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Part I: Overall Effect Analysis 
The overall analysis evaluates how NO2 or PM2.5 exposure influences ED visits while accounting 

for temporal variations in temperature, relative humidity, precipitation, and wildfire impact for 

PM2.5. Each patient serves as their control, with control periods defined as one to four weeks 

before the assessment. This design minimizes confounding by individual-level factors such as 

age, sex, and comorbidities, ensuring a precise evaluation of exposure-outcome relationships. By 

incorporating lag periods (0–3 days) into the model, the analysis captures both immediate and 

delayed effects of exposure. Acute effects may manifest within hours, while systemic or 

inflammatory responses may require additional time. 

Diabetes population trend analysis 

The increase in the diabetic population of Type 2 in California from around 500,000 in 2010 to 

nearly 1,000,000 in 2019 (Figure 1) can largely be attributed to healthcare expansion under the 

Affordable Care Act (ACA), which improved access to screening and diagnosis through Medi-

Cal and subsidized insurance plans, leading to the identification of previously undiagnosed cases. 

Additionally, population growth and the aging of the "baby boomer" generation, individuals born 

between 1946 and 1964, who are at higher risk for Type 2 diabetes, might have contributed 

significantly to the rise. As this population aged, their vulnerability to air pollution-related health 

effects, such as those from NO2 and PM2.5 exposure, likely increased. Rising obesity rates, driven 

by sedentary lifestyles and poor dietary habits, further exacerbated the diabetes burden. 

Improved data collection and reporting during this period may have also played a role. The slight 

decline in 2019 suggests potential stabilization of obesity rates due to prevention efforts or 

variability in diagnosis rates. 

NO2 effect analysis 

In 2010, NO2 exposure was relatively low across Type 2 diabetic patients. The economic 

slowdown following the Great Recession (2007-2009) played a role in lowering pollution levels 

at and before 2010. This economic contraction likely resulted in a temporary dip in pollution 

levels, particularly in urban areas where transportation emissions are a major source of NO2 and 

particulate matter. In addition, the wildfire activity in 2010 has been lower compared to other 

years. The relative calm in wildfire activity in 2010 likely prevented significant spikes in 

particulate pollution from that source. NO2 exposure increased in 2011-2013, but after that, 

overall NO2 concentrations and their SD continued to decline, which can be attributed to 

improvements in air quality driven by regulatory measures and cleaner technologies. Policies 

such as stricter vehicle emissions standards, industrial regulations, and adopting cleaner fuels 

have reduced overall emissions and a more uniform reduction in NO2 levels, minimizing extreme 

pollution events that once contributed to higher variability. While the mean NO2 concentrations 

and its SD continued to decline, the IQR of NO2 exposure experienced an upward trend after 

2016. A reduced SD alongside an increased IQR indicates that most data points became more 
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tightly clustered around the mean, but the spread within the middle portion of the data grew 

wider. This suggests a more stretched-out distribution of NO2 levels, where values in the central 

range became more variable even as extreme outliers became less frequent. 

 

Figure 1. The temporal trend of the population in California diagnosed with diabetes and NO2 exposure from 2010 to 2019. 

The CR functions between NO2 exposure and ED visits show a downward trend in effect 

estimates from 2010 to 2014, followed by an upward trend from 2014 to 2019 (Figure 2). This 

pattern can be linked to several critical factors. First, the Affordable Care Act (ACA), signed into 

law in 2010 and fully implemented by 2014, significantly expanded healthcare access, mainly 

through Medicaid for low-income populations and Medicare Part B for individuals over 65 

(Figure 5). The increased access to healthcare likely improved disease management and 

preventative care, which reduced reliance on EDs for acute conditions. As a result, the impact of 

environmental exposures like NO2 on ED visits declined from 2010 to 2014. After 2014, the 

stretched-out distribution of NO2 levels could explain the renewed increase in its health impact 

on ED visits despite overall declines in concentration.  

Regarding the lagged effect, the impact of NO2 exposure remained largely consistent over the 0–

2 day period. By day 3, the effect showed a slight decrease, suggesting a more transient nature of 

the exposure's impact or a diminishing short-term influence on ED visits. Regarding the control 

comparisons, the 1-to-1 control uses one week before the event as the reference, while the 4-to-1 
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control uses four weeks before. When the control period is further from the event day, we 

observed a greater effect of NO2. This could be due to exposure levels in the control period 

becoming more diluted over time, making the event day exposure appear more elevated and thus 

resulting in a higher estimated effect. This observation emphasizes the sensitivity of the analysis 

to the temporal choice of control periods and highlights the need to account for variability in 

NO2 exposure levels when interpreting these findings. 

Overall, the impact of NO2 on ED visits is statistically significant across the years 2010–2019, 

considering 0–3 days of lags and using one-week to four-weeks before the event as controls. This 

demonstrates the robustness of the association between NO2 exposure and adverse health 

outcomes, regardless of the specific temporal framework or control strategy applied. The 

consistent significance highlights that short-term NO2 exposure remains a critical driver of 

diabetic patients’ ED visits, reinforcing the importance of monitoring and mitigating air 

pollution. The persistence of this association over nearly a decade further emphasizes the need 

for targeted interventions to address NO2 exposure, particularly in vulnerable populations and 

high-risk areas. 

 

Figure 2. The association between NO2 exposure and ED visits over 0–3 lag days across four control categories, modeled 

annually from 2010 to 2019. 

PM2.5 effect analysis 

Similar to NO2 exposure, PM2.5 exposure was relatively low across Type 2 diabetic patients in 

2010 (Figure 3). This could be attributed to economic slowdown following the Great Recession 

and lower wildfire activity compared to other years. After 2011, mean PM2.5 concentrations 
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steadily declined, reflecting significant improvements in air quality driven by stricter 

environmental regulations and cleaner technologies. Policies such as enhanced vehicle emissions 

standards, industrial pollution controls, and adopting cleaner fuels played a pivotal role. The SD 

of PM2.5 concentrations also decreased, indicating fewer extreme pollution events and more 

uniform improvements across regions. However, the IQR of PM2.5 exposure began increasing 

after 2016, suggesting a growing variability in mid-range pollution levels. While extreme outliers 

in PM2.5 exposure diminished, this widening spread within the central range may result from 

regional disparities in pollution control efforts or localized sources of PM2.5. 

The declining mean PM2.5 levels and SD highlight the success of air quality interventions. 

However, in 2018, PM2.5 levels spiked, largely due to the unprecedented wildfire activity that 

year. Major fires, including the Camp Fire in Northern California and the Woolsey Fire in 

Southern California, released vast amounts of fine particulate matter into the atmosphere, 

significantly impacting air quality across the state. These extreme wildfire events underscore the 

growing influence of climate change on air pollution trends, even as regulatory measures 

continue to reduce emissions from traditional sources. Further, the increasing IQR emphasizes 

the need for targeted, localized actions to address variability in mid-range exposures.  
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Figure 3. The temporal trend of the population in California diagnosed with diabetes and PM2.5 exposure from 2010 to 2019. 

 

The relationship between PM2.5 exposure and ED visits demonstrates a notable pattern: a 

negative association in 2010, followed by positive but declining effect estimates from 2011 to 

2014, and then a subsequent increase from 2014 to 2019 (Figure 4). This trend can be attributed 

to several key factors. The relatively low PM2.5 level contributed to the negative impact in 2010. 

The full implementation of the Affordable Care Act (ACA) by 2014 significantly expanded 

healthcare access, primarily through Medicaid for low-income individuals and Medicare Part B 

for older adults (Figure 7). Improved access to healthcare likely facilitated better disease 

management and preventative care, reducing dependence on ED visits for acute conditions. As a 

result, the health impact of environmental exposures such as PM2.5 diminished during 2011–

2014. Conversely, the upward trend observed after 2014 may reflect shifts in exposure patterns 

and increased population vulnerability, with significant increase in middle level PM2.5 exposures 

despite overall declines. 

The growing influence of PM2.5 on ED visits after 2014 may also stem from demographic 

changes, particularly the aging of the "baby boomer" generation. As older adults became more 

integrated into the healthcare system, their heightened sensitivity to air pollutants like PM2.5 

likely contributed to increased health impacts. Interestingly, despite the increase in PM2.5 levels 



 

9 
 

in 2018, the impact on ED visits was relatively low for that year. This could be attributed to 

several factors. First, wildfire-related PM2.5 episodes tend to be short-lived but intense, whereas 

chronic exposure to elevated air pollution from traffic and industrial sources has been more 

consistently linked to long-term health effects and increased healthcare utilization. Second, 

public awareness and protective measures, such as air quality alerts, widespread use of N95 

masks, and recommendations to stay indoors during wildfires, may have mitigated acute health 

impacts. Additionally, the affected populations may have adapted by avoiding outdoor activities 

or using air filtration systems, reducing direct exposure. There may also be a lag in health effects, 

where the full impact of exposure is not immediately reflected in ED visit data. Finally, the 

control of wildfire-related PM2.5 in the modeling process may have inadvertently over-controlled 

for its impact on ED visits, potentially underestimating the association between PM2.5 exposure 

and health outcomes. 

Regarding lagged effects, the influence of PM2.5 exposure on ED visits remained relatively stable 

within the 0–2 day window, with a slight decline in effect by day 3. This suggests that the impact 

of PM2.5 exposure is primarily short-term, with diminishing influence over time. Additionally, 

comparisons of control periods—using the 1-to-1 method (one week before the event) and the 4-

to-1 method (four weeks before)—revealed an interesting trend: a stronger effect though less 

pronounced than NO2 was observed when the control period was further from the event day. This 

could result from lower exposure levels during the control period, amplifying the relative impact 

of event-day exposure. These findings emphasize the importance of carefully selecting temporal 

control strategies to ensure accurate interpretation of results. 

Overall, the impact of PM2.5 on ED visits remains largely statistically significant from 2010 to 

2019, regardless of lag periods (0–3 days) or control strategies (1-to-1 or 4-to-1). This consistent 

association underscores the critical role of short-term PM2.5 exposure in driving diabetic patients' 

ED visits. The persistence of these trends over nearly a decade highlights the urgent need for 

targeted policies and interventions to reduce PM2.5 exposure, particularly among vulnerable 

populations and in high-risk regions. 
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Figure 4.The association between PM2.5 exposure and ED visits over 0–3 lag days across four control categories, modeled 

annually from 2010 to 2019. 

Part II: Stratification Effect Analysis 
The stratification analysis assesses how NO2 or PM2.5 exposure impacts ED visits across various 

subgroups while accounting for temperature, relative humidity, precipitation, and wildfire impact 

for PM2.5. Similar to the overall analysis, each patient serves as their control, with control periods 

defined as one to four weeks before the assessment. The inclusion of lag periods (0–3 days) 

ensures both immediate and delayed effects are evaluated. The stratification analysis includes 

race-ethnicity, gender, age groups, primary language spoken, health insurance payer category, 

and study regions. 

Health insurance payer type analysis 

From 2010 to 2012, the percentage of individuals categorized by payer type remained 

relatively stable, with minimal changes observed across most groups (Figure 5). For example, 

Health Maintenance Organization (HMO) participants consistently accounted for about 21% of 

the population, while Medicaid (Medi-Cal) and Medicare Part B remained at around 27% and 

14%, respectively. However, significant shifts occurred starting in 2013, with a noticeable 

increase in Medicaid and Medicare Part B participation. By 2019, Medicaid coverage rose to 

32.9%, and Medicare Part B reached 24.1%. This rise is largely attributed to healthcare reforms 

under the ACA, which expanded Medicaid for low-income populations and Medicare Part B for 

seniors. In contrast, the percentage of self-pay individuals decreased dramatically during this 
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period, from 15.9% in 2010 to just 3.7% by 2019. This shift likely reflects a change from a 

largely uninsured population before 2014 to a group of wealthier individuals who may have 

maintained or transitioned to self-pay after 2015, as more individuals gained insurance coverage 

through Medicaid, Medicare, and other means. 

Regarding NO2 exposure, the mean levels for most payer categories showed a general 

decrease over the years. For instance, the Health Maintenance Organization (HMO) mean NO2 

level dropped from 10.8 ppb in 2010 to 8.7 ppb in 2019. Similarly, Medicaid saw its NO2 mean 

exposure drop from 10.5 ppb in 2010 to 8.5 ppb in 2019, while Medicare Part B's NO2 mean 

decreased from 10.2 ppb in 2010 to 7.4 ppb in 2019. We found that Medicare Part B patients had 

lower NO2 exposure compared to other payer categories. Medicare Part B typically covers 

individuals aged 65 and older, and we believe the elderly population tends to live in suburban or 

rural areas where air pollution levels, including NO2, may be lower compared to urban areas.  

Despite the decrease in overall mean NO2 values from 2010 to 2019, the IQR of NO2 

levels began to increase after 2016, suggesting a rise in variability or fluctuation of exposure in 

more recent years. This could indicate that while overall NO2 levels decreased, some areas may 

have experienced more sporadic air quality issues, contributing to higher IQRs. 

 

 

Figure 5. The temporal trend of the population, categorized by insurance coverage, in California diagnosed with diabetes and 

NO2 exposure from 2010 to 2019. 

For C-R functions, the self-pay category demonstrates the highest variability over time, 

particularly in the later years, from 2016 to 2019. Its consistent deviation from the baseline 

across all lag durations underscores its significant sensitivity and influence compared to other 

categories. In contrast, Medicaid exhibits the least variability, remaining consistently close to the 
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baseline throughout the years (Figure 6). The characteristics of self-payers may explain this 

disparity during this period, as they were predominantly uninsured individuals who were more 

vulnerable to the health effects of air pollution, such as exposure to NO2. 

Starting in 2012, the impact of NO2 exposure on ED visits among self-payers declined, reaching 

its lowest point in 2015. This likely reflects a shift in the self-payer population, transitioning 

from primarily uninsured individuals to wealthier patients with better access to healthcare, who 

may have been less susceptible to the effects of NO2 exposure. However, after 2015, the self-

payer category experienced a notable rise in the impact of NO2 exposure on ED visits. This 

category consistently exhibits the highest impact after 2015. This increase could be linked to 

changes in the self-payer population’s increase in air pollution susceptibility, including 

individuals with higher health risks driven by aging, chronic conditions, lifestyle behaviors, or 

socioeconomic vulnerabilities that amplify sensitivity to pollution. The wider confidence 

intervals observed for self-payers suggest smaller sample sizes than other payer categories.  

Regarding lag times, the effect of NO2 exposure within each payer category was minimal, with a 

slight decrease in impact as the lag period extended from zero to 3 days, particularly from 2016-

2019. When considering control periods, the smallest effect was observed when the control 

period was closest to the event. Conversely, the impact of NO2 exposure increased as the control 

period extended from one to four weeks before the event (Figures S1, S2, S3). 
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Figure 6. The associations between NO2 exposure and ED visits for diabetic patients across different health insurance payer 

categories in California from 2010 to 2019. 

 

On PM2.5 exposure (Figure 7), mean levels declined across all payer categories over the study 

period. For instance, the mean PM2.5 exposure for HMO participants decreased from 9.88 µg/m³ 

in 2010 to 8.5 µg/m³ in 2019. Similarly, mean levels for Medicaid and Medicare Part B 

beneficiaries fell from 10.27 µg/m³ and 8.86 µg/m³ in 2010 to 9.99 µg/m³ and 8.50 µg/m³, 

respectively, in 2019. Despite these reductions, the IQR of PM2.5 exposure began to expand after 

2012, indicating increased variability in exposure levels. This trend suggests that overall PM2.5 

concentrations have improved, but certain areas may still have faced localized air quality 

challenges, contributing to the broader IQR. This is especially true for Medicare Part B 

beneficiaries, who tend to live in suburban areas with less traffic. They had lower mean NO2 

levels as well as lower NO2 variability (SD and IQR). PM2.5, however, has both local and 

regional sources, including wildfires, long-range transport, and secondary formation. While 

suburban and rural areas may have lower direct emissions, they can still experience high 

variability due to episodic pollution events like wildfires, dust storms, or regional transport of 

PM2.5. Consistent with the overall unstratified PM2.5 exposure analysis, all payer categories 

experienced the highest PM2.5 exposure in 2018. 

