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Part I: Overall Effect Analysis

The overall analysis evaluates how NO> or PM2 5 exposure influences ED visits while accounting
for temporal variations in temperature, relative humidity, precipitation, and wildfire impact for
PM:s. Each patient serves as their control, with control periods defined as one to four weeks
before the assessment. This design minimizes confounding by individual-level factors such as
age, sex, and comorbidities, ensuring a precise evaluation of exposure-outcome relationships. By
incorporating lag periods (0—3 days) into the model, the analysis captures both immediate and
delayed effects of exposure. Acute effects may manifest within hours, while systemic or
inflammatory responses may require additional time.

Diabetes population trend analysis

The increase in the diabetic population of Type 2 in California from around 500,000 in 2010 to
nearly 1,000,000 in 2019 (Figure 1) can largely be attributed to healthcare expansion under the
Affordable Care Act (ACA), which improved access to screening and diagnosis through Medi-
Cal and subsidized insurance plans, leading to the identification of previously undiagnosed cases.
Additionally, population growth and the aging of the "baby boomer" generation, individuals born
between 1946 and 1964, who are at higher risk for Type 2 diabetes, might have contributed
significantly to the rise. As this population aged, their vulnerability to air pollution-related health
effects, such as those from NO; and PM2 s exposure, likely increased. Rising obesity rates, driven
by sedentary lifestyles and poor dietary habits, further exacerbated the diabetes burden.
Improved data collection and reporting during this period may have also played a role. The slight
decline in 2019 suggests potential stabilization of obesity rates due to prevention efforts or
variability in diagnosis rates.

NO; effect analysis

In 2010, NO, exposure was relatively low across Type 2 diabetic patients. The economic
slowdown following the Great Recession (2007-2009) played a role in lowering pollution levels
at and before 2010. This economic contraction likely resulted in a temporary dip in pollution
levels, particularly in urban areas where transportation emissions are a major source of NO; and
particulate matter. In addition, the wildfire activity in 2010 has been lower compared to other
years. The relative calm in wildfire activity in 2010 likely prevented significant spikes in
particulate pollution from that source. NO2 exposure increased in 2011-2013, but after that,
overall NO» concentrations and their SD continued to decline, which can be attributed to
improvements in air quality driven by regulatory measures and cleaner technologies. Policies
such as stricter vehicle emissions standards, industrial regulations, and adopting cleaner fuels
have reduced overall emissions and a more uniform reduction in NO2 levels, minimizing extreme
pollution events that once contributed to higher variability. While the mean NO> concentrations
and its SD continued to decline, the IQR of NO, exposure experienced an upward trend after
2016. A reduced SD alongside an increased IQR indicates that most data points became more



tightly clustered around the mean, but the spread within the middle portion of the data grew
wider. This suggests a more stretched-out distribution of NO; levels, where values in the central
range became more variable even as extreme outliers became less frequent.
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Figure 1. The temporal trend of the population in California diagnosed with diabetes and NO: exposure from 2010 to 2019.

The CR functions between NO, exposure and ED visits show a downward trend in effect
estimates from 2010 to 2014, followed by an upward trend from 2014 to 2019 (Figure 2). This
pattern can be linked to several critical factors. First, the Affordable Care Act (ACA), signed into
law in 2010 and fully implemented by 2014, significantly expanded healthcare access, mainly
through Medicaid for low-income populations and Medicare Part B for individuals over 65
(Figure 5). The increased access to healthcare likely improved disease management and
preventative care, which reduced reliance on EDs for acute conditions. As a result, the impact of
environmental exposures like NO2 on ED visits declined from 2010 to 2014. After 2014, the
stretched-out distribution of NO; levels could explain the renewed increase in its health impact
on ED visits despite overall declines in concentration.

Regarding the lagged effect, the impact of NO» exposure remained largely consistent over the 0—
2 day period. By day 3, the effect showed a slight decrease, suggesting a more transient nature of
the exposure's impact or a diminishing short-term influence on ED visits. Regarding the control
comparisons, the 1-to-1 control uses one week before the event as the reference, while the 4-to-1
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control uses four weeks before. When the control period is further from the event day, we
observed a greater effect of NO.. This could be due to exposure levels in the control period
becoming more diluted over time, making the event day exposure appear more elevated and thus
resulting in a higher estimated effect. This observation emphasizes the sensitivity of the analysis
to the temporal choice of control periods and highlights the need to account for variability in
NO: exposure levels when interpreting these findings.

Overall, the impact of NO> on ED visits is statistically significant across the years 2010-2019,
considering 03 days of lags and using one-week to four-weeks before the event as controls. This
demonstrates the robustness of the association between NO» exposure and adverse health
outcomes, regardless of the specific temporal framework or control strategy applied. The
consistent significance highlights that short-term NO; exposure remains a critical driver of
diabetic patients’ ED visits, reinforcing the importance of monitoring and mitigating air
pollution. The persistence of this association over nearly a decade further emphasizes the need
for targeted interventions to address NO; exposure, particularly in vulnerable populations and
high-risk areas.

NO2 Effects with Environmental Controls (Lags 0-3 days)
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Figure 2. The association between NO: exposure and ED visits over 0-3 lag days across four control categories, modeled
annually from 2010 to 2019.

PM; 5 effect analysis

Similar to NO> exposure, PM» s exposure was relatively low across Type 2 diabetic patients in
2010 (Figure 3). This could be attributed to economic slowdown following the Great Recession
and lower wildfire activity compared to other years. After 2011, mean PM; s concentrations
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steadily declined, reflecting significant improvements in air quality driven by stricter
environmental regulations and cleaner technologies. Policies such as enhanced vehicle emissions
standards, industrial pollution controls, and adopting cleaner fuels played a pivotal role. The SD
of PM> s concentrations also decreased, indicating fewer extreme pollution events and more
uniform improvements across regions. However, the IQR of PM; 5 exposure began increasing
after 2016, suggesting a growing variability in mid-range pollution levels. While extreme outliers
in PM2 s exposure diminished, this widening spread within the central range may result from
regional disparities in pollution control efforts or localized sources of PM; s.

The declining mean PM> 5 levels and SD highlight the success of air quality interventions.
However, in 2018, PM; 5 levels spiked, largely due to the unprecedented wildfire activity that
year. Major fires, including the Camp Fire in Northern California and the Woolsey Fire in
Southern California, released vast amounts of fine particulate matter into the atmosphere,
significantly impacting air quality across the state. These extreme wildfire events underscore the
growing influence of climate change on air pollution trends, even as regulatory measures
continue to reduce emissions from traditional sources. Further, the increasing IQR emphasizes
the need for targeted, localized actions to address variability in mid-range exposures.
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Figure 3. The temporal trend of the population in California diagnosed with diabetes and PM>.s exposure from 2010 to 2019.

The relationship between PMz s exposure and ED visits demonstrates a notable pattern: a
negative association in 2010, followed by positive but declining effect estimates from 2011 to
2014, and then a subsequent increase from 2014 to 2019 (Figure 4). This trend can be attributed
to several key factors. The relatively low PM2 s level contributed to the negative impact in 2010.
The full implementation of the Affordable Care Act (ACA) by 2014 significantly expanded
healthcare access, primarily through Medicaid for low-income individuals and Medicare Part B
for older adults (Figure 7). Improved access to healthcare likely facilitated better disease
management and preventative care, reducing dependence on ED visits for acute conditions. As a
result, the health impact of environmental exposures such as PM2 s diminished during 2011—
2014. Conversely, the upward trend observed after 2014 may reflect shifts in exposure patterns
and increased population vulnerability, with significant increase in middle level PM2 s exposures
despite overall declines.

The growing influence of PM> s on ED visits after 2014 may also stem from demographic
changes, particularly the aging of the "baby boomer" generation. As older adults became more
integrated into the healthcare system, their heightened sensitivity to air pollutants like PM2 5
likely contributed to increased health impacts. Interestingly, despite the increase in PM3 5 levels
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in 2018, the impact on ED visits was relatively low for that year. This could be attributed to
several factors. First, wildfire-related PM> s episodes tend to be short-lived but intense, whereas
chronic exposure to elevated air pollution from traffic and industrial sources has been more
consistently linked to long-term health effects and increased healthcare utilization. Second,
public awareness and protective measures, such as air quality alerts, widespread use of N95
masks, and recommendations to stay indoors during wildfires, may have mitigated acute health
impacts. Additionally, the affected populations may have adapted by avoiding outdoor activities
or using air filtration systems, reducing direct exposure. There may also be a lag in health effects,
where the full impact of exposure is not immediately reflected in ED visit data. Finally, the
control of wildfire-related PM; 5 in the modeling process may have inadvertently over-controlled
for its impact on ED visits, potentially underestimating the association between PM» 5 exposure
and health outcomes.

Regarding lagged effects, the influence of PMa s exposure on ED visits remained relatively stable
within the 0-2 day window, with a slight decline in effect by day 3. This suggests that the impact
of PM2 5 exposure is primarily short-term, with diminishing influence over time. Additionally,
comparisons of control periods—using the 1-to-1 method (one week before the event) and the 4-
to-1 method (four weeks before)—revealed an interesting trend: a stronger effect though less
pronounced than NO> was observed when the control period was further from the event day. This
could result from lower exposure levels during the control period, amplifying the relative impact
of event-day exposure. These findings emphasize the importance of carefully selecting temporal
control strategies to ensure accurate interpretation of results.

Overall, the impact of PM2s on ED visits remains largely statistically significant from 2010 to
2019, regardless of lag periods (0-3 days) or control strategies (1-to-1 or 4-to-1). This consistent
association underscores the critical role of short-term PM» s exposure in driving diabetic patients'
ED visits. The persistence of these trends over nearly a decade highlights the urgent need for
targeted policies and interventions to reduce PM: s exposure, particularly among vulnerable
populations and in high-risk regions.
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Figure 4.The association between PM> s exposure and ED visits over 0-3 lag days across four control categories, modeled
annually from 2010 to 2019.

Part II: Stratification Effect Analysis

The stratification analysis assesses how NO2 or PM; 5 exposure impacts ED visits across various
subgroups while accounting for temperature, relative humidity, precipitation, and wildfire impact
for PMs. Similar to the overall analysis, each patient serves as their control, with control periods
defined as one to four weeks before the assessment. The inclusion of lag periods (0-3 days)
ensures both immediate and delayed effects are evaluated. The stratification analysis includes
race-ethnicity, gender, age groups, primary language spoken, health insurance payer category,
and study regions.

Health insurance payer type analysis

From 2010 to 2012, the percentage of individuals categorized by payer type remained
relatively stable, with minimal changes observed across most groups (Figure 5). For example,
Health Maintenance Organization (HMO) participants consistently accounted for about 21% of
the population, while Medicaid (Medi-Cal) and Medicare Part B remained at around 27% and
14%, respectively. However, significant shifts occurred starting in 2013, with a noticeable
increase in Medicaid and Medicare Part B participation. By 2019, Medicaid coverage rose to
32.9%, and Medicare Part B reached 24.1%. This rise is largely attributed to healthcare reforms
under the ACA, which expanded Medicaid for low-income populations and Medicare Part B for
seniors. In contrast, the percentage of self-pay individuals decreased dramatically during this
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period, from 15.9% in 2010 to just 3.7% by 2019. This shift likely reflects a change from a
largely uninsured population before 2014 to a group of wealthier individuals who may have
maintained or transitioned to self-pay after 2015, as more individuals gained insurance coverage
through Medicaid, Medicare, and other means.

Regarding NO; exposure, the mean levels for most payer categories showed a general
decrease over the years. For instance, the Health Maintenance Organization (HMO) mean NO;
level dropped from 10.8 ppb in 2010 to 8.7 ppb in 2019. Similarly, Medicaid saw its NO> mean
exposure drop from 10.5 ppb in 2010 to 8.5 ppb in 2019, while Medicare Part B's NO> mean
decreased from 10.2 ppb in 2010 to 7.4 ppb in 2019. We found that Medicare Part B patients had
lower NO: exposure compared to other payer categories. Medicare Part B typically covers
individuals aged 65 and older, and we believe the elderly population tends to live in suburban or
rural areas where air pollution levels, including NO2, may be lower compared to urban areas.

Despite the decrease in overall mean NO; values from 2010 to 2019, the IQR of NO»
levels began to increase after 2016, suggesting a rise in variability or fluctuation of exposure in
more recent years. This could indicate that while overall NO: levels decreased, some areas may
have experienced more sporadic air quality issues, contributing to higher IQRs.
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Figure 5. The temporal trend of the population, categorized by insurance coverage, in California diagnosed with diabetes and
NO: exposure from 2010 to 2019.

For C-R functions, the self-pay category demonstrates the highest variability over time,
particularly in the later years, from 2016 to 2019. Its consistent deviation from the baseline
across all lag durations underscores its significant sensitivity and influence compared to other
categories. In contrast, Medicaid exhibits the least variability, remaining consistently close to the
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baseline throughout the years (Figure 6). The characteristics of self-payers may explain this
disparity during this period, as they were predominantly uninsured individuals who were more
vulnerable to the health effects of air pollution, such as exposure to NO».

Starting in 2012, the impact of NO; exposure on ED visits among self-payers declined, reaching
its lowest point in 2015. This likely reflects a shift in the self-payer population, transitioning
from primarily uninsured individuals to wealthier patients with better access to healthcare, who
may have been less susceptible to the effects of NO»> exposure. However, after 2015, the self-
payer category experienced a notable rise in the impact of NO; exposure on ED visits. This
category consistently exhibits the highest impact after 2015. This increase could be linked to
changes in the self-payer population’s increase in air pollution susceptibility, including
individuals with higher health risks driven by aging, chronic conditions, lifestyle behaviors, or
socioeconomic vulnerabilities that amplify sensitivity to pollution. The wider confidence
intervals observed for self-payers suggest smaller sample sizes than other payer categories.

Regarding lag times, the effect of NO» exposure within each payer category was minimal, with a
slight decrease in impact as the lag period extended from zero to 3 days, particularly from 2016-
2019. When considering control periods, the smallest effect was observed when the control
period was closest to the event. Conversely, the impact of NO» exposure increased as the control
period extended from one to four weeks before the event (Figures S1, S2, S3).

NO2 Effects by Year (Control: 4tol)
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Figure 6. The associations between NO: exposure and ED visits for diabetic patients across different health insurance payer
categories in California from 2010 to 2019.

On PM> 5 exposure (Figure 7), mean levels declined across all payer categories over the study
period. For instance, the mean PM> 5 exposure for HMO participants decreased from 9.88 pg/m?
in 2010 to 8.5 ug/m? in 2019. Similarly, mean levels for Medicaid and Medicare Part B
beneficiaries fell from 10.27 pg/m?® and 8.86 pg/m? in 2010 to 9.99 ng/m? and 8.50 pg/m?,
respectively, in 2019. Despite these reductions, the IQR of PM» 5 exposure began to expand after
2012, indicating increased variability in exposure levels. This trend suggests that overall PM> s
concentrations have improved, but certain areas may still have faced localized air quality
challenges, contributing to the broader IQR. This is especially true for Medicare Part B
beneficiaries, who tend to live in suburban areas with less traffic. They had lower mean NO>
levels as well as lower NO> variability (SD and IQR). PM2 s, however, has both local and
regional sources, including wildfires, long-range transport, and secondary formation. While
suburban and rural areas may have lower direct emissions, they can still experience high
variability due to episodic pollution events like wildfires, dust storms, or regional transport of
PM; 5. Consistent with the overall unstratified PM» s exposure analysis, all payer categories
experienced the highest PM> s exposure in 2018.

