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Project Summary/Abstract 
While air quality has substantially improved over the past two decades, fine particulate 

matter (PM2.5) remains a critical environmental health concern in California. This project 
provides one of the most comprehensive evaluations to date of how long-term PM2.5 exposure 
affects mortality risk and life expectancy in California. Using two decades of statewide mortality 
data linked to high-resolution exposure surfaces, the research team quantify PM2.5-attributable 
mortality and life-expectancy impacts for the periods 2000–2010 (Period 1) and 2011–2021 
(Period 2). The study addresses a gap in the scientific literature: although many studies estimate 
mortality risks from PM2.5, relatively few provide life-expectancy estimates, and almost none 
examine how both mortality risk and life-expectancy impacts change across two distinct decades. 
There is also limited evidence on how these impacts differ across detailed age groups and race-
ethnicity groups. To our knowledge, no prior study has examined how the distribution of PM2.5 
impacts changes over time. 

The research team apply a dual population-weighted and death-weighted framework to 
characterize the distribution of per-person PM2.5 impacts across age groups. Population-weighted 
impacts reflect effects on the full population, while death-weighted impacts emphasize the age 
groups that contribute most to mortality. Together, these metrics reveal whether PM2.5 impacts 
are concentrated among older adults, younger adults, or broadly distributed across ages. 
Statewide, both mortality risks and life-expectancy impacts from PM2.5 decreased from Period 1 
to Period 2. Long-term PM2.5 exposure remained a significant determinant of mortality in both 
decades, but with a weaker association in Period 2, consistent with California’s air quality 
improvements. The death-weighted life-expectancy impact statewide declined from 0.61 to 0.37 
years, demonstrating that reductions in ambient PM2.5 translated into meaningful reductions in 
mortality burden. Stratified analyses reveal differences across race-ethnicity groups. In Period 1, 
older adults generally bore the higher PM2.5 impacts for most race-ethnicity groups. In Period 2, 
younger and middle-aged groups contributed more heavily relative to earlier years. Asians 
remained an exception, with population- and death-weighted impacts nearly identical in Period 1, 
reflecting broad age distribution of impacts. Black populations showed consistently low impacts 
among younger adults and concentrated impacts at older ages, while Hispanic populations 
exhibited large benefits from PM2.5 reductions across a wide age span in Period 1 and continued 
to exhibit measurable PM2.5-attributable mortality and life-expectancy impacts across multiple 
age groups in Period 2, despite overall declines in exposure and risk. retained notable sensitivity. 
When comparing decades, Black and Hispanic populations experienced the largest reductions in 
death-weighted life-expectancy losses, approximately 0.59 and 0.57 years, respectively, 
reflecting substantial life-expectancy gains associated with improvements in ambient PM2.5 
concentrations from Period 1 to Period 2 due to sustained state and federal air-quality regulations 
policy gains. By Period 2, death-weighted impacts were lowest for Black and White populations, 
whereas Asian, Hispanic, and Other groups continued to experience relatively higher PM2.5-
attributable life-expectancy losses compared with other groups. 
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The research team translated the age- and race-ethnicity–specific PM2.5 impact estimates to 
the census-tract (CT) level. This was done by applying the modeled age-group effects for each 
race-ethnicity group to the corresponding demographic composition of each tract. The resulting 
spatial patterns confirm that statewide progress reduced PM2.5-related death burdens but also 
show persistent local variation. Some tracts experienced large improvements, while others 
exhibited only modest gains, reflecting differences in composition and historical exposure 
patterns. In general, tracts with larger improvements tended to be those that had higher PM2.5-
attributable life-expectancy losses in Period 1 and therefore experienced larger absolute 
reductions as statewide PM2.5 concentrations declined in Period 2, whereas tracts with smaller 
improvements often had lower baseline PM2.5 impacts and correspondingly less room for 
improvement. 

Together, these findings provide a clearer understanding of how PM2.5 mortality impacts have 
evolved in California, where policy progress achieved the largest gains, and where residual 
disparities remain. The results highlight both the success of air quality regulations and the need 
for continued and targeted interventions to address remaining PM2.5-related mortality risks. 
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Lay Person Summary 
Air pollution from fine particles, known as PM2.5, is one of the most harmful environmental 

risks to health. Although California’s air has improved substantially over the last twenty years, 
the research team still lack a clear understanding of how much this pollution affects people’s 
chances of dying and how much life could be extended if there were no PM2.5 exposure. This 
project looked at all recorded deaths in California from 2000 to 2021 and combined that 
information with highly detailed long-term air pollution estimates. The research team studied two 
separate time periods, 2000-2010 and 2011-2021, to see how the health impacts of PM2.5 
changed as air quality improved. The research team also looked at differences across racial and 
ethnic groups and across age groups to see if PM2.5 affected all communities in the same way.  

The research team found that PM2.5 continued to increase the risk of dying early in both time 
periods, but the risk was smaller in the more recent period, consistent with declining pollution 
levels across California. The research team also estimated how much longer people might live if 
people were not exposed to PM2.5. This measure, referred to as PM2.5-attributable life-expectancy 
loss, declined from about 0.61 years in the first decade to 0.37 years in the second, showing that 
cleaner air has produced meaningful health benefits.  

The study also identified important differences across age groups and communities. During 
the first period, older adults were generally the most affected across most racial and ethnic 
groups. In the second decade, younger and middle-aged adults accounted for a larger share of the 
remaining PM2.5-related health impacts. For race-ethnicity, Black and Hispanic populations 
experienced the largest improvements over time, with PM2.5-related life-expectancy losses 
decreasing by about half a year between the two periods. By the second period, Black and White 
populations had the lowest benefits from PM2.5 removal, while Asian, Hispanic, and Other 
groups still experienced notable life-expectancy games after removing air pollutant PM2.5. These 
differences should be interpreted in the context of long-standing demographic patterns in 
California, where Asian and Hispanic populations generally have higher baseline life expectancy 
and Black populations have lower baseline life expectancy. Thus, a smaller remaining PM2.5 
impact for Black populations in Period 2 does not imply lower overall vulnerability but rather 
reflects reductions in PM2.5-attributable burden relative to their own earlier levels.  

The research team also mapped these life expectancy impacts at the community (i.e., census 
tract) level across California and found that life expectancy improved from period 1 to period 2. 
However, some neighborhoods were found to have benefited much more than others. Certain 
areas still have PM2.5-related health burdens, reflecting differences in community characteristics 
and long-standing exposure patterns. Overall, the study shows that California’s efforts to reduce 
air pollution have worked and have improved public health across the state. Yet important 
differences remain between communities. Continued action, especially targeted efforts in places 
with higher remaining impacts, is needed to make sure everyone benefits equally from cleaner 
air.  



14 
 

Executive Summary 
a. Background 

Fine particulate matter (PM2.5) continues to pose a significant public-health burden in 
California, even as concentrations have declined substantially over the past two decades because 
of regulatory and technological progress. Long-term exposure to PM2.5 is well established as a 
contributor to premature mortality, but relatively few studies quantify life-expectancy impacts, 
and even fewer examine how both mortality risks and life-expectancy losses evolve over 
multiple decades. Almost no prior research has evaluated how these impacts differ 
simultaneously by age group and race-ethnicity or how the distribution of PM2.5 effects, whether 
concentrated in younger or older adults, changes over time. This study fills these gaps by 
assessing changes in mortality risks, life-expectancy impacts, age-distribution patterns, race-
ethnicity disparities, and CT-level (census track level) outcomes across two distinct decades in 
California. 

b. Objectives 

The objectives of this study were to quantify the mortality effects of long-term PM2.5 
exposure in California, to translate those effects into life-expectancy impacts for two distinct 
time periods, and to evaluate how these impacts changed over time. Specifically, they include: 

• Quantifying the mortality effects of long-term PM2.5 exposure in California using individual-
level death records from the California Department of Public Health (CDPH) and high-
resolution exposure estimates, producing integrated and period-specific effect estimates for 
2000-2010 and 2011-2021. 

• Translating PM2.5-related mortality risks into integrated and period-specific life-expectancy 
impacts by generating all-cause and counterfactual (PM2.5-removed) life tables and taking 
their difference as the estimated PM2.5 impact. 

• Examining heterogeneity across race-ethnicity and age groups, using matched conditional 
logistic regression models stratified by age groups and by race-ethnicity categories, to assess 
subgroup-specific burden and how these patterns changed over time. 

• Identifying whether younger or older age groups bore the greater PM2.5-related burden by 
applying the study’s new dual population-weighted and death-weighted PM2.5 impact 
framework, which detects whether impacts were concentrated in younger, middle-aged, or 
older adults in each period. 

• Assessing and visualizing PM2.5 exposure, PM2.5-attributable mortality, and life-expectancy 
impacts at the CT level across California by producing statewide, change-over-time, and 
region-specific maps, including stratification by age groups, race-ethnicity, and vulnerability, 
overlays with policy-relevant boundaries, and regional atlases. 

b. Methods 
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The analysis linked individual-level mortality records from the California Department of 
Public Health (CDPH) to high-resolution daily PM2.5 exposure estimates (100-meter resolution) 
developed by Dr. Su. For each decedent, long-term PM2.5 exposure was defined as the one-year 
rolling average preceding the date of death. All-cause and PM2.5-removed mortality rates were 
derived by first estimating age-specific mortality risks using conditional logistic regression 
models, where each model quantified the association between long-term PM2.5 exposure and 
mortality within each age group (and race-ethnicity group, when stratified). The observed all-
cause mortality life expectancy was constructed directly from CDPH individual-level death 
records and corresponding population denominators. The counterfactual PM2.5-removed 
mortality schedule was generated by applying the regression coefficients to predict mortality 
risks under a scenario in which PM2.5 exposure was set to zero, and the resulting observed vs. 
counterfactual mortality rates were then used to build life tables whose differences yielded life-
expectancy impacts. To characterize how PM2.5 impacts were distributed across age groups, the 
study applied a dual population-weighted and death-weighted framework, enabling clear 
identification of whether younger, middle-aged, or older adults contributed more to PM2.5-related 
losses.  

CT-level life-expectancy impacts were generated by applying race-ethnicity and age-group 
specific PM2.5 effects to each tract’s demographic composition, producing spatially resolved 
estimates for both Period 1 and Period 2. These results were visualized through a comprehensive 
set of maps, including CT-level life-expectancy impact layers for five- and ten-age-group 
frameworks, tract-level annual average PM2.5 concentrations for 2010 and 2020 to illustrate long-
term regulatory progress, and statewide maps of PM2.5-attributable mortality and life-expectancy 
loss stratified by race-ethnicity and vulnerability. Additional change maps depict differences in 
PM2.5 exposure and PM2.5-related life-expectancy loss between the two decades, while overlays 
with policy-relevant boundaries such as region, air districts, and goods-movement corridors 
provide regulatory context. 

c. Results 

Across the full population, PM2.5 remained a statistically significant determinant of mortality 
in both decades, with risk estimates weaker in Period 2 (2011–2021) than in Period 1 (2000–
2010), consistent with statewide improvements in air quality. The statewide death-weighted life-
expectancy impact declined from 0.61 years in Period 1 to 0.37 years in Period 2, demonstrating 
that reductions in ambient PM2.5 translated into substantial reductions in PM2.5-attributable 
mortality burden. Age- and race-ethnicity-specific analyses revealed important disparities. In 
Period 1, older adults generally bore larger PM2.5 impacts across most race-ethnicity groups. In 
Period 2, younger and middle-aged adults contributed relatively more to the PM2.5 impacts, 
reflecting a shift in age distribution as overall pollution levels decreased. Asians were an 
exception: their population-weighted and death-weighted impacts were nearly identical in Period 
1 (0.94 vs. 0.91), indicating broad age distribution of impacts rather than concentration in 
younger or older groups. Black populations exhibited consistently low impacts among younger 
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adults in both periods and concentrated impacts among older adults. Hispanic populations 
showed substantial PM2.5 impacts in Period 1 and continued to exhibit notable impacts in Period 
2. Using death-weighted changes to quantify policy gains, Black and Hispanic populations 
experienced the largest reductions between decades, approximately 0.59 and 0.57 years, 
indicating that regulatory progress yielded the greatest mortality improvements for these groups. 
By Period 2, Black populations exhibited comparatively low PM2.5 life-expectancy impacts (0.08 
years), whereas Asian (0.74), Hispanic (0.36), and Other (0.38) groups continued to show 
meaningful remaining impacts. 