For C-R functions, PM2.5 exposure was negatively or non-significantly associated with ED visits 

across the payer categories in 2010. Like the unstratified analysis, this could be due to the lower 

level of PM2.5 exposure. In 2011 and 2012, PM2.5 exposure was significantly associated with ED 

visits across all payer categories, with self-payers experiencing the most pronounced effects 

(Figure 8).  This heightened sensitivity among self-payers likely reflects the vulnerabilities of a 

largely uninsured population during this period. Starting from 2013, however, the impact of 

PM2.5 exposure on ED visits for self-payers began to decline, reaching its lowest point in 2015. 

This decline coincided with a demographic shift in the self-payer population toward individuals 

with greater financial resources and improved access to healthcare, reducing their susceptibility 

to PM2.5-related health effects. After 2015, the effect of PM2.5 exposure on self-payers began to 

rise again, possibly due to an increased representation of individuals with higher health risks in 

this group. These could include aging populations, those with chronic conditions, or other 

vulnerable groups more sensitive to air pollution. The wider confidence intervals observed for 

self-payers suggest smaller sample sizes than other payer categories, contributing to greater 

uncertainty in the estimates. Among all categories, self-payers consistently exhibited the largest 

deviations from the baseline, particularly in 2016 and 2017. This category also displayed 

prominent fluctuations across all lag durations (0, 1, 2, and 3 days), with values exceeding 1.05 

in several instances.  

Similar to the unstratified analysis, the stratified analysis showed that despite the highest PM2.5 

exposure in 2018, its impact on ED visits remained relatively low across all payer categories. 
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The reasoning behind the overall unstratified analysis applies consistently to each payer 

category. Regarding lag times, the effect of PM2.5 exposure across payer categories remained 

consistent over the 0–3 day period, with lagged effect being slightly smaller on the third day.  

On control periods, the smallest effect was observed when the control was closest to the event. 

As the control period extended from one to four weeks before the event, the observed impact of 

PM2.5 exposure increased (Figures S4, S5, S6). This likely reflects the dilution of exposure levels 

during the control period, making event-day exposure appear more pronounced. Overall, the 

significant association between PM2.5 exposure and ED visits across payer categories 

underscores the pervasive vulnerability to PM2.5 exposure. These findings highlight the need for 

targeted interventions to reduce exposure, particularly among high-risk populations, and to 

mitigate the broader public health impacts of air pollution. 

 

 

 

Figure 7. The temporal trend of the population, categorized by insurance coverage in California diagnosed with diabetes and 

PM2.5 exposure from 2010 to 2019. 
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Figure 8.The associations between PM2.5 exposure and ED visits for diabetic patients across different health insurance payer 

categories in California from 2010 to 2019. 

 

Region analysis 

From 2010 to 2019, California's regional distribution of Type 2 diabetic patients shifted 

gradually across the three main regions: the SF Bay Area, Southern California (SoCal), and the 

Central Valley (Figure 9). The SF Bay Area's population share gradually decreased from 25% to 

16%, while SoCal experienced a steady increase from 60% in 2010 to 65% in 2019. In contrast, 

the Central Valley's representation gradually declined from 20% to 18.2%. These changes 

potentially reflected demographic shifts, migration patterns, or regional population growth. 

Regarding NO2 exposure, all regions experienced a reduction in mean levels over the study 

period. For example, the SF Bay Area declined from 8.12 ppb in 2010 to 5.90 ppb in 2019, while 

SoCal's mean exposure dropped from 13.49 ppb to 9.78 ppb during the same period. Similarly, 

the Central Valley observed a decrease from 7.75 ppb in 2010 to 6.45 ppb in 2019. Despite these 

overall reductions, the SDs and IQRs of NO2 remained consistently flat across the period. This 

suggests that while NO2 concentrations have decreased uniformly across all regions, the relative 

variability in exposure has not changed significantly. One possible explanation is that traffic and 

industrial sources continue to dominate NO2 emissions, meaning that areas with historically high 

NO2 levels (such as major highways and industrial corridors) may still experience similar 
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fluctuations over time. Additionally, while statewide policies have contributed to an overall 

decline, localized sources of pollution may still create persistent spatial variability, keeping the 

SDs and IQRs stable over time. Overall, SoCal had the greatest mean, SD and IQR NO2 

exposure levels, followed by SF Bay and Central Valley. 

 

 

Figure 9. The temporal trend of the population, categorized by region, in California diagnosed with diabetes and NO2 exposure 

from 2010 to 2019. 

 

On NO2 impact on ED visits, the Central Valley exhibits the most significant changes across 

multiple years, with some highs approaching 1.2 and lows being in verse relationship  (Figure 

10). Specifically, the effect increased from 2010 to 2011, reaching highs nearing 1.2. This might 

be due to the high sensitivity of diabetic patients in this region, which has a large proportion of 

seasonal workers, predominantly Mexican immigrants with low income and low educational 

attainment but high diabetic prevalence. Following 2012, the influence of NO2 exposure on ED 

visits in the Central Valley began to decline, reaching its lowest levels around 2014. This period 

coincided with a significant increase in ACA enrollment, particularly among farm workers, a 

population historically characterized by limited healthcare access. With expanded healthcare 

coverage, many individuals in this group likely experienced improved disease management and 

greater access to preventative care, reducing their reliance on emergency departments for acute 

conditions. As a result, the overall impact of environmental exposures like NO2 on ED visits 

diminished during this time, despite continued NO2 emissions. However, after 2014, the impact 

of NO2 exposure on ED visits began to rise again, even as NO2 concentrations continued to 
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decline. This renewed increase in health impact suggests that changes in population susceptibility 

played a significant role such as aging of the baby boomers discussed above.  

The effect started to decline in 2018 and 2019, likely due to continued improvements in air 

quality regulations, further reductions in NO2 emissions from transportation and industry, and 

increased public awareness of air pollution-related health risks. Additionally, adaptation 

measures, such as increased use of air filtration systems, better access to preventive healthcare, 

and behavioral changes (e.g., staying indoors on high-pollution days), may have contributed to 

reducing the health impact of NO2 exposure in the Central Valley. 

Compared to the Central Valley, the SF Bay Area exhibited similar trends but with a much less 

pronounced effect, likely due to differences in population demographics, healthcare access, and 

baseline air pollution levels. The region's higher socioeconomic status and better access to 

healthcare may have contributed to a lower overall sensitivity to NO2 exposure, resulting in a 

more stable impact on ED visits. 

In contrast, the impact in the SoCal region remained even smaller, with effects largely unchanged 

throughout the years. This stability could be attributed to the consistently high population density 

and long-term exposure to NO2, which may have led to a more adapted population with lower 

short-term sensitivity to pollution spikes. Regarding lag times, the effects of NO2 exposure 

remained consistent across regions for a 0–2 day period, with a slight decrease observed by day 

3, suggesting the transient nature of short-term exposure impacts. On control strategies, the 

smallest effects were noted when the control period was closest to the event, while more 

substantial impacts emerged as the control period extended from one to four weeks (Figures S7, 

S8, S9). This pattern underscores the importance of carefully selecting temporal reference 

periods to accurately estimate the health impacts of NO2 exposure in epidemiological studies. 
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Figure 10. The associations between NO2 exposure and ED visits for diabetic patients across regions in California from 2010 to 

2019. 

Regarding PM2.5 exposure (Figure 11), all regions experienced a decrease, though smaller than 

those in NO2, in mean levels over the study period. For instance, the Central Valley reduced 

average PM2.5 exposure from 11.14 µg/m³ in 2010 to 9.88 µg/m³ in 2019. Similarly, the SF Bay 

Area's mean PM2.5 levels declined from 8.74 µg/m³ to 7.09 µg/m³, while SoCal experienced a 

drop from 10.51 µg/m³ to 8.80 µg/m³ over the same timeframe. The SD and IQR of PM2.5; 

however, remained flat before 2016. Despite the overall decline in mean PM2.5 concentrations, 

levels rose significantly in 2018, accompanied by increases in both the SD and IQR. As 

previously discussed, this spike in PM2.5 and its associated variability was likely driven by the 

surge in wildfire activity during 2018. The widespread and severe wildfires that year led to 

extreme air pollution events, causing sharp fluctuations in PM2.5 levels across all three regions 

and contributing to the observed increase in SD and IQR. 

On C-R functions, the effect of PM2.5 on ED visits (Figure 12) followed a similar pattern to that 

of NO2 across the three regions, though the magnitude of the effects appeared smaller. In most 

cases, PM2.5 exposure was associated with an increase in ED visits over the years, with the 

positive impact in SoCal being consistent across the entire period. Further, SoCal exhibited the 

highest impact starting in 2016, suggesting a possible shift in population susceptibility or 

increase in wildfire pollution exposure patterns.  
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Regarding lag times, the effects of PM2.5 exposure across regions remained relatively stable, with 

only a slight decrease observed as the lag extended from zero to three days. The smallest effects 

were noted when the control period was closest to the event. On control period, larger impacts 

were observed as the control period extended from one to four weeks prior (Figures S10, S11, 

S12). The Central Valley's behavior underscores its significant sensitivity compared to other 

regions, highlighting its unique challenges in managing air pollution impacts. These findings 

emphasize the importance of carefully selecting temporal frameworks to ensure accurate 

estimates of exposure effects. 

Overall, the association between PM2.5 exposure and ED visits remained significant across all 

regions from 2010 to 2019, regardless of lag times or control periods. These results underline the 

critical role of PM2.5 in driving adverse health outcomes and emphasize the urgent need for 

sustained air quality improvements and healthcare interventions, particularly in vulnerable areas 

like the Central Valley. 
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Figure 11. The temporal trend of the population, categorized by region, in California diagnosed with diabetes and PM2.5 exposure 

from 2010 to 2019. 

 

Figure 12. The associations between PM2.5   exposure and ED visits for diabetic patients across regions in California from 2010 

to 2019. 
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Language analysis 

In 2010, the English, Other, and Spanish race-ethnicity categories in diabetic patients accounted 

for 40%, 50%, and 10% of the population, respectively; however, starting from 2011, their 

compositions shifted to 80%, 2%, and 18%. This dramatic change is largely attributable to 

improvements in data collection and classification. In earlier years, a significant portion of race-

ethnicity information was missing, and patients with incomplete demographic data were 

categorized as "Other." As data reporting improved over time, many of these previously 

unclassified patients were reassigned to more accurate racial-ethnic categories, leading to a sharp 

decline in the "Other" category. From 2011 and 2019, the distribution of individuals categorized 

by primary language remained relatively stable, with slight decrease for English language 

speakers but slight increases for Hispanics and Other categories (Figure 13). From 2011 to 2019, 

the distribution of individuals categorized by primary language remained relatively stable, with 

only minor shifts observed over time. The proportion of English-language speakers experienced 

a slight decrease, suggesting probably a gradual diversification of the population. In contrast, the 

Hispanic and Other language categories saw slight increases, which may reflect demographic 

changes, such as an increase in Spanish-speaking immigrant populations. These trends may also 

be influenced by broader societal and policy changes, including healthcare access expansions, 

shifts in migration patterns, and efforts to provide linguistically inclusive healthcare services. 

The relatively stable overall distribution indicates that while minor fluctuations occurred, no 

dramatic shifts in language composition took place during this period.  

On NO2 exposure, average concentrations declined across all language groups throughout the 

study period. For example, English speakers experienced a reduction in mean NO2 levels from 

10.8 ppb in 2010 to 8.02 ppb in 2019, while Spanish speakers saw a similar decrease from 12.59 

ppb to 9.11 ppb during the same timeframe. Despite these reductions, the IQR of NO2 exposure 

widened after 2016, suggesting increased variability in exposure levels. This trend indicates that 

while overall air quality improved, certain areas experienced greater fluctuations in NO2 levels, 

potentially linked to localized environmental or urban factors. 

On C-R functions, the Spanish-speaking population exhibited the most significant changes, 

particularly in 2010, when its odds ratio exceeded 1.2, marking the largest deviation observed 

across all language categories and years. While the English-speaking group also experienced a 

notable impact from NO2 exposure (odds ratio = 1.18), the Other language category showed a 

negative effect (odds ratio = 0.93) (Figure 14). Starting in 2011, this trend shifted significantly. 

The positive effects observed for Spanish- and English-speaking individuals declined 

substantially, while the negative effect seen in the Other language category reversed, becoming 

positive. This shift can largely be attributed to the reclassification of many individuals previously 

categorized under the Other language group into the English- and Spanish-speaking groups. As 

data collection and classification improved, more accurate language categorization likely led to a 
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redistribution of individuals, altering the observed NO2-health effect associations within each 

language category. 

Between 2012 and 2015, the effect of NO2 exposure on ED visits among non-English speakers 

declined, likely due to improved healthcare access and the introduction of preventive measures 

during this period. However, beginning in 2016, the impact increased again, potentially driven by 

factors such as an aging population, persistent socioeconomic vulnerabilities, or unresolved 

disparities in healthcare access. Regarding lag effects, NO2 exposure had the most pronounced 

influence within the 0- to 2-day lag periods, with effects slightly diminishing by day 3. This 

pattern suggests that the health impacts of short-term NO2 exposure are immediate but transient. 

Additionally, the impact of NO2 exposure appeared more pronounced when the control period 

extended further from the event day, such as one to four weeks prior (Figures S13, S14, S15). 

These findings underscore the importance of selecting appropriate temporal control periods when 

assessing the relationship between NO2 exposure and health outcomes. The strong association 

between NO2 exposure and ED visits across language groups underscores the widespread health 

risks posed by air pollution, particularly for vulnerable and underserved populations – the Other 

language category. These results highlight the need for targeted interventions to improve air 

quality and address health disparities in linguistically diverse communities.

 

Figure 13. The temporal trend of the population, categorized by language, in California diagnosed with diabetes and NO2 

exposure from 2010 to 2019. 
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Figure 14. The associations between NO2 exposure and ED visits for diabetic patients across language categories in California 

from 2010 to 2019. 

In terms of PM2.5 exposure (Figure 15), average levels across language groups steadily declined 

over the years, signaling overall improvements in air quality. For example, English speakers 

experienced a reduction in PM2.5 mean levels from approximately 10.13 µg/m³ in 2010 to 8.54 

µg/m³ in 2019, while Spanish speakers saw a similar decline from about 10.76 µg/m³ to 8.96 

µg/m³ during the same period.  Despite the overall decline in mean PM2.5 concentrations, PM2.5 

concentrations rose significantly in 2018, accompanied by increases in both the SD and IQR. As 

previously discussed, this spike in PM2.5 and its associated variability was likely driven by the 

surge in wildfire activity during 2018. The widespread and severe wildfires that year led to 

extreme air pollution events, causing sharp fluctuations in PM2.5 levels across all three language 

speaker categories and contributing to the observed increase in SD and IQR.  

On C-R functions, in 2010, only the English-speaking category exhibited a positive association 

between PM2.5 exposure and health outcomes (Figure 16). However, starting in 2011, the impact 

on the Other language category became the highest, accompanied by a much wider confidence 

interval. This shift was largely driven by the reclassification of a substantial number of patients 

from the Other category into the English- and Spanish-speaking groups, leading to changes in the 

observed effects within each category. Beginning in 2011, the impact of PM2.5 exposure also 

became positive for Spanish-speaking individuals, reflecting a more accurate categorization of 

patients. Over time, these effects gradually declined, reaching their lowest point in 2015, likely 
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due to the implementation of the ACA act. The ACA's expansion of healthcare access may have 

improved disease management and preventative care, reducing the overall sensitivity of different 

language-speaking populations to environmental exposures like PM2.5. After 2015, the health 

impact of PM2.5 exposure began to rise again, potentially driven by socioeconomic and 

environmental factors that heightened vulnerability within this group. The effect diminished in 

2018, similar to the trends observed in other stratifications of PM2.5 exposure impact. 