For C-R functions, PM2 s exposure was negatively or non-significantly associated with ED visits
across the payer categories in 2010. Like the unstratified analysis, this could be due to the lower
level of PM2 5 exposure. In 2011 and 2012, PM> s exposure was significantly associated with ED
visits across all payer categories, with self-payers experiencing the most pronounced effects
(Figure 8). This heightened sensitivity among self-payers likely reflects the vulnerabilities of a
largely uninsured population during this period. Starting from 2013, however, the impact of
PMb 5 exposure on ED visits for self-payers began to decline, reaching its lowest point in 2015.
This decline coincided with a demographic shift in the self-payer population toward individuals
with greater financial resources and improved access to healthcare, reducing their susceptibility
to PM; s-related health effects. After 2015, the effect of PM» 5 exposure on self-payers began to
rise again, possibly due to an increased representation of individuals with higher health risks in
this group. These could include aging populations, those with chronic conditions, or other
vulnerable groups more sensitive to air pollution. The wider confidence intervals observed for
self-payers suggest smaller sample sizes than other payer categories, contributing to greater
uncertainty in the estimates. Among all categories, self-payers consistently exhibited the largest
deviations from the baseline, particularly in 2016 and 2017. This category also displayed
prominent fluctuations across all lag durations (0, 1, 2, and 3 days), with values exceeding 1.05
in several instances.

Similar to the unstratified analysis, the stratified analysis showed that despite the highest PM> 5
exposure in 2018, its impact on ED visits remained relatively low across all payer categories.
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The reasoning behind the overall unstratified analysis applies consistently to each payer
category. Regarding lag times, the effect of PM2 s exposure across payer categories remained
consistent over the 0—3 day period, with lagged effect being slightly smaller on the third day.

On control periods, the smallest effect was observed when the control was closest to the event.
As the control period extended from one to four weeks before the event, the observed impact of
PM: s exposure increased (Figures S4, S5, S6). This likely reflects the dilution of exposure levels
during the control period, making event-day exposure appear more pronounced. Overall, the
significant association between PM2 s exposure and ED visits across payer categories
underscores the pervasive vulnerability to PMa 5 exposure. These findings highlight the need for
targeted interventions to reduce exposure, particularly among high-risk populations, and to
mitigate the broader public health impacts of air pollution.

PM2.5 Exposure Trends Stratified by Payer
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Figure 7. The temporal trend of the population, categorized by insurance coverage in California diagnosed with diabetes and
PM:> 5 exposure from 2010 to 2019.
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PM2.5 Effects by Year (Control: 4to1)
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Figure 8.The associations between PM: s exposure and ED visits for diabetic patients across different health insurance payer
categories in California from 2010 to 2019.

Region analysis

From 2010 to 2019, California's regional distribution of Type 2 diabetic patients shifted
gradually across the three main regions: the SF Bay Area, Southern California (SoCal), and the
Central Valley (Figure 9). The SF Bay Area's population share gradually decreased from 25% to
16%, while SoCal experienced a steady increase from 60% in 2010 to 65% in 2019. In contrast,
the Central Valley's representation gradually declined from 20% to 18.2%. These changes
potentially reflected demographic shifts, migration patterns, or regional population growth.

Regarding NO; exposure, all regions experienced a reduction in mean levels over the study
period. For example, the SF Bay Area declined from 8.12 ppb in 2010 to 5.90 ppb in 2019, while
SoCal's mean exposure dropped from 13.49 ppb to 9.78 ppb during the same period. Similarly,
the Central Valley observed a decrease from 7.75 ppb in 2010 to 6.45 ppb in 2019. Despite these
overall reductions, the SDs and IQRs of NO> remained consistently flat across the period. This
suggests that while NO; concentrations have decreased uniformly across all regions, the relative
variability in exposure has not changed significantly. One possible explanation is that traffic and
industrial sources continue to dominate NO2 emissions, meaning that areas with historically high
NO: levels (such as major highways and industrial corridors) may still experience similar
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fluctuations over time. Additionally, while statewide policies have contributed to an overall
decline, localized sources of pollution may still create persistent spatial variability, keeping the
SDs and IQRs stable over time. Overall, SoCal had the greatest mean, SD and IQR NO»
exposure levels, followed by SF Bay and Central Valley.

NO2 Exposure Trends Stratified by Region
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Figure 9. The temporal trend of the population, categorized by region, in California diagnosed with diabetes and NO: exposure
from 2010 to 2019.

On NO2 impact on ED visits, the Central Valley exhibits the most significant changes across
multiple years, with some highs approaching 1.2 and lows being in verse relationship (Figure
10). Specifically, the effect increased from 2010 to 2011, reaching highs nearing 1.2. This might
be due to the high sensitivity of diabetic patients in this region, which has a large proportion of
seasonal workers, predominantly Mexican immigrants with low income and low educational
attainment but high diabetic prevalence. Following 2012, the influence of NO; exposure on ED
visits in the Central Valley began to decline, reaching its lowest levels around 2014. This period
coincided with a significant increase in ACA enrollment, particularly among farm workers, a
population historically characterized by limited healthcare access. With expanded healthcare
coverage, many individuals in this group likely experienced improved disease management and
greater access to preventative care, reducing their reliance on emergency departments for acute
conditions. As a result, the overall impact of environmental exposures like NO; on ED visits
diminished during this time, despite continued NO> emissions. However, after 2014, the impact
of NO> exposure on ED visits began to rise again, even as NO; concentrations continued to
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decline. This renewed increase in health impact suggests that changes in population susceptibility
played a significant role such as aging of the baby boomers discussed above.

The effect started to decline in 2018 and 2019, likely due to continued improvements in air
quality regulations, further reductions in NO> emissions from transportation and industry, and
increased public awareness of air pollution-related health risks. Additionally, adaptation
measures, such as increased use of air filtration systems, better access to preventive healthcare,
and behavioral changes (e.g., staying indoors on high-pollution days), may have contributed to
reducing the health impact of NO; exposure in the Central Valley.

Compared to the Central Valley, the SF Bay Area exhibited similar trends but with a much less
pronounced effect, likely due to differences in population demographics, healthcare access, and
baseline air pollution levels. The region's higher socioeconomic status and better access to
healthcare may have contributed to a lower overall sensitivity to NO2 exposure, resulting in a
more stable impact on ED visits.

In contrast, the impact in the SoCal region remained even smaller, with effects largely unchanged
throughout the years. This stability could be attributed to the consistently high population density
and long-term exposure to NO>, which may have led to a more adapted population with lower
short-term sensitivity to pollution spikes. Regarding lag times, the effects of NO» exposure
remained consistent across regions for a 0—2 day period, with a slight decrease observed by day
3, suggesting the transient nature of short-term exposure impacts. On control strategies, the
smallest effects were noted when the control period was closest to the event, while more
substantial impacts emerged as the control period extended from one to four weeks (Figures S7,
S8, S9). This pattern underscores the importance of carefully selecting temporal reference
periods to accurately estimate the health impacts of NO2 exposure in epidemiological studies.
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NO2 Effects by Year (Control: 4to1)
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Figure 10. The associations between no2 exposure and ED visits for diabetic patients across regions in California from 2010 to
2019.

Regarding PM> s exposure (Figure 11), all regions experienced a decrease, though smaller than
those in NO2, in mean levels over the study period. For instance, the Central Valley reduced
average PM; s exposure from 11.14 pg/m? in 2010 to 9.88 pg/m? in 2019. Similarly, the SF Bay
Area's mean PM> s levels declined from 8.74 pg/m? to 7.09 pg/m?3, while SoCal experienced a
drop from 10.51 pg/m? to 8.80 pg/m? over the same timeframe. The SD and IQR of PM; s;
however, remained flat before 2016. Despite the overall decline in mean PM> s concentrations,
levels rose significantly in 2018, accompanied by increases in both the SD and IQR. As
previously discussed, this spike in PM2 s and its associated variability was likely driven by the
surge in wildfire activity during 2018. The widespread and severe wildfires that year led to
extreme air pollution events, causing sharp fluctuations in PM; s levels across all three regions
and contributing to the observed increase in SD and IQR.

On C-R functions, the effect of PM2 s on ED visits (Figure 12) followed a similar pattern to that
of NO: across the three regions, though the magnitude of the effects appeared smaller. In most
cases, PM2 s exposure was associated with an increase in ED visits over the years, with the
positive impact in SoCal being consistent across the entire period. Further, SoCal exhibited the
highest impact starting in 2016, suggesting a possible shift in population susceptibility or
increase in wildfire pollution exposure patterns.
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Regarding lag times, the effects of PM» s exposure across regions remained relatively stable, with
only a slight decrease observed as the lag extended from zero to three days. The smallest effects
were noted when the control period was closest to the event. On control period, larger impacts
were observed as the control period extended from one to four weeks prior (Figures S10, S11,
S12). The Central Valley's behavior underscores its significant sensitivity compared to other
regions, highlighting its unique challenges in managing air pollution impacts. These findings
emphasize the importance of carefully selecting temporal frameworks to ensure accurate
estimates of exposure effects.

Overall, the association between PM; 5 exposure and ED visits remained significant across all
regions from 2010 to 2019, regardless of lag times or control periods. These results underline the
critical role of PM> s in driving adverse health outcomes and emphasize the urgent need for
sustained air quality improvements and healthcare interventions, particularly in vulnerable areas
like the Central Valley.
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PM2.5 Exposure Trends Stratified by Region
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Figure 11. The temporal trend of the population, categorized by region, in California diagnosed with diabetes and PM:.5s exposure
Sfrom 2010 to 2019.

PM2.5 Effects by Year (Control: 4to1)
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Figure 12. The associations between PM>s exposure and ED visits for diabetic patients across regions in California from 2010
to 2019.
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Language analysis

In 2010, the English, Other, and Spanish race-ethnicity categories in diabetic patients accounted
for 40%, 50%, and 10% of the population, respectively; however, starting from 2011, their
compositions shifted to 80%, 2%, and 18%. This dramatic change is largely attributable to
improvements in data collection and classification. In earlier years, a significant portion of race-
ethnicity information was missing, and patients with incomplete demographic data were
categorized as "Other." As data reporting improved over time, many of these previously
unclassified patients were reassigned to more accurate racial-ethnic categories, leading to a sharp
decline in the "Other" category. From 2011 and 2019, the distribution of individuals categorized
by primary language remained relatively stable, with slight decrease for English language
speakers but slight increases for Hispanics and Other categories (Figure 13). From 2011 to 2019,
the distribution of individuals categorized by primary language remained relatively stable, with
only minor shifts observed over time. The proportion of English-language speakers experienced
a slight decrease, suggesting probably a gradual diversification of the population. In contrast, the
Hispanic and Other language categories saw slight increases, which may reflect demographic
changes, such as an increase in Spanish-speaking immigrant populations. These trends may also
be influenced by broader societal and policy changes, including healthcare access expansions,
shifts in migration patterns, and efforts to provide linguistically inclusive healthcare services.
The relatively stable overall distribution indicates that while minor fluctuations occurred, no
dramatic shifts in language composition took place during this period.

On NO: exposure, average concentrations declined across all language groups throughout the
study period. For example, English speakers experienced a reduction in mean NO> levels from
10.8 ppb in 2010 to 8.02 ppb in 2019, while Spanish speakers saw a similar decrease from 12.59
ppb to 9.11 ppb during the same timeframe. Despite these reductions, the IQR of NO; exposure
widened after 2016, suggesting increased variability in exposure levels. This trend indicates that
while overall air quality improved, certain areas experienced greater fluctuations in NO2 levels,
potentially linked to localized environmental or urban factors.

On C-R functions, the Spanish-speaking population exhibited the most significant changes,
particularly in 2010, when its odds ratio exceeded 1.2, marking the largest deviation observed
across all language categories and years. While the English-speaking group also experienced a
notable impact from NO, exposure (odds ratio = 1.18), the Other language category showed a
negative effect (odds ratio = 0.93) (Figure 14). Starting in 2011, this trend shifted significantly.
The positive effects observed for Spanish- and English-speaking individuals declined
substantially, while the negative effect seen in the Other language category reversed, becoming
positive. This shift can largely be attributed to the reclassification of many individuals previously
categorized under the Other language group into the English- and Spanish-speaking groups. As
data collection and classification improved, more accurate language categorization likely led to a
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redistribution of individuals, altering the observed NO»-health effect associations within each
language category.

Between 2012 and 2015, the effect of NO» exposure on ED visits among non-English speakers
declined, likely due to improved healthcare access and the introduction of preventive measures
during this period. However, beginning in 2016, the impact increased again, potentially driven by
factors such as an aging population, persistent socioeconomic vulnerabilities, or unresolved
disparities in healthcare access. Regarding lag effects, NO» exposure had the most pronounced
influence within the 0- to 2-day lag periods, with effects slightly diminishing by day 3. This
pattern suggests that the health impacts of short-term NO> exposure are immediate but transient.
Additionally, the impact of NO2 exposure appeared more pronounced when the control period
extended further from the event day, such as one to four weeks prior (Figures S13, S14, S15).
These findings underscore the importance of selecting appropriate temporal control periods when
assessing the relationship between NO» exposure and health outcomes. The strong association
between NO; exposure and ED visits across language groups underscores the widespread health
risks posed by air pollution, particularly for vulnerable and underserved populations — the Other
language category. These results highlight the need for targeted interventions to improve air

quality and address health disparities in linguistically diverse communities.
NO2 Exposure Trends Stratified by Language
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Figure 13. The temporal trend of the population, categorized by language, in California diagnosed with diabetes and NO:
exposure from 2010 to 2019.
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NO2 Effects by Year (Control: 4to1)
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Figure 14. The associations between NO: exposure and ED visits for diabetic patients across language categories in California
from 2010 to 2019.

In terms of PM> 5 exposure (Figure 15), average levels across language groups steadily declined
over the years, signaling overall improvements in air quality. For example, English speakers
experienced a reduction in PM> s mean levels from approximately 10.13 pg/m? in 2010 to 8.54
pg/m? in 2019, while Spanish speakers saw a similar decline from about 10.76 pg/m?® to 8.96
pg/m? during the same period. Despite the overall decline in mean PM> 5 concentrations, PM> s
concentrations rose significantly in 2018, accompanied by increases in both the SD and IQR. As
previously discussed, this spike in PM2.s and its associated variability was likely driven by the
surge in wildfire activity during 2018. The widespread and severe wildfires that year led to
extreme air pollution events, causing sharp fluctuations in PMa s levels across all three language
speaker categories and contributing to the observed increase in SD and IQR.