Mapping analyses at community (CT) level confirmed statewide improvements but also 
revealed persistent geographic variability. Tract-level death-weighted life-expectancy impacts 
declined from 0.82 years to 0.61 years between decades, reflecting broad policy success. Gains 
varied by neighborhood disadvantage: in the most disadvantaged tracts, mean impacts fell from 
0.82 to 0.66 years, whereas in the most advantaged tracts, impacts declined from 0.81 to 0.57 
years, yielding larger average policy benefits (0.25 years vs. 0.16 years).However, improvement 
was uneven: some tracts experienced substantial life-expectancy gains from reduced PM2.5, while 
others saw only modest progress, shaped by demographic composition and spatial exposure 
patterns. Spatial mapping highlighted hotspots in the San Joaquin Valley and Inland Empire, 
where some tracts continued to experience PM2.5-related life expectancy losses near 0.8 years, 
underscoring the persistence of environmental inequities despite overall improvements. 

d. Conclusion 

This study provides one of the most detailed examinations to date of how PM2.5 affects 
mortality and life expectancy across age groups, race-ethnicity groups, and communities in 
California, and how these impacts have changed over two decades. The findings demonstrate that 
regulatory actions produced large reductions in PM2.5-related mortality, with especially 
substantial gains for Black and Hispanic populations. At the same time, meaningful residual 
impacts persist among Asian, Hispanic, and Other race-ethnicity groups and in specific census 
tracts. The results show that PM2.5 control continues to yield tangible public-health benefits, but 
achieving equitable protection requires maintaining statewide emission reductions while also 
targeting local areas and demographic groups with remaining high impacts. Together, these 
findings underscore both the success of California’s air-quality regulations and the ongoing need 
for focused policies to further reduce PM2.5-attributable mortality and address remaining 
disparities. 
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Introduction 
Long-term exposure to ambient air pollution is a well-established driver of premature 

mortality, and the existing scientific literature is substantial, contributing to our understanding of 
the mortality risks associated with particulate matter ≤2.5 µm (PM2.5) (see Task 1 Literature 
Review for detail). Among the 39 studies identified in our systematic review, 32 examined PM2.5 
exposure and nearly all reported positive associations with all-cause mortality. These studies 
provide important evidence demonstrating that even low levels of PM2.5 are associated with 
elevated mortality risk. However, despite the large and growing mortality literature, few studies 
have quantified the impact of air pollution on life expectancy, a metric with greater 
interpretability for policymakers and the public, and one that directly reflects the cumulative 
survival consequences of environmental exposures across the lifespan. 

Only three of the 39 studies the research team reviewed estimated changes in life expectancy 
due to long-term PM2.5 exposure.1–3 Through these limited studies, life expectancy losses ranged 
from approximately 0.3 to 0.89 years, illustrating reductions in expected lifespan associated with 
sustained pollution exposure. Nonetheless, life expectancy methods remain underutilized in 
environmental epidemiology despite their relevance for public health burden assessment. 
Moreover, existing life expectancy studies are few in number, rely on mostly ecologic designs, 
and provide limited insight into how air pollution-related life expectancy loss varies across 
demographic subgroups. As a result, policymakers have had limited information on how long-
term air pollution exposure affects remaining life expectancy across age groups, race-ethnicity 
populations, socioeconomic strata, and geographic settings. 

Our literature review (see Task 1) also identified substantial evidence of disparities in air 
pollution-related mortality. Older adults, particularly those aged 65-74, consistently showed 
higher mortality risks from PM2.5 and nitrogen dioxide (NO2) exposure; Black populations in the 
United States experienced greater mortality impacts per unit increase in PM2.5 than White 
populations; and individuals with lower educational attainment or living in high-poverty 
neighborhoods were consistently more vulnerable to pollution-related mortality. Urban residents, 
individuals with chronic cardiometabolic or respiratory conditions, and Medicare beneficiaries 
with Medicaid dual eligibility were repeatedly identified as higher-risk subgroups. However, no 
identified study evaluated whether these disparities translate into differences in pollution-
attributable life expectancy, nor did any report life expectancy impacts stratify by race-ethnicity, 
age group, comorbidity burden, or urbanicity. This represents a major gap in literature: although 
mortality disparities by air pollution exposure are well documented, their implications for life 
expectancy and therefore for cumulative survival over time have not been characterized. 

An additional gap is the near absence of research examining how changes in life expectancy 
attributable to air pollution evolve over time. While several studies have quantified temporal 
trends in PM2.5 concentrations and associated mortality burdens, none of the studies in our 
review compared pollution-attributable life expectancy impacts across different historical 
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periods. Such analyses are essential for understanding the public health benefits of regulatory 
actions, reductions in emissions, technological improvements, and changes in the built 
environment. Without evaluating changes over time, it is not possible to quantify how 
improvements in air quality have translated into gains in life expectancy or whether disparities in 
these gains have widened or narrowed. 

In this project, the research team address a series of methodological and equity-related gaps 
not examined in prior literature. First, unlike most existing mortality-only studies, our project 
uses life-table-based life expectancy modeling to quantify age-specific and population-wide 
survival impacts from long-term (i.e., 365 days before death) PM2.5 exposure, providing a more 
intuitive and policy-relevant measure of population health burden. Second, the research team 
incorporate fine-grained demographic stratification by age and race-ethnicity to assess disparities 
in PM2.5-attributable life expectancy loss. This extends beyond previous studies, which largely 
confined subgroup analyses to mortality risk and did not evaluate cumulative survival outcomes. 
Third, our analysis examines two separate multiyear periods, enabling assessment of whether life 
expectancy improvements associated with declining PM2.5 levels have been uniform across 
California or experienced disproportionately by specific communities. Fourth, the research team 
leverage population-weighted and death-weighted estimators, along with age-specific life-table 
metrics, to distinguish between population burden, mortality burden, and survivor impacts, an 
approach rarely used in environmental health studies. Fifth, the research team applied modeled 
race-ethnicity-specific age-group impacts to each census tract's (CT) race-ethnicity-specific age-
group composition, allowing us to estimate CT-level life expectancy impacts attributable to 
PM2.5 for both study periods. This approach enabled us to quantify changes in tract-level life 
expectancy from Period 1 to Period 2 and to evaluate whether improvements in air quality 
translated into equitable gains in longevity across California’s diverse communities. Together, 
these methodological advancements provide a more comprehensive, equity-centered, and policy-
relevant assessment of the long-term health benefits associated with air quality improvements in 
California. 

Task 1. Literature Review 
Background 

Ambient (outdoor) air pollution poses a major threat to human health, contributing to 
approximately four million premature deaths worldwide each year.4 While air pollution affects 
entire populations, there is a growing recognition that certain groups based on sociodemographic 
characteristics may face disproportionately greater health risks.5–8 Studies have reported elevated 
rates of air pollution-related hospitalizations, respiratory infections, and cardiopulmonary 
mortality among older adults, women, and individuals of lower socioeconomic status.9,10 In the 
United States, higher rates of respiratory morbidity and hospital admissions have been observed 
specifically in African American communities and in areas with high poverty levels.10–12 
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Individuals with chronic conditions such as chronic obstructive lung disease (COPD) and 
diabetes have also been documented with more frequent hospitalizations and exacerbations 
following exposure to air pollutants compared to their counterparts.10,13,14 Residents of urban 
areas have been shown to experience elevated rates of air pollution-related morbidity and 
mortality.15–17 These previous studies highlight the importance of elucidating both broad 
population-level health impacts of air pollution and the disproportionate risks borne by specific 
vulnerable subpopulations. 

Particulate matter PM2.5, NO2, and ozone have garnered significant attention given their well-
established associations with adverse health outcomes.4,5,18–20 Both short- and long-term 
exposure to PM2.5 - fine inhalable particles emitted primarily from combustion processes such as 
vehicle exhaust, industrial activities, and biomass burning - are consistently linked with 
increased cardiopulmonary morbidity and mortality.18,19 NO2, predominantly derived from traffic 
emissions and fossil fuel combustion, is known to cause airway irritation and exacerbate 
respiratory conditions.18,20 Ozone, a principal component of photochemical smog, is also 
associated with increased respiratory morbidity.21 In recognition of the health risks posed by 
these pollutants, the World Health Organization (WHO) revised its global air quality guidelines 
in 2021, recommending more stringent annual mean exposure limits of 5 µg/m³ for PM2.5, 10 
µg/m³ for NO2, and a peak-season limit of 60 µg/m³ for ozone.5 The U.S. Environmental 
Protection Agency (EPA) also finalized a revised National Ambient Air Quality Standard 
(NAAQS) for PM2.5 that lowers the primary (health‑based) annual PM2.5 standard from 12.0 
µg/m3) to 9.0 µg/m3. 22 However, air pollutant concentrations in many regions across the globe 
continue to exceed recommended thresholds.23,24 For example, 98.8 percent of people were 
exposed to pollution levels above the WHO guideline.25 

While prior meta-analyses have assessed the relationship between long-term exposure to 
PM2.5, NO2, and ozone and all-cause mortality, few have systematically evaluated whether these 
associations differ across the vulnerable subpopulations.26–28 This represents a critical knowledge 
gap, as understanding differential mortality risks across diverse sociodemographic populations is 
essential for informing equitable public health interventions and air quality standards. 

In 2023, the California Air Resources Board commissioned a project entitled “Impacts of Air 
Pollution on Life Expectancy across Multiple Generations: Race, Ethnicity and Vulnerability 
Perspectives.”  As a part of this project, our objective was to conduct a systematic review to 
evaluate associations between long-term exposure to ambient air pollutants (PM2.5, NO2, and 
ozone) and all-cause mortality, with a focus on assessing differential risks among potentially 
more vulnerable subpopulations, specifically older adults, women, individuals with pre-existing 
health conditions, socioeconomically disadvantaged communities, urban populations, and 
minoritized racial and/or ethnic groups. 
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Methods 

Eligibility Criteria and Search Strategy 

Population 
This review was conducted in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines (A.1 of the Appendix).29,30 The research team 
included studies examining general human populations with long-term exposure to ambient air 
pollution, specifically to particulate matter PM2.5, ozone, or nitrogen oxides (e.g. nitrogen 
dioxide). The research team excluded studies focusing on newborns, and instead included only 
studies that focused on persons older than 1 year of age. Studies focusing on highly specific 
disease cohorts (e.g. patients with COVID-19, respiratory disorders, cardiovascular disease) were 
excluded to ensure generalizability to the broader population. Additionally, the research team 
excluded studies on populations affected by time-limited acute pollution events such as wildfires 
or dust storms. The research team did not place any restrictions on other demographic variables 
such as sex, race, ethnicity, occupation, or residential location of study populations. 

Exposure 
Eligible studies assessed long-term exposure defined as 1+ years to PM2.5, ozone, or nitrogen 

oxide/dioxide (NOx/NO2). Studies evaluating pollutants other than these three (e.g. PM10, sulfur 
dioxide, black carbon, etc.) were excluded. Studies focusing exclusively on occupational 
exposure, or indoor air pollution were excluded. The review reflects the broader criteria pollutant 
exposure relevant to health but does not explicitly stratify wildfire-specific impacts. Any studies 
that assessed those criteria pollutant exposures, including those incorporating wildfire 
contributions, would have been captured if they met the general inclusion criteria for long-term 
ambient air pollution exposure. 

Comparator 
The research team only included studies that assessed air pollution exposure as a continuous 

variable. Reference exposure levels varied by study but generally included a lower exposure 
group within the same cohort for comparison or matched with another cohort for comparison. 

Outcomes 
Eligible studies reported all-cause mortality excluding accidents as an outcome. Studies 

assessing cause-specific mortality only (e.g. cardiovascular mortality, respiratory mortality, or 
lung cancer mortality) or morbidity outcomes (e.g. hospitalization rate, lung cancer rate) were 
excluded. The research team also excluded studies reporting outcomes exclusively related to 
newborns or birth-related outcomes such as maternal mortality.  

Study 
The research team included peer-reviewed original research studies using retrospective 

cohort, prospective cohort, case-control, and observational study designs. Systematic reviews 
and meta-analyses were not included in the quantitative synthesis but were reviewed for 
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additional references. Conference abstracts were excluded. The research team included non-
English studies when a translation was available. 

A systematic search of PubMed, MEDLINE, and Web of Science was conducted to identify 
peer-reviewed articles published between January 1, 2000 and October 19, 2023. The search 
strategy, detailed in the Appendix, included terms related to air pollutants (PM2.5, Ozone, 
NOx/NO2), mortality outcomes, and socially vulnerable populations.  

Study Selection and Data Collection 

Two trained reviewers independently screened all records by title and abstract using the 
Rayyan web application,31 which supports blinded dual screening, enables tagging and 
categorization of studies, and automatically detects conflicts between reviewers’ decisions. Any 
disagreements were resolved through discussion or consultation with the full study team. After 
reviewing the full texts of studies deemed potentially eligible by title and abstract screening, the 
two reviewers jointly made final decisions to include or exclude.  

Two reviewers independently performed data extraction using a standardized data collection 
form. Extracted data included study characteristics such as geographical location, population 
demographics, sample size, and study design. The research team also recorded exposure details 
including pollutant type, exposure window, calculation methods, and data sources. Length of 
follow-up and mortality outcomes were documented alongside the data sources and statistical 
methods used to derive effect estimates. When studies reported multiple statistical models, the 
research team extracted effect estimates from the fully adjusted model. Additionally, the research 
team extracted a list of confounders each study controlled for and recorded any subgroup 
analyses conducted by age, sex, race, ethnicity, socioeconomic status, region, and urbanicity. Any 
discrepancies in data extraction were resolved through joint review and consensus. 