Regarding lag times, the effects of PM2.5 exposure were most pronounced within the 0–2 day lag 

period, with a slight reduction observed by day 3. For control periods, shorter control periods 

(e.g., one week prior) demonstrated smaller effects compared to more extended control periods 

(e.g., four weeks prior) (Figures S16, S17, S18). This pattern suggests that shorter control 

periods had exposure levels closer to those of the event day, while extended control periods 

introduced more variability, amplifying the estimated impact of PM2.5. 

Overall, the significant association between PM2.5 exposure and ED visits across language groups 

underscores the persistent health risks posed by air pollution. These findings highlight the 

importance of targeted air quality interventions and the need to address disparities in PM2.5 

exposure, particularly in communities with higher proportions of non-English speakers who may 

face additional vulnerabilities. 

 

Figure 15. The temporal trend of the population, categorized by language, in California diagnosed with diabetes and PM2.5 

exposure from 2010 to 2019. 
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Figure 16. The associations between PM2.5 exposure and ED visits for diabetic patients across language categories in California 

from 2010 to 2019. 

 

Five Major Races Analysis 

From 2010 to 2019, the racial distribution among Type 2 diabetes patients remained relatively 

stable (Figure 17). The largest group, White patients, saw a slight decrease from 56.24% to 

53.91%, while the second-largest group, Hispanics, experienced a modest increase from 18.68% 

to 21.84%. Black patients, who made up 13.62% of the population in 2010, and Asian patients, 

comprising 6.98%, maintained relatively smaller proportions throughout the period. The "Other" 

category had the smallest composition, accounting for 4.46% in 2010.  

In terms of NO2 exposure, except for 2010, the mean levels across all racial groups displayed a 

clear downward trend from 2010 to 2019. For instance, the average NO2 exposure for Black, 

Hispanic, and Other individuals dropped from 11.19 ppb, 11.64 ppb, and 10.18 ppb, in 2010 to 

8.73 ppb, 8.75 ppb, and 8.13 ppb, in 2019. Similarly, Asian populations saw a reduction in mean 

NO2 levels, from 10.76 ppb to 8.25 ppb over the same period, while the White population 

experienced a decrease from 10.08 ppb to 7.98 ppb. Overall, Hispanic patients had the greatest 

NO2 exposure while White patients had the smallest exposure. Despite these improvements, the 

IQR of NO2 exposure began to increase after 2016, signaling greater variability in exposure 

levels within the middle range. This trend suggests that while extreme pollution events became 
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less frequent, disparities in exposure across neighborhoods or regions may have grown, 

potentially driven by localized sources of pollution. 

On C-R functions, the "Other" category largely exhibits the highest NO2 effect and had the most 

significant changes, particularly in 2017, where its values exceed 1.10, marking the largest 

deviation from the baseline across all categories (Figure 18). The heightened impact observed in 

the "Other" category may be attributed to socioeconomic and environmental vulnerabilities, 

including limited access to preventive healthcare. In comparison, the other race-ethnicity groups 

remained relatively stable, though with some minor fluctuations. Starting in 2012, the effects of 

NO2 exposure on ED visits began to decline across all racial groups, reaching their lowest levels 

around 2015. This trend likely reflects the benefits of expanded healthcare access and improved 

disease management facilitated by Medicaid expansion and broader reforms under the ACA. 

However, after 2015, the impact of NO2 exposure on ED visits began to rise again, particularly 

among the "Other" category patients. This resurgence may be driven by increased susceptibility 

in these communities due to aging demographics and a rising prevalence of chronic conditions. 

Regarding lag effects, the influence of NO2 exposure on ED visits remained consistent across 0–

2 day lags, with a slight reduction in impact observed by day 3. This pattern suggests that the 

short-term health effects of NO2 exposure diminish over time. For control periods, greater effect 

sizes were observed when the control period was farther removed from the event day, such as the 

four-week control period (Figures S19, S20, S21). This trend underscores the importance of 

temporal framing in analyses, as variations in seasonal and spatial exposure levels can 

significantly influence the observed relationships between pollution and health outcomes. 

These findings demonstrate significant associations between NO2 exposure and ED visits across 

all racial groups from 2010 to 2019, emphasizing the ongoing health burden of air pollution, 

particularly among vulnerable populations. Addressing these disparities through targeted 

interventions and sustained air quality improvements is essential for mitigating the health 

impacts of NO2 exposure and promoting environmental justice for all racial groups. 
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Figure 17. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and NO2  

exposure from 2010 to 2019. 

 

 

Figure 18.The associations between NO2 exposure and ED visits for diabetic patients across five major race categories in 

California from 2010 to 2019. 



 

28 
 

On PM2.5 exposure (Figure 19), the average exposure levels for Black, Hispanic, and Other 

individuals decreased from 10.09 µg/m³, 10.58 µg/m³, and 10.67 µg/m³ in 2010 to 8.69 µg/m³, 

8.76 µg/m³, and 8.38 µg/m³ in 2019, respectively. Similarly, Asian individuals experienced a 

reduction in average PM2.5 levels, dropping from 9.88 µg/m³ to 8.40 µg/m³ during the same 

timeframe. The White population also saw a decline in exposure, decreasing levels from 9.87 

µg/m³ to 8.62 µg/m³. Overall, Hispanic and Other patients had the greatest exposure, and White 

patients had the smallest exposure.  Despite the overall decline in mean PM2.5 concentrations, 

levels rose significantly in 2018, accompanied by increases in both the SD and IQR. As 

previously discussed, this spike in PM2.5 and its associated variability was likely driven by the 

surge in wildfire activity during 2018. The widespread and severe wildfires that year led to 

extreme air pollution events, causing sharp fluctuations in PM2.5 levels across all race-ethnicity 

categories and contributing to the observed increase in SD and IQR. 

On C-R functions, the Asian category exhibited the most significant changes, for example, from 

2011 and 2015, where its values dropped from 1.08 to near 1.0 (Figure 20). Between 2012 and 

2015, the effect of PM2.5 exposure on ED visits declined across all race-ethnicity groups, 

reaching its lowest levels during this period. This reduction may be attributed to improvements 

in air quality and expanded access to preventive healthcare services facilitated by Medicaid 

expansion and other ACA initiatives. 

However, after 2015, the impact of PM2.5 exposure on ED visits began to rise again, particularly 

among Asian populations. This increase could point to heightened vulnerability in these groups 

due to a higher prevalence of chronic health conditions or other risk factors. Wider confidence 

intervals observed for Asian and "Other" groups suggest smaller sample sizes, contributing to 

greater variability and uncertainty in effect estimates. 

On lagged effects, across all lag durations (0, 1, 2, and 3 days), the Asian category shows 

consistent fluctuations and variability, particularly in earlier years. The error bars for this 

category are relatively large, highlighting uncertainty in the estimates. Additionally, the choice of 

control periods significantly influenced the observed impacts, with longer control intervals (e.g., 

four weeks) showing greater estimated effects (Figures S22, S23, S24). This pattern likely 

reflects the dilution of exposure levels during distant reference periods, which amplifies the 

relative impact of event-day exposures. 

Overall, these findings reveal a significant association between PM2.5 exposure and ED visits 

across all racial groups, underscoring the critical role of air pollution in exacerbating health 

disparities. The results highlight the urgent need for targeted interventions to reduce PM2.5 

exposure and address health inequities, particularly within vulnerable racial and ethnic 

communities. 
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Figure 19. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and 

PM2.5 exposure from 2010 to 2019. 

 

Figure 20.The associations between PM2.5 exposure and ED visits for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Gender analysis 

Between 2010 and 2012, the gender distribution of individuals remained relatively stable (Figure 

21). Males consistently represented approximately 44.97% of the population, while females 

comprised 55.03%. However, beginning in 2013, there was a gradual increase in the proportion 

of male participants, reaching 46.16% by 2019.  

Regarding NO2 exposure, both genders experienced a consistent decline in mean levels after 

2013. For instance, mean NO2 exposure for males was relatively low at 10.52 ppb in 2010, 

increased slightly to 11.0 ppb in 2013, and then steadily decreased to 8.20 ppb by 2019. 

Similarly, for females, NO2 exposure dropped from 10.56 ppb in 2010 to 8.31 ppb in 2019. 

Throughout the study period, females consistently had slightly higher NO2 exposure compared 

to males. Despite the overall reductions, the IQR of NO2 exposure widened after 2016, 

suggesting increased variability within the middle distribution of exposure levels. This trend 

indicates that while extreme outliers became less frequent, fluctuations in moderate NO2 

exposure levels grew, possibly due to localized air quality changes. 

On C-R functions, both genders exhibited nearly identical responses to NO2 exposure, with their 

impact patterns rising and falling in close alignment over time. From 2014 to 2015, the effect of 

NO2 exposure on ED visits declined for both genders, reaching its lowest point in 2015. This 

decline likely reflects improved healthcare access and preventive measures the ACA facilitated. 

However, after 2015, the impact of NO2 exposure on ED visits began to rise again for both 

genders, potentially driven by demographic shifts such as an aging population or increased 

vulnerability in specific subgroups.  

Regarding lag times, the effects of NO2 exposure on ED visits remained consistent across both 

genders, with a slight decrease observed as the lag period extended from zero to three days. In 

the control period, smaller effect estimates were noted when the control period was closer to the 

event day, while greater impacts were observed with longer control intervals, such as four weeks 

prior (Figures S25, S26, S27). This trend underscores the importance of carefully selecting 

temporal frameworks to ensure accurate exposure assessments and their health impacts. 

Overall, the statistically significant association between NO2 exposure and ED visits across 

genders highlights the pervasive health risks posed by air pollution.  
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Figure 21. The temporal trend of the population, categorized by gender, in California diagnosed with diabetes and NO₂ exposure 

from 2010 to 2019. 

 

Figure 22. The associations between NO₂ exposure and ED visits for diabetic patients across gender categories in California 

from 2010 to 2019. 
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Regarding PM2.5 exposures (Figure 23), though a small increase was seen from 2010 to 2011, 

overall exposure levels for both genders declined over the study period. For example, mean 

PM2.5 exposure for males decreased from 10.02 μg/m³ in 2010 to 8.58 μg/m³ in 2019. Similarly, 

mean exposure for females dropped from 10.08 μg/m³ in 2010 to 8.61 μg/m³ in 2019. Despite 

these improvements, the IQR of PM2.5 exposure widened after 2014, indicating greater variability 

within the middle 50% of exposure levels. This suggests that while extreme pollution levels 

diminished, variability in exposure among individuals within the central range increased, 

potentially due to localized sources of pollution. Again, as observed in the unstratified analysis, 

PM2.5 exposure increased significantly in 2018 due to the substantial impact of wildfire events. 

On C-R functions, similar to NO2 exposure effect, both genders have almost identical impact 

from PM2.5 exposure, with their impact patterns rising and falling in close alignment over time. 

(Figure 24). Also similar to NO2 exposure effect, from 2014 to 2015, the effect of PM2.5 exposure 

on ED visits declined for both genders, reaching its lowest point in 2015.  After 2015, the health 

impacts of PM2.5 exposure on ED visits began to rise slightly for both genders, similar to what 

happened to NO2 exposure. Furthermore, the effect diminished significantly in 2018, similar to 

the trends observed in other stratifications of PM2.5 exposure impact. 

Regarding lag times, the acute effects of PM2.5 exposure were relatively consistent across 0–3 

day lags, with a slight reduction in impact over longer lag periods. This pattern indicates that the 

immediate effects of PM2.5 exposure on ED visits diminish within three days. Control periods 

also influenced effect estimates, with smaller impacts observed for control periods closest to the 

event. As the control period extended from one to four weeks before the event, the impact 

estimates increased, likely due to more pronounced contrasts in exposure levels between the 

event and control periods (Figures S28, S29, S30). 

Overall, the significant association between PM2.5 exposure and ED visits for both genders 

underscores the pervasive health risks of air pollution.  
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Figure 23. The temporal trend of the population, categorized by gender, in California diagnosed with diabetes and PM2.5   

exposure from 2010 to 2019. 

 

Figure 24.The associations between PM2.5 exposure and ED visits for diabetic patients across gender categories in California 

from 2010 to 2019. 
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Age analysis 

Between 2010 and 2019, the distribution of type 2 diabetic patients by age group remained 

relatively stable, with only minor variations across categories (Figure 25). Ages 45-64 had the 

most composition, while ages 0-17, 16-24, and 85+ had the smallest composition, In 2010, they 

were 43.24%, 0.4%, 1.24% and 6.36%, respectively. Though relatively stable, we can still 

observe the gradual aging of the patient population after 2016, particularly as the "baby boomer" 

generation entered their senior years. By 2019, the percentage of individuals aged 65–74 

increased to 21.08 %, and those aged 75–84 rose to 14.64%.  This aging trend underscores the 

growing presence of older adults in the patient population, likely contributing to increased 

susceptibility to air pollution exposure. 

Regarding NO2 exposure, the mean levels across all age groups consistently declined over the 

study period. For example, mean NO2 exposure for individuals aged 0–17 decreased from 10.95 

ppb in 2010 to 8.66 ppb in 2019, 18-24 decreased from 10.55 ppb in 2010 to 8.37 ppb in 2019, 

25-44 decreased from 10.76 ppb in 2010 to 8.36 ppb in 2019. Similarly, the 45–64 age group saw 

a reduction in mean NO2 levels from 10.62 ppb in 2010 to 8.34 ppb in 2019. Individuals aged 

65–74 decreased from 10.45 ppb in 2010 to 8.15 ppb in 2019, 75-84 decreased from 10.26 ppb in 

2010 to 8.14 ppb in 2019, and finally, 85+ decreased from 10.103 ppb in 2010 to 8.09 ppb in 

2019. Across all the years, the 0-17 age group experienced the highest exposure to NO2, while 

the 85+ age group had the lowest exposure. Despite overall air quality improvements, the IQR of 

NO2 exposure widened after 2016, indicating increased variability within the middle 50% of 

exposure levels. This suggests that while average concentrations declined, certain areas 

experienced inconsistent air quality improvements, possibly due to localized pollution sources. 

The 0–17 age group exhibits the most significant changes, particularly in 2013 and 2017, where 

values rise above 1.2, marking substantial deviations from the baseline (Figure 26). This 

heightened impact is likely influenced by the increased severity of influenza in California during 

those years, which may have led to a surge in ED visits. During the 2014-2015 period, the impact 

for the 0-17 age group reached its lowest levels. This decline may be attributed to enhanced 

preventive care and improved access to healthcare services introduced under the ACA. The 

significant change in NO2’s impact on ED visits for the 0–17 age group reflects children's 

heightened vulnerability to air pollution, driven by their developing respiratory systems and 

higher exposure rates during outdoor activities. Additionally, the relatively small sample size for 

this age group, which results in wider confidence intervals, may contribute to the observed 

variability in NO2’s effect on ED visits, making year-to-year fluctuations more pronounced. For 

the other age groups, the effects of NO2 on ED visits remain relatively stable, consistently 

showing a significant impact over the years.  

 

Regarding lag times, the effects of NO2 exposure remained relatively stable across all age groups 

within 0–2 day periods, with a slight reduction observed by day 3. For control periods, smaller 
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impacts were noted when the control period was closest to the event, whereas larger effects were 

observed with extended control periods of up to four weeks (Figures S31, S32, S33). This pattern 

highlights the importance of accounting for temporal variability when selecting control periods 

to analyze the health impacts of NO2 exposure accurately.  

Overall, significant effects of NO2 exposure on ED visits were observed across all age groups, 

underscoring the pervasive health risks posed by air pollution. These findings emphasize the 

need for targeted air quality policies and interventions to protect vulnerable populations, such as 

children and older adults, who are disproportionately affected by the health impacts of NO2 

exposure. 

 

Figure 25. The temporal trend of the population, categorized by age, in California diagnosed with diabetes and NO2 exposure 

from 2010 to 2019. 
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Figure 26.The associations between NO2 exposure and ED visits for diabetic patients across age categories in California from 2010 to 2019. 
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Regarding PM2.5 exposure, the mean levels across all age groups consistently declined over the 

study period (Figure 27). For example, mean PM2.5 exposure for individuals aged 0–17 

decreased from 10.19 µg/m³ in 2010 to 8.81 µg/m³ in 2019, 18-24 decreased from 10.22 µg/m³ 

in 2010 to 8.82 µg/m³ in 2019, 25-44 decreased from 10.26 µg/m³ in 2010 to 8.79 µg/m³ in 2019. 