On C-R functions, in 2010, only the English-speaking category exhibited a positive association
between PM; s exposure and health outcomes (Figure 16). However, starting in 2011, the impact
on the Other language category became the highest, accompanied by a much wider confidence
interval. This shift was largely driven by the reclassification of a substantial number of patients
from the Other category into the English- and Spanish-speaking groups, leading to changes in the
observed effects within each category. Beginning in 2011, the impact of PM» s exposure also
became positive for Spanish-speaking individuals, reflecting a more accurate categorization of
patients. Over time, these effects gradually declined, reaching their lowest point in 2015, likely
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due to the implementation of the ACA act. The ACA's expansion of healthcare access may have
improved disease management and preventative care, reducing the overall sensitivity of different
language-speaking populations to environmental exposures like PM2 5. After 2015, the health
impact of PM; 5 exposure began to rise again, potentially driven by socioeconomic and
environmental factors that heightened vulnerability within this group. The effect diminished in
2018, similar to the trends observed in other stratifications of PM> 5 exposure impact.

Regarding lag times, the effects of PM 5 exposure were most pronounced within the 0-2 day lag
period, with a slight reduction observed by day 3. For control periods, shorter control periods
(e.g., one week prior) demonstrated smaller effects compared to more extended control periods
(e.g., four weeks prior) (Figures S16, S17, S18). This pattern suggests that shorter control
periods had exposure levels closer to those of the event day, while extended control periods
introduced more variability, amplifying the estimated impact of PM2 s.

Overall, the significant association between PMa s exposure and ED visits across language groups
underscores the persistent health risks posed by air pollution. These findings highlight the
importance of targeted air quality interventions and the need to address disparities in PM2 s
exposure, particularly in communities with higher proportions of non-English speakers who may
face additional vulnerabilities.

PM2.5 Exposure Trends Stratified by Language
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Figure 15. The temporal trend of the population, categorized by language, in California diagnosed with diabetes and PM:.s

exposure from 2010 to 2019.
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PM2.5 Effects by Year (Control: 4to1)
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Figure 16. The associations between PM> s exposure and ED visits for diabetic patients across language categories in California
from 2010 to 2019.

Five Major Races Analysis

From 2010 to 2019, the racial distribution among Type 2 diabetes patients remained relatively
stable (Figure 17). The largest group, White patients, saw a slight decrease from 56.24% to
53.91%, while the second-largest group, Hispanics, experienced a modest increase from 18.68%
to 21.84%. Black patients, who made up 13.62% of the population in 2010, and Asian patients,
comprising 6.98%, maintained relatively smaller proportions throughout the period. The "Other"
category had the smallest composition, accounting for 4.46% in 2010.

In terms of NO» exposure, except for 2010, the mean levels across all racial groups displayed a
clear downward trend from 2010 to 2019. For instance, the average NO; exposure for Black,
Hispanic, and Other individuals dropped from 11.19 ppb, 11.64 ppb, and 10.18 ppb, in 2010 to
8.73 ppb, 8.75 ppb, and 8.13 ppb, in 2019. Similarly, Asian populations saw a reduction in mean
NO; levels, from 10.76 ppb to 8.25 ppb over the same period, while the White population
experienced a decrease from 10.08 ppb to 7.98 ppb. Overall, Hispanic patients had the greatest
NO; exposure while White patients had the smallest exposure. Despite these improvements, the
IQR of NO; exposure began to increase after 2016, signaling greater variability in exposure
levels within the middle range. This trend suggests that while extreme pollution events became
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less frequent, disparities in exposure across neighborhoods or regions may have grown,
potentially driven by localized sources of pollution.

On C-R functions, the "Other" category largely exhibits the highest NO, effect and had the most
significant changes, particularly in 2017, where its values exceed 1.10, marking the largest
deviation from the baseline across all categories (Figure 18). The heightened impact observed in
the "Other" category may be attributed to socioeconomic and environmental vulnerabilities,
including limited access to preventive healthcare. In comparison, the other race-ethnicity groups
remained relatively stable, though with some minor fluctuations. Starting in 2012, the effects of
NO: exposure on ED visits began to decline across all racial groups, reaching their lowest levels
around 2015. This trend likely reflects the benefits of expanded healthcare access and improved
disease management facilitated by Medicaid expansion and broader reforms under the ACA.
However, after 2015, the impact of NO2 exposure on ED visits began to rise again, particularly
among the "Other" category patients. This resurgence may be driven by increased susceptibility
in these communities due to aging demographics and a rising prevalence of chronic conditions.
Regarding lag effects, the influence of NO> exposure on ED visits remained consistent across 0—
2 day lags, with a slight reduction in impact observed by day 3. This pattern suggests that the
short-term health effects of NO; exposure diminish over time. For control periods, greater effect
sizes were observed when the control period was farther removed from the event day, such as the
four-week control period (Figures S19, S20, S21). This trend underscores the importance of
temporal framing in analyses, as variations in seasonal and spatial exposure levels can
significantly influence the observed relationships between pollution and health outcomes.

These findings demonstrate significant associations between NOz exposure and ED visits across
all racial groups from 2010 to 2019, emphasizing the ongoing health burden of air pollution,
particularly among vulnerable populations. Addressing these disparities through targeted
interventions and sustained air quality improvements is essential for mitigating the health
impacts of NO» exposure and promoting environmental justice for all racial groups.
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Figure 17. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and NO:
exposure from 2010 to 2019.
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Figure 18.The associations between NO: exposure and ED visits for diabetic patients across five major race categories in
California from 2010 to 2019.
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On PM_ 5 exposure (Figure 19), the average exposure levels for Black, Hispanic, and Other
individuals decreased from 10.09 pug/m3, 10.58 pg/m?, and 10.67 pg/m? in 2010 to 8.69 pg/m?,
8.76 ng/m?, and 8.38 pg/m?* in 2019, respectively. Similarly, Asian individuals experienced a
reduction in average PMa s levels, dropping from 9.88 pg/m? to 8.40 png/m? during the same
timeframe. The White population also saw a decline in exposure, decreasing levels from 9.87
pg/m? to 8.62 ug/m?. Overall, Hispanic and Other patients had the greatest exposure, and White
patients had the smallest exposure. Despite the overall decline in mean PM: 5 concentrations,
levels rose significantly in 2018, accompanied by increases in both the SD and IQR. As
previously discussed, this spike in PMa 5 and its associated variability was likely driven by the
surge in wildfire activity during 2018. The widespread and severe wildfires that year led to
extreme air pollution events, causing sharp fluctuations in PM> s levels across all race-ethnicity
categories and contributing to the observed increase in SD and IQR.

On C-R functions, the Asian category exhibited the most significant changes, for example, from
2011 and 2015, where its values dropped from 1.08 to near 1.0 (Figure 20). Between 2012 and
2015, the effect of PM> 5 exposure on ED visits declined across all race-ethnicity groups,
reaching its lowest levels during this period. This reduction may be attributed to improvements
in air quality and expanded access to preventive healthcare services facilitated by Medicaid
expansion and other ACA initiatives.

However, after 2015, the impact of PM» 5 exposure on ED visits began to rise again, particularly
among Asian populations. This increase could point to heightened vulnerability in these groups
due to a higher prevalence of chronic health conditions or other risk factors. Wider confidence
intervals observed for Asian and "Other" groups suggest smaller sample sizes, contributing to
greater variability and uncertainty in effect estimates.

On lagged effects, across all lag durations (0, 1, 2, and 3 days), the Asian category shows
consistent fluctuations and variability, particularly in earlier years. The error bars for this
category are relatively large, highlighting uncertainty in the estimates. Additionally, the choice of
control periods significantly influenced the observed impacts, with longer control intervals (e.g.,
four weeks) showing greater estimated effects (Figures S22, S23, S24). This pattern likely
reflects the dilution of exposure levels during distant reference periods, which amplifies the
relative impact of event-day exposures.

Overall, these findings reveal a significant association between PMb 5 exposure and ED visits
across all racial groups, underscoring the critical role of air pollution in exacerbating health
disparities. The results highlight the urgent need for targeted interventions to reduce PM> s
exposure and address health inequities, particularly within vulnerable racial and ethnic
communities.
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PM2.5 Exposure Trends Stratified by Race
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Figure 19. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and
PM:> 5 exposure from 2010 to 2019.
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Figure 20.The associations between PM> 5 exposure and ED visits for diabetic patients across five major race categories in
California from 2010 to 2019.
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Gender analysis

Between 2010 and 2012, the gender distribution of individuals remained relatively stable (Figure
21). Males consistently represented approximately 44.97% of the population, while females
comprised 55.03%. However, beginning in 2013, there was a gradual increase in the proportion
of male participants, reaching 46.16% by 2019.

Regarding NO> exposure, both genders experienced a consistent decline in mean levels after
2013. For instance, mean NO exposure for males was relatively low at 10.52 ppb in 2010,
increased slightly to 11.0 ppb in 2013, and then steadily decreased to 8.20 ppb by 2019.
Similarly, for females, NO, exposure dropped from 10.56 ppb in 2010 to 8.31 ppb in 2019.
Throughout the study period, females consistently had slightly higher NO2 exposure compared
to males. Despite the overall reductions, the IQR of NO exposure widened after 2016,
suggesting increased variability within the middle distribution of exposure levels. This trend
indicates that while extreme outliers became less frequent, fluctuations in moderate NO»
exposure levels grew, possibly due to localized air quality changes.

On C-R functions, both genders exhibited nearly identical responses to NO2 exposure, with their
impact patterns rising and falling in close alignment over time. From 2014 to 2015, the effect of
NO; exposure on ED visits declined for both genders, reaching its lowest point in 2015. This
decline likely reflects improved healthcare access and preventive measures the ACA facilitated.
However, after 2015, the impact of NO; exposure on ED visits began to rise again for both
genders, potentially driven by demographic shifts such as an aging population or increased
vulnerability in specific subgroups.

Regarding lag times, the effects of NO: exposure on ED visits remained consistent across both
genders, with a slight decrease observed as the lag period extended from zero to three days. In
the control period, smaller effect estimates were noted when the control period was closer to the
event day, while greater impacts were observed with longer control intervals, such as four weeks
prior (Figures S25, S26, S27). This trend underscores the importance of carefully selecting
temporal frameworks to ensure accurate exposure assessments and their health impacts.

Overall, the statistically significant association between NO; exposure and ED visits across
genders highlights the pervasive health risks posed by air pollution.
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Figure 21. The temporal trend of the population, categorized by gender, in California diagnosed with diabetes and NO: exposure

from 2010 to 2019.
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Figure 22. The associations between NO: exposure and ED visits for diabetic patients across gender categories in California
from 2010 to 2019.

31



Regarding PMb s exposures (Figure 23), though a small increase was seen from 2010 to 2011,
overall exposure levels for both genders declined over the study period. For example, mean
PMb s exposure for males decreased from 10.02 pg/m? in 2010 to 8.58 pg/m? in 2019. Similarly,
mean exposure for females dropped from 10.08 pg/m? in 2010 to 8.61 ug/m? in 2019. Despite
these improvements, the IQR of PM: 5 exposure widened after 2014, indicating greater variability
within the middle 50% of exposure levels. This suggests that while extreme pollution levels
diminished, variability in exposure among individuals within the central range increased,
potentially due to localized sources of pollution. Again, as observed in the unstratified analysis,
PMb 5 exposure increased significantly in 2018 due to the substantial impact of wildfire events.

On C-R functions, similar to NO; exposure effect, both genders have almost identical impact
from PMa> s exposure, with their impact patterns rising and falling in close alignment over time.
(Figure 24). Also similar to NO; exposure effect, from 2014 to 2015, the effect of PMa. 5 exposure
on ED visits declined for both genders, reaching its lowest point in 2015. After 2015, the health
impacts of PM 5 exposure on ED visits began to rise slightly for both genders, similar to what
happened to NO: exposure. Furthermore, the effect diminished significantly in 2018, similar to
the trends observed in other stratifications of PM» 5 exposure impact.

Regarding lag times, the acute effects of PM; 5 exposure were relatively consistent across 0—3
day lags, with a slight reduction in impact over longer lag periods. This pattern indicates that the
immediate effects of PMa 5 exposure on ED visits diminish within three days. Control periods
also influenced effect estimates, with smaller impacts observed for control periods closest to the
event. As the control period extended from one to four weeks before the event, the impact
estimates increased, likely due to more pronounced contrasts in exposure levels between the
event and control periods (Figures S28, S29, S30).

Overall, the significant association between PMa s exposure and ED visits for both genders
underscores the pervasive health risks of air pollution.
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PM2.5 Exposure Trends Stratified by Gender
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Figure 23. The temporal trend of the population, categorized by gender, in California diagnosed with diabetes and PM:.s
exposure from 2010 to 2019.
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Age analysis

Between 2010 and 2019, the distribution of type 2 diabetic patients by age group remained
relatively stable, with only minor variations across categories (Figure 25). Ages 45-64 had the
most composition, while ages 0-17, 16-24, and 85+ had the smallest composition, In 2010, they
were 43.24%, 0.4%, 1.24% and 6.36%, respectively. Though relatively stable, we can still
observe the gradual aging of the patient population after 2016, particularly as the "baby boomer"
generation entered their senior years. By 2019, the percentage of individuals aged 65—74
increased to 21.08 %, and those aged 75—-84 rose to 14.64%. This aging trend underscores the
growing presence of older adults in the patient population, likely contributing to increased
susceptibility to air pollution exposure.

Regarding NO; exposure, the mean levels across all age groups consistently declined over the
study period. For example, mean NO» exposure for individuals aged 0—17 decreased from 10.95
ppb in 2010 to 8.66 ppb in 2019, 18-24 decreased from 10.55 ppb in 2010 to 8.37 ppb in 2019,
25-44 decreased from 10.76 ppb in 2010 to 8.36 ppb in 2019. Similarly, the 45—64 age group saw
a reduction in mean NO»> levels from 10.62 ppb in 2010 to 8.34 ppb in 2019. Individuals aged
65—74 decreased from 10.45 ppb in 2010 to 8.15 ppb in 2019, 75-84 decreased from 10.26 ppb in
2010 to 8.14 ppb in 2019, and finally, 85+ decreased from 10.103 ppb in 2010 to 8.09 ppb in
2019. Across all the years, the 0-17 age group experienced the highest exposure to NO», while
the 85+ age group had the lowest exposure. Despite overall air quality improvements, the IQR of
NO:> exposure widened after 2016, indicating increased variability within the middle 50% of
exposure levels. This suggests that while average concentrations declined, certain areas
experienced inconsistent air quality improvements, possibly due to localized pollution sources.

The 0—-17 age group exhibits the most significant changes, particularly in 2013 and 2017, where
values rise above 1.2, marking substantial deviations from the baseline (Figure 26). This
heightened impact is likely influenced by the increased severity of influenza in California during
those years, which may have led to a surge in ED visits. During the 2014-2015 period, the impact
for the 0-17 age group reached its lowest levels. This decline may be attributed to enhanced
preventive care and improved access to healthcare services introduced under the ACA. The
significant change in NOz’s impact on ED visits for the 0—17 age group reflects children's
heightened vulnerability to air pollution, driven by their developing respiratory systems and
higher exposure rates during outdoor activities. Additionally, the relatively small sample size for
this age group, which results in wider confidence intervals, may contribute to the observed
variability in NO»’s effect on ED visits, making year-to-year fluctuations more pronounced. For
the other age groups, the effects of NO2 on ED visits remain relatively stable, consistently
showing a significant impact over the years.

Regarding lag times, the effects of NO> exposure remained relatively stable across all age groups
within 0-2 day periods, with a slight reduction observed by day 3. For control periods, smaller
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impacts were noted when the control period was closest to the event, whereas larger effects were
observed with extended control periods of up to four weeks (Figures S31, S32, S33). This pattern
highlights the importance of accounting for temporal variability when selecting control periods
to analyze the health impacts of NO> exposure accurately.

