF =1 -

ORIQR

where OR) g is the odds-ratio for an interquartile change in a given pollutant as estimated from

equations in the previous sections above. See Supplementary File 5 for the equation derivation.
To determine economic benefits, we then multiply the relevant PIF by the relevant medical
expenditure or value of a statistical life.!*>!*® This can be expressed as

AME = PIF x ME

where AME is avoidable medical expenditure, and MEis mean medical expenditure in California.
We compute standard errors for AME based on the principles of the delta method as shown in
Supplementary File 6.
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Data
Medical Expenditures

Medical expenditure estimates data are based on recently released expenditure data for the
years 2010-2019.''7 All data are available from the Institute for Health Metrics and
Evaluation,'*! and the code used to develop the estimates is available via GitHub
(https://github.com/ihmeuw/Resource Tracking US DEX/tree/main/DEX Capstone 2025). To
compile this dataset, multiple administrative data sources were used that together reflect
approximately 40 billion insurance claims and approximately 1 billion facility records across
Medicare (including Medicare Advantage), Medicaid, private insurance, and out-of-pocket
payments.'!” Data were drawn from seven major medical claims sources including MarketScan,
Kythera, the Health Care Cost Institute, the Agency for Healthcare Research and Quality’s
Healthcare Cost and Utilization Project, and the Medical Expenditure Panel Survey.

Expenditure data were classified by patient age, sex, type of care, payer, and county of
residence. Type of care was classified as ambulatory, emergency department, home health,
inpatient, nursing facilities, and medications. Payers were classified as Medicare, Medicaid,
private, and out-of-pocket. Diagnoses were mapped to 148 standardized health conditions using
ICD-9/10 codes and National Drug Codes, following the Global Burden of Disease 2019
framework including T2D.!*° Statistical adjustments were applied to correct for incomplete data
(e.g., facilities reporting only charges) and to reallocate spending to comorbidities using
penalized linear regression models.

We only used California-specific age-standardized expenditures for our analysis, adjusted to
2024 constant US dollars. The ERFs used in this analysis come from equations that each
produced a single OR, g per equation, so we use average annual medical expenditures in our
analysis to determine the average annual potential medical expenditure savings due to reductions
in each pollutant. We also present spending per capita, encounters per capita, and spending per
encounter. The relevant estimates used are presented in Tables 18-21.
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Table 18. Total Spending Summary Statistics for State-Level Medical Expenditure Data ($2024)

Emergency Department

Prescribed

All Spending ($billion) ($million) Inpatient ($billion) Pharmaceuticals ($billion)

Year Mean  95% CI Mean 95% CI Mean 95% CI Mean 95% CI

2010 17 16 17 236 223 236 1.4 1.2 1.5 4.1 3.8 42
2011 19 17 19 248 223 273 1.5 1.4 1.7 4.1 3.8 4.3
2012 19 17 20 260 236 285 1.5 1.4 1.7 4.1 4.0 4.3
2013 19 17 20 273 248 298 1.5 1.4 1.7 4.2 4.0 4.5
2014 20 19 20 273 248 298 1.5 1.4 1.6 4.7 4.6 5.0
2015 21 20 21 298 285 310 1.7 1.6 1.7 5.0 4.8 5.2
2016 21 21 22 310 298 322 1.7 1.6 1.9 5.0 4.8 5.2
2017 21 20 22 310 298 347 1.7 1.5 2.0 5.0 4.6 5.1
2018 21 20 22 322 285 347 1.9 1.6 2.1 5.0 4.7 5.2
2019 21 21 22 360 335 372 2.0 2.0 2.1 5.1 5.0 5.3

Table 19. Spending Per Capita Summary Statistics for State-Level Medical Expenditure Data ($2024)