Similarly, the 45–64 age group saw a reduction in mean PM2.5 levels from 10.10 µg/m³ in 2010 

to 8.71 µg/m³ in 2019. Individuals aged 65–74 decreased from 9.98 µg/m³ in 2010 to 8.56 µg/m³ 

in 2019, 75-84 decreased from 9.87 µg/m³ in 2010 to 8.47 µg/m³ in 2019, and finally, 85+ 

decreased from 9.69 µg/m³ in 2010 to 8.30 µg/m³ in 2019.  Similar to NO2 exposure, across all 

the years, the 0-17 age group experienced the highest exposure to PM2.5, while the 85+ age group 

had the lowest exposure. Despite the overall decline in mean PM2.5 concentrations, levels rose 

significantly in 2018, accompanied by increases in both the SD and IQR for each age group. As 

previously discussed, this spike in PM2.5 and its associated variability was likely driven by the 

surge in wildfire activity during 2018. The widespread and severe wildfires that year led to 

extreme air pollution events, causing sharp fluctuations in PM2.5 levels across all three language 

speaker categories and contributing to the observed increase in SD and IQR. 

On C-R functions, the 0–17 age group exhibits the most significant changes, with high reaching 

over 1.1 and lows below 0.9 (Figure 28). This heightened impact is likely due to the likelihood of 

children engaging in outdoor activities, increasing their exposure and vulnerability to air 

pollution. Similar to what we have seen for other stratifications, the effect of PM2.5 exposure on 

ED visits for individuals aged 0–17 began to decline after 2011, reaching its lowest point in 

2015. This decline likely reflects improved air quality and the improved health care from the 

ACA act to protect this demographic. After 2015, individuals aged 65 and older experienced a 

slight increase in the impact of PM2.5 exposure on ED visits. This rise is likely attributable to the 

heightened vulnerability of older adults, driven by aging, chronic health conditions, and 

increased sensitivity to air pollution.  Furthermore, the effect diminished significantly in 2018, 

similar to the trends observed in other stratifications of PM2.5 exposure impact. 

Regarding lag times, the effects of PM2.5 exposure across all age groups remained relatively 

consistent over 0–2 day periods, with a slight decrease observed by day 3. For control period, the 

smallest effects were observed for control periods when the control period was closest to the 

event day. As the control period extended from one to four weeks prior, the estimated impact of 

PM2.5 exposure increased, underscoring the importance of careful temporal framing in exposure 

analyses (Figures S34, S35, S36). 

Overall, PM2.5 exposure significantly influenced ED visits across all age groups throughout the 

study period, emphasizing the widespread health risks associated with air pollution. These 

findings highlight the critical need for targeted interventions to reduce PM2.5 exposure, 

particularly for vulnerable populations such as children and older adults, who are 

disproportionately affected by its health impacts. 
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Figure 27. The temporal trend of the population, categorized by age, in California diagnosed with diabetes and PM2.5   exposure 

from 2010 to 2019. 
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Figure 28.The associations between PM2.5 exposure and ED visits for diabetic patients across age categories in California from 2010 to 2019. 
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Supplementary Figures 

 

Figure S1. The associations between NO2 exposure and ED visits for diabetic patients across different health 

insurance payer categories in California from 2010 to 2019. 
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Figure S2. The associations between NO2 exposure and ED visits for diabetic patients across different health 

insurance payer categories in California from 2010 to 2019. 
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Figure S3.The associations between NO2 exposure and ED visits for diabetic patients across different health 

insurance payer categories in California from 2010 to 2019. 
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Figure S4. The associations between PM2.5 exposure and ED visits for diabetic patients across different health 

insurance payer categories in California from 2010 to 2019. 
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Figure S5. The associations between PM2.5 exposure and ED visits for diabetic patients across different health 

insurance payer categories in California from 2010 to 2019. 
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Figure S6. The associations between PM2.5 exposure and ED visits for diabetic patients across different health 

insurance payer categories in California from 2010 to 2019. 
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Figure S7. The associations between NO2 exposure and ED visits for diabetic patients across region categories in 

California from 2010 to 2019. 
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Figure S8. The associations between NO2 exposure and ED visits for diabetic patients across region categories in 

California from 2010 to 2019. 
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Figure S9. The associations between NO2 exposure and ED visits for diabetic patients across region categories in 

California from 2010 to 2019. 
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Figure S10. The associations between PM2.5 exposure and ED visits for diabetic patients across region categories in 

California from 2010 to 2019. 
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Figure S11. The associations between PM2.5 exposure and ED visits for diabetic patients across region categories in 

California from 2010 to 2019. 
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Figure S12. The associations between PM2.5 exposure and ED visits for diabetic patients across region categories in 

California from 2010 to 2019. 
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Figure S13. The associations between NO2 exposure and ED visits for diabetic patients across language categories in 

California from 2010 to 2019. 



 

53 
 

 

Figure S14. The associations between NO2 exposure and ED visits for diabetic patients across language categories in 

California from 2010 to 2019. 
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Figure S15. The associations between NO2 exposure and ED visits for diabetic patients across language categories in 

California from 2010 to 2019. 
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Figure S16. The associations between PM2.5 exposure and ED visits for diabetic patients across language categories 

in California from 2010 to 2019. 
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Figure S17. The associations between PM2.5 exposure and ED visits for diabetic patients across language categories 

in California from 2010 to 2019. 
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Figure S18. The associations between PM2.5 exposure and ED visits for diabetic patients across language categories 

in California from 2010 to 2019. 
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Figure S19. The associations between NO2 exposure and ED visits for diabetic patients across five major race 

categories in California from 2010 to 2019. 
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Figure S20. The associations between NO2 exposure and ED visits for diabetic patients across five major race 

categories in California from 2010 to 2019. 
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Figure S21. The associations between NO2 exposure and ED visits for diabetic patients across five major race 

categories in California from 2010 to 2019. 
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Figure S22. The associations between PM2.5 exposure and ED visits for diabetic patients across five major race 

categories in California from 2010 to 2019. 
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Figure S23. The associations between PM2.5 exposure and ED visits for diabetic patients across five major race 

categories in California from 2010 to 2019. 
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Figure S24. The associations between PM2.5 exposure and ED visits for diabetic patients across five major race 

categories in California from 2010 to 2019. 

 



 

64 
 

 

Figure S25. The associations between NO₂ exposure and ED visits for diabetic patients across gender categories in 

California from 2010 to 2019. 
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Figure S26. The associations between NO₂ exposure and ED visits for diabetic patients across gender categories in 

California from 2010 to 2019. 
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Figure S27. The associations between NO₂ exposure and ED visits for diabetic patients across gender categories in 

California from 2010 to 2019. 
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Figure S28. The associations between PM2.5 exposure and ED visits for diabetic patients across gender categories in 

California from 2010 to 2019. 
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Figure S29. The associations between PM2.5 exposure and ED visits for diabetic patients across gender categories in 

California from 2010 to 2019. 



 

69 
 

 

Figure S30. The associations between PM2.5 exposure and ED visits for diabetic patients across gender categories in 

California from 2010 to 2019. 
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Figure S31. The associations between NO₂ exposure and ED visits for diabetic patients across age categories in 

California from 2010 to 2019. 
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Figure S32. The associations between NO₂ exposure and ED visits for diabetic patients across age categories in 

California from 2010 to 2019. 
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Figure S33. The associations between NO₂ exposure and ED visits for diabetic patients across age categories in 

California from 2010 to 2019. 
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Figure S34. The associations between PM2.5 exposure and ED visits for diabetic patients across age categories in 

California from 2010 to 2019. 
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Figure S35. The associations between PM2.5 exposure and ED visits for diabetic patients across age categories in 

California from 2010 to 2019. 
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Figure S36. The associations between PM2.5 exposure and ED visits for diabetic patients across age categories in 

California from 2010 to 2019. 
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1. Introduction 

 Type 2 diabetes (T2D) continues to be one of the most prevalent chronic conditions globally, 

characterized by insulin resistance and persistent hyperglycemia. Its rising incidence poses a 

significant challenge to healthcare systems, not only due to its long-term complications such as 

cardiovascular disease, nephropathy, and neuropathy, but also because of the acute burden it 

places on hospitals through emergency visits and prolonged inpatient stays. In the United States, 

California is home to a particularly high burden of T2D, with substantial racial and 

socioeconomic disparities shaping both disease outcomes and access to care. 

While lifestyle and genetic predispositions are established contributors to T2D development and 

progression, environmental exposures, especially air pollution are increasingly recognized as 

important, modifiable risk factors. Ambient air pollution, notably fine particulate matter (PM2.5) 

and nitrogen dioxide (NO2), has been implicated in the onset of insulin resistance, systemic 

inflammation, and impaired glucose regulation, all of which can accelerate the development and 

complications of T2D ((Brook et al., 2010; Guo et al., 2025; Hong et al., 2025; Liu et al., 2019; 

Rajagopalan & Brook, 2012; Zhang et al., 2025). Experimental and epidemiologic studies 

suggest that even short-term exposure to these pollutants can exacerbate underlying metabolic 

dysfunction, particularly among individuals with chronic diseases (Hu et al., 2025; Liang et al., 

2025).  

Although the connection between air pollution and T2D incidence has been well documented, far 

fewer studies have examined how acute fluctuations in pollution influence hospitalization-related 

outcomes among individuals already living with T2D. Hospital admissions and length of stay 

(LOS) offer valuable insights into the severity and destabilization of disease, often reflecting 

acute responses to environmental stressors. These outcomes are particularly relevant in settings 

like California, where overall pollution levels have declined due to regulatory efforts, yet local 

disparities in exposure remain pronounced, especially in low-income and racially diverse 

communities near traffic corridors or industrial zones. 

Wildfires' growing frequency and severity add complexity to the air pollution landscape, 

contributing episodic yet intense increases in PM2.5. The interaction between wildfire smoke 

exposure and chronic disease burden remains an underexplored but increasingly relevant public 

health issue in the western U.S., particularly for vulnerable populations such as those with T2D 

(Saeed, 2025; Wettstein et al., 2018). Moreover, the implementation of healthcare policy reforms, 

such as the Affordable Care Act (ACA), has altered healthcare access and utilization patterns 

over the last decade, offering a unique opportunity to evaluate how systemic changes may buffer 

or exacerbate environmental health risks. 

Although California has experienced substantial environmental and policy shifts over the past 

decade, few U.S.-based studies have evaluated how short-term air pollution exposure influences 

hospitalization and length of stay (LOS) among individuals with Type 2 Diabetes (T2D). Most 
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existing research has focused on long-term exposures or has been conducted in international 

settings with higher baseline pollution levels. There is a pressing need for high-resolution, 

individual-level analyses in regions like California, where moderate but variable pollution 

coincides with significant healthcare reforms and demographic diversity. 

To address this gap, we assessed the short-term associations between daily PM2.5 and NO2 

exposures and hospitalization outcomes among T2D patients in California from 2010 to 2019. 

Leveraging a large statewide hospitalization dataset linked to fine-scale air pollution and 

meteorological data, we examined temporal patterns, racial and ethnic disparities, and the 

influence of contextual factors such as major wildfire events and changes in healthcare access 

under the Affordable Care Act (ACA). By disaggregating results year-by-year, this study builds 

on our prior pooled analysis to capture shifts in pollution–health relationships that may be 

masked in multi-year averages. Our aim is to generate evidence that supports equitable, targeted 

environmental health strategies and enhances healthcare system resilience in the face of 

emerging environmental challenges. 

2. Materials and methods 

2.1. Study population and Health data 

This study investigates hospitalizations related to type 2 diabetes (T2D) in California from 2010 

to 2019. Patient-level hospitalization data were sourced from the California Department of 

Health Care Access and Information (HCAI). The dataset includes individuals with either a 

primary or secondary diagnosis of T2D, identified using ICD-9 code 250 or ICD-10 code E11. 

Key variables encompass ZIP code of residence, admission and discharge dates, length of stay 

(LOS), age, sex, race/ethnicity, insurance type, type of care received, and primary language 

spoken. 

Diagnostic and procedural fields were cleaned and standardized, and LOS was calculated as a 

derived metric. Residential ZIP codes were geocoded and spatially linked to air pollution 

exposure data.  

2.2. Exposure data 

Daily exposure estimates for PM2.5 and NO2 were developed using high-resolution land-use 

regression (LUR) models, as described in (Su et al., 2024). These models integrated various data 

sources, including satellite-based observations (e.g., Ozone Monitoring Instrument – OMI), 

weather variables, traffic density, land use characteristics, and vegetation indices such as the 

Normalized Difference Vegetation Index (NDVI). The models were trained using 

Decision/Support/Analysis (D/S/A) algorithms and validated through V-fold cross-validation to 

minimize overfitting and control for spatial autocorrelation. Pollution estimates were initially 

produced at a 30-meter spatial resolution and then aggregated into 100-meter grids to enhance 

computational efficiency. Individual exposure levels were calculated by deriving ZIP code-level 
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and population-weighted pollutant concentration averages, based on block group-level data 

weighted by population. Meteorological variables such as daily maximum temperature, 

maximum relative humidity, and precipitation were also assigned at the ZIP code level using the 

same methodology applied to air pollution estimates.  

2.3. Study Design 

To evaluate the short-term relationship between air pollution exposure and hospitalizations for 

type 2 diabetes (T2D), we employed a time-stratified case-crossover design. In this approach, 

each case day defined as the patient's admission date was matched with up to four control days 

on the same weekday in prior weeks. Control days were assigned by subtracting 7, 14, 21, and 28 

days from the admission date, corresponding to one, two, three, and four weeks earlier. This 

matching strategy controls for weekly temporal trends and minimizes confounding from short-

term patterns such as day-of-week effects. 

We created separate datasets for different case-control matching ratios (1:1, 2:1, 3:1, and 4:1), 

reflecting the number of control days paired with each case. This self-matched design inherently 

adjusts for fixed individual-level characteristics including age, sex, race/ethnicity, and underlying 

health conditions while reducing bias from time-varying confounders. The exposure windows 

were selected based on established evidence from prior studies, and additional lag structures 

were explored through sensitivity analyses to ensure robustness of the findings. 

2.4. Statistical analysis 

Analyses were stratified by individual years from 2010 to 2019 were performed using R version 

4.3.1(R Core Team, 2023). Data management and visualization were conducted using several R 

packages, including dplyr (Wickham, 2015), tidyr(Wickham & Wickham, 2017), lubridate(Spinu 

et al., 2016), survival (Therneau & Lumley, 2015), and ggplot2 (Wickham et al., 2016). We used 

conditional logistic regression to estimate the association between short-term exposure to 

ambient air pollutants and the odds of T2D-related hospitalization. Models adjusted for time-

varying meteorological variables, including daily temperature, relative humidity, precipitation, 

and wildfire events.  

The relationship between the effects of daily and lagged air pollution and hospital length of stay 

(LOS) was examined using generalized linear models (GLMs) with a Poisson link function. 

These models accounted for demographic and clinical covariates such as age at admission, 

insurance payer, race/ethnicity, type of care, and primary language along with daily 

meteorological conditions (maximum temperature, relative humidity, and precipitation). We 

evaluated pollutant effects using lag periods from 0 to 3 days before admission, reporting results 

as percent change in outcomes per interquartile range (IQR) increase in pollutant concentration, 

accompanied by 95% confidence intervals (CIs). Stratified analyses by calendar year and 

race/ethnicity were performed to capture temporal patterns and identify disproportionately 

affected populations. Because sample sizes varied by year, we conducted sensitivity analyses to 
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evaluate the robustness of annual estimates. Statistical significance was determined using a two-

sided p-value threshold of < 0.05. 