Risk of Bias Assessment 

The risk of bias (ROB) for each included study was assessed using the Risk of Bias in Non-
Randomized Studies of Exposures (ROBINS-E) tool.32  The research team initially considered 
evaluating studies using the Newcastle-Ottawa Scale (NOS), but elected to use ROBINS-E as it 
provided a more comprehensive and structured assessment of bias domains critical to air 
pollution studies, including exposure misclassification, time-varying confounding, and selection 
bias. Two independent reviewers conducted the ROBINS-E assessments, and disagreements 
were resolved through discussion. Studies were evaluated across the seven ROBINS-E domains 
including risk of bias due to confounding, exposure measurement, selection of participants, post-
exposure interventions, missing data, outcome measurement, and selection of reported result. 
The overall ROB based on these domains was determined as low, some concerns, high risk, or 
very high risk. A summary table of completed ROBINS-E evaluations is available in the A.3. of 
the Appendix. 
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Data Synthesis and Narrative Review 

A narrative synthesis was conducted to summarize findings across studies, with a focus on 
effect estimates such as hazard ratios and risk ratios for all-cause mortality. The research team 
examined variations in risk across demographic, socioeconomic, and geographic subgroups. In 
studies that only presented a graphical subgroup analysis, numeric data were extracted from 
scanned images of published graphs by using the DigitizeIt software, version 2.5.9, 
[Germany].33,34 The research team note that this digitization process can introduce some 
measurement uncertainty, particularly for smaller demographic subgroups where effect sizes or 
confidence intervals are more difficult to extract precisely. Due to heterogeneity in study designs, 
exposure assessment methods, and statistical models, a meta-analysis was not performed. 
Instead, the research team explored sources of heterogeneity qualitatively, considering 
differences in study populations and subgroup analyses. Specifically, the research team examined 
how the relationship between air pollution and all-cause mortality differed in vulnerable 
subpopulations, including older adults, women, historically minoritized racial or ethnic groups, 
urban residents, individuals of low socioeconomic status, and those with chronic health 
conditions. No formal sensitivity analyses were conducted, as findings were synthesized 
narratively. 

Certainty of Evidence 

No formal assessment of certainty or confidence in the body of evidence (e.g. using GRADE) 
was performed, as the included studies were heterogeneous in design, exposure assessment, 
population characteristics, and analytic approaches, precluding standardized grading across 
outcomes. 

Results 

Article Selection and Description 

A total of 3,764 unique records were identified through our systematic electronic search from 
January 1, 2020 to October 19, 2023 (Figure S 1). Two reviewers screened all 3,764 records by 
title and abstract; of these, reviewers selected 192 records for full-text review. After full-text 
evaluation, 39 peer-reviewed original research articles met the inclusion criteria and were 
included in the final analysis. Representative examples of studies excluded after full-text 
screening are available in A.4. of the Appendix. 

Study periods spanned from the 1970s to the 2010s, but most studies were published within 
the past decade (Figure S 2). Geographically, the majority of these studies originated from North 
America (n=22) and Europe (n=9), with an increasing number of contributions from Asia, 
Australia, South America, and Africa in recent years. Many of the included mortality studies rely 
on national cohorts, such as Medicare populations, whose demographic composition, including 
age structure and race-ethnicity, differs from that of California. Therefore, caution is warranted 
when generalizing these findings to California’s population. 
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Among the included studies, sample sizes ranged from 2,734 participants35 to 73.4 million36 
(Table S 1). Three studies examined the association between air pollution and all-cause mortality 
in children under five,37–39 while the remaining studies focused on adults across a broad age 
spectrum. Three studies focused specifically on middle-aged populations (40s-50s).40–42 Eleven 
studies focused on individuals aged >=65, representing the Medicare population in the United 
States.36,43–52  

Other sample characteristics varied widely across the included studies. Some studies 
examined specific populations only based on race (e.g. Caucasian adults only53–55), sex (women 
only40,56 or men only42), residential urbanicity (urban residents only57–61), or occupation (e.g. 
teachers only56). In contrast, some studies utilized broader, nationally representative samples, 
including those from the United States,62,63 Spain,64 Taiwan,65 China,66,67 and Brazil.68 
Overall, 32 studies evaluated ambient PM2.5 as the primary air pollutant exposure in relation to 
all-cause mortality; 11 studies examined nitrogen dioxides; and 9 studies included ozone. 

The majority of studies controlled for individual-level confounders, including age, sex, 
smoking status, chronic health conditions, and at least one socioeconomic indicator most 
commonly education or income level. In population-based ecologic studies lacking individual-
level data, area-level metrics (e.g. county-level or neighborhood level data) were used to adjust 
for potential confounding variables.  

Exposure periods varied across studies, ranging from one year35,45,51,61,69 to 31 years.54 
Follow-up durations also differed considerably, from one year preceding mortality51 to lifelong 
follow-up from age 11 to death.35 

Risk of bias was assessed using the ROBINS-E tool. The majority of studies were rated as 
low risk of bias across most domains. “Some concerns” were frequently identified in domains 
related to confounding (D1) and classification of exposures (D3). Only a small number of studies 
were rated as having “some concerns” overall, and no studies were rated as high or very high risk 
of bias. 

PM2.5 and all-cause mortality risk 

A total of 31 studies quantified all-cause mortality risk in association with PM2.5 exposure 
(Table S 2). The mean/median PM2.5 exposure levels varied widely across studies, ranging from 
3.6 µg/m³ in Queensland, Australia70 to 47.1 µg/m³ across mainland China.66 The association 
between PM2.5 and all-cause mortality was positive in nearly all included studies, with higher 
PM2.5 levels associated with higher subsequent mortality risk (HRs and RRs ranging from 1.01 to 
1.19 per 10 µg/m³ increase in PM2.5). 

Three studies estimated changes in life expectancy from long-term PM2.5 exposure49,62,65 and 
reported life expectancy loss by 0.3 years per 10 µg/m³ increase in PM2.5

65 to 0.89 years per 4.5 
µg/m³ increase.49 

Effect sizes varied based on study-specific characteristics such as cohort size, exposure level, 
and covariates. Larger-scale studies based on the U.S. Medicare population data or nationwide 
ecologic data consistently reported statistically significant associations between PM2.5 exposure 
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and all-cause mortality. In contrast, three studies,56,59,71 all with relatively smaller sample sizes, 
found non-significant associations between PM2.5 and all-cause mortality. There were no clear 
trends over time. 

Ozone and all-cause mortality risk 

Nine studies assessed the association between ambient ozone exposure and all-cause 
mortality (Table S 2). Mean/median ozone concentrations ranged from 21.9 ppb in South Korea57 
to 57.7 ppb in U.S. metropolitan areas.72 Compared to PM2.5, the ozone-mortality relationship 
was more variable and generally weaker, with risk estimates (HRs and RRs) ranging from 0.92 
(95% CI: 0.89-0.96)41 to 1.18 (95% CI: 1.07-1.29)57 per 10 ppb increase in ozone exposure. Five 
of the nine studies reported a significant positive association between ozone and all-cause 
mortality, whereas the remaining four found non-significant results. Notably, studies with larger 
cohorts46,64 consistently observed positive associations, suggesting that the true effect of ozone 
on mortality may be marginal and require large samples to detect. 

Nitrogen oxides and all-cause mortality risk 

Eleven studies evaluated all-cause mortality risk in relation to nitrogen oxide (NOx/NO2) 
exposure (Table S 2). Reported mean or median nitrogen oxide concentrations varied 
substantially across studies, ranging from 9.48 µg/m³ in Spain64 to 50 µg/m³ in China.58 The 
association between nitrogen oxides and all-cause mortality was generally positive with hazard 
ratios (HRs) and relative risks (RRs) ranging from 0.96 (95% CI: 0.93-0.98)63 per 10 ppb 
increase in NO2 exposure to 1.22 (95% CI: 1.10-1.35)67 per 10 µg/m³ increase in NO₂ exposure. 
The strongest associations were observed in Wang 202367 (HR 1.22, 95% CI: 1.10-1.35) and 
Heinrich 201240 (HR 1.18, 95% CI: 1.07-1.30), both conducted in regions with relatively high 
NO₂ levels in China and Germany. Large-scale cohort studies consistently found small but 
significant increases in all-cause mortality risk (HR 1.05, 95% CI: 1.04-1.0552; HR 1.01, 95% CI: 
1.00-1.0373).  

Age-stratified all-cause mortality risk associated with air pollution 

Studies that compared age groups <65 years and >65 years tended to report higher all-cause 
mortality risk estimates for PM2.5 exposure in the older age groups (>65), although not consistent 
across all studies (Table S 3). However, among populations >65 years, studies consistently found 
strongest associations in the 65-74 age group, with attenuated effects observed in those >75 or 
>85 years.43,46,47 Significant age differences were observed only in large cohort studies, whereas 
studies with relatively smaller sample sizes generally found no variation in risk estimates across 
age groups.35,60,71 

For ozone exposure, one study46 conducted age-stratified analyses of all-cause mortality and 
reported no significant differences across age groups.  

Three studies examined age-stratified all-cause mortality risk due to nitrogen oxides and 
reported a higher risk with increasing age42,67 with a decline in risk above 80 years of age.52 
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Sex-stratified all-cause mortality risk from air pollution 

Twelve studies conducted sex-stratified analyses of all-cause mortality from PM2.5 exposure 
and yielded mixed findings (Table S 4). Some reported higher mortality risk41,46,60 and greater 
reductions in life expectancy49 in men, while others found higher risks in women.62,71 However, 
most studies found no significant difference between the sexes. For ozone, two studies conducted 
sex-stratified analyses and found no significant differences in all-cause mortality risk between 
men and women. Two studies assessed sex differences in mortality risk associated with nitrogen 
oxide/dioxide, with conflicting results.42,63,67 

Race-stratified all-cause mortality risk from air pollution 

Six U.S.-based studies examined racial differences in all-cause mortality risk from ambient 
air pollution (Table S 5). For PM2.5, three studies reported significantly higher effect estimates 
for Black individuals compared to White individuals,46,47,50 while two also found elevated risk 
among Hispanic, Asian, and Native American populations.46,47 For ozone, one study found no 
significant variation in mortality risk across racial groups;46 and for nitrogen oxides, one study 
reported higher mortality risk for Black individuals compared to White individuals.52  

SES-stratified all-cause mortality risk from air pollution 

Twelve studies examined socioeconomic status (SES) as an effect modifier in the association 
between air pollution and all-cause mortality risk (Table S 6-Table S 8). SES was assessed using 
individual-level indicators (e.g., education level, employment, income, Medicaid eligibility) and 
area-level measures (e.g., neighborhood income level, percentage below the poverty level, 
median household income). 

Studies consistently found higher all-cause mortality risk from PM2.5 and nitrogen oxide 
exposure in individuals with lower educational attainment (Table S 6). In contrast, findings for 
neighborhood- and area-level SES metrics were more variable (Table S 7); while some studies 
reported stronger associations in lower-income or high-poverty areas, suggesting greater 
vulnerability in economically marginalized communities42,44,47; others found no clear pattern.43,52  

Among Medicare beneficiaries, studies used Medicaid-Medicare dual eligibility as a proxy 
for low SES (Table S 8) and reported varied results, with only two studies reporting significantly 
higher mortality risk among Medicaid-eligible individuals compared to non-eligible 
counterparts.46,50  

Comorbidity-stratified all-cause mortality risk from air pollution. 

Five studies examined whether pre-existing chronic health conditions modified the 
association between air pollution and all-cause mortality risk (Table S 9). One study found a 
significantly higher mortality risk from PM2.5 among individuals with prior hospitalizations for 
chronic heart failure (CHF), myocardial infarction (MI), chronic obstructive pulmonary disease 
(COPD), or diabetes34 compared to healthy individuals. Individuals with such cardiovascular, 
respiratory, and diabetic diseases also had increased susceptibility to death by any cause from 
nitrogen oxide exposure.42,67 However, with few studies available, the limited evidence base 
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prevents definitive conclusions. No included study examined effect modification by pre-existing 
health conditions on the association between all-cause mortality and ozone exposure. 

Urbanicity-stratified all-cause mortality risk from air pollution.  

Fourteen studies examined the association between air pollution and all-cause mortality risk 
stratified by urbanicity (Table S 10). Most studies reported higher mortality risk and life 
expectancy loss from PM2.5 exposure in urban areas compared to rural areas.45,47,62,68,70 For ozone 
and nitrogen oxide exposure, only a small number of studies analyze urban-rural differences and 
reported conflicting results. 

PM2.5 exposure and life expectancy 

Correia et al.1 estimated that sustained exposure to elevated PM2.5 levels was associated with 
a 0.35-year reduction in life expectancy across U.S. counties (p = 0.033). Schwartz et al.2 
reported a larger effect, finding 0.89 years of life expectancy lost (95% CI: 0.88-0.91) associated 
with long-term PM2.5 exposure using updated exposure reconstruction and extended follow-up. 
Chen et al.3 analyzing a national cohort with additional control for socioeconomic and behavioral 
factors, found a 0.3-year loss in life expectancy (95% CI: 0.1-0.6) linked to PM2.5. Together, 
these limited studies show that across different analytic approaches and cohorts, PM2.5 exposure 
is consistently associated with measurable reductions in population life expectancy, generally in 
the range of 0.3 to 0.9 years. 

Summary 

Our systematic review of the relationship between air pollution (PM2.5, NO2 and O3) and all-
cause mortality found consistent evidence that long-term exposure to PM2.5 is associated with 
increased mortality risk, with suggestive but less consistent associations for NO2 and O3.  
Subgroups such as older adults, individuals with lower socioeconomic status and Black 
populations in the US appear to face disproportionate health risks.  These findings underscore the 
need for targeted public health interventions to better understand and mitigate air pollution-
related health disparities. 