Emergency Prescribed

All Spending ($) Department ($) Inpatient ($) Pharmaceuticals ($)
Year Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
2010 581.32 55795 60491 780 7.46 8.08 4587 4242 49.79 136.69 129.85 143.65
2011 60398 571.78 636.67 830 7.58 8.89 5047 4552 56.59 13542 127.14 143.65
2012  600.16 569.32 63822 848 7.82 9.50 49.87 43.88 55.89 13522 129.07 142.40
2013 603.02 57540 63820 870 8.00 9.63 4941 4502 56.10 137.85 130.36 145.86
2014 63040 613.35 64526 874 8.06 9.55 48.82 4552 5294 15330 146.61 161.26
2015 667.37 649.60 682.15 9.42 9.01 993 5435 51.60 57.18 159.60 153.16 165.66
2016 680.95 664.09 69557 988 9.46 1043 54.67 5192 57.51 15848 152.52 164.26
2017 64827 61440 694.02 996 930 10.79 53.68 46.19 6222 15442 145.84 160.43
2018 648.84 608.52 70532 991 898 1080 57.04 49.13 67.44 15546 147.15 164.66
2019 67141 650.28 69145 11.01 10.50 11.61 6247 59.81 65.00 160.43 152.82 164.96
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Table 20. Encounters Per 1,000 Population Summary Statistics for State-Level Medical Expenditure Data

Emergency Department Inpatient Prescribed Pharmaceuticals

Year Mean 95% CI Mean 95% CI Mean 95% CI

2010 6.80 6.07 7.63 2.15 1.99 2.38 821.43 768.54 872.06
2011 6.48 5.06 8.26 2.19 1.90 2.63 817.38 732.18 914.77
2012 6.28 4.99 7.99 2.11 1.83 2.61 785.44 695.82 891.73
2013 6.02 4.90 7.69 2.05 1.76 2.39 758.78 673.19 840.66
2014 593 5.43 6.40 1.93 1.81 2.11 792.14 729.85 864.79
2015 6.83 6.46 7.20 2.17 2.11 2.26 819.90 776.12 869.80
2016 7.09 6.72 7.48 2.14 2.09 223 824.83 783.30 876.67
2017 7.02 5.64 8.76 2.04 1.76 2.46 742.30 642.47 869.41
2018 6.63 5.00 8.43 2.09 1.81 2.45 691.36 602.22 792.48
2019 7.28 6.73 7.65 2.19 2.07 2.29 675.07 635.76 703.76

Table 21. Spending Per Encounter Summary Statistics for State-Level Medical Expenditure Data (52024)

Emergency Department ($) Inpatient ($) Prescribed Pharmaceuticals ($)

Year Mean 95% CI Mean 95% CI Mean 95% CI

2010  770.60 664.27 85770  18438.30 17313.38  19423.86 173.45 165.42 185.02
2011 894.67 69038 1139.96 20110.94 17692.69 22270.77 173.41  163.05 183.40
2012 980.82 68221 1286.62 20584.50 17074.92 23109.88 180.37  168.48 190.96
2013  1056.95 822.03 1367.37 21001.26 18492.12 23498.99 190.18  178.19 199.79
2014 1066.51 953.73 1193.76 21808.38 20681.71 23596.21 204.34  195.15 218.93
2015 988.65 91694 1061.23 21113.23 19874.10 22491.00 212.51  199.37 226.60
2016 1006.27 933.41 1078.69 2152442 20283.80 22955.00 213.01  199.70 227.53
2017 1100.34 849.60  1457.97 22848.74 20243.12 2577551 22629  212.85 240.99
2018 1133.51 883.55 1599.04 23621.26 21483.00 25983.33 22841 215.86 248.94
2019 1055.15 988.19 1156.83 24259.11 22843.28 25612.94 234.06  221.35 245.98

Value of a Statistical Life

We use a standard Value of a Statistical Life (VSL), adjusted to 2024 constant US dollars,
from CARB.(https://ww?2.arb.ca.gov/sites/default/files/2021-
10/SCAQMD%20Mortality%20Risk%20Reduction%20Valuation.pdf). This value is $14.5

million.
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Mortality due to T2D

We used CDC Wonder to determine the average number of deaths in California due to T2D
from 2010 to 2019 (https://wonder.cdc.gov/ucd-icd10.html). We included ICD-10 Diagnosis
Codes E11-E14, excluding E10 (code for insulin-dependent diabetes). The age-adjusted average
rate for California across 2010-2019 was 20.07 per 100,000 per year.