Overall, significant effects of NO2 exposure on ED visits were observed across all age groups,
underscoring the pervasive health risks posed by air pollution. These findings emphasize the
need for targeted air quality policies and interventions to protect vulnerable populations, such as
children and older adults, who are disproportionately affected by the health impacts of NO>
exposure.

NO2 Exposure Trends Stratified by Age
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Figure 25. The temporal trend of the population, categorized by age, in California diagnosed with diabetes and NO> exposure
Srom 2010 to 2019.
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NO2 Effects by Year (Control: 4to1)
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Figure 26.The associations between NO: exposure and ED visits for diabetic patients across age categories in California from 2010 to 2019.

36



Regarding PMb» s exposure, the mean levels across all age groups consistently declined over the
study period (Figure 27). For example, mean PM> 5 exposure for individuals aged 0—17
decreased from 10.19 pg/m? in 2010 to 8.81 pg/m?® in 2019, 18-24 decreased from 10.22 pg/m?3
in 2010 to 8.82 ug/m? in 2019, 25-44 decreased from 10.26 pg/m? in 2010 to 8.79 pg/m? in 2019.
Similarly, the 45—64 age group saw a reduction in mean PM> s levels from 10.10 pg/m? in 2010
to 8.71 pg/m? in 2019. Individuals aged 65—74 decreased from 9.98 ug/m? in 2010 to 8.56 pg/m?
in 2019, 75-84 decreased from 9.87 pg/m?3 in 2010 to 8.47 pg/m?® in 2019, and finally, 85+
decreased from 9.69 ug/m? in 2010 to 8.30 ug/m? in 2019. Similar to NO; exposure, across all
the years, the 0-17 age group experienced the highest exposure to PM2 5, while the 85+ age group
had the lowest exposure. Despite the overall decline in mean PM s concentrations, levels rose
significantly in 2018, accompanied by increases in both the SD and IQR for each age group. As
previously discussed, this spike in PM> s and its associated variability was likely driven by the
surge in wildfire activity during 2018. The widespread and severe wildfires that year led to
extreme air pollution events, causing sharp fluctuations in PM3 5 levels across all three language
speaker categories and contributing to the observed increase in SD and IQR.

On C-R functions, the 0—17 age group exhibits the most significant changes, with high reaching
over 1.1 and lows below 0.9 (Figure 28). This heightened impact is likely due to the likelihood of
children engaging in outdoor activities, increasing their exposure and vulnerability to air
pollution. Similar to what we have seen for other stratifications, the effect of PM 5 exposure on
ED visits for individuals aged 0—17 began to decline after 2011, reaching its lowest point in
2015. This decline likely reflects improved air quality and the improved health care from the
ACA act to protect this demographic. After 2015, individuals aged 65 and older experienced a
slight increase in the impact of PM2 5 exposure on ED visits. This rise is likely attributable to the
heightened vulnerability of older adults, driven by aging, chronic health conditions, and
increased sensitivity to air pollution. Furthermore, the effect diminished significantly in 2018,
similar to the trends observed in other stratifications of PM» s exposure impact.

Regarding lag times, the effects of PMz s exposure across all age groups remained relatively
consistent over 0-2 day periods, with a slight decrease observed by day 3. For control period, the
smallest effects were observed for control periods when the control period was closest to the
event day. As the control period extended from one to four weeks prior, the estimated impact of
PM: 5 exposure increased, underscoring the importance of careful temporal framing in exposure
analyses (Figures S34, S35, S36).

Overall, PM> 5 exposure significantly influenced ED visits across all age groups throughout the
study period, emphasizing the widespread health risks associated with air pollution. These
findings highlight the critical need for targeted interventions to reduce PMz s exposure,
particularly for vulnerable populations such as children and older adults, who are
disproportionately affected by its health impacts.
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Figure 27. The temporal trend of the population, categorized by age, in California diagnosed with diabetes and PM:.s exposure
Sfrom 2010 to 2019.
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PM2.5 Effects by Year (Control: 4to1)
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Figure 28.The associations between PM: s exposure and ED visits for diabetic patients across age categories in California from 2010 to 2019.
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Supplementary Figures

NO2 Effects by Year (Control: 1to1)
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Figure S1. The associations between NO, exposure and ED visits for diabetic patients across different health
insurance payer categories in California from 2010 to 2019.
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NO2 Effects by Year (Control: 2to1)
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Figure S2. The associations between NO, exposure and ED visits for diabetic patients across different health
insurance payer categories in California from 2010 to 2019.
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NO2 Effects by Year (Control: 3to1)
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Figure S3.The associations between NO; exposure and ED visits for diabetic patients across different health
insurance payer categories in California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 1to1)
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Figure S4. The associations between PM> s exposure and ED visits for diabetic patients across different health
insurance payer categories in California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 2to1)
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Figure S5. The associations between PM> s exposure and ED visits for diabetic patients across different health
insurance payer categories in California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 3to1)
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Figure S6. The associations between PM> s exposure and ED visits for diabetic patients across different health
insurance payer categories in California from 2010 to 2019.
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NO2 Effects by Year (Control: 1to1)
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Figure S7. The associations between NO; exposure and ED visits for diabetic patients across region categories in
California from 2010 to 2019.
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California from 2010 to 2019.
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Figure S10. The associations between PM; s exposure and ED visits for diabetic patients across region categories in
California from 2010 to 2019.
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Figure S11. The associations between PM> s exposure and ED visits for diabetic patients across region categories in

California from 2010 to 2019.
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Figure S12. The associations between PM; s exposure and ED visits for diabetic patients across region categories in
California from 2010 to 2019.
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Figure S13. The associations between NO; exposure and ED visits for diabetic patients across language categories in
California from 2010 to 2019.
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Figure S14. The associations between NO; exposure and ED visits for diabetic patients across language categories in
California from 2010 to 2019.

53



NO2 Effects by Year (Control: 3to1)

Lags: 0 days
1.2 &
®
1.1 #
oboe ode @ o e ° ode
oo e _ 2% eje __o¥e  o3e__ege __ote 7%  e¥e  e¥e
®
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Lags: 1 days
1.2 $
L ]
1.1 F
Oi. o9 0 .’. e=e ® 'S X
1om e —— e 222 _ede %%  cde _ede _ote  °7°  ege _cde
° °
gg 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
T}
8 Lags: 2 days
> 12 . )
1.1
o*l ode ode .
o mm e 220 _ee _ 0% e¥e _ege _ _s¥e_ _ °70 _ege _ode
®
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Lags: 3 days
1.2 $
11 ¢
oio ofe ode
e m e 272 _ ek _ %7 ofe _gje _ _ode_ _ °%°  ege _ede
[
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

Language -®- English -@ Other -#- Spanish

Figure S15. The associations between NO; exposure and ED visits for diabetic patients across language categories in
California from 2010 to 2019.
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Figure S16. The associations between PM; s exposure and ED visits for diabetic patients across language categories

in California from 2010 to 2019.
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Figure S17. The associations between PM; s exposure and ED visits for diabetic patients across language categories
in California from 2010 to 2019.
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Figure S18. The associations between PM; s exposure and ED visits for diabetic patients across language categories

in California from 2010 to 2019.
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Figure S19. The associations between NO; exposure and ED visits for diabetic patients across five major race

categories in California from 2010 to 2019.
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Figure S20. The associations between NO; exposure and ED visits for diabetic patients across five major race

categories in California from 2010 to 2019.
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Figure S21. The associations between NO; exposure and ED visits for diabetic patients across five major race
categories in California from 2010 to 2019.
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Figure S22. The associations between PM; s exposure and ED visits for diabetic patients across five major race
categories in California from 2010 to 2019.
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Figure S23. The associations between PM; s exposure and ED visits for diabetic patients across five major race
categories in California from 2010 to 2019.
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Figure S24. The associations between PM; s exposure and ED visits for diabetic patients across five major race

categories in California from 2010 to 2019.
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Figure S25. The associations between NO: exposure and ED visits for diabetic patients across gender categories in
California from 2010 to 2019.
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Figure S26. The associations between NO: exposure and ED visits for diabetic patients across gender categories in
California from 2010 to 2019.
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Figure S27. The associations between NO: exposure and ED visits for diabetic patients across gender categories in
California from 2010 to 2019.
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Figure S28. The associations between PM, s exposure and ED visits for diabetic patients across gender categories in

California from 2010 to 2019.
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Figure S29. The associations between PM, s exposure and ED visits for diabetic patients across gender categories in

California from 2010 to 2019.
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Figure S30. The associations between PM, s exposure and ED visits for diabetic patients across gender categories in

California from 2010 to 2019.
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Figure S31. The associations between NO- exposure and ED visits for diabetic patients across age categories in
California from 2010 to 2019.
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Figure S32. The associations between NO- exposure and ED visits for diabetic patients across age categories in
California from 2010 to 2019.
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Figure S33. The associations between NO- exposure and ED visits for diabetic patients across age categories in

California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 1to1)
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Figure S34. The associations between PM; s exposure and ED visits for diabetic patients across age categories in
California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 2to1)
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Figure S35. The associations between PM; s exposure and ED visits for diabetic patients across age categories in
California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 3to1)
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Figure S36. The associations between PM; s exposure and ED visits for diabetic patients across age categories in
California from 2010 to 2019.
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1. Introduction

Type 2 diabetes (T2D) continues to be one of the most prevalent chronic conditions globally,
characterized by insulin resistance and persistent hyperglycemia. Its rising incidence poses a
significant challenge to healthcare systems, not only due to its long-term complications such as
cardiovascular disease, nephropathy, and neuropathy, but also because of the acute burden it
places on hospitals through emergency visits and prolonged inpatient stays. In the United States,
California is home to a particularly high burden of T2D, with substantial racial and
socioeconomic disparities shaping both disease outcomes and access to care.

While lifestyle and genetic predispositions are established contributors to T2D development and
progression, environmental exposures, especially air pollution are increasingly recognized as
important, modifiable risk factors. Ambient air pollution, notably fine particulate matter (PM2.s)
and nitrogen dioxide (NO), has been implicated in the onset of insulin resistance, systemic
inflammation, and impaired glucose regulation, all of which can accelerate the development and
complications of T2D ((Brook et al., 2010; Guo et al., 2025; Hong et al., 2025; Liu et al., 2019;
Rajagopalan & Brook, 2012; Zhang et al., 2025). Experimental and epidemiologic studies
suggest that even short-term exposure to these pollutants can exacerbate underlying metabolic
dysfunction, particularly among individuals with chronic diseases (Hu et al., 2025; Liang et al.,
2025).

Although the connection between air pollution and T2D incidence has been well documented, far
fewer studies have examined how acute fluctuations in pollution influence hospitalization-related
outcomes among individuals already living with T2D. Hospital admissions and length of stay
(LOS) offer valuable insights into the severity and destabilization of disease, often reflecting
acute responses to environmental stressors. These outcomes are particularly relevant in settings
like California, where overall pollution levels have declined due to regulatory efforts, yet local
disparities in exposure remain pronounced, especially in low-income and racially diverse
communities near traffic corridors or industrial zones.

Wildfires' growing frequency and severity add complexity to the air pollution landscape,
contributing episodic yet intense increases in PM 5. The interaction between wildfire smoke
exposure and chronic disease burden remains an underexplored but increasingly relevant public
health issue in the western U.S., particularly for vulnerable populations such as those with T2D
(Saeed, 2025; Wettstein et al., 2018). Moreover, the implementation of healthcare policy reforms,
such as the Affordable Care Act (ACA), has altered healthcare access and utilization patterns
over the last decade, offering a unique opportunity to evaluate how systemic changes may buffer
or exacerbate environmental health risks.

Although California has experienced substantial environmental and policy shifts over the past
decade, few U.S.-based studies have evaluated how short-term air pollution exposure influences
hospitalization and length of stay (LOS) among individuals with Type 2 Diabetes (T2D). Most



existing research has focused on long-term exposures or has been conducted in international
settings with higher baseline pollution levels. There is a pressing need for high-resolution,
individual-level analyses in regions like California, where moderate but variable pollution
coincides with significant healthcare reforms and demographic diversity.

To address this gap, we assessed the short-term associations between daily PM> s and NO»
exposures and hospitalization outcomes among T2D patients in California from 2010 to 2019.
Leveraging a large statewide hospitalization dataset linked to fine-scale air pollution and
meteorological data, we examined temporal patterns, racial and ethnic disparities, and the
influence of contextual factors such as major wildfire events and changes in healthcare access
under the Affordable Care Act (ACA). By disaggregating results year-by-year, this study builds
on our prior pooled analysis to capture shifts in pollution—health relationships that may be
masked in multi-year averages. Our aim is to generate evidence that supports equitable, targeted
environmental health strategies and enhances healthcare system resilience in the face of
emerging environmental challenges.

2. Materials and methods

2.1. Study population and Health data

This study investigates hospitalizations related to type 2 diabetes (T2D) in California from 2010
to 2019. Patient-level hospitalization data were sourced from the California Department of
Health Care Access and Information (HCAI). The dataset includes individuals with either a
primary or secondary diagnosis of T2D, identified using ICD-9 code 250 or ICD-10 code E11.
Key variables encompass ZIP code of residence, admission and discharge dates, length of stay
(LOS), age, sex, race/ethnicity, insurance type, type of care received, and primary language
spoken.

Diagnostic and procedural fields were cleaned and standardized, and LOS was calculated as a
derived metric. Residential ZIP codes were geocoded and spatially linked to air pollution
exposure data.

2.2. Exposure data

Daily exposure estimates for PMz s and NO; were developed using high-resolution land-use
regression (LUR) models, as described in (Su et al., 2024). These models integrated various data
sources, including satellite-based observations (e.g., Ozone Monitoring Instrument — OMI),
weather variables, traffic density, land use characteristics, and vegetation indices such as the
Normalized Difference Vegetation Index (NDVI). The models were trained using
Decision/Support/Analysis (D/S/A) algorithms and validated through V-fold cross-validation to
minimize overfitting and control for spatial autocorrelation. Pollution estimates were initially
produced at a 30-meter spatial resolution and then aggregated into 100-meter grids to enhance
computational efficiency. Individual exposure levels were calculated by deriving ZIP code-level
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and population-weighted pollutant concentration averages, based on block group-level data
weighted by population. Meteorological variables such as daily maximum temperature,
maximum relative humidity, and precipitation were also assigned at the ZIP code level using the
same methodology applied to air pollution estimates.

2.3. Study Design

To evaluate the short-term relationship between air pollution exposure and hospitalizations for
type 2 diabetes (T2D), we employed a time-stratified case-crossover design. In this approach,
each case day defined as the patient's admission date was matched with up to four control days
on the same weekday in prior weeks. Control days were assigned by subtracting 7, 14, 21, and 28
days from the admission date, corresponding to one, two, three, and four weeks earlier. This
matching strategy controls for weekly temporal trends and minimizes confounding from short-
term patterns such as day-of-week effects.

We created separate datasets for different case-control matching ratios (1:1, 2:1, 3:1, and 4:1),
reflecting the number of control days paired with each case. This self-matched design inherently
adjusts for fixed individual-level characteristics including age, sex, race/ethnicity, and underlying
health conditions while reducing bias from time-varying confounders. The exposure windows
were selected based on established evidence from prior studies, and additional lag structures
were explored through sensitivity analyses to ensure robustness of the findings.