Task 2. Develop PM2.5 Surfaces for the Study Population 
The research team developed daily PM2.5 surfaces for the purpose of assigning rolling annual 

average air pollution exposure for the date of death of any individual between 2000 and 2021. 
The PM2.5 surfaces were thus developed for 1999-2021 to make sure each subject has an annual 
average exposure before death. In developing daily land use regression (LUR) models for PM2.5, 
The research team UCB first identified factors (i.e., source or sink) that might impact PM2.5 
concentrations and use them as potential predictors. The research team also identified the optimal 
distance of impact for a potential predictor and the models should be able to deal with 
multicollinearity among predictors and can reduce model overfit. Further, the research team 
aimed to avoid excessive number of predictors in the final selected model and will allow a 
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maximum of 15 predictors (in addition to four Seasons) in a LUR model. Due to those 
considerations, the research team applies the Deletion/Substitution/Addition (D/S/A) algorithm 
for developing a daily prediction model.74–76 The modeling process is described in detail below. 

Development of Comprehensive Data Sources 

The research team developed comprehensive data sources that have potential impact on the 
concentrations measured at California Environmental Protection Agency (CalEPA) monitoring 
sites. The data sources include daily traffic data, daily remote sensing data, daily weather data, 
every two-week vegetation index, one time land use and land cover data, and other potential 
impact factors. The research team hypothesizes that greater daily traffic is associated with higher 
PM2.5 concentrations. Remote sensing Aerosol Optical Depth (AOD) data is an indirect measure 
of PM2.5 concentrations with greater AOD values being directly associated with higher PM2.5 
concentrations. Different land use types have different impacts on PM2.5 concentrations with, for 
example, higher industrial and commercial land use being associated with greater concentrations. 
Similarly, different land cover types can have other impacts on PM2.5 concentrations with, for 
example, high intensity urban developed land cover being associated with greater concentrations 
but greater vegetation cover (as a sink) being associated with lower concentrations. Further, 
greener vegetation has a much better air pollutant absorption effect than less green vegetation 
and thus the former helps reduce concentrations. For weather data, greater wind speed is 
associated with lower concentrations while lower visibility is associated with higher 
concentrations. The research team also collected daily PM2.5 concentrations data at the CARB 
regulatory monitoring sites (i.e., CalEPA sites) for the years 1998-2021 and used them as a 
response variable in generating daily PM2.5 concentration models. The potential predictors are 
listed in Table 1. 
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Table 1. The potential LUR predictors for the daily LUR model development. 

Category Variable for 
Prediction 

Resolution Description 

Buffer (50m-
5km) 

Daily Traffic vector California Department of Transportation 
(CalTrans) 

Land Use  vector 

Agricultural, residential, commercial, 
industrial, government and institutions, 
open land, parks, and recreational 
facilities (Parcel data) 

Land Cover  vector 
Forest, herbaceous/grassland, shrubland, 
developed, agriculture, wetlands, water 
and other (USGS NLCD) 

Non-Buffer 
Remote 
Sensing Data 

Daily GridMET  4 km 

Maximum temperature, minimum 
temperature, precipitation accumulation, 
downward surface shortwave radiation, 
wind-velocity, humidity (maximum and 
minimum relative humidity and specific 
humidity) 

Two-week Interval 
Vegetation Index 250 m 

Normalized difference vegetation index 
(NDVI) (NASA MOD13Q1.006 Terra) 

Daily Aerosol 
Optical Depth 
(AOD)  

1 km 
NASA Multiangle Implementation of 
Atmospheric Correction (MAIAC) 
algorithm 

Daily Ozone from 
Ozone Monitoring 
Instrument (OMI)  

27 km 
Global for both NO2 and O3 
measurements for 2004 - current (NASA) 

Annual PM2.5  1 km 
North America for 1989-2016 (Univ. 
Washington Randall Martin) 

Annual NO2  1 km Global for 1990-2020 (NASA reanalysis) 

Other Non-
buffer 
Variables 

Digital Elevation 
Model (DEM) 30 m U.S. Geological Survey (USGS) 

Distance to Coast 30 m U.S. Geological Survey (USGS) 
Distance to 
Roadways 

30 m Environmental Systems Research 
Institute (ESRI) 

Distance to Ports 30 m U.S. Geological Survey (USGS) 

Location category vector 
California Department of Transportation 
(CalTrans)/ESRI 
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Daily traffic data: For daily traffic data, the research team used the data collected by the 
California Department of Transportation (CalTrans) Performance Measurement System (PeMS) 
(https://dot.ca.gov/programs/traffic-operations/mpr/pems-source). PeMS data are collected in 
real-time from nearly 40,000 individual detectors spanning the freeway system across all major 
metropolitan areas of the State of California and provide an archived data user service that 
provides over fifteen years of data for historical analysis. PeMS integrates a wide variety of 
information from Caltrans and other local agency systems including traffic flow, speed, 
occupancy, incident, toll charge, and other information. The research team used PeMS five-
minute road link/segment traffic flow data in the analysis. In PeMS, traffic flow (volume) is a 
quantity representing the number of vehicles that passed over each detector on the roadway in a 
given time period (i.e. five-minute flow, hourly flow, etc.). The detector measured traffic flow 
that covered 12.52 percent highway segments and the research team summed hourly traffic to 
daily traffic for all the stations across California. The following interconnected stages were used 
to derive daily traffic for all the California highways for the study period:  

1) For a road segment with station traffic measure for a day, use all the station traffic 
measures on that road segment to generate a daily mean traffic for that road segment for 
that day. 

2) For those road segments without traffic measures for a day, assign them using the 
assigned segments from step 1 by matching route, county, district, route type and day, and 
find the one with the smallest distance if having multiple matches. California has 58 
counties which are included in one of the 12 CalTrans air districts (1 - Eureka, 2 - 
Redding, 3 - Marysville / Sacramento, 4 - Bay Area / Oakland, 5 - San Luis Obispo / 
Santa Barbara, 6 - Fresno / Bakersfield, 7 - Los Angeles, 8 - San Bernardino / Riverside, 
9 - Bishop, 10 - Stockton, 11 - San Diego, 12 - Orange County). Highways in California 
are split into at least four different types of systems: Interstate Highways, U.S. Highways, 
state highways, and county highways. 

3) For those road segments without traffic being assigned from steps 1 & 2, assign them 
using the assigned segments from steps 1 & 2 by matching route, district, route type and 
day, and find the one with the smallest distance if having multiple matches. In this step 
county was not used as a restricting factor in daily traffic assignment. 

4) For those road segments without traffic being assigned from the above steps, assign them 
using the above assigned segments by matching route, county, district and route type, 
plus at most one day difference in data availability and find the one with the smallest 
distance if having multiple matches. 

5) Identify those not assigned and assign them using the assigned segments from above 
steps by matching county, district, route type and day and find the one with the smallest 
distance if having multiple matches. Here the restricting factor of route number is 
removed. 

https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
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6) Identify those not assigned and assign them using the assigned segments from the above 
steps by matching district, route type and day and find the one with the smallest distance 
if having multiple matches. Here the restricting factors of route number and county are 
removed. 

7a) Identify those not assigned and assign them using the assigned state highway 
segments from the above steps by matching district and day. Here the restricting 
factors of route number, route type and county are removed. 

7b) Identify those not assigned and assign them using the assigned U.S. highway 
segments from the above steps by matching district and day. Here the restricting 
factors of route number, route type and county are removed. 

7c) Identify those not assigned and assign them using the assigned interstate highway 
segments from the above steps by matching district and day. Here the restricting 
factors of route number, route type and county are removed. 

8) Identify those not assigned and assign them using the assigned segments from steps 1-4 
by matching district and season to find the one with the smallest distance if having 
multiple matches. Here route number, county and route type are not required to match. 

Table 2 shows the daily traffic assignment statistics for the 12 California districts for the 
study period. Overall, 12.52 percent California highways had daily traffic measurements for the 
study period, with ranges being from 0 percent (district 9) to 38.24 percent (district 12). The 
research team found that the districts with great population (i.e., metropolitan areas) had more 
roadways and more traffic measures. Those districts thus had smaller proportions of roadways 
being assigned traffic from greatly relaxed conditions (e.g., by gradually relaxing matching 
criteria on route, county, district, route type or day). The roadways in the vastly rural districts 
were the ones with much less proportion of traffic measures. Greater proportion of roadways 
were thus assigned through greatly relaxed conditions for those rural districts. The CalTrans 
PeMS traffic data started in 2001. A trend analysis from years 2001-2020 was used to extend the 
daily traffic data back to the years 1999 and 2000. 

PM2.5 remote sensing data: The research team obtained Aerosol Optical Depth (AOD) data 
from the Moderate Resolution Imaging Spectroradiometer instruments onboard the National 
Aeronautics and Space Administration Terra and Aqua satellites. The Multiangle Implementation 
of Atmospheric Correction algorithm was used to derive 1 km resolution AOD surfaces.77 Due to 
extensive missing data presented at the 1 km resolution AOD surfaces, the research team 
aggregated the daily AOD surfaces into monthly means. 
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Table 2. Traffic data assignment statistics based on the stages of assignment. 
  District #1 District #2 District #3 

Stage RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) 
1 34,197 2.93 34,197 2.93 64,284 4.94 64,284 4.94 75,002 4.41 75,002 4.41 
2 774 0.07 34,971 3.00 0 0.00 64,284 4.94 142,554 8.38 217,556 12.79 
3 686,788 58.91 721,759 61.91 943,806 72.58 1,008,090 77.53 68,950 4.05 286,506 16.85 
4 431,122 36.98 1,152,881 98.89 292,200 22.47 1,300,290 100.00 1,548 0.09 288,054 16.94 
5 0 0.00 1,152,881 98.89     704,938 41.45 992,992 58.39 
6 0 0.00 1,152,881 98.89     503,072 29.58 1,496,064 87.97 

7.1 12,997 1.11 1,165,878 100.00     204,540 12.03 1,700,604 100.00 
  District #4 District #5 District #6 

Stage RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) 
1 360,864 17.08 360,864 17.08 19,666 1.44 19,666 1.44 53,408 3.51 53,408 3.51 
2 371,428 17.58 732,292 34.66 83,650 6.14 103,316 7.59 269,068 17.67 322,476 21.18 
3 257,311 12.18 989,603 46.84 133,864 9.83 237,180 17.42 107,284 7.05 429,760 28.23 
4 2,560 0.12 992,163 46.96 430 0.03 237,610 17.45 552 0.04 430,312 28.27 
5 903,900 42.79 1,896,063 89.75 229,642 16.86 467,252 34.32 922,574 60.60 1,352,886 88.87 
6 28,870 1.37 1,924,933 91.12 887,904 65.21 1,355,156 99.52 70,128 4.61 1,423,014 93.47 

7.1 162,368 7.69 2,087,301 98.8 4,144 0.30 1,359,300 99.83 99,348 6.53 1,522,362 100.00 
7.2 0 0.00 2,087,301 98.8 2,352 0.17 1,361,652 100.00       
7.3 0 0.00 2,087,301 98.8           

8 25,305 1.20 2,112,606 100           
  District #7 District #8 District #9 

Stage RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) 
1 288,852 25.03 288,852 25.03 68,864 5.82 68,864 5.82 0 0.00 0 0.00 
2 315,340 27.32 604,192 52.35 94,562 7.99 163,426 13.81 0 0.00 0 0.00 
3 23,360 2.02 627,552 54.37 87,600 7.40 251,026 21.21 198,696 45.95 198,696 45.95 
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4 466 0.04 628,018 54.41 194 0.02 251,220 21.23 0 0.00 198,696 45.95 
5 526,172 45.59 1,154,190 100 867,906 73.34 1,119,126 94.57 0 0.00 198,696 45.95 
6       0 0.00 1,119,126 94.57 0 0.00 198,696 45.95 

7.1       64,284 5.43 1,183,410 100.00 233,760 54.05 432,456 100.00 
  District #10 District #11 District #12 

Stage RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) RS (#) 
RS 

(%) 
Cum RS 

(#) 
Cum RS 

(%) 
1 146,644 9.80 146,644 9.80 241,134 23.85 241,134 23.85 160,898 38.24 160,898 38.24 
2 438,638 29.32 585,282 39.12 400,820 39.65 641,954 63.50 139,650 33.19 300,548 71.43 
3 352,216 23.54 937,498 62.66 105,120 10.40 747,074 73.89 0 0.00 300,548 71.43 
4 2,288 0.15 939,786 62.82 990 0.10 748,064 73.99 290 0.07 300,838 71.50 
5 544,392 36.39 1,484,178 99.21 262,948 26.01 1,011,012 100.00 119,930 28.50 420,768 100.00 
6 11,886 0.79 1,496,064 100.00                 

Note: RS= road segment; Cum RS=cumulative road segments; District 1, 2 and 9 had no traffic station measures and were treated the same as 
respectively neighboring districts in 4, 3 and 8. 
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Parcel-level land use data: The research team acquired statewide parcel data from CARB 
for 2019 for all the counties in California. The parcel data provides land use information at parcel 
level, such as agricultural, residential, commercial, industrial, government and institutions, open 
land, parks, and recreational facilities. For residential land use, the parcel data is further classed 
into single-family homes, town houses, condominiums, and high-rise apartment buildings. The 
parcel data also includes building characteristics, including building age, type and existence of 
fireplace, gas ranges, and other information that can be used to calculate building-specific factors 
to characterize the indoor infiltration of pollutants. 

Land cover data: The research team acquired the land cover data for years 2001, 2004, 
2006, 2008, 2011, 2013, 2016, and 2019 from the National Land Cover Database (NLCD). The 
NLCD provides a synoptic nationwide classification of land cover into 16 classes at a spatial 
resolution of 30 m. The 16 land cover classes were aggregated into eight major land cover types 
including forest, herbaceous/grassland, shrubland, developed, agriculture, wetlands, water and 
other, which includes ice/snow, barren areas. The research team also acquired tree canopy and 
percent impervious surfaces those years having land cover classification. For LUR development, 
a land cover data closest to the daily PM2.5 measures was used for analysis. 