Results

Table 22 presents the results of changes in incidence of T2D based on the previously
presented models based on data from the California Health Interview Survey (CHIS). These
analyses examine overall incidence since the estimated ORiqr does not differentiate by insurance
type. To determine the medical expenditure impact, total costs for all categories of care
(ambulatory, emergency department, home health, inpatient, nursing facilities, and medications)
related to T2D were aggregated and used to determine the average annual medical expenditures
for T2D attributed to each pollutant. Overall data can be expressed as total spending, spending
per capita, encounters per capita, and spending per encounter.

Table. 22. Avoidable Medical Spending/Use from Reduced Pollution, by Pollutant

Pollutant PIF Estimated Savings from Interquartile Reduction of Pollutant (20245)
Total Spending ($millions) Spending Per Capita ($)
(95% CI) (95% CI)
NO,  0.012 $245.29 (150.75, 339.82) $7.83 (4.81, 10.85)
PM,s 0.072 $1421.11 (1186.94, 1655.28) $45.38 (37.90, 52.86)
Os 0.060 $1193 (737.88, 1650.01) $38.13 (23.56, 52.69)

Note: OR,qp estimates used here (NO2 1.0125, 95% CI:1.0073, 1.0170; PM»5 1.0771, 95% CI: 1.0640, 1.0904; O;
1.064, 95% CI: 1.090, 1.039) come from the highest reported OR, g for each pollutant listed in the CHIS Incidence
Criteria Pollutants section of Supplementary File 4.

The next set of results, Table 23-Table25, present impacts of pollutants on various subsets of
medical expenditures, including medication, emergency department use, and inpatient care.
These are used since we have separately modeled estimates for these subcategories of medical
care utilization. Medication models were based on CHIS data, and emergency department and
inpatient use models were based on data from HCAL.
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Table. 23. Avoidable Emergency Department Spending/Use from Reduced Pollution, by Pollutant

Pollutant PIF Estimated Savings from Interquartile Reduction of Pollutant (2024$)
Total Spending Spending Per Encounters Per Spending Per
($millions) Capita ($) Capita Encounter ($)
(95% CI) (95% CI) (95% CI) (95% CI)

NO» 0.007  $2.07(1.17.2.97) $0.07 (0.04,0.09)  0.05(0.03,0.07)  $7.22(3.84, 10.59)

PMy s 0.006  $1.83(1.08,2.58) $0.06 (0.03,0.08)  0.04 (0.03, 0.06) $6.37 (3.53,9.22)

0s 0.002  $0.70 (-1.21,2.61) $0.02(-0.04,0.08) 0.02 (-0.03,0.06)  $2.44 (-4.21, 9.10)

Note: OR grestimates used here (NO2 1.0072, 95% CI:1.0041, 1.0103; PMz5 1.0063, 95% CI: 1.0037, 1.0089; Os
1.0024, 95% CI: 0.9958, 1.0090) come from the highest reported OR g for each pollutant listed in the HCAI ED
Overall section of Supplementary File 4.

Table. 24. Avoidable Inpatient Spending/Use from Reduced Pollution, by Pollutant

Pollutant PIF Estimated Savings from Interquartile Reduction of Pollutant (2024$)
Total Spending Spending Per Capita  Encounters Per Spending Per
($millions) $) Capita Encounter ($)
(95% CI) (95% CI) (95% CI) (95% CI)
NO, 0.052  $86.11 (69.24, 102.98)  $2.77 (2.23,3.31) 0.11(0.08,0.13)  $1132 (913, 1352)
PM, 5 0.042  $69.46 (54.87,84.05)  $2.23 (1.77,2.70) 0.08 (0.07,0.10)  $914 (724, 1104)
0; 0.008 $12.81 (3.46,22.16)  $0.41 (011, 0.71) 0.02 (0.004, 0.03) $169 (46, 291)

Note: OR,qp estimates used here (NO2 1.0555, 95% CI:1.0455, 1.0656; PM25 1.0443, 95% CI: 1.0356, 1.0530; O5
1.0078, 95% CI: 1.0021, 1.0136) come from the highest reported OR ;R for each pollutant listed in the HCAI IP
Overall section of Supplementary File 4.