2.4. Statistical analysis

Analyses were stratified by individual years from 2010 to 2019 were performed using R version
4.3.1(R Core Team, 2023). Data management and visualization were conducted using several R
packages, including dplyr (Wickham, 2015), tidyr(Wickham & Wickham, 2017), lubridate(Spinu
et al., 2016), survival (Therneau & Lumley, 2015), and ggplot2 (Wickham et al., 2016). We used
conditional logistic regression to estimate the association between short-term exposure to
ambient air pollutants and the odds of T2D-related hospitalization. Models adjusted for time-
varying meteorological variables, including daily temperature, relative humidity, precipitation,
and wildfire events.

The relationship between the effects of daily and lagged air pollution and hospital length of stay
(LOS) was examined using generalized linear models (GLMs) with a Poisson link function.
These models accounted for demographic and clinical covariates such as age at admission,
insurance payer, race/ethnicity, type of care, and primary language along with daily
meteorological conditions (maximum temperature, relative humidity, and precipitation). We
evaluated pollutant effects using lag periods from 0 to 3 days before admission, reporting results
as percent change in outcomes per interquartile range (IQR) increase in pollutant concentration,
accompanied by 95% confidence intervals (CIs). Stratified analyses by calendar year and
race/ethnicity were performed to capture temporal patterns and identify disproportionately
affected populations. Because sample sizes varied by year, we conducted sensitivity analyses to



evaluate the robustness of annual estimates. Statistical significance was determined using a two-
sided p-value threshold of < 0.05.

3. Results

3.1. Effect on hospital admission

Between 2010 and 2019, the number of Californians diagnosed with T2D nearly doubled, rising
from 569,653 to 690,672. This increase Error! Reference source not found.can be largely
attributed to an aging and increasingly obese population, improvements in data collection, and
expanded healthcare access through the Affordable Care Act (ACA) (Fig. 1). The ACA facilitated
broader screening and diagnosis efforts via Medi-Cal and subsidized insurance programs,
identifying many previously undiagnosed cases. In 2010, NO> exposure levels among individuals
with T2D were relatively low. The economic downturn following the Great Recession (2007—
2009) contributed to this reduction in air pollution, particularly in urban areas where
transportation emissions are a primary source of NO; and particulate matter. Additionally,
wildfire activity in 2010 was lower than in subsequent years, which helped prevent significant
spikes in particulate pollution from that source. NO2 exposure increased between 2011 and 2013
but began to decline steadily afterward. This downward trend in both average NO>
concentrations and their standard deviation (SD) reflects improvements in air quality driven by
regulatory policies and advancements in cleaner technologies. Measures such as stricter vehicle
emissions standards, tighter industrial regulations, and the adoption of cleaner fuels helped
reduce emissions. They led to a uniform decrease in NO; levels, minimizing extreme pollution
events that previously contributed to greater variability. Although the mean NO; concentrations
and SD continued to decline, the interquartile range (IQR) of NO» exposure began to rise after
2016. This pattern suggests that while extreme pollution events became less common, variability
within the middle range of NO; concentrations increased. A declining SD alongside a rising IQR
indicates that data points are clustered more closely around the mean. Still, the spread within the
central portion of the distribution became wider, reflecting a more stretched distribution of
typical NOz exposure levels, even as extreme outliers diminished.
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Fig. 1. The temporal trend of the population in California diagnosed with diabetes and NO»
exposure from 2010 to 2019.

The concentration-response (CR) functions show the relationship between NO exposure and
hospitalization, revealing a declining trend in effect estimates from 2010 to 2015, followed by an
upward trend from 2015 to 2019 (Fig. 2). Several key factors contribute to this pattern.
Expanding healthcare access through Medicaid has likely enhanced disease management and
preventive care for low-income populations during the earlier period, reducing dependence on
emergency departments for acute health issues. Consequently, the influence of environmental
exposures like NO; on hospitalization decreased between 2010 and 2015. However, after 2015, a
broader distribution of NO; exposure levels may have contributed to the observed resurgence in
its health impact, even though average concentrations continued to decline. Additionally, shifts in
population vulnerability likely played a role. As the "baby boomer" generation (born between
1946 and 1964) aged and increasingly utilized healthcare services, their heightened susceptibility
to air pollution may have amplified the health effects of NO» during this later period.

Regarding lagged effects, the impact of NO» exposure remained relatively stable over the first
two days (lags 0-2), with only a slight decline observed by day 3. This suggests that the health
effects of NO; are primarily acute and tend to diminish within a few days following exposure.
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Concerning control period comparisons, using a 1-to-1 control (one week before the event)
resulted in lower effect estimates, whereas applying a 4-to-1 control (four weeks before the
event) produced higher estimates. This pattern may be explained by the dilution of exposure
levels further from the event day, making the exposure on the event day appear comparatively
higher and resulting in a stronger estimated effect. The association between NO> exposure and
hospitalization remained statistically significant across the entire study period (2010-2019),
regardless of the lag structure (0—3 days) or control strategy (one to four weeks prior). This
consistency demonstrates the robustness of the relationship between short-term NO; exposure
and adverse health outcomes, particularly among individuals with diabetes.

NO2 Effects with Environmental Controls (Lags 0-3)
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Fig. 2. The association between NO, exposure and hospitalization over 0-3 lag days across four
control categories, modeled annually from 2010 to 2019.

In parallel with trends in NO; exposure, PM s levels among individuals with T2D were relatively
low in 2010, likely due to the economic slowdown following the Great Recession and reduced
wildfire activity that year (Fig. 3). Starting in 2011, average PM2 s concentrations steadily
declined, reflecting significant progress in air quality driven by stricter environmental regulations
and advancements in cleaner technologies. Enhanced vehicle emission standards, tighter
industrial pollution controls, and the transition to cleaner fuels were key contributors to this
improvement. The standard deviation (SD) of PM2 s levels also decreased, indicating reduced
extreme pollution events and more consistent air quality improvements across regions. However,
after 2016, the interquartile range (IQR) of PM> 5 exposure began to rise, suggesting increased
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variability in mid-range pollution levels. While extreme pollution events became less frequent,
disparities in regional pollution control efforts and localized PM: 5 sources may have contributed
to this growing variability within the central range of exposures.

Although the decline in average PM> 5 concentrations and reduced variability in extreme values
highlight the success of air quality interventions, 2018 saw a significant spike in PM2 s levels,
primarily due to unprecedented wildfire activity. Major events such as the Camp Fire in Northern
California and the Woolsey Fire in Southern California released large quantities of fine
particulate matter, severely degrading air quality across the state. These extreme wildfire events
underscore the growing impact of climate change on air pollution patterns, even as regulatory
policies continue to reduce emissions from traditional sources. The increasing IQR also
highlights the need for more localized, targeted efforts to address disparities in mid-range
pollution exposures and mitigate community-level health risks.
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Fig. 3. The temporal trend of the population in California diagnosed with diabetes and PM> 5
exposure from 2010 to 2019.

The association between PM2 s exposure and hospitalization reveals a distinct temporal pattern: a
positive effect in 2011, a decline in effect estimates from 2012 to 2015, and a renewed increase



from 2015 to 2019 (Fig. 4). Relatively low PMb s levels may explain the initially negative
association observed in 2010. The broader implementation of the Affordable Care Act (ACA) by
2014 significantly shaped this trend, expanding access to healthcare through Medicaid for low-
income individuals and Medicare Part B for older adults. Enhanced access likely promoted better
disease management and preventive care, which reduced reliance on hospital services for acute
conditions. Consequently, the health impacts of environmental exposures, including PM» s,
declined during 2012-2015.

However, the upward trend in PM2 s-related health effects observed after 2015 may reflect shifts
in exposure dynamics and rising population vulnerability. Despite overall declines in average
PM; s levels, there was a noticeable increase in mid-range exposures, which may have amplified
health risks.

PM2.5 Effects with Environmental Controls (Lags 0-3)
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Fig. 4. The association between PM3 5 exposure and hospitalization over 0-3 lag days across four
control categories, modeled annually from 2010 to 2019.

Interestingly, despite elevated PM; s levels in 2018, hospitalization remained relatively low at
678,682. Several factors may account for this. Wildfire-related PM> s tends to occur in short,
intense bursts. In contrast, chronic exposure to pollution from traffic and industrial sources has a
more established link to sustained health impacts and increased hospital utilization. Additionally,
heightened public awareness and protective behaviors—such as using N95 masks, adherence to
air quality alerts, and staying indoors—may have reduced acute exposures during wildfire

9



events. Adaptations like increased use of air purifiers and reduced outdoor activity could have
further mitigated immediate health consequences. It is also possible that the health effects of
such exposures are delayed and not fully reflected in the same-year hospitalization data.
Furthermore, adjustments for wildfire-related PM> 5 in the modeling may have overcontrolled for
its effects, potentially underestimating its contribution to hospital admissions.

Regarding lagged effects, PM2 s exposure had a relatively stable impact on hospitalization within
the 0—2 day period, with a modest reduction in effect by day 3. This indicates that PM3 s
predominantly exerts short-term health effects. Comparing different control strategies1-to-1 (one
week before the event, versus 4-to-1, four weeks prior revealed a pattern like that seen with NO»:
stronger associations were detected when control periods were further from the event date. This
may be due to lower pollution levels during those earlier periods, heightening the apparent
contrast and thus the observed effect on the event day.

3.2. Effect on hospitalization stratified by race/ethnicity

From 2010 to 2019, the racial distribution among T2D patients remained relatively stable (Fig.
5). White patients consistently represented the largest group, though their proportion declined
slightly from 46.94% to 39.36%. Hispanic patients, the second-largest group, experienced a
modest increase from 30.23% to 34.42%. The proportion of Asian patients rose slightly from
9.65% to 9.99%, while Black patients decreased from 11.90% to 10.33%. The "Other" racial
category, although the smallest in 2010 (1.26%), grew significantly, reaching 5.87% by 2019.
Regarding NO: exposure, except for 2010, average NO> levels across all racial groups showed a
clear downward trend over the study period. For example, mean NO> exposure for Black,
Hispanic, and Other patients decreased from 12.55 ppb, 12.88 ppb, and 10.50 ppb in 2010 to
9.02 ppb, 9.23 ppb, and 8.32 ppb in 2019, respectively. Similarly, Asian patients experienced a
reduction from 12.30 ppb to 8.84 ppb, and White patients from 10.37 ppb to 7.47 ppb over the
same period. Hispanic patients had the highest NO> exposure, while White patients experienced
the lowest. Despite these improvements, the interquartile range (IQR) of NO> exposure began to
widen after 2016, indicating increased variability within the mid-range of exposures. This
suggests that while extreme pollution events became less frequent, exposure disparities persisted
or worsened, likely driven by localized pollution sources and regional differences in air quality
improvements.

Regarding concentration-response (C-R) functions, the "Other" racial category consistently
exhibited the highest NO»-related health effects. It showed the most pronounced fluctuations,
particularly in 2017, when the Effect exceeded 1.18, the largest deviation from the baseline
among all groups (Fig. 6). This heightened impact may reflect greater socioeconomic and
environmental vulnerabilities, including reduced access to preventive healthcare and increased
exposure to local pollution sources. In contrast, the other racial and ethnic groups showed
relatively stable C-R patterns with minor fluctuations.
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Starting around 2012, the health impacts of NO> exposure on hospitalization declined across all
racial groups, reaching their lowest levels by 2015. This decline likely reflects the benefits of
expanded healthcare access and improved disease management driven by Medicaid expansion
and the Affordable Care Act (ACA) reforms. However, after 2015, the effects of NO> exposure
on hospitalization began to rise again, particularly among patients in the "Other" racial category.
This resurgence may be associated with increased susceptibility due to an aging population and a
growing burden of chronic conditions within these communities.
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Fig. 5. The temporal trend of the population, categorized by five major races, in California
diagnosed with diabetes and NO; exposure from 2010 to 2019.
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NO2 Effects by Year (Control: 4to1)
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Fig. 6. The associations between NO» exposure and hospitalization for diabetic patients across
five major race categories in California from 2010 to 2019.

Regarding lag effects, the influence of NO2 exposure on hospitalization remained relatively
stable across 0-2-day lags, with a slight decline by day 3, indicating that the short-term health
effects of NO2 exposure tend to diminish over time. When comparing control periods, larger
effect estimates were observed with longer control intervals, such as the four-week control
period (Figures S1, S2, S3). This finding highlights the importance of carefully selecting
temporal control periods, as variations in seasonal and spatial exposure patterns can significantly
affect the observed associations between pollution and health outcomes.

These findings reveal significant associations between NO; exposure and hospitalization across
all racial groups from 2010 to 2019, underscoring the persistent health burden of air pollution,
especially among vulnerable populations. Addressing these disparities through targeted
interventions and sustained improvements in air quality is critical to reducing the health impacts
of NOz exposure and advancing environmental justice for all communities.

PM; 5 exposure analysis (Fig.S4) shows average exposure levels declined across all racial and
ethnic groups from 2010 to 2019. Specifically, average PM2 s concentrations for Black, Hispanic,
and Other individuals decreased from 10.35 pg/m?, 10.81 pg/m3, and 9.82 pg/m? in 2010 to 8.66
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pg/m3, 9.03 ng/m?3, and 8.36 pg/m? in 2019, respectively. Similarly, Asian individuals
experienced a reduction from 10.23 pg/m? to 8.50 pg/m?, and the White population saw levels
fall from 9.79 pg/m?to 8.21 pg/m? during the same period. Overall, Hispanic and Black patients
experienced the highest PM; 5 exposures, while White patients consistently had the lowest.
Despite the downward trend in average PM; s levels, 2018 marked a sharp increase in
concentrations, accompanied by notable rises in the standard deviation (SD) and interquartile
range (IQR). This spike was largely driven by severe wildfire activity that year, which led to
widespread and extreme air pollution events. These wildfires not only elevated PM; 5 levels but
also increased exposure variability across all racial and ethnic groups, contributing to the
observed growth in SD and IQR. Regarding concentration-response (C-R) functions, the "Other"
category displayed the most pronounced changes. For instance, between 2011 and 2014, effect
estimates for this group fell from 1.07 to around 1.0 (Fig.S5).

Between 2012 and 2015, the effects of PM2 5 exposure on hospitalization declined across all
racial and ethnic groups, reaching their lowest levels during this period. This reduction likely
reflects improvements in air quality and expanded access to preventive healthcare services made
possible by Medicaid expansion and other initiatives under the Affordable Care Act (ACA).

However, after 2015, the impact of PM s exposure on hospitalization began to increase again,
particularly among Hispanic and Black populations. This resurgence may indicate increased
vulnerability in these communities, potentially due to a higher prevalence of chronic health
conditions or other socioeconomic risk factors. Additionally, wider confidence intervals observed
for the Asian and "Other" groups suggest smaller sample sizes in these populations, leading to
greater uncertainty and variability in the effect estimates.

Examining lagged effects, the "Other" category exhibited notable fluctuations and variability
across all lag periods (0 to 3 days), especially during earlier years. Large error bars for this group
highlight the uncertainty of these estimates. Furthermore, the choice of control period
significantly affected the observed results, with longer control intervals (e.g., four weeks)
producing larger estimated effects (Figures S6, S7, S8). This is likely to reflect the lower
pollution levels during more distant control periods, which amplify the relative difference
compared to exposure levels on the event day.