Two-week interval vegetation index: The research team has acquired 16-day interval (23 
surfaces for a year) vegetation index surfaces (MOD13Q1.006 Terra Vegetation Indices) for 
California at a spatial resolution of 250 m for years 2012 to 2019 for the study. This dataset was 
traced back to 1999 through a trend analysis. 

GridMET meteorological data: The research team acquired daily high-spatial resolution 
(~4 km, 1/24th degree) surface meteorological data covering the contiguous U.S. for years 1999-
2021. Primary climate variables collected include maximum temperature, minimum temperature, 
precipitation accumulation, downward surface shortwave radiation, wind-velocity, humidity 
(maximum and minimum relative humidity and specific humidity).  

Digital elevation model (DEM) - in meters: The research team acquired the national 
elevation dataset for California from the U.S. Geological Survey (USGS) (http://nationalmap.gov 
and http://seamless.usgs.gov) for 2011. The data included 45 1/3 arc-second (approx. 10 meters) 
raster DEM and were mosaicked into a single DEM raster for the entire State. Higher elevation is 
normally associated with lower PM2.5 concentrations. 

Distance to coast - in meters: The California shoreline was derived from The National 
Assessment of Shoreline Change: GIS Compilation of Vector Cliff Edges and Associated Cliff 
Erosion Data for the California Coast (http://pubs.usgs.gov/of/2007/1112). These data are 
integrated into the GIS mapping tool to produce a geographic view of topographical changes in 
California’s coastline over time. The most recent view was created using data collected between 
1998-2002. Greater distance is typically associated with greater PM2.5 concentrations. 

http://nationalmap.gov/
http://seamless.usgs.gov/
http://pubs.usgs.gov/of/2007/1112
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Distance to roadways - in meters: The research team used Business Analysts 2018 Street 
Carto map layer provided by the Environmental Systems Research Institute (ESRI in Redlands, 
CA) to derive distance to nearest highway (defined as feature class classification (FCC) A1 and 
A2), to nearest major roadway (FCC A3) and to nearest local roadway (FCC A4). Greater 
distance from roadways is typically associated with lower roadway traffic air pollution. 

Location category - unitless: The research team classified the State of California into three 
exclusive location categories: Goods movement corridor (GMC) - areas within 500 m of truck-
permitted freeways and ports, non-goods movement corridor (NGMC) - areas within 500 m of 
truck-prohibited freeways or 300 m of a connecting roadway, and control areas (CTRL) - 
locations out of GMC and NGMC. Typically, GMCs have the highest PM2.5 concentrations while 
CTRLs have the lowest PM2.5 concentrations. From 2012 to 2019, the number of PM2.5 
monitoring stations for GMC, NGMC and CTRL was, respectively, 51, 67 and 28. The total 
number of daily measurements for GMC, NGMC and CTRL for the years 2012-2019 was, 
respectively, 95113, 147513, and 74107. The PM2.5 monitors were successfully deployed to 
significantly measure its near source impacts (those sites in GMC and NGMC) and also had a 
fairly number of sites located in the control areas to form a spatial representation of coverage. 
These statistics will be updated in this new research to include all the days with PM2.5 regulatory 
monitoring. 

PM2.5 data from CalEPA monitoring: CalEPA started monitoring PM2.5 concentrations in 
1998. The number of air quality monitors increased substantially from 1998 to the current, with 
the largest number reaching 120 in 2021 (Figure 1). The minimum values below detection limit, 
the mean values close to ten microgram per cubic meter (ug/m3) and the maximum values over 
500 ug/m3. Though Google Air also measured PM2.5 concentrations, they were measured by five 
binned particle counts, not mass. The Google Air PM2.5 measurements will thus not be used in 
this study. 
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Figure 1. The spatial distribution of the CalEPA PM2.5 air quality monitoring stations 
across California. 
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Development of daily PM2.5 concentration models 

All the data sources of vector shape (e.g., traffic data and parcel level land use data) are 
converted into rasters with a spatial resolution of 30 m. The following describes a series of 
interconnected steps to develop a daily PM2.5 model through the D/S/A modeling framework: 

Generate buffer statistics on 30 m spatial resolution potential predictors: A series of 
buffer statistics of 50-5000 m at an interval of 50 m are created for the potential spatial predictors 
with a spatial resolution of 30 m. They include daily traffic data, parcel-level land use data, 
NLCD land cover data, and NLCD percent impervious and tree-canopy data. For each variable, 
e.g., industrial land use, a total of 100 buffered statistics (i.e., covariates) are generated. For all 
the potential predictors, with the inclusion of buffered and non-buffered variables, about 2,500 
covariates are identified for the prediction of daily pollutant concentrations. This increases the 
chance of identifying the optimal distance impact of a predictor and helps improve model 
performance. However, this also creates high-dimension covariates that are highly correlated. To 
solve this issue, the research team applies a data reduction strategy to reduce the number of 
covariates used in predicting pollutant concentration. 

Apply data reduction strategy to reduce the number of predictors: To reduce the number 
of covariates and avoid high correlations between them for LUR modeling, The research team 
first creates a correlation coefficient matrix between a pollutant and all the covariates. A 
covariate of the highest absolute correlation coefficient with the pollutant is maintained. The 
maintained covariate is then used to calculate correlation coefficients with all the remaining 
covariates and those with an absolute correlation coefficient greater than 0.9 are removed from 
inclusion. A second covariate from the remaining covariates with the second highest absolute 
correlation coefficient with the pollutant is then maintained. Similarly, the second maintained 
covariate is used to calculate correlation coefficients with all the remaining covariates and those 
with an absolute correlation coefficient greater than 0.9 are removed from inclusion. This process 
continues until all the significant covariates are chosen and no two chosen covariates have an 
absolute correlation coefficient greater than 0.9. After applying the data reduction strategy, the 
number of predictors maintained in a LUR model is typically less than 100. This process is 
implemented before a D/S/A is run and it is carried out once for the sole purpose of reducing the 
number of predictors that might be collinear. 

Develop daily LUR models and surfaces for PM2.5: LUR modeling is a statistical 
technique used to estimate the spatial distribution of air pollution concentrations based on land-
use characteristics and other variables. It analyzes measurements of air pollution levels taken at 
specific locations, and then identifies the key factors that influence those levels. To develop daily 
LUR models, The research team ran the model at 30 m spatial resolution through the D/S/A 
algorithm.74,75 The D/S/A algorithm can deal with both linear and non-linear associations. 
However, for simplicity of model development and for the clear interpretation of the predictors 
selected for a model, The research team limited the predictors to be only on linear terms (the 
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maximum sum of powers in each variable to be 1) and disallowed any interaction except corridor 
by year. The D/S/A algorithm is an aggressive model search algorithm, which iteratively 
generates polynomial generalized linear models based on the existing terms in the current 'best' 
model and the following three steps: (1) a deletion step, which removes a term from the model, 
(2) a substitution step, which replaces one term with another, and (3) an addition step, which 
adds a term to the model. The search for the 'best' estimator starts with the base model specified 
with 'formula': typically, the intercept model except when the user requires number of terms to be 
forced in the final model. Before searching through the statistical model space of polynomial 
functions, the original sample is randomly partitioned into V equal size subsamples. Of the V 
subsamples, a subsample is retained as the validation data for testing the model, and the 
remaining V-1 subsamples are used as training data. The cross-validation process is then repeated 
V times, with each of the V subsamples used exactly once as the validation data. The advantage 
of this method over the leave-one-out cross-validation technique is that the prediction errors are 
less impacted by single outliers, and compared to repeated random sub-sampling, all 
observations in the V-folds are used for both training and validation, and each observation is used 
for validation once. With each iteration, an independent validation dataset is used to assess the 
performance of a model built using a training dataset. This technique, therefore, minimizes over-
fitting to the data to maximize the probability that the models will predict well at locations that 
have not been sampled. 

During the D/S/A modeling process, The research team classified the entire dataset into 10-
folds. With each iteration, an independent validation dataset in one of the 10-folds was used to 
assess the performance of the model built using data from the other 9-folds. This process 
continued for 10 times until every fold of data is used for validation. The mean prediction errors 
from the validation datasets were averaged across 10 iterations and compared between a series of 
built models. The model with the minimum average prediction error was chosen as the final 
model. During the modeling process, the air quality monitoring data (and associated predictors) 
for a specific year were equally and randomly distributed into those 10 folds. Because one air 
quality monitor typically has more than one observation (i.e., multiple days of measurements), a 
random effect of air quality monitor (in R language this is given by 1|station_ID) was included in 
the modeling process however, only the fixed effects (i.e., remove the random effect) were used 
to construct PM2.5 surfaces due to the requirement of deriving PM2.5 concentrations beyond 
monitoring stations. The adjusted R2 for the fixed effects was used as a measure of model 
performance from the LUR modeling result. 

The study (Table 3) identified a positive correlation between higher aerosol optical depth 
(AOD) values and elevated PM2.5 concentrations, suggesting that increased aerosol presence in 
the atmosphere is associated with higher particulate matter levels. Increased traffic density 
emerged as a contributing factor to higher PM2.5 concentrations, emphasizing the impact of 
vehicular emissions on air quality. Weather factors such as higher relative humidity, wind speed, 
and temperature were associated with lower PM2.5 concentrations. Developed open spaces were 
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linked to reduced PM2.5 concentrations, and so were areas characterized by a higher vegetation 
index, shrub cover, barren land, and water bodies, emphasizing the role of natural features in 
mitigating air pollution. Barren land refers to areas that have little to no vegetation cover and is 
often characterized by exposed soil or rock.78 Industrial land use, however, was associated with 
higher PM2.5 concentrations, pointing to the impact of industrial activities on particulate matter 
emissions. Greater residential areas were linked to higher PM2.5 concentrations, potentially 
attributed to background concentrations. In densely populated regions, the increased density of 
housing, traffic, and other activities can lead to elevated PM2.5 background concentrations. 
Additionally, the urban heat island effect and limited air circulation in residential areas can 
hinder the dispersion of pollutants, allowing background PM2.5 levels to rise. Additionally, 
locations farther from the coast were associated with higher PM2.5 concentrations, indicating a 
spatial relationship between proximity to the coast and particulate matter levels.  

The final PM2.5 model had a predictive performance of 0.65. The predictive performance 
value of 0.65 was obtained through cross-validation comparing model-predicted PM2.5 
concentrations with observed monitoring data. This metric reflects the model’s ability to 
reproduce measured concentrations while prioritizing fine-scale spatial variability across 
California rather than maximizing overall variance explained. In a large and heterogeneous study 
domain with diverse emission sources, meteorology, and land-use characteristics, models 
designed to capture small-area contrasts typically yield lower R2 values than regionally smoothed 
models. Importantly, a predictive performance of 0.65 corresponds to an overall correlation 
exceeding 0.80 between predicted and observed concentrations, indicating strong agreement and 
reliable exposure estimation. Although inclusion of additional regional predictors could have 
increased R2, doing so would have reduced spatial resolution and limited the model’s suitability 
for epidemiologic exposure assignment. Thus, the reported predictive performance represents an 
appropriate balance between accuracy and spatial specificity for statewide health analyses. 

Table 3. Daily PM2.5 model covering available observational periods. 
Coefficient Estimates std. Error Statistic P-Value 

Year -0.139709 0.003115 -44.847889 <0.001 

Season [Fall] 360.125186 6.244769 57.668292 <0.001 

Season [Spring] 356.974440 6.245309 57.158809 <0.001 

Season [Summer] 358.493294 6.246059 57.395114 <0.001 

Season [Winter] 360.534093 6.244547 57.735832 <0.001 

AOD (albedo) 0.044977 0.000221 203.299221 <0.001 

Vehicle Kilometers Traveled (VKT) (350m) 0.000012 0.000001 16.793841 <0.001 
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Wind Velocity (m/s) -1.239394 0.006771 -183.031784 <0.001 

Minimum Temperature (K) -0.239641 0.002586 -92.662860 <0.001 

Minimum Relative Humidity (%) -0.059829 0.000649 -92.242887 <0.001 

Roadway Area (ha) (5000m) 0.000024 0.000002 13.114503 <0.001 

Industrial (ha) (1850m) 0.000513 0.000024 21.714939 <0.001 

Residential (ha) (850m) 0.001185 0.000029 41.076124 <0.001 

Unknown Land Use (ha) (450m) -0.002008 0.000150 -13.387931 <0.001 

Agricultural (ha) (50m) -0.311401 0.014300 -21.776931 <0.001 

NDVI -0.000394 0.000010 -39.979943 <0.001 

Barren Land (ha) (3000m) -0.001291 0.000013 -99.546262 <0.001 

Barren Land (ha) (50m) -0.982108 0.074570 -13.170308 <0.001 

Shrub Land (ha) (200m) -0.029789 0.000822 -36.232176 <0.001 

Developed Open Space (ha) (4950m) -0.000037 0.000002 -16.515144 <0.001 

Waterbody (ha) (1750m) -0.000578 0.000020 -29.560264 <0.001 

Distance to Highway (m) -0.000029 0.000003 -8.723557 <0.001 

Distance to Coast (m) 0.000017 0.000000 88.728793 <0.001 

Elevation (m) -0.002428 0.000053 -46.003552 <0.001 

Observations 633277 

R2 / R2 adjusted 0.652 / 0.652 
 

Due to the requirement of more than three gigabytes of storage space for a single statewide 
raster surface of spatial resolution of 30 m, The research team opted to generate daily surfaces of 
PM2.5 concentrations using a spatial resolution of 100 m. The 100 m spatial resolution surfaces 
maintain the ability to identify small area variations of pollutant concentrations, especially those 
heightened exposures endured by vulnerable communities. 
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Task 3. Obtain CDPH Vital Statistics Data Including Mortality and 
Covariates 

In this task the research team obtained and processed the California population data, 
including mortality records and individual-level covariates, for the Period 2000 through 2021. 
This step was foundational because it allowed us to link health outcomes across a very large and 
diverse population to the detailed PM2.5 exposure surfaces developed in Task 2. The availability 
of continuous enrollment information, together with death records and address histories, enabled 
us to study the impacts of air pollution on life expectancy over two time periods: 2000-2010 and 
2011-2021. 