Table. 25. Avoidable Medication Spending/Use from Reduced Pollution, by Pollutant

Pollutant ~ PIF Estimated Savings from Interquartile Reduction of Pollutant (2024%)
Total Spending Spending Per Encounters Per Spending Per
($millions) Capita (%) Capita Encounter ($)
(95% CI) (95% CI) (95% CI) (95% CI)

NO, 0.003 $85.04 (61.67, 108.40)  $2.74 (1.99, 3.50) 14.25 (10.16, 18.34)  $3.75(2.71, 4.80)

PMa.s  0.005 $315.15(270.99, 359.32) $10.16 (7.35, 12.96) 52.81 (44.23, 61.40) $13.91 (11.88, 15.94)

0; 0.034  $15.82(12.46,19.19)  $5.10(2.97,7.23)  26.51 (20.46,32.56)  $6.98 (5.47, 8.50)
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Note: OR,qp estimates used here (NO2 1.0187, 95% CI:1.0136, 1.0239; PM» 5 1.0733, 95% CI: 1.0629, 1.0838; O;
1.0355, 95% CI: 1.0279, 1.0431) come from the highest reported OR,qp for each pollutant listed in the CHIS
Medication Criteria Pollutant section of Supplementary File 4.

Finally, Table 26 presents the average annual VSL of avoidable deaths per due to T2D.

Table 26. Average Annual Value of Statistical Lives (VSL) Lost Due to T2D, due to an
Interquartile Change in Pollution, by Pollutant

Avoidable Lost VSL per 100,000 population from Reducing

Pollutant . -
Pollutant by an Interquartile ($millions)

NO; $1.782 (-0.136, 3.699)

PM; s $20.839 (19.289, 22.390)

Note: OR;qp estimates used here (NO2 1.006, 95% CI1:1.000, 1.013; PM,5 1.075, 95% CI: 1.069, 1.081) come from
the section above Modeling diabetes mortality from NO: and PM; 5 exposure using CDPH Vital Records data.

Limitations

Note that the pollution levels in each interquartile are not consistent across time but rather
reflect relative movements within each distribution of pollutant levels, where the distribution is
changing over time. Thus, an interquartile movement within a narrower distribution of pollutant
levels is less than an interquartile movement within a wider distribution of pollutant levels. The
results are thus analyzing the average interquartile movement across the entire period, not
specific levels of pollutants across the entire period. The models also model one pollutant at a
time and assume no confounding from omitting other pollutants within each model.

Regarding other cost information, including the cost of caregiving, productivity losses (e.g.,
loss of employment, works days lost due to illness or medical treatment, etc.), and changes in
subjective health status due to T2D, estimates of the impact of pollutants on each of these, via
changes in the incidence of T2D, would be needed, but were not available.

No information could be provided on a per beneficiary basis. Beneficiaries are defined based
on common insurance type and no equations were estimated by insurance type.

Regarding the assumption of unbiasedness that underlies the calculation of PIFs, a PIF is a
counterfactual quantity (the proportion of cases that would be prevented under a specified
intervention on exposure) so its identification requires strong assumptions beyond statistical
significance, including consistency, positivity, and exchangeability/no unmeasured confounding
in the underlying population. In a matched case—control framework estimated via conditional
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logistic regression (CLR), the exposure coefficient is identified from within—matched-set
contrasts; matching does not itself eliminate confounding and can induce selection/collider bias,
which is why conditioning on the matched structure and adjusting for measured confounders is
necessary.'*"1* While we adjust for a broad set of observed individual and contextual
covariates, residual confounding by unmeasured or mismeasured time-varying factors (e.g.,
comorbidities, health-care utilization shocks, co-exposures) may remain and could bias both the
odds ratios and the implied PIFs. Moreover, CLR estimates a conditional odds ratio, whereas PIF
is fundamentally risk-based and population-level. Since odds ratios are non-collapsible and
effects may be heterogeneous across strata, conditional and marginal effects can differ even
without confounding, so PIFs can be sensitive to how conditional estimates are
mapped/standardized to the target population.'*'*7 Finally, PIF magnitudes can be affected by
model specification (functional form and interactions), exposure definitions, and finite-
sample/sparse-data bias in logistic-type estimators,'*®!*° and PIF calculations from case—control
data are sensitive to these assumptions.'**!>3 Nevertheless, our statistical approach has sought to
minimize these sources of bias.