3.3. Effect on LOS

Between 2010 and 2019, the number of hospitalized Californians with T2D rose from 569,653 to
690,672. This increase (Fig.S9) is primarily driven by an aging and growing obese population,
enhanced data reporting, and expanded healthcare access under the Affordable Care Act (ACA).
The ACA's implementation improved hospital accessibility through Medi-Cal and subsidized
insurance plans, facilitating better identification and documentation of hospitalization cases.

In 2010, NO2 exposure among Type 2 diabetic patients remained relatively low. A key factor
contributing to this was the economic downturn following the Great Recession (2007-2009),
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which reduced industrial and transportation emissions, particularly in urban areas where these
sources are major contributors to NO2 and particulate pollution. Additionally, wildfire activity in
2010 was lower than in other years, preventing substantial spikes in pollution from that source.
Between 2011 and 2013, NO> exposure increased, but from 2014 onward, overall NO»
concentrations and their standard deviation (SD) showed a steady decline.

This downward trend is likely due to enhanced air quality regulations and the adoption of cleaner
technologies, which have helped reduce emissions over time. Policies such as stricter vehicle
emissions standards, industrial regulations, and the adoption of cleaner fuels have contributed to
an overall decline in emissions, leading to a more consistent reduction in NO> levels and fewer
extreme pollution events that previously caused high variability. While the mean NO-
concentrations and standard deviation (SD) continued to decrease, the interquartile range (IQR)
of NOz exposure began to rise after 2016. This declining SD and an increasing IQR combination
suggest that NO; values became more concentrated around the mean, yet the middle portion of
the data showed greater variability. In other words, while extreme pollution outliers became less
common, the spread of NO> levels within the central range widened, indicating a more stretched-
out distribution of exposure levels over time.

The CR functions between NO> exposure and LOS show an upward trend in effect estimates
from 2010 to 2012, peaking in 2012. A slight decline followed this in 2013, but the estimates
rose again in 2014, indicating some fluctuations. Overall, from 2010 to 2014, the estimates
demonstrate a moderate increase. The CR functions between NO; exposure and LOS exhibit an
upward trend from 2014 to 2016, followed by fluctuations in 2017-2019 (Fig.S10). This trend
can be attributed to several key factors. Expanding Medicaid for low-income individuals will
likely enhance access to preventive care and disease management, decreasing hospitalizations for
acute conditions. With improved healthcare availability, patients may have received earlier
interventions and better chronic disease management, reducing the need for emergency hospital
admissions. Shifts in population susceptibility may also account for the increased impact of NO»
after 2014. As the baby boomer generation (born between 1946 and 1964) aged and became
more integrated into the healthcare system, their heightened vulnerability to air pollution likely
contributed to the observed rise in NO;-related health effects.

Over all years, lag 2 estimates tend to be slightly higher than lag 0 estimates, suggesting that the
impact of NO2 exposure on LOS increases slightly over the first two days. The most notable
increase occurs in 2012, where lag 0 = 1.021 and lag 2 = 1.023, showing a sustained short-term
effect of NO2 exposure. This trend suggests that the Effect of NO2 exposure may not be
immediate but becomes more evident within 1-2 days post-exposure. In most years, lag 3
estimates are slightly lower than lag 2 estimates, indicating that the NO, exposure effect starts to
decline by day 3. For example, in 2013, the estimate for lag 2 = 1.012 but drops to 1.009 at lag 3,
implying that the Effect weakens after two days. This pattern suggests that the influence of NO»
exposure on hospitalization LOS is strongest within the first 2 days and starts to diminish
afterward. NO; exposure effect increases from lag 0 to lag 2, suggesting a short-term
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accumulation of impact. The Effect declines from lag 2 to lag 3, implying a diminishing
influence beyond the initial exposure period. This pattern is consistent across most years,
indicating a predictable short-term effect of NO2 exposure on hospitalization duration.

The impact of NO» exposure on LOS remains statistically significant across 20102019,
considering lags 0—3 days. This finding underscores the robustness of the association between
NO:> exposure and prolonged hospitalization, regardless of temporal considerations. The
consistent significance of NO,'s Effect highlights that short-term exposure is a key factor
influencing hospitalization duration, emphasizing the importance of air quality monitoring. The
persistence of this relationship over nearly a decade reinforces the urgent need for targeted
interventions to mitigate NO; pollution, particularly in vulnerable populations and high-risk
areas where individuals may experience prolonged hospital stays due to air pollution-related
complications.

From 2010 to 2019, the number of Californians hospitalized with T2D increased from 569,653 to
690,672 (Fig.S11). The increase in hospitalized cases of T2D from 2010 to 2019 aligns with
expanded healthcare access, which improved diabetes screening and diagnosis through Medi-Cal
and subsidized insurance programs, likely identifying many previously undiagnosed cases.
Several key factors contributed to this trend. California's growing and aging population,
particularly the baby boomer generation, played a significant role, as older adults face a higher
risk of T2D-related complications requiring hospitalization. Additionally, rising obesity rates,
influenced by sedentary lifestyles and unhealthy dietary patterns, further exacerbate the burden
of diabetes hospitalizations. Data collection and tracking system improvements also provided a
more accurate assessment of diabetes prevalence, ensuring that more cases were documented
over time.

Much like NO; exposure trends, PM2 s concentrations among individuals with T2D were
relatively low in 2010. This pattern likely reflects the economic slowdown following the Great
Recession and lower wildfire activity compared to subsequent years. Beginning in 2011, average
PMb s levels experienced slight fluctuations but showed an overall downward trend, indicating
gradual improvements in air quality. These improvements were largely attributed to the
implementation of more stringent environmental regulations and the widespread adoption of
cleaner technologies. A steady decline in the standard deviation (SD) of PM; s concentrations,
particularly after 2013, suggests a reduction in extreme pollution events and more consistent air
quality improvements across different regions. This trend points to the positive impact of
regulatory measures such as enhanced vehicle emission standards, industrial emission controls,
and transitions to cleaner fuel sources in reducing PM> s variability. However, in 2012, 2016, and
2018, the interquartile range (IQR) of PM: 5 exposure was wider, indicating growing variability
in moderate pollution levels. This shift may reflect uneven effectiveness in pollution control
strategies or localized sources of PM» s emissions, such as wildfires, urban hotspots, and
industrial zones. Although extreme exposure events became less frequent, the increased
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variability within the mid-range highlights the need for more geographically targeted
interventions to address persistent air quality disparities.

The association between PM> 5 exposure and hospitalization reveals a distinct trajectory: a direct
relationship in 2010, decreased risk effect estimates in 2011 and 2013, no effects in 2013, and a
subsequent rise in 2014- 2018 (Fig.S12). In 2019, higher PM> 5 levels were associated with
slightly reduced hospitalizations. In 2010, the positive association may be linked to higher
overall PM> s levels. Between 2011 and 2014, the full implementation of the Affordable Care Act
(ACA) expanded healthcare access, particularly through Medicaid for low-income populations
and Medicare Part B for older adults. The expansion likely enhanced the management of chronic
conditions and access to preventive care, leading to decreased dependence on hospital services
for acute events triggered by environmental factors such as PM> 5. However, the rise in effect
estimates after 2014 may reflect shifts in exposure patterns or increased population susceptibility.
Interestingly, despite a continued decline in PM2 5 concentrations, there was an uptick in mid-
range exposure levels, which could have played a role in the observed rebound in health impacts
during this time.

The rising association between PM> 5 exposure and hospitalizations from 2014 to 2016 may be
partly attributed to demographic changes, particularly the aging of the baby boomer generation.
As this cohort became more actively engaged with healthcare services, their increased
vulnerability to air pollution likely intensified the health effects of PM; 5. Interestingly, despite a
significant spike in PM; s levels in 2018 largely due to wildfires, the related increase in hospital
admissions was relatively modest. Several factors may account for this pattern. Wildfire-induced
PM: s surges, while intense, tend to be brief compared to chronic exposure from traffic or
industrial emissions, which are more consistently linked to long-term health impacts. Moreover,
growing public awareness and preventive actions such as air quality alerts, widespread use of
NO95 masks, and guidance to stay indoors likely helped mitigate exposure during wildfire
episodes. Behavioral adaptations, including reduced outdoor activities and greater use of indoor
air filtration, may have further limited health risks. Additionally, the effects of acute exposure
may have a delayed onset, meaning hospitalizations might not occur immediately. Lastly,
including wildfire-specific PM s in statistical models may have unintentionally dampened its
apparent influence, potentially underestimating the true health burden.

Regarding lagged effects, the relationship between PM; 5 exposure and subsequent health
outcomes shows a noticeable increase by the third-day post-exposure, suggesting that PM> s has
an acute impact that intensifies over a short period. Between 2010 and 2019, the association
between PMz s and LOS among diabetic patients was generally not statistically significant across
most years and lag intervals (0-3 days), with exceptions noted in 2010, 2012, 2014, and 2015.
These findings underscore the critical role of short-term PMa 5 exposure in precipitating
hospitalizations in individuals with diabetes. The recurring pattern over a decade highlights the
urgency for targeted public health initiatives and air quality policies, particularly for vulnerable
populations and high-risk regions.

16



3.4. Effect on LOS stratified by race/ethnicity

Between 2010 and 2019, the racial distribution of T2D patients remained generally consistent
(Fig.S13). White patients continued to represent the largest group, though their proportion
declined slightly from 47% to 39.45%. In contrast, the proportion of Hispanic patients increased
moderately, rising from 30.24% to 34.59% over the same period. The percentages of Black and
Asian patients showed minimal changes, from 11.84% to 10.02% and 9.65% to 10.16%,
respectively. The "Other" racial category, initially the smallest at 1.25% in 2010, saw a notable
increase, reaching 5.7% by 2019.

Regarding NO> exposure, a consistent decline in average levels was observed across all racial
groups from 2010 to 2019, except for 2010. For example, the mean NO» exposure among Black,
Hispanic, and "Other" populations decreased from 12.72 ppb, 13.03 ppb, and 10.61 ppb in 2010
to 9.15 ppb, 9.39 ppb, and 8.44 ppb in 2019, respectively. Similarly, the Asian population
experienced a reduction from 12.46 ppb to 8.97 ppb, and White individuals saw their average
exposure fall from 10.46 ppb to 7.56 ppb over the same period. Throughout this timeframe,
Hispanic individuals consistently had the highest average NO> exposure, while White individuals
experienced the lowest. Despite these improvements, the interquartile range (IQR) of NO»
exposure began widening after 2016, indicating increased variability in exposure levels within
the middle range of the distribution. This pattern suggests that although severe pollution events
became less common, disparities in exposure may have worsened across neighborhoods or
regions, possibly driven by localized pollution sources.

In the concentration-response (C-R) functions, the "Other" racial category consistently exhibited
the highest NO; effects. It showed the most pronounced fluctuations, particularly in 2011 when
its Effect exceeded 1.15, marking the greatest deviation from the baseline across all groups
(Fig.S14). This elevated impact may be linked to socioeconomic and environmental
vulnerabilities, including reduced access to preventive healthcare services.

In contrast, other racial and ethnic groups displayed relatively stable trends, with only minor
variations. Beginning in 2013, the effects of NO2 exposure on LOS declined steadily across all
groups, reaching their lowest point around 2016. This downward trend likely reflects improved
healthcare access and disease management following Medicaid expansion and broader reforms
introduced under the Affordable Care Act (ACA). However, after 2016, the influence of NO»
exposure on LOS began to rise again, particularly among individuals in the "Other" category.
This resurgence may be attributed to increased vulnerability in these populations, driven by
aging demographics and a growing prevalence of chronic health conditions. Concerning lag
effects, the impact of NO» exposure on LOS remained relatively consistent across lags of 0 to 2
days, with a slight decline by day 3. This pattern suggests that the acute health effects of NO2
exposure tend to diminish within a few days.

As shown in Fig.S15, average PM: 5 exposure levels declined across all racial and ethnic groups
between 2010 and 2019. For Black, Hispanic, and "Other" populations, average exposures
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dropped from 10.31 pg/m?, 10.76 pg/m?, and 9.78 pg/m? in 2010 to 8.73 pg/m?, 9.09 pg/m?, and
8.41 pg/m? in 2019, respectively. Similarly, Asian individuals experienced a reduction from
10.19 pg/m3 to 8.56 ng/m?, while the White population saw exposure levels decline from 9.73
pg/m? to 8.25 ug/m? over the same period. Throughout this timeframe, Hispanic and Black
individuals consistently experienced the highest PM 5 exposure, while White individuals had the
lowest. Despite this downward trend, a significant spike in PMb> s concentrations occurred in
2018, accompanied by notable increases in the standard deviation (SD) and interquartile range
(IQR). As discussed earlier, this sharp rise in PMb s levels and variability was largely driven by
the severe and widespread wildfires that year, which led to extreme air pollution events. These
conditions contributed to greater fluctuations in PM2 s exposure across all racial and ethnic
groups, resulting in increased SD and IQR.

In the concentration-response (C-R) functions, the Asian group demonstrated the most
pronounced changes, particularly between 2012 and 2013, when its effect estimate declined from
approximately 1.06 to nearly 0.98 (Fig.S16). From 2012 to 2019, the influence of PM2 5 exposure
on hospitalization consistently decreased across all racial and ethnic groups, reaching its lowest
point in 2019. This downward trend likely reflects improved air quality and greater access to
preventive healthcare services resulting from Medicaid expansion and other policy reforms under
the Affordable Care Act (ACA). However, starting after 2015, the effects of PM> 5 exposure on
hospitalization began to rise again, most notably among the White and Other populations. This
resurgence may indicate increased vulnerability in these groups, possibly driven by a higher
prevalence of chronic health conditions or other underlying risk factors. The wider confidence
intervals observed for the Asian and Other groups suggest smaller sample sizes in these
populations, contributing to greater variability and uncertainty in the effect estimates. Regarding
lagged effects, the Other group exhibited persistent fluctuations and variability across all lag
periods (0, 1, 2, and 3 days), especially during the earlier years. This group's relatively large error
bars further highlight the uncertainty associated with these estimates.

4. Discussion

This study examined the temporal trends and associations between short-term air pollution
exposure (NO2 and PM3 s) and hospitalization outcomes including admission rates and length of
stay (LOS) among individuals with type 2 diabetes (T2D) in California from 2010 to 2019. Our
findings indicate that although average concentrations of NO; and PMaz s declined over the study
period, their health effects on the diabetic population remained significant and, in some cases,
intensified. These patterns are shaped by evolving environmental exposures, population-level
susceptibility, healthcare access, and racial/ethnic disparities.

Our analysis revealed a paradox: while absolute concentrations decreased, the concentration-
response (C-R) relationships for pollutants and hospital outcomes (admission and LOS) showed
complex and non-linear trends. Notably, after initial declines in effect estimates until around
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2015, a resurgence in health impacts was observed from 2016 onwards. This may be due to
increased mid-range exposure variability (rising IQR) and growing susceptibility within the
aging population. Similar findings have been reported, suggesting that air pollution health risks
can persist even at lower exposure levels due to chronic disease burden and demographic
vulnerability (Di et al., 2017; Pope III & Dockery, 2006).