The first component of this task was securing regulatory approvals and data access. The 
research team submitted applications to both the UC Berkeley Institutional Review Board (for 
reliance on State CPHS) and the California Health and Human Services Committee for the 
Protection of Human Subjects, both of which reviewed and approved our research protocol. 
Following approval, the research team worked with the California Department of Public Health 
to acquire the mortality data under a strict data-use agreement to protect confidentiality. The data 
was  stored on secure UC Berkeley Secure Research Data Center (SRDC) servers in compliance 
with HIPAA and state requirements. 

For Period 1 (2000-2010), an annual average number of 219,795 deaths were recorded across 
all age groups and race-ethnicity categories in the dataset provided by the California Department 
of Public Health (CDPH) (Table 4). Deaths were not evenly distributed, with the vast majority 
occurring in older age groups and among the White population. By race and ethnicity, Whites 
accounted for the largest share of deaths, with 153,157 deaths, representing about 70% of the 
total. Hispanics were the second largest group with 31,404 deaths (14%), followed by Blacks 
with 16,576 deaths (8%), Asians with 13,721 deaths (6%), and Other with 4,937 deaths (2%). In 
the study period analyzed, deaths among Native American populations constituted a very small 
proportion of total deaths statewide; even after aggregation into the “Other” category, this group 
represented only approximately 2% of all deaths. Analyzing Native American populations as a 
standalone group would have resulted in unstable estimates, wide confidence intervals, and 
increased risk of disclosure, particularly at finer geographic or age stratifications. These figures 
reflect both population size differences and disparities in mortality patterns across groups. By 
age group, deaths rose steeply with age. Only 769 deaths (0.3%) occurred among children ages 
0-11, while more than a quarter of all deaths (55,585 deaths, 25%) occurred among adults aged 
87 and over. The next highest concentrations were in the 81-86 age group with 41,445 deaths 
(19%) and the 75-80 group with 32,887 deaths (15%). In contrast, young and middle-aged adults 
(ages 12-45 combined) accounted for only about 7% of total deaths. Patterns also varied by race 
within age categories. White deaths increased steadily with age, peaking in the 87+ group, while 
Black deaths showed relatively higher representation in the 36-65 range compared to other 
groups. Asian and Hispanic populations recorded fewer deaths overall, but their age distribution 
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followed a similar pattern, with the majority of deaths concentrated in older age groups. Overall, 
the data highlight how mortality between 2000 and 2010 was heavily age-dependent, with nearly 
60% of deaths occurring among those older than 75. At the same time, the figures point to racial 
disparities, particularly in the middle-aged groups, where Black mortality was disproportionately 
higher compared with other race-ethnicity groups. 

For Period 2 (2011-2021), the dataset recorded a total of 258,345 deaths across all age groups 
and race-ethnicity categories, reflecting population growth, demographic aging, and changes in 
mortality patterns compared to the previous decade (Table 4). Deaths occurring in 2020–2021 
include those recorded in the CDPH Vital Statistics mortality files, which reflect all registered 
deaths by underlying cause as coded on death certificates. COVID-19 specific deaths were not 
separately identified or excluded in this analysis because COVID-19 cause-of-death information 
was not available in a consistent, finalized form across all demographic and geographic strata at 
the time of data preparation, and was not harmonized with earlier study years. As a result, 
mortality during 2020–2021 was treated consistently with prior years as all-cause mortality. This 
approach is consistent with the study’s focus on long-term, population-level PM2.5 impacts rather 
than short-term mortality shocks. While the COVID-19 pandemic likely contributed to elevated 
mortality in the later years of Period 2, particularly among older adults and vulnerable 
populations, this effect is not expected to materially bias relative PM2.5-related life expectancy 
estimates, which are driven primarily by long-term exposure contrasts rather than year-specific 
causes of death. Results for Period 2 should therefore be interpreted as reflecting overall 
mortality patterns during 2011–2021, inclusive of the pandemic period. 

Deaths remained heavily concentrated in older age groups, but notable shifts occurred in the 
youngest and middle-aged categories. For instance, the 0-11 age group saw 2,613 deaths, more 
than triple the number observed in Period 1 (769 deaths), highlighting either data reporting 
differences, population growth, or other epidemiologic factors affecting child mortality. Young 
adults (ages 12-25) accounted for 3,420 deaths, while middle-aged adults aged 26-55 contributed 
29,702 deaths (ages 26-35: 5,151; 36-45: 7,562; 46-55: 16,989). The majority of deaths 
continued to occur among older adults: ages 56-65 totaled 33,998, 66-74 had 41,097, 75-80 had 
32,528, 81-86 had 40,505, and 87 and over had 74,482 deaths. Overall, more than two-thirds of 
deaths occurred among adults aged 66 and older, consistent with the expected age gradient in 
mortality. 

By race and ethnicity, Whites remained the largest group with 157,069 deaths (61%), 
followed by Hispanics with 50,439 deaths (20%), Asian populations with 24,866 deaths (10%), 
Blacks with 19,631 deaths (8%), and Other populations with 6,340 deaths (2%). Compared to 
Period 1, the share of deaths among minority populations increased, particularly for Hispanics 
and Asians, reflecting demographic growth and changing age structures within these groups. The 
age-specific racial patterns also shifted: while White deaths remained concentrated among the 
oldest age groups, Hispanics and Asians experienced substantial increases in both middle-aged 
and older categories. Black mortality remained disproportionately elevated in middle-aged 
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groups (36-65), though total counts increased only modestly compared with other groups. These 
patterns illustrate not only the continuing predominance of age as a determinant of mortality but 
also the evolving race-ethnicity composition of California’s population, which has implications 
for public health planning and interventions aimed at reducing disparities. 

For Table 4, deaths count differs between Period 1 and Period 2 in part because the 
underlying population size and demographic composition of California changed substantially 
over time. However, year-by-year population counts by age and race/ethnicity were not 
consistently available for the full study period, particularly at the level of detail required for this 
analysis. As a result, population growth and demographic shifts could not be displayed alongside 
annual death counts in Table 4. Instead, baseline population distributions were applied separately 
within each period to support internally consistent life expectancy calculations. Consequently, 
increases in the number of deaths among Asians and Hispanics between periods should be 
interpreted as reflecting a combination of population growth, aging, and changes in mortality 
patterns, rather than increases in per-capita mortality risk. 

Table 4. Annual average death statistics across California for the two study periods 
Period Age Group White Black Asian Hispanics Otherξ Total 

2000-2010 

0-11 221 83 55 373 36 769 
12-25 1,217 495 206 1,608 152 3,678 
26-35 1,520 556 224 1,507 153 3,960 
36-45 4,053 1,028 431 2,294 290 8,095 
46-55 9,751 2,147 974 3,580 554 17,006 
56-65 15,613 2,682 1,521 4,157 747 24,720 
66-74 21,025 2,831 2,117 4,813 863 31,649 
75-80 23,589 2,165 2,219 4,200 714 32,887 
81-86 31,742 2,135 2,676 4,219 673 41,445 
87 & Over 44,426 2,454 3,299 4,652 754 55,585 
Total 153,157 16,576 13,721 31,404 4,937 219,795 

2011-2021 

0-11 588 288 216 1,268 254 2,613 
12-25 998 405 219 1,577 221 3,420 
26-35 1,893 610 352 2,018 278 5,151 
36-45 2,913 866 625 2,797 360 7,562 
46-55 7,897 1,933 1,382 5,119 658 16,989 
56-65 18,382 3,812 2,776 7,882 1,146 33,998 
66-74 24,673 3,730 3,696 7,845 1,153 41,097 
75-80 20,405 2,417 3,277 5,707 722 32,528 
81-86 26,561 2,375 4,366 6,508 695 40,505 
87 & Over 52,759 3,195 7,957 9,718 853 74,482 
Total 157,069 19,631 24,866 50,439 6,340 258,345 
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ξ The “Other” category grouped together non-Hispanic American Indian/Alaska Native, non-Hispanic 
Hawaiian/Pacific Islander, non-Hispanic Other, those reporting multiple races, and those with missing or unknown 
race. 

Residential address histories were a particularly valuable component of the data, which 
enabled us to geocode each individual’s location at high spatial resolution. The research team 
then linked these geocoded addresses to the daily 100 m PM2.5 surfaces produced in Task 2. For 
each decedent, the research team assigned the one-year rolling average PM2.5 exposure leading 
up to the date of death. For matched controls, the research team assigned exposures for the same 
span of time, thereby allowing for precise contrasts between those who died and those who 
survived. To structure the analysis across generations, the research team divided the population 
into two periods: the years 2000-2010 defined the first generation, while 2011-2021 defined the 
second generation. This division allowed us to examine how declining PM2.5 concentrations 
influenced life expectancy across time and to assess whether improvements were equitably 
distributed.  

Task 4. Calculate PM2.5-Specific Reductions in Life Expectancy 
Across Two Time Periods and Identify Race-Ethnicity Disparities 

The analytic foundation of Task 4 involved estimating the causal effect of PM2.5 on mortality 
and life expectancy across two distinct time periods and two generations of the California 
population, and then examining disparities by race, ethnicity, and vulnerability. To estimate the 
mortality and life-expectancy impacts attributable to long-term PM2.5 exposure, the research 
team first quantified age-specific associations between PM2.5 and all-cause mortality using 
conditional logistic regression models. Models were fit separately within predefined age strata 
and time periods, with long-term PM2.5 exposure defined as the one-year rolling average 
preceding the date of death. These age-specific effect estimates represent the relative change in 
mortality risk associated with incremental changes in PM2.5 exposure and form the basis for all 
subsequent counterfactual and life-expectancy calculations. Life expectancy was calculated 
under two scenarios: an observed (all-cause) scenario reflecting existing PM2.5 exposure levels, 
and a counterfactual scenario in which PM2.5 exposure was hypothetically removed. For each age 
group, the estimated PM2.5–mortality association was used to adjust age-specific mortality 
hazards under the counterfactual scenario. Life tables were then constructed using standard 
demographic techniques to generate age-specific survival probabilities and expected remaining 
life years under both scenarios. The PM2.5-attributable life-expectancy impact was defined as the 
difference between life expectancy under observed conditions and life expectancy under the 
PM2.5-removed counterfactual. The proportion of deaths attributable to PM2.5 exposure was 
quantified using a population attributable fraction (PAF) framework. For each age group and 
stratum, the PAF represents the fraction of deaths that would not have occurred under the 
counterfactual scenario of no PM2.5 exposure, given the estimated exposure-response 
relationship. Because PM2.5 exposure was modeled as a continuous variable rather than 
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dichotomized, the PAF implicitly reflects the full exposure distribution rather than a binary 
exposed versus unexposed comparison. In this framework, all individuals are considered exposed 
to some degree, and the PAF captures the proportional reduction in mortality that would result 
from reducing exposure to the counterfactual level.  

To summarize impacts across age groups, the research team implemented both population-
weighted and death-weighted aggregation approaches. Population-weighted impacts were 
calculated by weighting age-specific life-expectancy changes by the size of the corresponding 
population, reflecting the average per-person impact across the full population. Death-weighted 
impacts were calculated by weighting age-specific life-expectancy changes by the number of 
deaths occurring in each age group, thereby emphasizing the contribution of age groups that 
account for the largest share of mortality. These two metrics capture complementary aspects of 
PM2.5 burden and allow assessment of whether impacts are concentrated among younger, middle-
aged, or older populations. 

Policy benefits were defined as the change in PM2.5-attributable life-expectancy impact 
between Period 1 and Period 2, with a focus on death-weighted estimates. This difference 
quantifies the reduction in mortality burden attributable to lower PM2.5 exposure and changing 
exposure-response dynamics over time. Positive policy benefits indicate that regulatory actions 
and associated emission reductions translated into meaningful decreases in PM2.5-related life-
expectancy loss. Importantly, this metric does not attribute benefits to any single regulation but 
instead reflects the cumulative effect of regulatory, technological, and behavioral changes that 
occurred between the two periods.  

For race-ethnicity and age-specific analyses, the same modeling and counterfactual 
framework was applied within each subgroup. Age-specific PM2.5 effect estimates were 
combined with subgroup-specific population and mortality distributions to compute both 
population-weighted and death-weighted life-expectancy impacts. These stratified estimates were 
subsequently used to evaluate heterogeneity in vulnerability and to assess how the distribution of 
PM2.5 impacts shifted across demographic groups and time periods. 