Discussion

In this project, diabetes-related health outcome modeling was implemented through a staged
and prioritized analytic framework. We first focused on establishing robust concentration-
response relationships for single-pollutant exposures across five metabolic health endpoints,
including diabetes incidence, medication use, diabetes-related emergency department visits,
hospitalizations, length of stay, and mortality. These analyses were conducted not only for the
full study period but also through year-specific models to characterize temporal heterogeneity.
The scope and depth of these analyses, especially the combination of individual-level data,
lagged exposure structures, and extensive stratification, required substantially greater effort than
originally anticipated and ultimately exceeded the analytical capacity supported by the awarded
budget. Using the CHIS, HCAI, and CDPH data collectively allowed a comprehensive
assessment of both annual long-term and daily acute effects, capturing distinct but
complementary health outcomes.

Exposure modeling in this project provides the critical exposure foundation that underpins all
subsequent epidemiologic and policy-relevant analyses in this project. Task 2 developed high-
resolution daily air pollution surfaces for criteria pollutants using an integrated machine
learning—enhanced land use regression framework that combined regulatory monitoring, mobile
Google Street View observations, and a rich set of spatial-temporal predictors. These models
demonstrated strong explanatory performance and enabled assignment of daily exposures at fine
spatial scales across California. The resulting exposure surfaces substantially reduced exposure
misclassification relative to reliance on fixed-site monitoring alone and allowed for robust
linkage with individual-level health records in Task 5, particularly for short-term outcomes such
as emergency department visits, hospitalizations, and length of stay.
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The relatively lower adjusted R> for the PM» s model (0.65) still corresponds to a strong
overall correlation (exceeding 0.80) between predicted and observed concentrations, indicating
strong model performance. Compared with NO», PM; 5 is influenced by a broader set of sources
and processes, including regional transport, secondary formation, and episodic events such as
wildfires, which are less tightly coupled to local land-use and traffic predictors typically used in
LUR frameworks. Although additional regional or synoptic-scale predictors could further
increase explanatory power, our primary objective was to characterize small-area spatial
variability rather than maximize total variance explained. Accordingly, the model prioritizes
local-scale predictors that are most relevant for exposure assignment in epidemiologic analyses.

In our exposure modeling, the large numerical magnitude of the season coefficients reflects
the scale and coding of the seasonal indicator variables rather than an outsized physical effect.
Season was modeled as a binary indicator (0/1), so its contribution to predicted concentrations is
either zero or approximately the coefficient value (=356—-360). In contrast, continuous predictors
such as temperature have much smaller coefficients but operate over a substantially larger range
(e.g., >300 Kelvin), yielding comparable or larger contributions to the linear predictor when
multiplied by their observed values. Seasonal indicators in LUR models implicitly capture
multiple unmeasured or partially measured processes that vary systematically over the year,
including seasonal emission patterns (e.g., heating-related combustion, traffic activity),
atmospheric chemistry, boundary-layer dynamics, and photochemical conditions that are not
fully represented by individual meteorological variables. We explicitly evaluated
multicollinearity during the D/S/A modeling process and retained seasonal terms only when they
remained statistically significant and improved predictive performance after accounting for
meteorology and other predictors. The D/S/A model controlled for collinearity, suggesting that
the seasonal terms capture residual temporal structure rather than inflating coefficients through
redundancy.

We extended this exposure modeling framework from criteria pollutants to air toxics,
addressing a major gap in statewide exposure assessment. By applying D/S/A LUR techniques
and developing annual concentration surfaces for multiple hazardous air pollutants, this task
characterized long-term spatial variability in air toxics exposures across California communities.
Although the annual temporal resolution limited the application of air toxics exposures to acute
outcomes, these models were essential for evaluating long-term metabolic outcomes using
survey-based data, including diabetes incidence and medication use. Together, Tasks 2 and 3
demonstrate the feasibility and value of integrating advanced exposure modeling techniques to
capture both short-term and long-term pollutant variability relevant to different health endpoints.