Between 2012 and 2015, a period marked by substantial ACA implementation and Medicaid
expansion, we observed a reduction in the health effects of air pollution. Enhanced healthcare
access likely improved disease management among T2D patients, decreasing their reliance on
emergency services during pollution episodes. This aligns with prior literature highlighting how
increased healthcare access can buffer the acute health impacts of environmental exposures
(Sommers et al., 2015). However, after 2015, the growing burden of chronic diseases and aging
demographics may have offset these benefits, contributing to a rebound in pollution-related
hospitalizations and LOS.

The sharp increase in PMz 5 levels in 2018 due to catastrophic wildfires illustrates how climate-
driven events are altering the air pollution landscape in California. While these spikes were
temporally intense, they did not correspond to proportional increases in hospitalizations or LOS,
possibly due to public adaptation behaviors such as mask usage and sheltering indoors. This
suggests that the toxicity and duration of exposure (e.g., wildfire vs. traffic-related PM2 5) may
differentially impact health, a hypothesis supported by emerging literature (Aguilera et al., 2021;
Reid et al., 2016). Furthermore, adjustments in statistical models may have overcontrolled for
wildfire-related PM; s, potentially underestimating its contribution to health outcomes.

Our findings underscore persistent racial and ethnic disparities in both exposure and
vulnerability. Hispanic and Black populations experienced consistently higher average NO> and
PM: s levels than White populations. The "Other" racial category, which includes small, often
underrepresented subgroups, exhibited the most pronounced and fluctuating health impacts.
These disparities likely reflect environmental injustice, neighborhood segregation, healthcare
access, and socioeconomic stressors. Previous studies have documented similar patterns of
disproportionate exposure and health burden among marginalized communities (Clark et al.,
2014; Mikati et al., 2018), highlighting the urgency for targeted interventions in these
populations.

Both NO: and PM:.s demonstrated significant short-term (0-3 day) associations with T2D-
related hospitalization and length of stay (LOS), with the most pronounced effects typically
occurring within the first two days of exposure. These patterns underscore the acute health risks
posed by these pollutants to vulnerable populations. The variability in effect sizes across lag
structures and control periods highlights the importance of rigorous methodological choices in
time-series and case-crossover designs, while the consistency of statistical significance across
control strategies strengthens the credibility of our findings.
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Our results indicate that improvements in overall air quality may not, by themselves, eliminate
health disparities unless paired with policies that address underlying population vulnerabilities
and healthcare access. Despite California’s notable progress in reducing air pollution, the
increasing variability in moderate exposure levels and the disproportionate burden observed in
specific racial and ethnic groups call for more geographically and demographically tailored
interventions. Integrating high-resolution air quality monitoring with chronic disease
management particularly for individuals with diabetes could help prevent acute health events and
reduce hospital system strain.

Several limitations should be noted. First, exposure estimates relied on ambient pollutant
concentrations and did not capture personal exposure variations due to indoor environments or
individual behaviors. Second, unmeasured confounding from factors such as diet, smoking, or
medication adherence may persist. Third, smaller sample sizes for certain racial/ethnic categories
(particularly “Other”) produced wider confidence intervals, warranting cautious interpretation.
Finally, our analysis focused on short-term exposure, and the impacts of chronic exposure remain
an important area for future investigation.

The observed year-to-year fluctuations in effect estimates may reflect the combined influence of
changing healthcare access under the Affordable Care Act (ACA) and the episodic nature of
wildfire-driven pollution. Notably, disparities in air pollution-related impacts appeared to widen
in certain years, underscoring the need for adaptive public health strategies that respond to both
environmental variability and shifting policy landscapes.

5. Conclusions and Implications

This study offers a comprehensive assessment of the impact of short-term exposure to air
pollutants, specifically nitrogen dioxide (NOy) and fine particulate matter (PMz ), on
hospitalization outcomes among individuals with type 2 diabetes (T2D) in California from 2010
to 2019. Our analysis reveals persistent and significant associations between ambient air
pollution and adverse health outcomes in high-risk populations by evaluating hospital admission
rates and length of stay (LOS) over a decade of evolving environmental, demographic, and
policy landscapes.

Despite measurable improvements in air quality across the state, driven by regulatory
interventions and technological advancements, our findings demonstrate that the health burden of
air pollution among diabetic patients has not proportionally declined. After a period of reduced
effect estimates between 2012 and 2015, likely linked to the implementation of the Affordable
Care Act (ACA) and expanded healthcare access, the concentration-response (C-R) functions for
both NO; and PM; 5 began to rise again. This resurgence appears to be associated with increased
mid-range exposure variability and growing population vulnerability, particularly due to aging
demographics and the cumulative burden of chronic diseases.
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Our analysis further highlights the nuanced nature of air pollution impacts, where the average
concentration and exposure distribution (e.g., interquartile range and standard deviation) play a
critical role in shaping health risks. For instance, while extreme pollution events became less
frequent, the widening interquartile ranges after 2016 suggest that mid-level pollution variability
increased, potentially sustaining health impacts despite overall air quality improvements.

Another key finding is the role of wildfire-related PM 5 events, particularly in 2018, which led to
acute spikes in pollution levels without a corresponding surge in hospitalizations or LOS. This
pattern may be explained by protective public behaviors, temporary exposure profiles, and model
adjustments that may have underrepresented wildfire-specific health effects. Nonetheless, these
events underscore the growing relevance of climate change and environmental extremes in
shaping modern pollution dynamics and associated health risks.

Our study also provides strong evidence of racial and ethnic disparities in pollutant exposure and
the health effects that result from it. Hispanic and Black populations consistently experienced
higher levels of NO; and PM2 5, and the "Other" racial category likely representing smaller,
underrepresented groups showed the most pronounced and variable C-R estimates. These
disparities are reflective of broader environmental justice issues, where structural inequities in
housing, healthcare access, and neighborhood infrastructure contribute to elevated health burdens
among marginalized populations. This reinforces the need for policy approaches that are both
environmentally sound and equity-focused.

Lag analyses revealed that the health effects of NO; and PM2.s were most pronounced within the
first 48 hours post-exposure, consistent with prior evidence that links these pollutants to acute
exacerbations of chronic diseases. These short-term dynamics emphasize the urgency of timely
public health alerts and interventions, especially during known pollution events or wildfire
outbreaks.

Taken together, our findings advocate for a dual-pronged strategy in environmental health
policy. On one hand, continued efforts to reduce overall emissions through stricter standards and
cleaner technologies remain essential. On the other hand, interventions must also be tailored to
address regional disparities, racial/ethnic vulnerabilities, and the unique risks associated with
climate-induced pollution spikes such as wildfires. Integrating environmental data with chronic
disease management systems, especially within Medicaid and Medicare frameworks, could
enhance preventive care delivery and reduce hospital burden.

Environmental factors and healthcare access and utilization patterns significantly shape the
relationship between pollution and hospitalization. The observed decrease in health impacts
during the ACA expansion years exemplifies the value of healthcare policy as a buffer against
environmental stressors. This intersection between public health, healthcare access, and
environmental quality represents a crucial frontier for future interdisciplinary research and
policymaking.
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While this study provides robust and policy-relevant insights, certain limitations must be
acknowledged. Ambient pollution estimates do not account for individual-level exposures,
indoor air quality, or personal behaviors such as air filters or masks. Additionally, unmeasured
confounding variables and small subgroup sizes (especially in the "Other" racial category) may
limit the precision of some estimates. Furthermore, this study focused solely on short-term
exposures; the cumulative effects of chronic air pollution on diabetes-related morbidity remain
an important direction for future investigation.

In conclusion, air pollution remains a significant and inequitable driver of adverse health
outcomes among individuals with type 2 diabetes in California, even amid regulatory progress.
Short-term exposure to NO2 and PM: 5 is associated with increased hospitalizations and
prolonged LOS, with disproportionate effects among racial and ethnic minorities. These findings
call for sustained, adaptive, and equity-focused environmental health strategies, particularly in
the context of climate change and ongoing demographic shifts. Effective interventions must
couple air quality improvements with healthcare accessibility, public education, and targeted
support for vulnerable communities to reduce air pollution-related health burdens meaningfully.
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Appendix A. Supplementary materials
NO2 Effects by Year (Control: 1to1)
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Fig. S1. The associations between NO> exposure and hospitalization for diabetic patients across five major race categories in
California from 2010 to 2019.
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Fig. S2. The associations between NO> exposure and hospitalization for diabetic patients across five major race categories in

California from 2010 to 2019.
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PM2.5 Exposure Trends Stratified by Race
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Fig. S4. The temporal trend of the population, categorized by five major races, in California diagnosed with diabetes and PM> 5
exposure from 2010 to 2019.
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Fig. S5. The associations between PMb s exposure and hospitalization for diabetic patients across five major race categories in

California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 1to1)
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Fig. S6. The associations between PM> s exposure and hospitalization for diabetic patients across five major race categories in
California from 2010 to 2019.
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PM2.5 Effects by Year (Control: 2to1)
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Fig. S7. The associations between PM> s exposure and hospitalization for diabetic patients across five major race categories in
California from 2010 to 2019.
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Fig. S9. The temporal trend of the hospitalized population in California diagnosed with diabetes and NO> exposure from 2010 to 2019.
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NO2 Effects with Environmental Controls (Lags 0-3)
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Fig. S10. The association between NO: exposure and LOS over 0-3 lag days, modeled annually from 2010 to 2019.
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Fig.S11. The temporal trend of the hospitalized population in California diagnosed with diabetes and PM; 5 exposure from 2010 to
2019.
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PM2.5 LOS Effects by Year and Race
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Supplementary File 3

Ogawa saturation monitoring data

We have collected Ogawa data (NO; — nitrogen dioxide and NOx — nitrogen oxides) for both
pre- and post-policy intervention periods for the San Francisco Bay and the LA regions. Table
Suppl. 1 displays the date of data collection, pollutants measured and effective sample sizes. To
enable us to merge the Ogawa data with the government monitoring data, all the Ogawa data
were corrected based on the government monitoring data through collocated sites. Because of
differences in vehicle emissions and urban structures, especially for highway roadways, the NO»
and NOx data collected through Ogawa were corrected separately for policy periods and regions.
We found the agreement (correlation coefficient) for measured pollutant concentrations at the
same 14-day period between the collocated government and Ogawa monitors ranged from 0.69
to 0.98 (Table suppl. 1), indicating the overall representativeness of using Ogawa monitors for
NO:; and NOx monitoring. After consulting with the experts in the Research Triangle Park
(North Carolina, USA), the company responsible for providing us the Ogawa samplers and the
analysis of the sampled data, we concluded that the reasons for some discrepancy between
government monitoring and our Ogawa monitoring were partly because the Ogawa data were
calibrated based on the latest lab results, but the government data were rarely calibrated. We also
investigated the number of effective hours of data collection for every government site during the
same time period when an Ogawa monitor was collocated. We found the number of hours for
government monitors ranged from 34 hours to the full range of 14 days. Even though we
removed those government monitoring stations with the number of effective hours of
measurement being less than 200 in our effort to calibrate the measured Ogawa data, the missing
hours might also have contributed to the discrepancy between the two data sources. In some
situations, because of our inability to gain access to the exact location of a government
monitoring station, the Ogawa samplers were placed on the gate to the building on which the
government monitoring station was placed on top. This might also have contributed to the
discrepancy between the two data sources.

We further averaged NO> and NOx concentrations for the dry and wet seasons to represent
annual concentrations measured at those saturation monitoring sites. This procedure is valid
given that measurements for each policy period in each region were selected after reviewing
historical long-term government monitoring data with the goal that these two 2-week monitoring
would allow us to estimate long-term average concentrations most accurately. Our research did
show that the average of dry and wet season concentrations in a sampling period was close to the
annual concentrations measured at those sites (Suet al. 2016). Due to lack of NOx measurements
for the pre-policy period for the San Francisco Bay Area, we opted to use NO; as a pollutant for
our analysis in this paper.



Table Suppl.1. Historical Ogawa samplings conducted in California and agreement with
collocated government sites

Region Policy Period  Year  Month Pollutants S.amp le Cpllocated Correlgtlon
size sites coefficient
2004  November NO2 51 3 0.88
Pre-policy
San NO2 49
Francisco 2012 October 4 0.93
Bay Area . NOX 49 4 0.98
Post-policy
NO2 49 4 0.69
2013  March
NOX 49 4 0.94
NO2 198
2006  September 10 0-90
NOX 198 10 0.94
Pre-policy
NO2 195 12 0.81
2007  February
Los Angeles NOX 195 12 0.97
Region NO2 70
2012 October 12 091
NOX 70 12 0.92
Post-policy
NO2 72 8 0.90
2013  March )

Utilizing location-allocation algorithms for air quality
monitoring data from Google Streetcar mobile monitoring

Study area and corridor classification

The study focused on selecting representative road segments for air quality monitoring across
four regions in California: San Francisco - San Mateo, Alameda - Contra Costa, Central Valley,
and Southern California. Within each region, three corridor types were identified: Goods
Movement Corridors, Non-Goods Movement Corridors, and Control Areas (Suet al. 2020). For
each corridor type, 50 road segments were selected, leading to a total of 150 segments per
region. The goal was to reduce data redundancy by selecting a subset of road segments that best
represented the variability in air pollution levels across the regions.

Data preparation
Three key GIS layers were utilized to guide the selection of representative road segments:

1. Residential land use: This layer identified residential zones within the study regions.
The selection process aimed to include road segments near residential areas to ensure that
the air quality data would reflect pollution exposure in these sensitive areas.

2. Long-term NO: pollution surface (Suet al. 2020): This layer depicted the distribution
of NO: concentrations across the regions. The selection process prioritized road segments



located in areas with significant NO- gradients, ensuring that segments in higher pollution
areas were well-represented.

3. Road network segments: This layer detailed all road segments within each region. All
segments included had more than 100 mobile measurements, and the objective was to
select a representative subset, thereby reducing redundancy while maintaining the
integrity of the spatial coverage of air pollution monitoring.

Location-allocation algorithm in ArcGIS

The ArcGIS location-allocation algorithm (Kanaroglouet al. 2005) was used to optimize the
selection of road segments. The algorithm was configured to balance the need for comprehensive
coverage of air pollution variability with the desire to reduce data redundancy. The key steps
involved in the algorithm’s application included:

e Objective function: The algorithm aimed to minimize the sum of squared deviations of
air pollution gradient between the selected subset of road segments and the entire set of
available data points. This ensured that the selected segments were as representative as
possible of the region's air quality conditions.

o Constraints: The algorithm was constrained to select 50 road segments for each of the
three corridor types per region. The segments were chosen to maximize coverage of
residential areas, capture significant NO: gradients, and ensure that selected segments
were distributed across various road types, including major highways and local streets.

o Iteration and optimization: The algorithm iteratively assessed different combinations of
road segments, optimizing for representativeness and data reduction. The final selection
balanced spatial distribution, pollution variability, and proximity to residential areas.

Results

The above methodology was applied across the four study regions: San Francisco - San Mateo,
Alameda - Contra Costa, Central Valley, and Southern California. The selected road segments in
each region provided a representative sampling of air pollution levels while significantly
reducing data redundancy. In each region, 50 road segments were selected within the Goods
Movement Corridors, 50 within the Non-Goods Movement Corridors, and 50 within the Control
Areas, totaling 150 road segments per region.