3. Results 

3.1. Effect on hospital admission 

Between 2010 and 2019, the number of Californians diagnosed with T2D nearly doubled, rising 

from 569,653 to 690,672. This increase Error! Reference source not found.can be largely 

attributed to an aging and increasingly obese population, improvements in data collection, and 

expanded healthcare access through the Affordable Care Act (ACA) (Fig. 1). The ACA facilitated 

broader screening and diagnosis efforts via Medi-Cal and subsidized insurance programs, 

identifying many previously undiagnosed cases. In 2010, NO2 exposure levels among individuals 

with T2D were relatively low. The economic downturn following the Great Recession (2007–

2009) contributed to this reduction in air pollution, particularly in urban areas where 

transportation emissions are a primary source of NO2 and particulate matter. Additionally, 

wildfire activity in 2010 was lower than in subsequent years, which helped prevent significant 

spikes in particulate pollution from that source. NO2 exposure increased between 2011 and 2013 

but began to decline steadily afterward. This downward trend in both average NO2 

concentrations and their standard deviation (SD) reflects improvements in air quality driven by 

regulatory policies and advancements in cleaner technologies. Measures such as stricter vehicle 

emissions standards, tighter industrial regulations, and the adoption of cleaner fuels helped 

reduce emissions. They led to a uniform decrease in NO2 levels, minimizing extreme pollution 

events that previously contributed to greater variability. Although the mean NO2 concentrations 

and SD continued to decline, the interquartile range (IQR) of NO2 exposure began to rise after 

2016. This pattern suggests that while extreme pollution events became less common, variability 

within the middle range of NO2 concentrations increased. A declining SD alongside a rising IQR 

indicates that data points are clustered more closely around the mean. Still, the spread within the 

central portion of the distribution became wider, reflecting a more stretched distribution of 

typical NO2 exposure levels, even as extreme outliers diminished. 
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Fig. 1. The temporal trend of the population in California diagnosed with diabetes and NO2 

exposure from 2010 to 2019. 

 

The concentration-response (CR) functions show the relationship between NO2 exposure and 

hospitalization, revealing a declining trend in effect estimates from 2010 to 2015, followed by an 

upward trend from 2015 to 2019 (Fig. 2). Several key factors contribute to this pattern. 

Expanding healthcare access through Medicaid has likely enhanced disease management and 

preventive care for low-income populations during the earlier period, reducing dependence on 

emergency departments for acute health issues. Consequently, the influence of environmental 

exposures like NO2 on hospitalization decreased between 2010 and 2015. However, after 2015, a 

broader distribution of NO2 exposure levels may have contributed to the observed resurgence in 

its health impact, even though average concentrations continued to decline. Additionally, shifts in 

population vulnerability likely played a role. As the "baby boomer" generation (born between 

1946 and 1964) aged and increasingly utilized healthcare services, their heightened susceptibility 

to air pollution may have amplified the health effects of NO2 during this later period. 

Regarding lagged effects, the impact of NO2 exposure remained relatively stable over the first 

two days (lags 0–2), with only a slight decline observed by day 3. This suggests that the health 

effects of NO2 are primarily acute and tend to diminish within a few days following exposure. 
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Concerning control period comparisons, using a 1-to-1 control (one week before the event) 

resulted in lower effect estimates, whereas applying a 4-to-1 control (four weeks before the 

event) produced higher estimates. This pattern may be explained by the dilution of exposure 

levels further from the event day, making the exposure on the event day appear comparatively 

higher and resulting in a stronger estimated effect. The association between NO2 exposure and 

hospitalization remained statistically significant across the entire study period (2010–2019), 

regardless of the lag structure (0–3 days) or control strategy (one to four weeks prior). This 

consistency demonstrates the robustness of the relationship between short-term NO2 exposure 

and adverse health outcomes, particularly among individuals with diabetes.  

 

Fig. 2. The association between NO2 exposure and hospitalization over 0–3 lag days across four 

control categories, modeled annually from 2010 to 2019.  

 

In parallel with trends in NO2 exposure, PM2.5 levels among individuals with T2D were relatively 

low in 2010, likely due to the economic slowdown following the Great Recession and reduced 

wildfire activity that year (Fig. 3). Starting in 2011, average PM2.5 concentrations steadily 

declined, reflecting significant progress in air quality driven by stricter environmental regulations 

and advancements in cleaner technologies. Enhanced vehicle emission standards, tighter 

industrial pollution controls, and the transition to cleaner fuels were key contributors to this 

improvement. The standard deviation (SD) of PM2.5 levels also decreased, indicating reduced 

extreme pollution events and more consistent air quality improvements across regions. However, 

after 2016, the interquartile range (IQR) of PM2.5 exposure began to rise, suggesting increased 
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variability in mid-range pollution levels. While extreme pollution events became less frequent, 

disparities in regional pollution control efforts and localized PM2.5 sources may have contributed 

to this growing variability within the central range of exposures. 

Although the decline in average PM2.5 concentrations and reduced variability in extreme values 

highlight the success of air quality interventions, 2018 saw a significant spike in PM2.5 levels, 

primarily due to unprecedented wildfire activity. Major events such as the Camp Fire in Northern 

California and the Woolsey Fire in Southern California released large quantities of fine 

particulate matter, severely degrading air quality across the state. These extreme wildfire events 

underscore the growing impact of climate change on air pollution patterns, even as regulatory 

policies continue to reduce emissions from traditional sources. The increasing IQR also 

highlights the need for more localized, targeted efforts to address disparities in mid-range 

pollution exposures and mitigate community-level health risks. 

 

Fig. 3. The temporal trend of the population in California diagnosed with diabetes and PM2.5 

exposure from 2010 to 2019. 

 

The association between PM2.5 exposure and hospitalization reveals a distinct temporal pattern: a 

positive effect in 2011, a decline in effect estimates from 2012 to 2015, and a renewed increase 
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from 2015 to 2019 (Fig. 4). Relatively low PM2.5 levels may explain the initially negative 

association observed in 2010. The broader implementation of the Affordable Care Act (ACA) by 

2014 significantly shaped this trend, expanding access to healthcare through Medicaid for low-

income individuals and Medicare Part B for older adults. Enhanced access likely promoted better 

disease management and preventive care, which reduced reliance on hospital services for acute 

conditions. Consequently, the health impacts of environmental exposures, including PM2.5, 

declined during 2012–2015. 

However, the upward trend in PM2.5-related health effects observed after 2015 may reflect shifts 

in exposure dynamics and rising population vulnerability. Despite overall declines in average 

PM2.5 levels, there was a noticeable increase in mid-range exposures, which may have amplified 

health risks.  

 

Fig. 4. The association between PM2.5 exposure and hospitalization over 0–3 lag days across four 

control categories, modeled annually from 2010 to 2019. 

 

Interestingly, despite elevated PM2.5 levels in 2018, hospitalization remained relatively low at 

678,682. Several factors may account for this. Wildfire-related PM2.5 tends to occur in short, 

intense bursts. In contrast, chronic exposure to pollution from traffic and industrial sources has a 

more established link to sustained health impacts and increased hospital utilization. Additionally, 

heightened public awareness and protective behaviors—such as using N95 masks, adherence to 

air quality alerts, and staying indoors—may have reduced acute exposures during wildfire 
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events. Adaptations like increased use of air purifiers and reduced outdoor activity could have 

further mitigated immediate health consequences. It is also possible that the health effects of 

such exposures are delayed and not fully reflected in the same-year hospitalization data. 

Furthermore, adjustments for wildfire-related PM2.5 in the modeling may have overcontrolled for 

its effects, potentially underestimating its contribution to hospital admissions. 

Regarding lagged effects, PM2.5 exposure had a relatively stable impact on hospitalization within 

the 0–2 day period, with a modest reduction in effect by day 3. This indicates that PM2.5 

predominantly exerts short-term health effects. Comparing different control strategies1-to-1 (one 

week before the event, versus 4-to-1, four weeks prior revealed a pattern like that seen with NO2: 

stronger associations were detected when control periods were further from the event date. This 

may be due to lower pollution levels during those earlier periods, heightening the apparent 

contrast and thus the observed effect on the event day.  

3.2. Effect on hospitalization stratified by race/ethnicity 

From 2010 to 2019, the racial distribution among T2D patients remained relatively stable (Fig. 

5). White patients consistently represented the largest group, though their proportion declined 

slightly from 46.94% to 39.36%. Hispanic patients, the second-largest group, experienced a 

modest increase from 30.23% to 34.42%. The proportion of Asian patients rose slightly from 

9.65% to 9.99%, while Black patients decreased from 11.90% to 10.33%. The "Other" racial 

category, although the smallest in 2010 (1.26%), grew significantly, reaching 5.87% by 2019. 

Regarding NO2 exposure, except for 2010, average NO2 levels across all racial groups showed a 

clear downward trend over the study period. For example, mean NO2 exposure for Black, 

Hispanic, and Other patients decreased from 12.55 ppb, 12.88 ppb, and 10.50 ppb in 2010 to 

9.02 ppb, 9.23 ppb, and 8.32 ppb in 2019, respectively. Similarly, Asian patients experienced a 

reduction from 12.30 ppb to 8.84 ppb, and White patients from 10.37 ppb to 7.47 ppb over the 

same period. Hispanic patients had the highest NO2 exposure, while White patients experienced 

the lowest. Despite these improvements, the interquartile range (IQR) of NO2 exposure began to 

widen after 2016, indicating increased variability within the mid-range of exposures. This 

suggests that while extreme pollution events became less frequent, exposure disparities persisted 

or worsened, likely driven by localized pollution sources and regional differences in air quality 

improvements. 

Regarding concentration-response (C-R) functions, the "Other" racial category consistently 

exhibited the highest NO2-related health effects. It showed the most pronounced fluctuations, 

particularly in 2017, when the Effect exceeded 1.18, the largest deviation from the baseline 

among all groups (Fig. 6). This heightened impact may reflect greater socioeconomic and 

environmental vulnerabilities, including reduced access to preventive healthcare and increased 

exposure to local pollution sources. In contrast, the other racial and ethnic groups showed 

relatively stable C-R patterns with minor fluctuations. 
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Starting around 2012, the health impacts of NO2 exposure on hospitalization declined across all 

racial groups, reaching their lowest levels by 2015. This decline likely reflects the benefits of 

expanded healthcare access and improved disease management driven by Medicaid expansion 

and the Affordable Care Act (ACA) reforms. However, after 2015, the effects of NO2 exposure 

on hospitalization began to rise again, particularly among patients in the "Other" racial category. 

This resurgence may be associated with increased susceptibility due to an aging population and a 

growing burden of chronic conditions within these communities. 

 

Fig. 5. The temporal trend of the population, categorized by five major races, in California 

diagnosed with diabetes and NO2 exposure from 2010 to 2019. 
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Fig. 6. The associations between NO2 exposure and hospitalization for diabetic patients across 

five major race categories in California from 2010 to 2019. 

 

Regarding lag effects, the influence of NO2 exposure on hospitalization remained relatively 

stable across 0–2-day lags, with a slight decline by day 3, indicating that the short-term health 

effects of NO2 exposure tend to diminish over time. When comparing control periods, larger 

effect estimates were observed with longer control intervals, such as the four-week control 

period (Figures S1, S2, S3). This finding highlights the importance of carefully selecting 

temporal control periods, as variations in seasonal and spatial exposure patterns can significantly 

affect the observed associations between pollution and health outcomes. 

These findings reveal significant associations between NO2 exposure and hospitalization across 

all racial groups from 2010 to 2019, underscoring the persistent health burden of air pollution, 

especially among vulnerable populations. Addressing these disparities through targeted 

interventions and sustained improvements in air quality is critical to reducing the health impacts 

of NO2 exposure and advancing environmental justice for all communities. 

PM2.5 exposure analysis (Fig.S4) shows average exposure levels declined across all racial and 

ethnic groups from 2010 to 2019. Specifically, average PM2.5 concentrations for Black, Hispanic, 

and Other individuals decreased from 10.35 µg/m³, 10.81 µg/m³, and 9.82 µg/m³ in 2010 to 8.66 
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µg/m³, 9.03 µg/m³, and 8.36 µg/m³ in 2019, respectively. Similarly, Asian individuals 

experienced a reduction from 10.23 µg/m³ to 8.50 µg/m³, and the White population saw levels 

fall from 9.79 µg/m³ to 8.21 µg/m³ during the same period. Overall, Hispanic and Black patients 

experienced the highest PM2.5 exposures, while White patients consistently had the lowest. 

Despite the downward trend in average PM2.5 levels, 2018 marked a sharp increase in 

concentrations, accompanied by notable rises in the standard deviation (SD) and interquartile 

range (IQR). This spike was largely driven by severe wildfire activity that year, which led to 

widespread and extreme air pollution events. These wildfires not only elevated PM2.5 levels but 

also increased exposure variability across all racial and ethnic groups, contributing to the 

observed growth in SD and IQR. Regarding concentration-response (C-R) functions, the "Other" 

category displayed the most pronounced changes. For instance, between 2011 and 2014, effect 

estimates for this group fell from 1.07 to around 1.0 (Fig.S5).  

Between 2012 and 2015, the effects of PM2.5 exposure on hospitalization declined across all 

racial and ethnic groups, reaching their lowest levels during this period. This reduction likely 

reflects improvements in air quality and expanded access to preventive healthcare services made 

possible by Medicaid expansion and other initiatives under the Affordable Care Act (ACA). 

However, after 2015, the impact of PM2.5 exposure on hospitalization began to increase again, 

particularly among Hispanic and Black populations. This resurgence may indicate increased 

vulnerability in these communities, potentially due to a higher prevalence of chronic health 

conditions or other socioeconomic risk factors. Additionally, wider confidence intervals observed 

for the Asian and "Other" groups suggest smaller sample sizes in these populations, leading to 

greater uncertainty and variability in the effect estimates. 

Examining lagged effects, the "Other" category exhibited notable fluctuations and variability 

across all lag periods (0 to 3 days), especially during earlier years. Large error bars for this group 

highlight the uncertainty of these estimates. Furthermore, the choice of control period 

significantly affected the observed results, with longer control intervals (e.g., four weeks) 

producing larger estimated effects (Figures S6, S7, S8). This is likely to reflect the lower 

pollution levels during more distant control periods, which amplify the relative difference 

compared to exposure levels on the event day. 

3.3. Effect on LOS 

Between 2010 and 2019, the number of hospitalized Californians with T2D rose from 569,653 to 

690,672. This increase (Fig.S9) is primarily driven by an aging and growing obese population, 

enhanced data reporting, and expanded healthcare access under the Affordable Care Act (ACA). 

The ACA's implementation improved hospital accessibility through Medi-Cal and subsidized 

insurance plans, facilitating better identification and documentation of hospitalization cases. 

In 2010, NO2 exposure among Type 2 diabetic patients remained relatively low. A key factor 

contributing to this was the economic downturn following the Great Recession (2007–2009), 
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which reduced industrial and transportation emissions, particularly in urban areas where these 

sources are major contributors to NO2 and particulate pollution. Additionally, wildfire activity in 

2010 was lower than in other years, preventing substantial spikes in pollution from that source. 

Between 2011 and 2013, NO2 exposure increased, but from 2014 onward, overall NO2 

concentrations and their standard deviation (SD) showed a steady decline. 

This downward trend is likely due to enhanced air quality regulations and the adoption of cleaner 

technologies, which have helped reduce emissions over time. Policies such as stricter vehicle 

emissions standards, industrial regulations, and the adoption of cleaner fuels have contributed to 

an overall decline in emissions, leading to a more consistent reduction in NO2 levels and fewer 

extreme pollution events that previously caused high variability. While the mean NO2 

concentrations and standard deviation (SD) continued to decrease, the interquartile range (IQR) 

of NO2 exposure began to rise after 2016. This declining SD and an increasing IQR combination 

suggest that NO2 values became more concentrated around the mean, yet the middle portion of 

the data showed greater variability. In other words, while extreme pollution outliers became less 

common, the spread of NO2 levels within the central range widened, indicating a more stretched-

out distribution of exposure levels over time. 