Findings from the CHIS data showed significant positive associations between annual
exposure to NO2, PM» s and O3 and T2D incidence, indicating that exposure to these pollutants
may contribute to diabetes onset. These associations were strongest in later diagnosis periods
(2005-2015), corresponding with years of improved monitoring resolution and more consistent
exposure patterns across California. In addition, long-term changes in atmospheric chemistry and
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climate-related factors, such as rising temperatures, increased photochemical activity, and more
frequent stagnation events, may have contributed to higher or more biologically relevant O3
exposures, thereby amplifying detectable health effects in more recent periods. The results on
medication use revealed a consistent pattern of higher odds of diabetes medication use with
increasing NOz, PM: s and Os levels, suggesting that exposure may worsen disease control or
severity among diagnosed individuals. The magnitude of associations was greatest for PM s,
followed by Os, with NO2 showing smaller but steady effects. This gradient mirrors the
differential toxicity of these pollutants and aligns with evidence from other large-scale studies
linking fine particulates to systemic inflammation, insulin resistance, and disease

progression.!' 12

Results from the HCAI data further reinforce the acute impacts of air pollution on diabetes-
related health care utilization. Both NO, and PM; 5 exposures were significantly associated with
elevated risks of T2D-related ED visits and hospital admissions. Among those hospitalized,
exposure to these pollutants also correlated with longer LOS, reflecting higher clinical severity
and potentially slower recovery. The acute effects appeared transient, with effect estimates
generally declining modestly from lag 0 to lag 3 days. This attenuation pattern suggests short-
term, reversible physiological responses, such as systemic oxidative stress and inflammatory
pathways, that may peak quickly after exposure. While some studies have reported stronger
effects over 3 days of lagged effect,'?!>*15° our findings indicate that the largest effects occurred
at lag 0, consistent with some research finding that pollutant exposure triggers near-immediate
impacts on disease exacerbation or acute decompensation.’®!3%!57 This pattern suggests that
short-term air pollution exposure may induce transient, reversible physiological disturbances
rather than sustained systemic damage. Acute elevations in NO> and PM> 5 can trigger rapid-
onset oxidative stress and pro-inflammatory responses, leading to endothelial dysfunction,
altered glucose metabolism, and sympathetic activation within hours of exposure. These
biological perturbations can exacerbate existing metabolic instability among individuals with
diabetes, increasing the likelihood of emergency department visits or hospital admissions. The
observed peak effect at lag 0 indicates that the body’s response to pollution may occur almost
immediately, consistent with experimental and epidemiologic studies showing that exposure to
combustion-related pollutants quickly elevates circulating inflammatory markers (e.g., C-
reactive protein, interleukin-6) and impairs insulin sensitivity.!>® Nonetheless, the gradual
attenuation across days supports a sustained, though diminishing, influence over short time
windows.

Further, across all stratified analyses, clear racial, ethnic, and linguistic disparities emerged in
vulnerability to air pollution-related diabetes outcomes. Individuals classified in the “Other”
race-ethnicity group consistently exhibited the highest susceptibility to NO2, particularly for
acute outcomes such as diabetes-related emergency department visits and hospitalizations, while
Hispanic populations showed the strongest vulnerability to PM; s, especially in regions with
higher particulate burdens such as Southern California and the Central Valley. Stratification by
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primary language further reinforced these inequities: individuals in the “Other-language” group
experienced the largest and most rapidly increasing risks for both NO; and PM2 s over time,
followed by Spanish speakers, whereas English speakers consistently showed the lowest effects.
In contrast, non-Hispanic White populations demonstrated the lowest pollution-related risks
across pollutants and endpoints. Together, these findings indicate that racially diverse, Hispanic,
and linguistically isolated communities experience a disproportionate burden of air pollution—
related diabetes risk, reflecting the combined influence of higher exposure levels, structural
disadvantage, occupational risk, and reduced access to preventive and ongoing healthcare.