The selection result for the Alameda - Contra Costa region is presented in Figures Suppl 1,
which display the spatial distribution of the three input layers and the chosen road segments.
These figures illustrate how the selected segments cover key residential areas, capture critical
pollution gradients, and reflect the diverse road types present in a study area. The selection
process effectively reduced data redundancy while maintaining a robust representation of air
quality across the study regions.
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Figure Suppl 1. Location-allocation algorithm selection of Google Streetcar mobile
measurement road segments (top left: road segments with at least 100 mobile measurements;
top right: residential land use; bottom left: long-term NO2 surface; bottom right: chosen

Deriving traffic data across the State

Traffic interpolation process

We used the data collected by the California Department of Transportation (Caltrans)

Performance Measurement System (PeMS) to derive roadway daily and annual traffic. PeMS

data are collected in real-time from nearly 40,000 individual detectors spanning the freeway

system across all major metropolitan areas of the State of California and provide an Archived
Data User Service that provides over fifteen years of data for historical analysis. The detector
measured traffic flow covered ~5 % highway segments and we summed hourly traffic to daily

traffic for all the stations across California. The following interconnected steps were then used to
derive daily traffic for all the California highways for the observation period (2005-2021):



1. For a road segment with station traffic measure for a day, use all the station traffic
measures on that road segment to generate a daily mean traffic for that road segment for
that day.

2. For those road segments without traffic measures for a day, assign them using the
assigned segments from step 1 by matching route, county, district (Figure Suppl 2), route
type and day, and find the one with the smallest distance if having multiple matches.
California has 58 counties which are included in one of the 12 air districts. Highways in
California are split into at least four different types of systems: Interstate Highways, U.S.
Highways, state highways, and county highways.

3. For those road segments without traffic being assigned from steps 1 & 2, assign them
using the assigned segments from steps 1 & 2 by matching route, district, route type and
day, and find the one with the smallest distance if having multiple matches. In this step
county was not used as a restricting factor in daily traffic assignment.

4. For those road segments without traffic being assigned from the above steps, assign them
using the above assigned segments by matching route, county, district and route type,
plus at most one day difference in data availability and find the one with the smallest
distance if having multiple matches.

5. Identify those not assigned and assign them using the assigned segments from above
steps by matching county, district, route type and day and find the one with the smallest
distance if having multiple matches. Here we removed the restricting factor of route
number.

6. Identify those not assigned and assign them using the assigned segments from the above
steps by matching district, route type and day and find the one with the smallest distance
if having multiple matches. Here we removed the restricting factors of route number and
county.

7.1 Identify those not assigned and assign them using the assigned state highway segments from
the above steps by matching district and day. Here we removed the restricting factors of route
number, route type and county.

7.2 Identify those not assigned and assign them using the assigned U.S. highway segments from
the above steps by matching district and day. Here we removed the restricting factors of route
number, route type and county.

7.3 Identify those not assigned and assign them using the assigned interstate highway segments
from the above steps by matching district and day. Here we removed the restricting factors of
route number, route type and county.



OMedford
g California Department of
Transportation (CalTran:
1 Districts
3 OCarsonCity NevadaGreatBasm
_Sacramento
‘;4:!11 Francisco 10
;Sanjose
cFresnO 9
5 6 GLas Ve
5
8
7
.,-LDS Angeles
12
11
._Sam Dleg? . Mexicali7
0 135 270 540 Km T

Figure Suppl 2. California Department of Transportation (CalTrans) Districts.




8. Identify those not assigned and assign them using the assigned segments from steps 1-4 by
matching district and season to find the one with the smallest distance if having multiple
matches. Here route number, county and route type are not required to match.

Traffic assignment results

The road segment (RS) assignment process across the districts shows distinct patterns and stages
(Table Suppl 2), with the majority of assignments occurring during Stages 3, 5, and 7.1. Districts
1, 2, and 9, which lacked traffic station measures, were assigned similarly to their neighboring
districts 4, 3, and 8, respectively, ensuring consistency in the process.

In District 1, a significant portion of RS assignments (58.91%) took place during Stage 3, with
only a small fraction (1.11%) assigned in Stage 7.1. Similarly, District 2 saw the bulk of its RS
assignments (72.58%) in Stage 3, with no further assignments after Stage 4. District 3 followed a
more spread-out pattern, with key assignments in Stages 5, 6, and 7.1. District 4, on the other
hand, concentrated most of its assignments (42.79%) in Stage 5, with an additional 7.69%
assigned in Stage 7.1.

District 5 differed slightly, with a significant portion (65.21%) of RS assignments occurring in
Stage 6, and only 0.17% in Stage 7.2. District 6 focused its efforts primarily in Stage 5, where
60.60% of assignments were made, followed by 6.53% in Stage 7.1. In District 7, the major
assignments were completed early, primarily in Stages 1, 2 and 5, with no assignments in Stage
7. District 8 spread its assignments across various stages, but with 73.34% occurring in Stage 5.

District 9, which started its assignments later, completed the majority (45.95%) in Stage 3 and
the remaining 54.05% in Stage 7.1. District 10 concentrated most of its assignments (36.39%) in
Stage 5, with minimal activity afterward. In District 11, the assignment process was front-loaded,
with 39.65% of RS assignments occurring in Stage 2, and 26.01% in Stage 5. Finally, District 12
saw significant early-stage activity, with most assignments completed by Stage 5 and none
beyond that.

This step-by-step process ensured that nearly all RS were accounted for, reflecting the structured
and methodical approach taken across the different regions.



Table Suppl 2. Traffic data assignment statistics based on the stages of assignment.

District #1 District #2 District #3
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS  CumRS
Stage RSE#H) () # (%) RSH#H) () (#) (%) RS#H) () (#) (%)
1 34,197 293 34,197 2.93 64,284 494 64,284 4.94 75,002 4.41 75,002 441
2 774 0.07 34,971 3.00 0 0.00 64,284 4.94 142,554 8.38 217,556 12.79
3 686,788 58.91 721,759 61.91 943,806 72.58 1,008,090 77.53 68,950 4.05 286,506 16.85
4 431,122 36.98 1,152,881 98.89 292,200 22.47 1,300,290 100.00 1,548 0.09 288,054 16.94
5 0 0.00 1,152,881 98.89 704,938 41.45 992,992 58.39
6 0 0.00 1,152,881 98.89 503,072 29.58 1,496,064 87.97
7.1 12,997 1.11 1,165,878 100.00 204,540 12.03 1,700,604 100.00
District #4 District #5 District #6
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS Cum RS
Stage RS#H) (%) #) (%) RS#H) (%) #) (%) RS#H) (%) #) (%)
1 360,864 17.08 360,864 17.08 19,666 1.44 19,666 1.44 53,408 3.51 53,408 3.51
2 371,428 17.58 732,292 34.66 83,650 6.14 103,316 7.59 269,068 17.67 322,476 21.18
3 257,311 12.18 989,603 46.84 133,864 9.83 237,180 17.42 107,284 7.05 429,760 28.23
4 2,560 0.12 992,163 46.96 430 0.03 237,610 17.45 552 0.04 430,312 28.27
5 903,900 42.79 1,896,063 89.75 229,642 16.86 467,252 34.32 922,574 60.60 1,352,886 88.87
6 28,870 1.37 1,924,933 91.12 887,904 6521 1,355,156 99.52 70,128 4.61 1,423,014 93.47
7.1 162,368 7.69 2,087,301 98.8 4,144 030 1,359,300 99.83 99,348 6.53 1,522,362 100.00
7.2 0 0.00 2,087,301 98.8 2,352 0.17 1,361,652 100.00
7.3 0 0.00 2,087,301 98.8
8 25,305 1.20 2,112,606 100
District #7 District #8 District #9
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS  CumRS
Stage RS#H) (%) #) (%) RS#H) (%) () (%) RS#H) (%) (#) (%)
1 288,852 25.03 288,852 25.03 68,864 5.82 68,864 5.82 0 0.00 O 0.00
2 315,340 27.32 604,192 52.35 94,562 7.99 163,426 13.81 0 0.00 O 0.00




3 23,360 2.02 627,552 54.37 87,600 7.40 251,026 21.21 198,696 4595 198,696 45.95
4 466 0.04 628,018 54.41 194 0.02 251,220 21.23 0 0.00 198,696 45.95
5 526,172 45.59 1,154,190 100 867,906 73.34 1,119,126 94.57 0 0.00 198,696 45.95
6 0 0.00 1,119,126 94.57 0 0.00 198,696 45.95
7.1 64,284 543 1,183,410 100.00 233,760 54.05 432,456 100.00

District #10 District #11 District #12

RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS  CumRS

Stage RSE#H) () # (%) RSH#H) () #) (%) RS#H) () (#) (%)
1 146,644 9.80 146,644 9.80 241,134 23.85 241,134 23.85 160,898 38.24 160,898 38.24
2 438,638 29.32 585,282 39.12 400,820 39.65 641,954 63.50 139,650 33.19 300,548 71.43
3 352,216 23.54 937,498 62.66 105,120 10.40 747,074 73.89 0 0.00 300,548 71.43
4 2,288 0.15 939,786 62.82 990 0.10 748,064 73.99 290 0.07 300,838 71.50
5 544,392 36.39 1,484,178 99.21 262,948 26.01 1,011,012 100.00 119,930 28.50 420,768 100.00
6 11,886 0.79 1,496,064 100.00

Note: RS=road segment; Cum RS=cumulative road segments; District 1, 2 and 9 had no traffic station measures and were treated the same as
respectively neighboring districts in 4, 3 and 8.




pollutant lag estimate lower_ci upper_ci mean std iqr

1.017885 1.016854 1.018917 10.64714 6.217118 8.010617
1.017726 1.016694 1.018759 10.51736 6.221056 8.034553
1.015573 1.01454 1.016607 10.36097 6.22401 8.063132
1.010704 1.009673 1.011736 10.36872 6.220576 8.058235
1.008438 1.007591 1.009285 9.800294 3.364875 3.631014
1.007223 1.006377 1.00807 9.797528 3.371929 3.63582
1.004505 1.003658 1.005353 9.792482 3.369079 3.637908
1.005531 1.004683 1.006379 9.792989 3.369946 3.637938
1.018056 1.017105 1.019009 38.43722 6.836388 10.25059
0.991131 0.990391 0.991871 38.50702 6.844785 10.26532
0.995518 0.994776 0.996261 38.58592 6.852038 10.27377
0.999382 0.998638 1.000126 38.58128 6.854859 10.26498

NO2

PM2.5

03

W NP, O WMNELROWNRL O



Appendix A: Derivation of Potential Impact Fraction Equation

Here we derive

PIF =1 -

ORIQR

where PIF is the potential impact fraction and OR g is the interquartile odds-ratio from a given
conditional logit exposure-response function (ERF) under the assumption that the odds-ratio
does not overstate the risk ratio since the outcome is sufficiently rare: RR;og =~ ORqr. We start
with definitions presented in Barendregt and Veerman (BV) (2010). Starting with the distribution
shift equation (in our case this would be an interquartile shift) for the PIF (BV eq. 5);

[ RRG(O)P()dx — [ RR(x)P* (x)dx

PIF = -
fl RR(x)P(x)dx

where 4 and / are high and low integration boundaries and the RR is log-linear (BV eq. 7):
RR(x) = exp (a + bx)

and P is the ZIP code population weight and a counterfactual uniform reduction (A) in exposure
(interquartile) is represented as

P*(x) = P(x + A).
Then we can use BV eq. (5) and eq. (7) to derive our final equation.

Let
h
D= J RR()P (x)dx
l

where D is just to compress this expression for use in later equations. Then the counterfactual
integral is the following:

[P RRG)P*()dx = [ RRG)P(x + A)dx.
Substitute u = x + A, sox = u — A and dx = du:
["RR()P(x + A)dx = [ RR(u — A)P(u)du.
Then using the log-linear RR assumption above (BV eq. 7) and substituting similarly:

RR(u—A) = exp(a + b(u — A)) = exp(a + bu) exp(—bA) = RR(u)exp (—bA).



Therefore
[ RR(u — A)P(w)du = exp (= bA) [ RR(u)P(u)du = exp(—bA) D.

We then put this back into the earlier PIF equation (BV eq. 5):

D—exp(—bA)D

PIF = =1 —exp (—bA).

Then, since the model is log-linear in exposure, the relative risk for an increase of A is as
follows:

RR, = exp (bA).
Therefore

1

1—eXp(—bA):1—W:1—R—RA

If we set A= IQR then

PIF =1 —
RRIQR
Then, since we have assumed RR;or = ORgr
PIF =1—
ORIQR

Reference

Barendregt, J. J., & Veerman, J. L. (2010). Categorical versus continuous risk factors and the
calculation of potential impact fractions. J Epidemiol Community Health, 64(3), 209-212.
https://doi.org/10.1136/jech.2009.090274
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Appendix B: Derivation of Standard Errors Using the Delta Method
We start with the odds-ratios and their 95% confidence intervals from the equations listed in the

report and mean medical expenditures and their 95% confidence intervals from the [HME data
cited in the report. This derivation is adapted from the concepts in Oehlert (1992).

Let OR be ORor, with lower and upper 95% confidence intervals (CI): OR,, ORy,.
Define

6=log(OR)
If the reported CI is the usual Wald CI on the log scale, then the standard error of 8

£l n log(ORy) — log (OR,)
6 2x 1.96

which is the standard inversion of the Wald CI to recover an SE.

Similarly, let ME be mean medical expenditures with lower and upper 95% confidence intervals
(CI): ME,, MEy,. If the CI was computed as ME 4 1.96 SE,,, then

ME, — ME,

SEyr ~
ME 2x1.96

using the same inversion approach.

The point estimate for the avoided medical expenditure impact is

We then define a smooth function
AME(0,ME) = (1— e %)ME

The multivariate delta method gives

Var(AME) (aAME)Z Var(®) + (aAME>2 Var(ME) + 2 (aAME> ( aAME) Cov(6, ME)
ar ~ ar OME ar 08 OME OvY,
evaluated at (é\, m)
Here the derivatives are as follows:
0AME 0 ME 0AME 0
——— = MEe™? = =1-e%=PIF

g0 - MECT=0R GuE



Thus,

——

ME\' ., . (ME\ _
Var(AME) ~|—) SE2 + PIF2SE%; + 2| — | PIF Cov(6, ME)
OR 0 ME OR

However, to the extent it is reasonable to assume that our estimation errors are to some extent
independent, we can assume that Cov (68, ME) = 0.
Thus,

— 2
SE,yr ~ ME SEZ + PIF2SE?2
AME 0’}\? 0 ME

and the Wald 95% Cl is
AME + 1.96 SE 1315

In the case of a mean calculated across mulitple years of data, we simply sum the relevant
estimates and confidence intervals across years and then divide by the number of years. This is
valid if we can reasonably assume that the annual estimates are independent.

Annual estimates can be assumed to be independent in repeated cross sections to the extent that
samples do not rotate, reuse probability sampling units, or reuse the same individuals across
years in a non-negligible manner. Confidence intervals will be biased downward to the extent
these assumptions are violated.

Reference

Oehlert, G. W. (1992). A Note on the Delta Method. The American Statistician, 46(1), 27-29.
https://doi.org/10.1080/00031305.1992.10475842
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