The CR functions between NO2 exposure and LOS show an upward trend in effect estimates 

from 2010 to 2012, peaking in 2012. A slight decline followed this in 2013, but the estimates 

rose again in 2014, indicating some fluctuations. Overall, from 2010 to 2014, the estimates 

demonstrate a moderate increase. The CR functions between NO2 exposure and LOS exhibit an 

upward trend from 2014 to 2016, followed by fluctuations in 2017-2019 (Fig.S10). This trend 

can be attributed to several key factors. Expanding Medicaid for low-income individuals will 

likely enhance access to preventive care and disease management, decreasing hospitalizations for 

acute conditions. With improved healthcare availability, patients may have received earlier 

interventions and better chronic disease management, reducing the need for emergency hospital 

admissions. Shifts in population susceptibility may also account for the increased impact of NO2 

after 2014. As the baby boomer generation (born between 1946 and 1964) aged and became 

more integrated into the healthcare system, their heightened vulnerability to air pollution likely 

contributed to the observed rise in NO2-related health effects. 

Over all years, lag 2 estimates tend to be slightly higher than lag 0 estimates, suggesting that the 

impact of NO2 exposure on LOS increases slightly over the first two days. The most notable 

increase occurs in 2012, where lag 0 = 1.021 and lag 2 = 1.023, showing a sustained short-term 

effect of NO2 exposure. This trend suggests that the Effect of NO2 exposure may not be 

immediate but becomes more evident within 1-2 days post-exposure. In most years, lag 3 

estimates are slightly lower than lag 2 estimates, indicating that the NO2 exposure effect starts to 

decline by day 3. For example, in 2013, the estimate for lag 2 = 1.012 but drops to 1.009 at lag 3, 

implying that the Effect weakens after two days. This pattern suggests that the influence of NO2 

exposure on hospitalization LOS is strongest within the first 2 days and starts to diminish 

afterward. NO2 exposure effect increases from lag 0 to lag 2, suggesting a short-term 
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accumulation of impact. The Effect declines from lag 2 to lag 3, implying a diminishing 

influence beyond the initial exposure period. This pattern is consistent across most years, 

indicating a predictable short-term effect of NO2 exposure on hospitalization duration. 

The impact of NO2 exposure on LOS remains statistically significant across 2010–2019, 

considering lags 0–3 days. This finding underscores the robustness of the association between 

NO2 exposure and prolonged hospitalization, regardless of temporal considerations. The 

consistent significance of NO2's Effect highlights that short-term exposure is a key factor 

influencing hospitalization duration, emphasizing the importance of air quality monitoring. The 

persistence of this relationship over nearly a decade reinforces the urgent need for targeted 

interventions to mitigate NO2 pollution, particularly in vulnerable populations and high-risk 

areas where individuals may experience prolonged hospital stays due to air pollution-related 

complications. 

From 2010 to 2019, the number of Californians hospitalized with T2D increased from 569,653 to 

690,672 (Fig.S11). The increase in hospitalized cases of T2D from 2010 to 2019 aligns with 

expanded healthcare access, which improved diabetes screening and diagnosis through Medi-Cal 

and subsidized insurance programs, likely identifying many previously undiagnosed cases. 

Several key factors contributed to this trend. California's growing and aging population, 

particularly the baby boomer generation, played a significant role, as older adults face a higher 

risk of T2D-related complications requiring hospitalization. Additionally, rising obesity rates, 

influenced by sedentary lifestyles and unhealthy dietary patterns, further exacerbate the burden 

of diabetes hospitalizations. Data collection and tracking system improvements also provided a 

more accurate assessment of diabetes prevalence, ensuring that more cases were documented 

over time.  

Much like NO2 exposure trends, PM2.5 concentrations among individuals with T2D were 

relatively low in 2010. This pattern likely reflects the economic slowdown following the Great 

Recession and lower wildfire activity compared to subsequent years. Beginning in 2011, average 

PM2.5 levels experienced slight fluctuations but showed an overall downward trend, indicating 

gradual improvements in air quality. These improvements were largely attributed to the 

implementation of more stringent environmental regulations and the widespread adoption of 

cleaner technologies. A steady decline in the standard deviation (SD) of PM2.5 concentrations, 

particularly after 2013, suggests a reduction in extreme pollution events and more consistent air 

quality improvements across different regions. This trend points to the positive impact of 

regulatory measures such as enhanced vehicle emission standards, industrial emission controls, 

and transitions to cleaner fuel sources in reducing PM2.5 variability. However, in 2012, 2016, and 

2018, the interquartile range (IQR) of PM2.5 exposure was wider, indicating growing variability 

in moderate pollution levels. This shift may reflect uneven effectiveness in pollution control 

strategies or localized sources of PM2.5 emissions, such as wildfires, urban hotspots, and 

industrial zones. Although extreme exposure events became less frequent, the increased 
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variability within the mid-range highlights the need for more geographically targeted 

interventions to address persistent air quality disparities. 

The association between PM2.5 exposure and hospitalization reveals a distinct trajectory: a direct 

relationship in 2010, decreased risk effect estimates in 2011 and 2013, no effects in 2013, and a 

subsequent rise in 2014- 2018 (Fig.S12). In 2019, higher PM2.5 levels were associated with 

slightly reduced hospitalizations. In 2010, the positive association may be linked to higher 

overall PM2.5 levels. Between 2011 and 2014, the full implementation of the Affordable Care Act 

(ACA) expanded healthcare access, particularly through Medicaid for low-income populations 

and Medicare Part B for older adults. The expansion likely enhanced the management of chronic 

conditions and access to preventive care, leading to decreased dependence on hospital services 

for acute events triggered by environmental factors such as PM2.5. However, the rise in effect 

estimates after 2014 may reflect shifts in exposure patterns or increased population susceptibility. 

Interestingly, despite a continued decline in PM2.5 concentrations, there was an uptick in mid-

range exposure levels, which could have played a role in the observed rebound in health impacts 

during this time. 

The rising association between PM2.5 exposure and hospitalizations from 2014 to 2016 may be 

partly attributed to demographic changes, particularly the aging of the baby boomer generation. 

As this cohort became more actively engaged with healthcare services, their increased 

vulnerability to air pollution likely intensified the health effects of PM2.5. Interestingly, despite a 

significant spike in PM2.5 levels in 2018 largely due to wildfires, the related increase in hospital 

admissions was relatively modest. Several factors may account for this pattern. Wildfire-induced 

PM2.5 surges, while intense, tend to be brief compared to chronic exposure from traffic or 

industrial emissions, which are more consistently linked to long-term health impacts. Moreover, 

growing public awareness and preventive actions such as air quality alerts, widespread use of 

N95 masks, and guidance to stay indoors likely helped mitigate exposure during wildfire 

episodes. Behavioral adaptations, including reduced outdoor activities and greater use of indoor 

air filtration, may have further limited health risks. Additionally, the effects of acute exposure 

may have a delayed onset, meaning hospitalizations might not occur immediately. Lastly, 

including wildfire-specific PM2.5 in statistical models may have unintentionally dampened its 

apparent influence, potentially underestimating the true health burden. 

Regarding lagged effects, the relationship between PM2.5 exposure and subsequent health 

outcomes shows a noticeable increase by the third-day post-exposure, suggesting that PM2.5 has 

an acute impact that intensifies over a short period. Between 2010 and 2019, the association 

between PM2.5 and LOS among diabetic patients was generally not statistically significant across 

most years and lag intervals (0–3 days), with exceptions noted in 2010, 2012, 2014, and 2015. 

These findings underscore the critical role of short-term PM2.5 exposure in precipitating 

hospitalizations in individuals with diabetes. The recurring pattern over a decade highlights the 

urgency for targeted public health initiatives and air quality policies, particularly for vulnerable 

populations and high-risk regions. 
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3.4. Effect on LOS stratified by race/ethnicity 

Between 2010 and 2019, the racial distribution of T2D patients remained generally consistent 

(Fig.S13). White patients continued to represent the largest group, though their proportion 

declined slightly from 47% to 39.45%. In contrast, the proportion of Hispanic patients increased 

moderately, rising from 30.24% to 34.59% over the same period. The percentages of Black and 

Asian patients showed minimal changes, from 11.84% to 10.02% and 9.65% to 10.16%, 

respectively. The "Other" racial category, initially the smallest at 1.25% in 2010, saw a notable 

increase, reaching 5.7% by 2019.  

Regarding NO2 exposure, a consistent decline in average levels was observed across all racial 

groups from 2010 to 2019, except for 2010. For example, the mean NO2 exposure among Black, 

Hispanic, and "Other" populations decreased from 12.72 ppb, 13.03 ppb, and 10.61 ppb in 2010 

to 9.15 ppb, 9.39 ppb, and 8.44 ppb in 2019, respectively. Similarly, the Asian population 

experienced a reduction from 12.46 ppb to 8.97 ppb, and White individuals saw their average 

exposure fall from 10.46 ppb to 7.56 ppb over the same period. Throughout this timeframe, 

Hispanic individuals consistently had the highest average NO2 exposure, while White individuals 

experienced the lowest. Despite these improvements, the interquartile range (IQR) of NO2 

exposure began widening after 2016, indicating increased variability in exposure levels within 

the middle range of the distribution. This pattern suggests that although severe pollution events 

became less common, disparities in exposure may have worsened across neighborhoods or 

regions, possibly driven by localized pollution sources. 

In the concentration-response (C-R) functions, the "Other" racial category consistently exhibited 

the highest NO2 effects. It showed the most pronounced fluctuations, particularly in 2011 when 

its Effect exceeded 1.15, marking the greatest deviation from the baseline across all groups 

(Fig.S14). This elevated impact may be linked to socioeconomic and environmental 

vulnerabilities, including reduced access to preventive healthcare services. 

In contrast, other racial and ethnic groups displayed relatively stable trends, with only minor 

variations. Beginning in 2013, the effects of NO2 exposure on LOS declined steadily across all 

groups, reaching their lowest point around 2016. This downward trend likely reflects improved 

healthcare access and disease management following Medicaid expansion and broader reforms 

introduced under the Affordable Care Act (ACA). However, after 2016, the influence of NO2 

exposure on LOS began to rise again, particularly among individuals in the "Other" category. 

This resurgence may be attributed to increased vulnerability in these populations, driven by 

aging demographics and a growing prevalence of chronic health conditions. Concerning lag 

effects, the impact of NO2 exposure on LOS remained relatively consistent across lags of 0 to 2 

days, with a slight decline by day 3. This pattern suggests that the acute health effects of NO2 

exposure tend to diminish within a few days. 

As shown in Fig.S15, average PM2.5 exposure levels declined across all racial and ethnic groups 

between 2010 and 2019. For Black, Hispanic, and "Other" populations, average exposures 
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dropped from 10.31 µg/m³, 10.76 µg/m³, and 9.78 µg/m³ in 2010 to 8.73 µg/m³, 9.09 µg/m³, and 

8.41 µg/m³ in 2019, respectively. Similarly, Asian individuals experienced a reduction from 

10.19 µg/m³ to 8.56 µg/m³, while the White population saw exposure levels decline from 9.73 

µg/m³ to 8.25 µg/m³ over the same period. Throughout this timeframe, Hispanic and Black 

individuals consistently experienced the highest PM2.5 exposure, while White individuals had the 

lowest. Despite this downward trend, a significant spike in PM2.5 concentrations occurred in 

2018, accompanied by notable increases in the standard deviation (SD) and interquartile range 

(IQR). As discussed earlier, this sharp rise in PM2.5 levels and variability was largely driven by 

the severe and widespread wildfires that year, which led to extreme air pollution events. These 

conditions contributed to greater fluctuations in PM2.5 exposure across all racial and ethnic 

groups, resulting in increased SD and IQR. 

In the concentration-response (C-R) functions, the Asian group demonstrated the most 

pronounced changes, particularly between 2012 and 2013, when its effect estimate declined from 

approximately 1.06 to nearly 0.98 (Fig.S16). From 2012 to 2019, the influence of PM2.5 exposure 

on hospitalization consistently decreased across all racial and ethnic groups, reaching its lowest 

point in 2019. This downward trend likely reflects improved air quality and greater access to 

preventive healthcare services resulting from Medicaid expansion and other policy reforms under 

the Affordable Care Act (ACA). However, starting after 2015, the effects of PM2.5 exposure on 

hospitalization began to rise again, most notably among the White and Other populations. This 

resurgence may indicate increased vulnerability in these groups, possibly driven by a higher 

prevalence of chronic health conditions or other underlying risk factors. The wider confidence 

intervals observed for the Asian and Other groups suggest smaller sample sizes in these 

populations, contributing to greater variability and uncertainty in the effect estimates. Regarding 

lagged effects, the Other group exhibited persistent fluctuations and variability across all lag 

periods (0, 1, 2, and 3 days), especially during the earlier years. This group's relatively large error 

bars further highlight the uncertainty associated with these estimates.  

4. Discussion 

This study examined the temporal trends and associations between short-term air pollution 

exposure (NO2 and PM2.5) and hospitalization outcomes including admission rates and length of 

stay (LOS) among individuals with type 2 diabetes (T2D) in California from 2010 to 2019. Our 

findings indicate that although average concentrations of NO2 and PM2.5 declined over the study 

period, their health effects on the diabetic population remained significant and, in some cases, 

intensified. These patterns are shaped by evolving environmental exposures, population-level 

susceptibility, healthcare access, and racial/ethnic disparities. 

Our analysis revealed a paradox: while absolute concentrations decreased, the concentration-

response (C-R) relationships for pollutants and hospital outcomes (admission and LOS) showed 

complex and non-linear trends. Notably, after initial declines in effect estimates until around 
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2015, a resurgence in health impacts was observed from 2016 onwards. This may be due to 

increased mid-range exposure variability (rising IQR) and growing susceptibility within the 

aging population. Similar findings have been reported, suggesting that air pollution health risks 

can persist even at lower exposure levels due to chronic disease burden and demographic 

vulnerability (Di et al., 2017; Pope III & Dockery, 2006). 

Between 2012 and 2015, a period marked by substantial ACA implementation and Medicaid 

expansion, we observed a reduction in the health effects of air pollution. Enhanced healthcare 

access likely improved disease management among T2D patients, decreasing their reliance on 

emergency services during pollution episodes. This aligns with prior literature highlighting how 

increased healthcare access can buffer the acute health impacts of environmental exposures 

(Sommers et al., 2015). However, after 2015, the growing burden of chronic diseases and aging 

demographics may have offset these benefits, contributing to a rebound in pollution-related 

hospitalizations and LOS. 

The sharp increase in PM2.5 levels in 2018 due to catastrophic wildfires illustrates how climate-

driven events are altering the air pollution landscape in California. While these spikes were 

temporally intense, they did not correspond to proportional increases in hospitalizations or LOS, 

possibly due to public adaptation behaviors such as mask usage and sheltering indoors. This 

suggests that the toxicity and duration of exposure (e.g., wildfire vs. traffic-related PM2.5) may 

differentially impact health, a hypothesis supported by emerging literature (Aguilera et al., 2021; 

Reid et al., 2016). Furthermore, adjustments in statistical models may have overcontrolled for 

wildfire-related PM2.5, potentially underestimating its contribution to health outcomes. 

Our findings underscore persistent racial and ethnic disparities in both exposure and 

vulnerability. Hispanic and Black populations experienced consistently higher average NO2 and 

PM2.5 levels than White populations. The "Other" racial category, which includes small, often 

underrepresented subgroups, exhibited the most pronounced and fluctuating health impacts. 

These disparities likely reflect environmental injustice, neighborhood segregation, healthcare 

access, and socioeconomic stressors. Previous studies have documented similar patterns of 

disproportionate exposure and health burden among marginalized communities (Clark et al., 

2014; Mikati et al., 2018), highlighting the urgency for targeted interventions in these 

populations. 

Both NO₂ and PM₂.₅ demonstrated significant short-term (0–3 day) associations with T2D-

related hospitalization and length of stay (LOS), with the most pronounced effects typically 

occurring within the first two days of exposure. These patterns underscore the acute health risks 

posed by these pollutants to vulnerable populations. The variability in effect sizes across lag 

structures and control periods highlights the importance of rigorous methodological choices in 

time-series and case-crossover designs, while the consistency of statistical significance across 

control strategies strengthens the credibility of our findings. 
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Our results indicate that improvements in overall air quality may not, by themselves, eliminate 

health disparities unless paired with policies that address underlying population vulnerabilities 

and healthcare access. Despite California’s notable progress in reducing air pollution, the 

increasing variability in moderate exposure levels and the disproportionate burden observed in 

specific racial and ethnic groups call for more geographically and demographically tailored 

interventions. Integrating high-resolution air quality monitoring with chronic disease 

management particularly for individuals with diabetes could help prevent acute health events and 

reduce hospital system strain. 