Analyses using CDPH mortality data revealed that both NO, and PM s were significantly
associated with increased odds of T2D-related deaths, reinforcing the health burden of chronic
air pollution exposure. PM2 s again showed the strongest effect estimates, consistent with its fine
particulate nature and greater ability to penetrate deep into the lungs and systemic circulation.
These findings are in line with numerous epidemiologic studies demonstrating robust
associations between particulate matter and all-cause or cause-specific mortality, including those

related to metabolic and cardiovascular complications.!3* 162

Across all analyses involving acute effects, O3 showed more complex and mixed effects.
While some analyses showed modestly positive associations, others, displayed weaker or even
negative effects.?> 2 Such inconsistencies are not uncommon in the literature and may be
attributed to the spatial and temporal heterogeneity of O3 formation, its inverse relationship with
NO: in urban areas (due to titration by traffic emissions), and differential seasonal exposure
patterns. Some prior studies have similarly reported null or inverse O3 effects for metabolic
outcomes, ®+1%* whereas others observed positive associations, especially in regions with higher
photochemical activity. The mixed findings in our study thus likely reflect both the complex
chemistry of O3 and the interplay of co-pollutant exposures.

Taken together, these results highlight a coherent message across datasets: long-term
exposure to NO> and PM» 5 elevates the risk of developing T2D, increases the likelihood of
disease progression requiring medical treatment and mortality, while acute exposures exacerbate
complications leading to higher ED visits, hospital admissions, and prolonged LOS. The
consistency of these associations across data sources, lag structures, and population subgroups
underscores the robustness of the observed relationships.

This project also translated the exposure-response relationships identified in Task 5 into
policy-relevant economic metrics, reinforcing the public health significance of the observed
associations. By combining modeled concentration-response relationships with population
exposure distributions, medical expenditure data, and established valuation approaches, this task
provides a framework for estimating the economic benefits of reducing air pollution-related
metabolic health burdens. Importantly, the economic analyses complement the epidemiologic
findings by contextualizing health risks in terms directly relevant to regulatory decision-making,
resource allocation, and cost-benefit considerations. These estimates underscore the substantial
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societal value of reducing individual pollutant exposures that are consistently associated with
diabetes-related morbidity and mortality.

The robustness of our findings is supported by the exceptionally large, statewide datasets
used in this study, encompassing millions of records across multiple independent health data
sources. With sample sizes of this magnitude, alternative reasonable model specifications (e.g.,
different covariate sets, link functions, or lag structures) are expected to yield highly consistent
results, as statistical uncertainty is substantially reduced and estimates are driven by stable
population-level signals rather than sampling variability. In contrast, sensitivity of results to
modeling choices reported in prior studies is largely attributable to smaller sample sizes, limited
spatial coverage, or restricted temporal windows. Our analyses further demonstrate robustness
through consistency across multiple health endpoints, pollutants, lag structures, and independent
datasets, providing strong internal validation. This pattern aligns with the broader environmental
epidemiology literature, which shows that when large population-based datasets and high-
resolution exposure models are used, effect estimates are generally stable across alternative
specifications, with differences primarily observed in studies with limited statistical power or
localized samples.

From a policy and public health perspective, these findings emphasize the importance of
continued air quality improvement efforts, especially targeting reductions in fine particulate and
traffic-related pollutants. The disproportionate burden observed among minority and
socioeconomically disadvantaged populations further highlights the need for equitable
environmental health protections. Given the persistence of T2D as a major public health
challenge, even modest pollutant-related increases in risk translate into substantial population-
level impacts.

Simultaneous multi-pollutant health models were not implemented in this study because the
primary objective was to quantify pollutant-specific concentration—response relationships rather
than cumulative effects. The large majority of epidemiologic studies evaluating air pollution and
metabolic health outcomes rely on single-pollutant models, which remain the standard approach
for estimating interpretable and policy-relevant effect sizes for individual pollutants. Multi-
pollutant models, particularly those involving both criteria pollutants and air toxics, require
specialized study designs to address collinearity, differential exposure error, and challenges in
causal interpretation, and are more appropriately suited for cumulative impact exposure
assessments. Because cumulative exposure assessment was not a stated objective of this project,
and given the substantial additional methodological and computational demands required for
valid multi-pollutant modeling, we focused on single-pollutant analyses in this work.

Despite the strengths of this study, including statewide coverage, large sample sizes, and
high-resolution exposure modeling, several limitations warrant consideration. First, exposure
assignment for diabetes-related emergency department visits and hospitalizations relied on ZIP
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code—level aggregation using population-weighted block group estimates. Although this
approach captures small-area spatial variability, it may still misclassify individual-level
exposures by not accounting for daily mobility, time—activity patterns, or indoor exposures. Such
misclassification is expected to be largely nondifferential and would likely bias effect estimates
toward the null.