The analysis was divided into two major periods: 2000-2010 (Period 1) and 2011-2021 
(Period 2). By splitting the data in this way, the research team were able to test directly how 
declines in PM2.5 concentrations over time translated into reductions in mortality risk and gains 
in life expectancy. Within each period, logistic regression models were run under three primary 
stratification schemes to balance epidemiologic detail with statistical stability. First, models were 
estimated using all twenty original age groups without race-ethnicity stratification. Second, 
models were estimated after aggregating the twenty age groups into ten broader age groups 
(Aggr2) with race-ethnicity stratification applied. This aggregation combined every two adjacent 
age groups and was used to increase sample size within each race-ethnicity stratum while 
retaining meaningful age differentiation. Third, models were estimated using five aggregated age 
groups (Aggr4), formed by combining every four adjacent age groups, and with race-ethnicity 
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stratification. This further aggregation was implemented to ensure sufficient numbers of deaths 
and matched controls within smaller race-ethnicity groups and older age strata, where sparse data 
could otherwise lead to unstable estimates. The abbreviations “Aggr2” and “Aggr4” are used 
consistently to denote the ten-age-group and five-age-group aggregation schemes, respectively, 
hereafter. 

The research team conducted both the five-group and ten-group age analyses to balance 
statistical stability with the ability to detect meaningful differences within age ranges. The five 
age-group approach reduces small-sample problems, especially for smaller race-ethnicity 
populations, by aggregating individuals into broader categories, ensuring reliable estimates. 
However, these broader groups can mask important variations that occur within the same age 
bracket. The ten age-group analysis allows us to uncover those within-group differences, 
although this finer stratification can introduce small-sample limitations for some populations. 
These concerns are minimal for Hispanic and White populations, which have sufficiently large 
sample sizes to support the ten-group structure. Using both approaches lets us verify whether 
patterns are consistent across grouping strategies and provides greater confidence that our 
findings are robust and not driven by grouping artifacts. Together, these complementary 
approaches provided both granularity and robustness, allowing us to see how different ways of 
grouping ages and populations influenced the estimated mortality effects of PM2.5. 

The original twenty age groups were defined as 0-5, 6-11, 12-17, 18-25, 26-30, 31-35, 36-40, 
41-45, 46-50, 51-55, 56-60, 61-65, 66-70, 71-74, 75-77, 78-80, 81-83, 84-86, 87-89, 90-95, and 
96 years and over (similar to the American Community Survey categories: 
https://www.census.gov/programs-surveys/acs.html). These fine-grained strata allowed us to 
observe age-specific patterns of susceptibility with high resolution. The Aggr2 grouping reduced 
these categories into ten broader ranges—0-11, 12-25, 26-35, 36-45, 46-55, 56-65, 66-74, 75-80, 
81-86, and 87 years and over—while the Aggr4 grouping condensed them further into five 
ranges: 0-25, 26-45, 46-65, 66-80, and 81 years and over. Each set of groupings was carefully 
tested to balance statistical power with interpretability.  

Study Design 

Identification of impact of PM2.5 exposure on mortality 

The process of preparing the data for logistic regression was highly detailed and required careful 
handling of age, race-ethnicity, and other covariates. Each death was matched with a maximum 
of 2 controls based on birth year and month, race-ethnicity and sex. Allowing 0–2 matched 
controls per death maximized use of the available mortality data while maintaining strict 
matching criteria and avoiding forced or inappropriate matches. The raw mortality and matched 
control data sets were compiled across the years within each period. For Period 1, death data 
spanned 2000-2010, while control data extended slightly further to 2012 to allow proper 
matching. Mortality records beyond 2010 were used only to identify control individuals who 
were alive at the time of Period 1 case death and therefore eligible to serve as controls. For all 
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controls matched to Period 1 deaths, PM2.5 exposure was defined using the same one-year rolling 
average prior to the matched case death date, and no exposure information beyond 2010 for 
controls was used in the Period 1 analysis. These annual files were consolidated into master 
analytic data tables that included both case and control individuals, their assigned one-year 
average PM2.5 exposures, and demographic covariates. Each individual was then assigned to the 
appropriate age group according to the grouping scheme being used. This matched case–control 
design inherently accounts for secular trends in all-cause mortality over time. By selecting 
controls who were alive at the time of each death and matched on birth year and month, sex, and 
race-ethnicity, cases and controls were drawn from the same underlying population and mortality 
risk context within each period. As a result, long-term improvements in healthcare, prevention, 
and baseline mortality risk operate similarly on cases and controls and do not confound the 
estimated PM2.5 effects. Calendar year indicators were not included because the analysis did not 
estimate year-specific models; instead, observations were pooled within each period, and PM2.5 
exposure was defined as a rolling 365-day average prior to death, making explicit year effects 
neither identifiable nor necessary under this modeling framework. 

Race and ethnicity were reclassified into the following categories: non-Hispanic White, non-
Hispanic Black, non-Hispanic Asian, Hispanic, and Other. This recoding ensured adequate 
sample sizes for robust estimation while preserving the major race-ethnicity contrasts central to 
the analysis. Marital status and education were also cleaned and reclassified, with missing 
education values imputed to the lowest category (assumed less than high school diploma) and 
missing marital status values assigned to “Unknown.” In the CDPH mortality data, missing 
education values primarily occur for individuals with less than a high school diploma, a pattern 
that reflects known limitations in death certificate reporting rather than random missingness. 
Education is recorded categorically, and missingness is concentrated among individuals with 
very low educational attainment. Assigning missing education to the lowest category (less than 
high school) is therefore a conservative and commonly used approach that avoids overstating 
socioeconomic advantage. For marital status, missing values occur predominantly among 
decedents under age 18, for whom marital status is typically not reported on death certificates. 
Because marital status is not meaningfully defined for these individuals, missing values were not 
imputed to a specific category but instead coded as “Unknown,” allowing these records to be 
retained in the analysis without introducing misclassification. Both education and marital status 
were included only as adjustment covariates and were not primary variables of interest. The 
matched case-control design, with matching on age, sex, and race-ethnicity, limits sensitivity of 
the PM2.5 effect estimates to assumptions about these variables. Given the small proportion of 
missing values and their role as control variables, this handling of missing education and marital 
status is unlikely to materially affect the estimated PM2.5-related mortality risks or life-
expectancy impacts. 

Before fitting the logistic regression models, the research team applied filters to reduce exposure 
misclassification. Specifically, individuals with less than one year of residence in their county 
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were excluded, on the grounds that their assigned exposures may not have accurately reflected 
their true environmental context. This step reduced the analytic sample size slightly but 
significantly improved exposure validity. 

The core modeling step involved fitting logistic regressions within each age group and race-
ethnicity stratum. The dependent variable was mortality status (death vs. survival), and the 
independent variable of interest was PM2.5 exposure, expressed as the one-year rolling average in 
micrograms per cubic meter. We selected a one-year rolling average PM2.5 exposure because the 
analysis is based on individual deaths with precisely dated events and daily exposure surfaces, 
rather than cohort-based long-term averages. Many chronic exposure studies rely on multi-year 
averages because exposure data are only available as long-term spatial surfaces and because 
outcomes are assessed at fixed follow-up intervals rather than at the time of death. In contrast, 
our study links each death to a continuous daily PM2.5 time series and assigns exposure as the 
average over the 365 days preceding death, which captures cumulative exposure immediately 
relevant to mortality risk while preserving temporal alignment between exposure and outcome. 
Using a one-year rolling window also avoids introducing exposure misclassification that would 
arise from averaging over years well before the death event, particularly during a period of rapid 
air quality improvement in California. The one-year window therefore represents a pragmatic 
and epidemiologically appropriate definition of long-term exposure for a mortality-based, case-
control design with daily exposure data. 

Covariates included sex, age, education, race-ethnicity, and marital status, with the exact set of 
included variables adjusted according to the availability of variation within each stratum. We 
conducted conditional logistic regression to account for the matched case-control design. Deaths 
were matched to up to two controls based on birth year and month, sex, and race-ethnicity. 
Although age, sex, and race-ethnicity defined the matching criteria, these variables were also 
included as covariates in selected models. This was done because matching was not exact for all 
cases (i.e., some cases had zero, one, or two matched controls), and inclusion of these variables 
as covariates helps control for residual confounding arising from incomplete or unbalanced 
matching while preserving adjustment across all observations. When models were stratified by 
race-ethnicity or age group, race-ethnicity was not included as a covariate due to lack of 
variation within strata, while age was still included as a continuous covariate to account for 
residual age differences within the same age-group category. This approach ensures that the 
primary association between PM2.5 exposure and mortality is estimated within matched strata 
while maintaining appropriate adjustment for key demographic factors across the full analytic 
sample. In some instances, for example, marital status was dropped from models of younger age 
groups where all individuals were coded as “never married.” Coefficients, confidence intervals, 
and significance values for PM2.5 were extracted from each model, and results were organized by 
age group and race-ethnicity. This modeling framework was implemented in both Period 1 and 
Period 2, yielding two full sets of coefficients across all stratification schemes. Furthermore, the 
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research team merged the two periods of data into a consolidated dataset to identify the overall 
impact of PM2.5 on mortality across major age groups. 

Identification of PM2.5 exposure impact on life expectancy 

Building on the logistic regression models described above, the second major stage of Task 4 
involved the calculation of life expectancy by race, ethnicity, and age group, and the 
quantification of gains achieved between Period 1 and Period 2. This work required the 
integration of population counts, death distributions, and PM2.5 effect coefficients into formal life 
table methods. The research team implemented this process separately for three stratification 
schemes in a way corresponding to their logistics modeling framework: (1) models with all 
twenty detailed age groups without race-ethnicity stratification; (2) models with ten aggregated 
age groups (Aggr2) across major race-ethnicity categories; and (3) models with five aggregated 
age groups (Aggr4) across major race-ethnicity categories. This parallel structure ensured that 
the life expectancy estimates were robust and comparable under different levels of aggregation. 

Population counts by age group and race-ethnicity were drawn from the Business Analysts 
data acquired by the research team, adjusted to reflect annual populations by dividing decadal 
totals into annualized estimates. These population files were restructured so that the age 
categories matched the aggregation scheme being used. For example, in the Aggr2 framework, 
the raw Business Analyst categories (such as 0-5 and 6-11) were collapsed into a single 0-11 
group. Parallel collapsing was applied to death distributions, which were estimated from the 
mortality data provided by CDPH and expressed as annualized death counts by age group and 
race-ethnicity. After reclassification, deaths were joined with population data, yielding a 
mortality profile that aligned with the exposure-effect coefficients derived from logistic 
regression. 

The next step was to incorporate the estimated PM2.5 coefficients. For each age and race-
ethnicity group, the research team extracted the beta coefficient for PM2.5 from the logistic 
regression models. These coefficients quantified the log-odds increase in mortality per unit PM2.5 
exposure. Because not all age-by-race strata had stable coefficient estimates, particularly in 
smaller population groups, the research team implemented an interpolation procedure. Missing 
or unstable beta values were replaced with interpolated values derived from the nearest available 
age groups within the same race category. A beta coefficient was classified as unstable if the 
conditional logistic regression failed to converge, produced an infinite or undefined estimate, or 
yielded a standard error larger than the absolute value of the coefficient itself, indicating 
insufficient information for reliable estimation. In some strata, no coefficient was estimated at all 
due to the absence of informative matched case-control sets or complete separation. For strata 
with missing or unstable coefficients, replacement values were derived from the closest valid 
neighbors, defined as the immediately adjacent age groups within the same race-ethnicity 
category for which the model converged and produced finite coefficients and standard errors. 
When both adjacent age groups were available, the replacement value was calculated as the 
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average of those coefficients. When only one adjacent valid age group existed, its coefficient was 
carried forward or backward as appropriate. This procedure primarily affected the youngest age 
groups and effectively assigned coefficients from slightly older age groups when direct 
estimation was not possible, while preserving within-race smoothness across age. 