Several limitations should be noted. First, exposure estimates relied on ambient pollutant 

concentrations and did not capture personal exposure variations due to indoor environments or 

individual behaviors. Second, unmeasured confounding from factors such as diet, smoking, or 

medication adherence may persist. Third, smaller sample sizes for certain racial/ethnic categories 

(particularly “Other”) produced wider confidence intervals, warranting cautious interpretation. 

Finally, our analysis focused on short-term exposure, and the impacts of chronic exposure remain 

an important area for future investigation. 

The observed year-to-year fluctuations in effect estimates may reflect the combined influence of 

changing healthcare access under the Affordable Care Act (ACA) and the episodic nature of 

wildfire-driven pollution. Notably, disparities in air pollution-related impacts appeared to widen 

in certain years, underscoring the need for adaptive public health strategies that respond to both 

environmental variability and shifting policy landscapes. 

5. Conclusions and Implications 

This study offers a comprehensive assessment of the impact of short-term exposure to air 

pollutants, specifically nitrogen dioxide (NO2) and fine particulate matter (PM2.5), on 

hospitalization outcomes among individuals with type 2 diabetes (T2D) in California from 2010 

to 2019. Our analysis reveals persistent and significant associations between ambient air 

pollution and adverse health outcomes in high-risk populations by evaluating hospital admission 

rates and length of stay (LOS) over a decade of evolving environmental, demographic, and 

policy landscapes. 

Despite measurable improvements in air quality across the state, driven by regulatory 

interventions and technological advancements, our findings demonstrate that the health burden of 

air pollution among diabetic patients has not proportionally declined. After a period of reduced 

effect estimates between 2012 and 2015, likely linked to the implementation of the Affordable 

Care Act (ACA) and expanded healthcare access, the concentration-response (C-R) functions for 

both NO2 and PM2.5 began to rise again. This resurgence appears to be associated with increased 

mid-range exposure variability and growing population vulnerability, particularly due to aging 

demographics and the cumulative burden of chronic diseases. 
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Our analysis further highlights the nuanced nature of air pollution impacts, where the average 

concentration and exposure distribution (e.g., interquartile range and standard deviation) play a 

critical role in shaping health risks. For instance, while extreme pollution events became less 

frequent, the widening interquartile ranges after 2016 suggest that mid-level pollution variability 

increased, potentially sustaining health impacts despite overall air quality improvements. 

Another key finding is the role of wildfire-related PM2.5 events, particularly in 2018, which led to 

acute spikes in pollution levels without a corresponding surge in hospitalizations or LOS. This 

pattern may be explained by protective public behaviors, temporary exposure profiles, and model 

adjustments that may have underrepresented wildfire-specific health effects. Nonetheless, these 

events underscore the growing relevance of climate change and environmental extremes in 

shaping modern pollution dynamics and associated health risks. 

Our study also provides strong evidence of racial and ethnic disparities in pollutant exposure and 

the health effects that result from it. Hispanic and Black populations consistently experienced 

higher levels of NO2 and PM2.5, and the "Other" racial category likely representing smaller, 

underrepresented groups showed the most pronounced and variable C-R estimates. These 

disparities are reflective of broader environmental justice issues, where structural inequities in 

housing, healthcare access, and neighborhood infrastructure contribute to elevated health burdens 

among marginalized populations. This reinforces the need for policy approaches that are both 

environmentally sound and equity-focused. 

Lag analyses revealed that the health effects of NO2 and PM2.5 were most pronounced within the 

first 48 hours post-exposure, consistent with prior evidence that links these pollutants to acute 

exacerbations of chronic diseases. These short-term dynamics emphasize the urgency of timely 

public health alerts and interventions, especially during known pollution events or wildfire 

outbreaks. 

Taken together, our findings advocate for a dual-pronged strategy in environmental health 

policy. On one hand, continued efforts to reduce overall emissions through stricter standards and 

cleaner technologies remain essential. On the other hand, interventions must also be tailored to 

address regional disparities, racial/ethnic vulnerabilities, and the unique risks associated with 

climate-induced pollution spikes such as wildfires. Integrating environmental data with chronic 

disease management systems, especially within Medicaid and Medicare frameworks, could 

enhance preventive care delivery and reduce hospital burden. 

Environmental factors and healthcare access and utilization patterns significantly shape the 

relationship between pollution and hospitalization. The observed decrease in health impacts 

during the ACA expansion years exemplifies the value of healthcare policy as a buffer against 

environmental stressors. This intersection between public health, healthcare access, and 

environmental quality represents a crucial frontier for future interdisciplinary research and 

policymaking. 
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While this study provides robust and policy-relevant insights, certain limitations must be 

acknowledged. Ambient pollution estimates do not account for individual-level exposures, 

indoor air quality, or personal behaviors such as air filters or masks. Additionally, unmeasured 

confounding variables and small subgroup sizes (especially in the "Other" racial category) may 

limit the precision of some estimates. Furthermore, this study focused solely on short-term 

exposures; the cumulative effects of chronic air pollution on diabetes-related morbidity remain 

an important direction for future investigation. 

In conclusion, air pollution remains a significant and inequitable driver of adverse health 

outcomes among individuals with type 2 diabetes in California, even amid regulatory progress. 

Short-term exposure to NO2 and PM2.5 is associated with increased hospitalizations and 

prolonged LOS, with disproportionate effects among racial and ethnic minorities. These findings 

call for sustained, adaptive, and equity-focused environmental health strategies, particularly in 

the context of climate change and ongoing demographic shifts. Effective interventions must 

couple air quality improvements with healthcare accessibility, public education, and targeted 

support for vulnerable communities to reduce air pollution-related health burdens meaningfully.
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Appendix A. Supplementary materials   

 

Fig. S1. The associations between NO2 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S2. The associations between NO2 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S3. The associations between NO2 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S4. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and PM2.5 

exposure from 2010 to 2019. 
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Fig. S5. The associations between PM2.5 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S6. The associations between PM2.5 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S7. The associations between PM2.5 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S8. The associations between PM2.5 exposure and hospitalization for diabetic patients across five major race categories in 

California from 2010 to 2019. 
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Fig. S9. The temporal trend of the hospitalized population in California diagnosed with diabetes and NO2 exposure from 2010 to 2019. 
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Fig. S10. The association between NO2 exposure and LOS over 0–3 lag days, modeled annually from 2010 to 2019. 
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Fig.S11. The temporal trend of the hospitalized population in California diagnosed with diabetes and PM2.5 exposure from 2010 to 

2019. 
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Fig. S12. The association between PM2.5 exposure and LOS over 0–3 lag days, modeled annually from 2010 to 2019. 
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Fig. S13. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and NO2 

exposure from 2010 to 2019. 
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Fig. S14. The associations between NO2 exposure and LOS for diabetic patients across five major race categories in California from 

2010 to 2019. 
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Fig. S15. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and PM2.5 

exposure from 2010 to 2019. 
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Fig. S16. The associations between PM2.5 exposure and LOS for diabetic patients across five major race categories in California from 

2010 to 2019. 
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Supplementary File 3 

Ogawa saturation monitoring data  

We have collected Ogawa data (NO2 – nitrogen dioxide and NOX – nitrogen oxides) for both 

pre- and post-policy intervention periods for the San Francisco Bay and the LA regions. Table 

Suppl. 1 displays the date of data collection, pollutants measured and effective sample sizes. To 

enable us to merge the Ogawa data with the government monitoring data, all the Ogawa data 

were corrected based on the government monitoring data through collocated sites. Because of 

differences in vehicle emissions and urban structures, especially for highway roadways, the NO2 

and NOX data collected through Ogawa were corrected separately for policy periods and regions. 

We found the agreement (correlation coefficient) for measured pollutant concentrations at the 

same 14-day period between the collocated government and Ogawa monitors ranged from 0.69 

to 0.98 (Table suppl. 1), indicating the overall representativeness of using Ogawa monitors for 

NO2 and NOX monitoring. After consulting with the experts in the Research Triangle Park 

(North Carolina, USA), the company responsible for providing us the Ogawa samplers and the 

analysis of the sampled data, we concluded that the reasons for some discrepancy between 

government monitoring and our Ogawa monitoring were partly because the Ogawa data were 

calibrated based on the latest lab results, but the government data were rarely calibrated. We also 

investigated the number of effective hours of data collection for every government site during the 

same time period when an Ogawa monitor was collocated. We found the number of hours for 

government monitors ranged from 34 hours to the full range of 14 days. Even though we 

removed those government monitoring stations with the number of effective hours of 

measurement being less than 200 in our effort to calibrate the measured Ogawa data, the missing 

hours might also have contributed to the discrepancy between the two data sources. In some 

situations, because of our inability to gain access to the exact location of a government 

monitoring station, the Ogawa samplers were placed on the gate to the building on which the 

government monitoring station was placed on top. This might also have contributed to the 

discrepancy between the two data sources. 

We further averaged NO2 and NOX concentrations for the dry and wet seasons to represent 

annual concentrations measured at those saturation monitoring sites. This procedure is valid 

given that measurements for each policy period in each region were selected after reviewing 

historical long-term government monitoring data with the goal that these two 2-week monitoring 

would allow us to estimate long-term average concentrations most accurately. Our research did 

show that the average of dry and wet season concentrations in a sampling period was close to the 

annual concentrations measured at those sites (Suet al. 2016). Due to lack of NOX measurements 

for the pre-policy period for the San Francisco Bay Area, we opted to use NO2 as a pollutant for 

our analysis in this paper. 

  



Table Suppl.1. Historical Ogawa samplings conducted in California and agreement with 

collocated government sites 

Region Policy Period Year Month Pollutants 
Sample 

size 

Collocated 

sites 

Correlation 

coefficient 

San 

Francisco 

Bay Area 

Pre-policy 
2004 November NO2 51 3 0.88 

2005 May NO2 48 3 0.72 

Post-policy 

2012 October 
NO2 49 4 0.93 

NOX 49 4 0.98 

2013 March 
NO2 49 4 0.69 

NOX 49 4 0.94 

Los Angeles 

Region 

Pre-policy 

2006 September 
NO2 198 10 0.90 

NOX 198 10 0.94 

2007 February 
NO2 195 12 0.81 

NOX 195 12 0.97 

Post-policy 

2012 October 
NO2 70 12 0.91 

NOX 70 12 0.92 

2013 March 
NO2 72 8 0.90 

NOX 72 8 0.88 

 

Utilizing location-allocation algorithms for air quality 

monitoring data from Google Streetcar mobile monitoring 

Study area and corridor classification 

 The study focused on selecting representative road segments for air quality monitoring across 

four regions in California: San Francisco - San Mateo, Alameda - Contra Costa, Central Valley, 

and Southern California. Within each region, three corridor types were identified: Goods 

Movement Corridors, Non-Goods Movement Corridors, and Control Areas (Suet al. 2020). For 

each corridor type, 50 road segments were selected, leading to a total of 150 segments per 

region. The goal was to reduce data redundancy by selecting a subset of road segments that best 

represented the variability in air pollution levels across the regions. 

Data preparation 

Three key GIS layers were utilized to guide the selection of representative road segments: 

1. Residential land use: This layer identified residential zones within the study regions. 

The selection process aimed to include road segments near residential areas to ensure that 

the air quality data would reflect pollution exposure in these sensitive areas. 

2. Long-term NO₂ pollution surface (Suet al. 2020):  This layer depicted the distribution 

of NO₂ concentrations across the regions. The selection process prioritized road segments 



located in areas with significant NO₂ gradients, ensuring that segments in higher pollution 

areas were well-represented. 

3. Road network segments: This layer detailed all road segments within each region. All 

segments included had more than 100 mobile measurements, and the objective was to 

select a representative subset, thereby reducing redundancy while maintaining the 

integrity of the spatial coverage of air pollution monitoring. 

Location-allocation algorithm in ArcGIS 

The ArcGIS location-allocation algorithm (Kanaroglouet al. 2005) was used to optimize the 

selection of road segments. The algorithm was configured to balance the need for comprehensive 

coverage of air pollution variability with the desire to reduce data redundancy. The key steps 

involved in the algorithm’s application included: 

• Objective function: The algorithm aimed to minimize the sum of squared deviations of 

air pollution gradient between the selected subset of road segments and the entire set of 

available data points. This ensured that the selected segments were as representative as 

possible of the region's air quality conditions. 

• Constraints: The algorithm was constrained to select 50 road segments for each of the 

three corridor types per region. The segments were chosen to maximize coverage of 

residential areas, capture significant NO₂ gradients, and ensure that selected segments 

were distributed across various road types, including major highways and local streets. 

• Iteration and optimization: The algorithm iteratively assessed different combinations of 

road segments, optimizing for representativeness and data reduction. The final selection 

balanced spatial distribution, pollution variability, and proximity to residential areas. 

Results 

The above methodology was applied across the four study regions: San Francisco - San Mateo, 

Alameda - Contra Costa, Central Valley, and Southern California. The selected road segments in 

each region provided a representative sampling of air pollution levels while significantly 

reducing data redundancy. In each region, 50 road segments were selected within the Goods 

Movement Corridors, 50 within the Non-Goods Movement Corridors, and 50 within the Control 

Areas, totaling 150 road segments per region. 

The selection result for the Alameda - Contra Costa region is presented in Figures Suppl 1, 

which display the spatial distribution of the three input layers and the chosen road segments. 

These figures illustrate how the selected segments cover key residential areas, capture critical 

pollution gradients, and reflect the diverse road types present in a study area. The selection 

process effectively reduced data redundancy while maintaining a robust representation of air 

quality across the study regions. 



 

Figure Suppl 1.  Location-allocation algorithm selection of Google Streetcar mobile 

measurement road segments (top left: road segments with at least 100 mobile measurements; 

top right: residential land use; bottom left: long-term NO2 surface; bottom right: chosen 

locations of road segments).  

 

Deriving traffic data across the State 

Traffic interpolation process 

We used the data collected by the California Department of Transportation (Caltrans) 

Performance Measurement System (PeMS) to derive roadway daily and annual traffic. PeMS 

data are collected in real-time from nearly 40,000 individual detectors spanning the freeway 

system across all major metropolitan areas of the State of California and provide an Archived 

Data User Service that provides over fifteen years of data for historical analysis. The detector 

measured traffic flow covered ~5 % highway segments and we summed hourly traffic to daily 

traffic for all the stations across California. The following interconnected steps were then used to 

derive daily traffic for all the California highways for the observation period (2005-2021):  



1. For a road segment with station traffic measure for a day, use all the station traffic 

measures on that road segment to generate a daily mean traffic for that road segment for 

that day. 

2. For those road segments without traffic measures for a day, assign them using the 

assigned segments from step 1 by matching route, county, district (Figure Suppl 2), route 

type and day, and find the one with the smallest distance if having multiple matches. 

California has 58 counties which are included in one of the 12 air districts. Highways in 

California are split into at least four different types of systems: Interstate Highways, U.S. 

Highways, state highways, and county highways. 

3. For those road segments without traffic being assigned from steps 1 & 2, assign them 

using the assigned segments from steps 1 & 2 by matching route, district, route type and 

day, and find the one with the smallest distance if having multiple matches. In this step 

county was not used as a restricting factor in daily traffic assignment. 

4. For those road segments without traffic being assigned from the above steps, assign them 

using the above assigned segments by matching route, county, district and route type, 

plus at most one day difference in data availability and find the one with the smallest 

distance if having multiple matches. 

5. Identify those not assigned and assign them using the assigned segments from above 

steps by matching county, district, route type and day and find the one with the smallest 

distance if having multiple matches. Here we removed the restricting factor of route 

number. 