Second, the observational design of this study precludes definitive causal inference. Although
the case-crossover framework controls for time-invariant individual characteristics and lag-based
analyses support temporally plausible exposure—response relationships, causal interpretation
remains subject to the assumptions inherent in observational epidemiology.

Third, air toxics exposures were modeled at an annual temporal resolution and therefore
could not be applied to short-term health outcomes such as emergency department visits,
hospitalizations, or mortality analyzed using daily exposure windows. As a result, air toxics
analyses were restricted to annual survey-based outcomes (diabetes incidence and medication
use), limiting direct comparability with short-term criteria pollutant analyses.

Fourth, single-pollutant models were used for health analyses. While this approach is
consistent with the majority of the air pollution epidemiology literature and facilitates
interpretability, it does not explicitly quantify joint or cumulative effects of simultaneous multi-
pollutant exposures. Multi-pollutant modeling requires specialized study designs and additional
assumptions and was beyond the scope and resources of the current project. Future work will
build on these results to address cumulative exposure and mixture effects.

Further, the ‘Other’ category in our analysis aggregated race-ethnicity groups not classified
as Black, White, Asian, or Hispanic. This category may include groups such as Native American,
Pacific Islander, Middle Eastern, multiracial individuals, and others. Potential differences within
these groups might influence the observed patterns and should be considered when interpreting
the results.

Conclusion

This project provides a statewide evaluation of the impacts of ambient air pollution on T2D
across the disease continuum, integrating high-resolution exposure modeling, large-scale
epidemiologic analyses, and health economic valuation. Using multiple California-wide datasets,
including CHIS incidence and medication use, HCAI hospital and emergency department
records, and CDPH mortality data, this study offers a comprehensive assessment of how air
pollution contributes to diabetes onset, disease management, acute complications, and mortality.
The consistency of results across independent data sources strengthens confidence in the
findings.

The exposure modeling framework captured fine-scale spatial and temporal variability in
NOz, PM2 s, O3, and selected air toxics, enabling population-level exposure assignment for
millions of health records statewide. Despite limitations related to monitoring density for air
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toxics, the models demonstrated strong performance and provided a robust foundation for
subsequent health analyses.

Across epidemiologic analyses, long-term exposure to NO2, PMz s, and O3 was associated
with increased T2D incidence and greater use of diabetes medications, indicating a role for air
pollution in both disease development and worsening disease control. PM2 s showed the strongest
and most consistent associations across outcomes, while NO» exhibited smaller but stable effects.
O3 associations were more heterogeneous, likely reflecting its complex atmospheric chemistry
and seasonal variability.

Short-term exposure analyses using hospital and emergency department data showed that
acute increases in NO2 and PM; 5 were associated with higher risks of T2D-related ED visits,
hospital admissions, and longer hospital stays, suggesting that pollution can trigger clinically
meaningful exacerbations. These effects were most pronounced shortly after exposure and
attenuated over several days. Stratified analyses indicated that racial and ethnic minority
populations often experienced greater pollution-related risks, highlighting persistent
environmental health disparities.

Mortality analyses further demonstrated that higher annual exposures to PM> 5 and NO» in
the year preceding death were associated with increased diabetes-related mortality, supporting
the role of long-term air pollution exposure in disease progression and fatal outcomes. These
findings are consistent with existing evidence linking particulate and traffic-related pollution to
chronic cardiometabolic stress.

The health economic analyses translated these health impacts into substantial societal costs.
Reductions in PM2 5, NO>, and O3 were associated with large avoidable medical expenditures
related to diabetes care, as well as significant reductions in the value of statistical lives lost due
to diabetes-related mortality. PM; 5 reductions yielded the greatest economic benefits, reflecting
its strong influence across multiple health endpoints.

Overall, this integrated analysis demonstrates that ambient air pollution, particularly PMa s
and NO, contributes meaningfully to the onset, progression, and economic burden of T2D in
California. These findings highlight air quality improvement as an effective and equitable
strategy for reducing diabetes-related morbidity, mortality, and healthcare costs, and support the
integration of air pollution control into chronic disease prevention and public health policy.
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