6. Identify those not assigned and assign them using the assigned segments from the above 

steps by matching district, route type and day and find the one with the smallest distance 

if having multiple matches. Here we removed the restricting factors of route number and 

county. 

7.1 Identify those not assigned and assign them using the assigned state highway segments from 

the above steps by matching district and day. Here we removed the restricting factors of route 

number, route type and county. 

7.2 Identify those not assigned and assign them using the assigned U.S. highway segments from 

the above steps by matching district and day. Here we removed the restricting factors of route 

number, route type and county. 

7.3 Identify those not assigned and assign them using the assigned interstate highway segments 

from the above steps by matching district and day. Here we removed the restricting factors of 

route number, route type and county. 

 



 

Figure Suppl 2. California Department of Transportation (CalTrans) Districts. 



8. Identify those not assigned and assign them using the assigned segments from steps 1-4 by 

matching district and season to find the one with the smallest distance if having multiple 

matches. Here route number, county and route type are not required to match. 

Traffic assignment results 

The road segment (RS) assignment process across the districts shows distinct patterns and stages 

(Table Suppl 2), with the majority of assignments occurring during Stages 3, 5, and 7.1. Districts 

1, 2, and 9, which lacked traffic station measures, were assigned similarly to their neighboring 

districts 4, 3, and 8, respectively, ensuring consistency in the process. 

In District 1, a significant portion of RS assignments (58.91%) took place during Stage 3, with 

only a small fraction (1.11%) assigned in Stage 7.1. Similarly, District 2 saw the bulk of its RS 

assignments (72.58%) in Stage 3, with no further assignments after Stage 4. District 3 followed a 

more spread-out pattern, with key assignments in Stages 5, 6, and 7.1. District 4, on the other 

hand, concentrated most of its assignments (42.79%) in Stage 5, with an additional 7.69% 

assigned in Stage 7.1. 

District 5 differed slightly, with a significant portion (65.21%) of RS assignments occurring in 

Stage 6, and only 0.17% in Stage 7.2. District 6 focused its efforts primarily in Stage 5, where 

60.60% of assignments were made, followed by 6.53% in Stage 7.1. In District 7, the major 

assignments were completed early, primarily in Stages 1, 2 and 5, with no assignments in Stage 

7. District 8 spread its assignments across various stages, but with 73.34% occurring in Stage 5. 

District 9, which started its assignments later, completed the majority (45.95%) in Stage 3 and 

the remaining 54.05% in Stage 7.1. District 10 concentrated most of its assignments (36.39%) in 

Stage 5, with minimal activity afterward. In District 11, the assignment process was front-loaded, 

with 39.65% of RS assignments occurring in Stage 2, and 26.01% in Stage 5. Finally, District 12 

saw significant early-stage activity, with most assignments completed by Stage 5 and none 

beyond that. 

This step-by-step process ensured that nearly all RS were accounted for, reflecting the structured 

and methodical approach taken across the different regions. 



 

Table Suppl 2. Traffic data assignment statistics based on the stages of assignment. 

  District #1 District #2 District #3 

Stage RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) 

1 34,197 2.93 34,197 2.93 64,284 4.94 64,284 4.94 75,002 4.41 75,002 4.41 

2 774 0.07 34,971 3.00 0 0.00 64,284 4.94 142,554 8.38 217,556 12.79 

3 686,788 58.91 721,759 61.91 943,806 72.58 1,008,090 77.53 68,950 4.05 286,506 16.85 

4 431,122 36.98 1,152,881 98.89 292,200 22.47 1,300,290 100.00 1,548 0.09 288,054 16.94 

5 0 0.00 1,152,881 98.89     704,938 41.45 992,992 58.39 

6 0 0.00 1,152,881 98.89     503,072 29.58 1,496,064 87.97 

7.1 12,997 1.11 1,165,878 100.00     204,540 12.03 1,700,604 100.00 

  District #4 District #5 District #6 

Stage RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) 

1 360,864 17.08 360,864 17.08 19,666 1.44 19,666 1.44 53,408 3.51 53,408 3.51 

2 371,428 17.58 732,292 34.66 83,650 6.14 103,316 7.59 269,068 17.67 322,476 21.18 

3 257,311 12.18 989,603 46.84 133,864 9.83 237,180 17.42 107,284 7.05 429,760 28.23 

4 2,560 0.12 992,163 46.96 430 0.03 237,610 17.45 552 0.04 430,312 28.27 

5 903,900 42.79 1,896,063 89.75 229,642 16.86 467,252 34.32 922,574 60.60 1,352,886 88.87 

6 28,870 1.37 1,924,933 91.12 887,904 65.21 1,355,156 99.52 70,128 4.61 1,423,014 93.47 

7.1 162,368 7.69 2,087,301 98.8 4,144 0.30 1,359,300 99.83 99,348 6.53 1,522,362 100.00 

7.2 0 0.00 2,087,301 98.8 2,352 0.17 1,361,652 100.00       

7.3 0 0.00 2,087,301 98.8           

8 25,305 1.20 2,112,606 100           

  District #7 District #8 District #9 

Stage RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) 

1 288,852 25.03 288,852 25.03 68,864 5.82 68,864 5.82 0 0.00 0 0.00 

2 315,340 27.32 604,192 52.35 94,562 7.99 163,426 13.81 0 0.00 0 0.00 



3 23,360 2.02 627,552 54.37 87,600 7.40 251,026 21.21 198,696 45.95 198,696 45.95 

4 466 0.04 628,018 54.41 194 0.02 251,220 21.23 0 0.00 198,696 45.95 

5 526,172 45.59 1,154,190 100 867,906 73.34 1,119,126 94.57 0 0.00 198,696 45.95 

6       0 0.00 1,119,126 94.57 0 0.00 198,696 45.95 

7.1       64,284 5.43 1,183,410 100.00 233,760 54.05 432,456 100.00 

  District #10 District #11 District #12 

Stage RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) RS (#) 

RS 

(%) 

Cum RS 

(#) 

Cum RS 

(%) 

1 146,644 9.80 146,644 9.80 241,134 23.85 241,134 23.85 160,898 38.24 160,898 38.24 

2 438,638 29.32 585,282 39.12 400,820 39.65 641,954 63.50 139,650 33.19 300,548 71.43 

3 352,216 23.54 937,498 62.66 105,120 10.40 747,074 73.89 0 0.00 300,548 71.43 

4 2,288 0.15 939,786 62.82 990 0.10 748,064 73.99 290 0.07 300,838 71.50 

5 544,392 36.39 1,484,178 99.21 262,948 26.01 1,011,012 100.00 119,930 28.50 420,768 100.00 

6 11,886 0.79 1,496,064 100.00                 

Note: RS= road segment; Cum RS=cumulative road segments; District 1, 2 and 9 had no traffic station measures and were treated the same as 

respectively neighboring districts in 4, 3 and 8. 

  
 



pollutant lag estimate lower_ci upper_ci mean std iqr
0 1.017885 1.016854 1.018917 10.64714 6.217118 8.010617
1 1.017726 1.016694 1.018759 10.51736 6.221056 8.034553
2 1.015573 1.01454 1.016607 10.36097 6.22401 8.063132
3 1.010704 1.009673 1.011736 10.36872 6.220576 8.058235
0 1.008438 1.007591 1.009285 9.800294 3.364875 3.631014
1 1.007223 1.006377 1.00807 9.797528 3.371929 3.63582
2 1.004505 1.003658 1.005353 9.792482 3.369079 3.637908
3 1.005531 1.004683 1.006379 9.792989 3.369946 3.637938
0 1.018056 1.017105 1.019009 38.43722 6.836388 10.25059
1 0.991131 0.990391 0.991871 38.50702 6.844785 10.26532
2 0.995518 0.994776 0.996261 38.58592 6.852038 10.27377
3 0.999382 0.998638 1.000126 38.58128 6.854859 10.26498

PM2.5

NO2

O3



Appendix A: Derivation of Potential Impact Fraction Equation 

 

 

Here we derive  

𝑃𝐼𝐹 = 1 −
1

𝑂𝑅𝐼𝑄𝑅
  

 

where PIF is the potential impact fraction and 𝑂𝑅𝐼𝑄𝑅 is the interquartile odds-ratio from a given 

conditional logit exposure-response function (ERF) under the assumption that the odds-ratio 

does not overstate the risk ratio since the outcome is sufficiently rare: 𝑅𝑅𝐼𝑄𝑅 ≈ 𝑂𝑅𝐼𝑄𝑅. We start 

with definitions presented in Barendregt and Veerman (BV) (2010). Starting with the distribution 

shift equation (in our case this would be an interquartile shift) for the PIF (BV eq. 5); 

 

𝑃𝐼𝐹 =  
∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥 − ∫ 𝑅𝑅(𝑥)𝑃∗(𝑥)𝑑𝑥 

ℎ

𝑙

ℎ

𝑙

∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥
ℎ

𝑙

 

 

where h and l are high and low integration boundaries and the RR is log-linear (BV eq. 7): 

 

𝑅𝑅(𝑥) = exp (𝑎 + 𝑏𝑥) 

 

and P is the ZIP code population weight and a counterfactual uniform reduction (∆) in exposure 

(interquartile) is represented as  

 

𝑃∗(𝑥) = 𝑃(𝑥 + ∆). 

 

Then we can use BV eq. (5) and eq. (7) to derive our final equation. 

 

Let  

 

𝐷 =  ∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥
ℎ

𝑙

 

 

where D is just to compress this expression for use in later equations. Then the counterfactual 

integral is the following: 

 

∫ 𝑅𝑅(𝑥)𝑃∗(𝑥)𝑑𝑥 
ℎ

𝑙
=  ∫ 𝑅𝑅(𝑥)𝑃(𝑥 + ∆)𝑑𝑥

ℎ

𝑙
. 

 

Substitute 𝑢 = 𝑥 + ∆, so 𝑥 = 𝑢 − ∆ and 𝑑𝑥 = 𝑑𝑢: 

 

∫ 𝑅𝑅(𝑥)𝑃(𝑥 + ∆)𝑑𝑥
ℎ

𝑙
= ∫ 𝑅𝑅(𝑢 − ∆)𝑃(𝑢)𝑑𝑢. 

. 

Then using the log-linear RR assumption above (BV eq. 7) and substituting similarly: 

 

𝑅𝑅(𝑢 − ∆) = exp(𝑎 + 𝑏(𝑢 − ∆)) = exp(𝑎 + 𝑏𝑢) exp(−𝑏∆) = 𝑅𝑅(𝑢)exp (−𝑏∆). 



 

Therefore 

 

∫ 𝑅𝑅(𝑢 − ∆)𝑃(𝑢)𝑑𝑢 = exp (= 𝑏∆) ∫ 𝑅𝑅(𝑢)𝑃(𝑢)𝑑𝑢 = exp(−𝑏∆) 𝐷. 

 

We then put this back into the earlier PIF equation (BV eq. 5): 

 

𝑃𝐼𝐹 =  
𝐷−exp(−𝑏∆)𝐷

𝐷
= 1 − exp (−𝑏∆). 

 

Then, since the model is log-linear in exposure, the relative risk for an increase of ∆ is as 

follows: 

 

𝑅𝑅∆ = exp (𝑏∆). 

 

Therefore  

 

1 − exp(−𝑏∆) = 1 −
1

exp(𝑏∆)
= 1 −

1

𝑅𝑅∆
 

 

If we set ∆= 𝐼𝑄𝑅 then 

 

𝑃𝐼𝐹 = 1 −
1

𝑅𝑅𝐼𝑄𝑅
 

 

Then, since we have assumed 𝑅𝑅𝐼𝑄𝑅 ≈ 𝑂𝑅𝐼𝑄𝑅 

 

𝑃𝐼𝐹 = 1 −
1

𝑂𝑅𝐼𝑄𝑅
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Appendix B: Derivation of Standard Errors Using the Delta Method 

 

We start with the odds-ratios and their 95% confidence intervals from the equations listed in the 

report and mean medical expenditures and their 95% confidence intervals from the IHME data 

cited in the report. This derivation is adapted from the concepts in Oehlert (1992). 

 

Let 𝑂𝑅̂ be 𝑂𝑅𝐼𝑄𝑅, with lower and upper 95% confidence intervals (CI): 𝑂𝑅𝐿 , 𝑂𝑅𝑈.  

Define 

 

𝜃=log(𝑂𝑅)̂  

 

If the reported CI is the usual Wald CI on the log scale, then the standard error of 𝜃 

 

𝑆𝐸𝜃 ≈
log(𝑂𝑅𝑈) − log⁡(𝑂𝑅𝐿)

2⁡𝑥⁡1.96
 

 

which is the standard inversion of the Wald CI to recover an SE. 

 

Similarly, let 𝑀𝐸̂ be mean medical expenditures with lower and upper 95% confidence intervals 

(CI): 𝑀𝐸𝐿 , 𝑀𝐸𝑈. If the CI was computed as 𝑀𝐸̂ ± 1.96⁡𝑆𝐸𝑀𝐸 , then 

 

𝑆𝐸𝑀𝐸 ≈
𝑀𝐸𝑈 −𝑀𝐸𝐿
2⁡𝑥⁡1.96

 

 

 

using the same inversion approach. 

 

The point estimate for the avoided medical expenditure impact is  

 

𝐴𝑀𝐸̂ = 𝑃𝐼𝐹̂⁡𝑥⁡𝑀𝐸̂ 

 

We then define a smooth function 

 

𝐴𝑀𝐸(𝜃,𝑀𝐸) = (1 − 𝑒−𝜃)𝑀𝐸 

 

The multivariate delta method gives 

 

𝑉𝑎𝑟(𝐴𝑀𝐸) ≈ (
𝜕𝐴𝑀𝐸

𝜕𝜃
)
2

𝑉𝑎𝑟(𝜃) + (
𝜕𝐴𝑀𝐸

𝜕𝑀𝐸
)
2

𝑉𝑎𝑟(𝑀𝐸) + 2 (
𝜕𝐴𝑀𝐸

𝜕𝜃
) (⁡

𝜕𝐴𝑀𝐸

𝜕𝑀𝐸
)𝐶𝑜𝑣(𝜃,𝑀𝐸) 

 

evaluated at (𝜃,̂𝑀𝐸̅̅̅̅̅) 
 

Here the derivatives are as follows: 

 
𝜕𝐴𝑀𝐸

𝜕𝜃
= 𝑀𝐸𝑒−𝜃 =

𝑀𝐸

𝑂𝑅
,

𝜕𝐴𝑀𝐸

𝜕𝑀𝐸
= 1 − 𝑒−𝜃 = 𝑃𝐼𝐹⁡ 



Thus,  

 

𝑉𝑎𝑟(𝐴𝑀𝐸) ⁡≈ (
𝑀𝐸̂

𝑂𝑅̂
)

2

𝑆𝐸𝜃
2 + 𝑃𝐼𝐹̂2

̂

𝑆𝐸𝑀𝐸
2 + 2(

𝑀𝐸̂

𝑂𝑅̂
)𝑃𝐼𝐹̂⁡𝐶𝑜𝑣(𝜃,𝑀𝐸) 

 

 

However, to the extent it is reasonable to assume that our estimation errors are to some extent 

independent, we can assume that 𝐶𝑜𝑣(𝜃,𝑀𝐸) ≈ 0. 

Thus, 

 

𝑆𝐸𝐴𝑀𝐸 ≈ √(
𝑀𝐸̂

𝑂𝑅̂
)

2

𝑆𝐸𝜃
2 + 𝑃𝐼𝐹̂2𝑆𝐸𝑀𝐸

2  

 

and the Wald 95% CI is 

 

𝐴𝑀𝐸̂ ± 1.96⁡𝑆𝐸𝐴𝑀𝐸̂  

 

In the case of a mean calculated across mulitple years of data, we simply sum the relevant 

estimates and confidence intervals across years and then divide by the number of years. This is 

valid if we can reasonably assume that the annual estimates are independent.  

 

Annual estimates can be assumed to be independent in repeated cross sections to the extent that 

samples do not rotate, reuse probability sampling units, or reuse the same individuals across 

years in a non-negligible manner. Confidence intervals will be biased downward to the extent 

these assumptions are violated.  
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