Once the data set contained complete age-specific population counts, deaths, and PM2.5 effect 
coefficients, the research team proceeded to the life expectancy calculations. For each race and 
ethnicity, the research team began by calculating baseline mortality rates within each age group 
as the ratio of deaths to population. These mortality rates were then converted into probabilities 
of death within the age interval, accounting for the width of each age group (denoted Nᵢ). The 
hazard ratio for PM2.5 exposure was calculated as the exponential of the beta coefficient, and 
from this the research team derived the population attributable fraction (PAF),  which represents 
the proportion of deaths within each age group attributable to PM2.5 exposure. The counterfactual 
probability of death with PM2.5 removed was then calculated by dividing the observed hazard by 
the hazard ratio, ensuring that the adjusted probability reflected the absence of pollution-related 
risk. These calculations were conducted separately for Period 1 and Period, and the research 
team merged the two periods of data into a consolidated dataset to identify the overall impact of 
PM2.5 on life expectancy across major age groups. The research team calculated life expectancy 
impacts attributable to PM2.5 by combining mortality, population, and exposure-response 
estimates (𝛽𝛽1) derived from logistic regression results. The approach translates individual-level 
PM2.5 exposure effects into life expectancy impacts. Let 𝐷𝐷𝑖𝑖and 𝑁𝑁𝑖𝑖denote deaths and population in 
age interval 𝑖𝑖, and let 𝛽𝛽1be the exposure-response coefficient (log hazard ratio) for PM2.5. The 
observed mortality rate in age interval 𝑖𝑖 is: 

𝑀𝑀𝑖𝑖 =
𝐷𝐷𝑖𝑖

Population𝑖𝑖
 

The baseline probability of death in the interval is: 

𝑞𝑞𝑖𝑖 = 1 − exp (−𝑀𝑀𝑖𝑖 ⋅ 𝑛𝑛𝑖𝑖) 

where 𝑛𝑛𝑖𝑖is the width of the age interval (number of years). The relative risk associated with 
PM2.5 is computed on the hazard scale: 

𝑅𝑅𝑅𝑅𝑖𝑖 = exp (𝛽𝛽1) 

𝛽𝛽1is estimated as a log hazard ratio (HR) in the life table context. In our analysis, 𝛽𝛽1had been 
derived from a logistic regression, exponentiating it would yield an odds ratio (OR), which 
approximates the HR because outcome death is rare compared to population size. Because the 
ORs/HRs in our study are small, this approximation is reasonable. From this, the PAF in age 
interval 𝑖𝑖is: 

PAF𝑖𝑖 =
𝑅𝑅𝑅𝑅𝑖𝑖 − 1
𝑅𝑅𝑅𝑅𝑖𝑖
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The PM2.5-attributable probability of death is: 

𝑞𝑞PM,𝑖𝑖 = 𝑞𝑞𝑖𝑖 ⋅ PAF𝑖𝑖 

The counterfactual probability of death if PM2.5 were removed is estimated using the hazard-
scale adjustment: 

𝑞𝑞𝑖𝑖′ = 1 − exp �−
𝑀𝑀𝑖𝑖

𝑅𝑅𝑅𝑅𝑖𝑖
⋅ 𝑛𝑛𝑖𝑖� 

This ensures that the removal of PM2.5 is modeled consistently on the hazard scale rather than 
simply adjusting probabilities linearly. In life table construction, let 𝑙𝑙𝑥𝑥denote the number of 
survivors at the beginning of each age interval: 

𝑙𝑙0 = 𝐿𝐿0, 𝑙𝑙𝑥𝑥+1 = 𝑙𝑙𝑥𝑥 ⋅ (1 − 𝑞𝑞𝑥𝑥) 

The counterfactual survival with PM2.5 removed is: 

𝑙𝑙𝑥𝑥′ = 𝑙𝑙𝑥𝑥 ⋅ (1 − 𝑞𝑞𝑥𝑥′ ) 

The person-years lived in the interval: 

𝐿𝐿𝑥𝑥 =
𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑥𝑥+1

2
⋅ 𝑛𝑛𝑖𝑖, 𝐿𝐿𝑥𝑥′ =

𝑙𝑙𝑥𝑥′ + 𝑙𝑙𝑥𝑥+1′

2
⋅ 𝑛𝑛𝑖𝑖 

Cumulative person-years above age 𝑥𝑥 (total years remaining): 

𝑇𝑇𝑥𝑥 = � 𝐿𝐿𝑗𝑗

max age

𝑗𝑗=𝑥𝑥

,𝑇𝑇𝑥𝑥′ = � 𝐿𝐿𝑗𝑗′
max age

𝑗𝑗=𝑥𝑥

 

Life expectancy at age 𝑥𝑥: 

𝑒𝑒𝑥𝑥 =
𝑇𝑇𝑥𝑥
𝑙𝑙𝑥𝑥

, 𝑒𝑒𝑥𝑥′ =
𝑇𝑇𝑥𝑥′

𝑙𝑙𝑥𝑥′
 

 

The impact of PM2.5 removal on life expectancy: 

Δ𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑥𝑥′ − 𝑒𝑒𝑥𝑥 

The research team constructed life tables using both the observed and the counterfactual death 
probabilities. For each race-ethnicity and age group, the research team calculated the number of 
survivors entering the interval (lₓ), the number surviving with PM2.5 removed (lₓ′), and the 
person-years lived within each age interval (Lₓ and Lₓ′). The cumulative total person-years lived 
above each age (Tₓ and Tₓ′) was then computed, and life expectancy at each age (eₓ and eₓ′) was 
obtained by dividing Tₓ or Tₓ′ by the number of survivors at the beginning of the interval. The 
difference between the observed and counterfactual life expectancies yielded the life years lost 
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due to PM2.5 exposure. To ground the estimates in reality, the research team anchored the life 
tables to known baseline life expectancy at birth for each race-ethnicity group, based on period-
specific state and national statistics. For Period 1, these values were 83.0 years for Asians, 80.5 
years for Hispanics, 77.8 years for non-Hispanic Whites, 72.1 years for non-Hispanic Blacks, 
and 78.2 years for Other groups (https://www.ppic.org/wp-
content/uploads/content/pubs/cacounts/CC_504HJCC.pdf). For Period 2, these values were 86.3 
years for Asians, 83.2 years for Hispanics, 79.8 years for non-Hispanic Whites, 75.1 years for 
non-Hispanic Blacks, and 80.2 years for Other groups (https://www.chcf.org/wp-
content/uploads/2019/10/DisparitiesAlmanacRaceEthnicity2019.pdf). By aligning the modeled 
estimates with these known values, the research team corrected for discrepancies introduced by 
limited sample sizes or interpolation errors. 

An additional hazard-scale adjustment method was used to ensure that the attributable 
fractions and counterfactual probabilities of death were consistent with the underlying log-linear 
structure of the models. This method prevented the emergence of biologically implausible 
results, such as negative life years gained, and scaled impacts appropriately when mismatches 
occurred between expected and observed directions of effect. In cases where the raw calculations 
produced impacts exceeding plausible bounds, the results were scaled relative to the maximum 
observed within-group effect, ensuring comparability across race and age groups. 

Aggregate life-expectancy impact 

The research team estimated the overall impact of PM2.5 on life expectancy across all age 
groups using aggregate weighting approaches using population-weighted and death-weighted 
estimates. Population-weighted estimates reflect the age distribution of the population, while 
death-weighted estimates reflect the distribution of deaths across age groups.  

The population-weighted PM2.5 impact on life expectancy was estimated by combining the 
modeled age-specific life-expectancy impacts with the corresponding age-specific population 
distribution. For each age group, the research team multiplied the estimated PM2.5-attributable 
life-expectancy impact by the number of individuals in that age group. These weighted 
contributions were then summed across all age groups and divided by the total population 
represented in the dataset. This approach ensures that age groups comprising larger portions of 
the population have greater influence on the overall estimate and produces a single population-
weighted metric that reflects the demographic structure of the population. 

The death-weighted PM2.5 impact on life expectancy was estimated by weighting the 
modeled age-specific life-expectancy impacts using the observed number of deaths in each age 
group. For each age group, the research team multiplied the estimated PM2.5-attributable life-
expectancy impact by the number of deaths occurring in that group. These values were summed 
across all age groups and divided by the total number of deaths in the dataset to obtain a single 
death-weighted estimate. This method places greater emphasis on age groups with higher 
mortality, recognizing that life-expectancy impacts are driven primarily by the groups in which 



52 
 

deaths occur. As a result, the death-weighted metric reflects the distribution of actual mortality 
burden across age groups. 

In this project, the research team focus on the death-weighted PM2.5 impact because our 
modeling is designed to capture the effects of PM2.5 on mortality. The research team also use the 
population-weighted PM2.5 impact, alongside the death-weighted PM2.5 impact, to determine 
whether PM2.5 life-expectancy impact fall disproportionately on younger populations or on older 
age groups. 

When the population-weighted impact is relatively high but the death-weighted impact is 
relatively low, it indicates that younger or middle-aged groups, who make up most of the 
population, experience moderate-to-high per-person PM2.5 impacts, while the elderly experience 
smaller per-person impacts and therefore contribute less to the death-weighted average. When 
the population-weighted impact is relatively low but the death-weighted impact is relatively 
high, the pattern is reversed: the numerically dominant younger or middle-aged groups have 
relatively low per-person PM2.5 impacts, while elderly groups have moderate-to-high per-person 
impacts, causing deaths to carry most of the overall burden. 

When both population-weighted and death-weighted impacts are high, all major age groups, 
including young, middle-aged, and elderly, exhibit moderate-to-high per-person PM2.5 impacts, 
producing large totals regardless of whether the impacts are weighted by population or by deaths. 
When both population-weighted and death-weighted impacts are low, per-person PM2.5 impacts 
are uniformly small across all age groups, resulting in low overall values under either weighting 
approach. 

Study Results 

Integrated analysis for 20 age groups across the entire study period (2000-2021) 

To improve model stability and interpretability for younger populations, the research team 
aggregated the four youngest age groups (0-5, 6-11, 12-17, and 18-25) into a single 0-25 age 
category. This decision was motivated by the relatively low mortality counts and similar 
exposure-response patterns across these age bands, which could otherwise lead to unstable 
estimates and wide confidence intervals when modeled separately. The resulting 0-25 group thus 
provides a more reliable and interpretable estimate of PM2.5-related mortality effects in early life 
stages, while maintaining consistency across the full age spectrum. 

The conditional logistic regression results (Figure 2) revealed a clear age-dependent pattern 
in the association between PM2.5 exposure and mortality risk. The estimated PM2.5 coefficients 
were positive and statistically significant across all age groups for the integrated study period, 
indicating that higher PM2.5 exposure consistently increased mortality risk throughout the 
lifespan. The effect generally increased from younger to middle-aged groups, peaking between 
ages 66-70 and again around 84-86, followed by a gradual decline among the oldest populations 
(90 years and above). This pattern suggests that sensitivity to PM2.5 rises steadily through 
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adulthood and early older age, possibly reflecting the accumulation of chronic disease burden 
and diminished physiological resilience, before declining at extreme ages where competing 
mortality risks or survivor bias may attenuate the observed associations. 

The subsequent analysis of PM2.5 impacts on life expectancy across age groups revealed a 
similar and distinct age-dependent pattern, with the magnitude of life expectancy gains from 
PM2.5 removal varying systematically by age (Figure 3). The positive life expectancy impact of 
PM2.5 removal was observed across all age groups, indicating that reducing air pollution 
consistently extended expected lifespan throughout the population. Among younger age groups 
(0-25 years), the effect was modest, with an estimated improvement of about 0.16 years, 
reflecting the lower baseline mortality risk and shorter immediate exposure windows typical of 
early life. The impact then increased gradually through adulthood, peaking during the mid- to 
late-older age groups (ages 84-86) with an average improvement of 0.95 years, suggesting that 
chronic exposure over the lifespan culminates in greater health benefits from pollution reduction 
later in life. Beyond this peak, the effect began to decline slightly in the very oldest age groups 
(90 years and above), where the estimated gains ranged between 0.46 and 0.68 years. 

For the aggregated impact, when using a population-weighted approach, long-term PM2.5 
exposure was associated with an average loss of 0.35 years. Using a death-weighted approach, 
the estimated loss increased to 0.61 years. The 0.61 years indicate a moderate life expectancy 
loss from air pollution PM2.5. The population-weighted impact is relatively low but the death-
weighted impact is relatively high, and this clearly indicates that the numerically dominant 
younger or middle-aged groups have relatively low PM2.5 impacts, while elderly groups have 
moderate-to-high per-person impacts, causing deaths to carry most of the overall burden. 

In summary, this pattern underscores how cumulative exposure and age-related vulnerability 
shape the life expectancy benefits of cleaner air. The steady increase in PM2.5-related life 
expectancy gains from young adulthood to late old age likely reflects both longer exposure 
histories and the compounding effects of pollution on chronic diseases such as cardiovascular 
and respiratory conditions. The slight decline at the extreme ages may be due to survivor bias, 
where only the healthiest individuals reach those ages and the limited room for further life 
expectancy extension in very old populations. Further, increased exposure misclassification 
might occur among older adults who spend more time indoors. Despite this, exposure studies79 
have documented strong positive correlations between ambient and indoor PM2.5 concentrations, 
indicating that outdoor PM2.5 is a dominant contributor to personal exposure (e.g., Pearson r ≥ 
0.90 in community residential settings and correlation approaches 1.0 in urban areas under 
typical conditions) and supports the use of ambient concentrations as a surrogate in long-term 
mortality modeling. 
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Figure 2. The impact of PM2.5 on mortality across the major age groups for the entire study 
period (2000-2021). 
 

Notes: The y-axis displays regression coefficients (β1) from age-specific mortality models, expressed per 
interquartile range (IQR) increase in PM2.5. These coefficients quantify log-scale mortality risk effects and may be 
exponentiated to obtain odds ratios. Coefficients are shown to maintain consistency with subsequent life-table and 
population impact calculations.  
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Figure 3. The impact of PM2.5 on life expectancy across the major age groups for the entire study 
period (2000-2021). 
Notes: The y-axis shows cumulative period life expectancy from birth up to each age-group entry, as derived from 
life-table calculations. It is not the expected remaining years of life conditional on survival to that age. For example, 
the 90–95 age group has a y-axis value of ~40 because this represents the cumulative life expectancy measure at the 
entry to that age interval, not the remaining years a 90-year-old individual is expected to live. Bars labeled “PM2.5 
Eliminated” represent counterfactual life expectancy under a scenario in which PM2.5-attributable mortality risk is 
removed. The difference between observed and PM2.5-eliminated bars indicates the estimated life expectancy loss 
attributable to PM2.5. 

Period-specific impact for twenty age groups without race-ethnicity stratification 

The logistic regression modeling results for Period 1 (2000-2010) (Figure 4, top) demonstrate 
that PM2.5 exposure is consistently and significantly associated with increased mortality risk 
across age groups, with effects strengthening as age advances. Among younger adults (18-35), 
coefficients ranged from 0.056 to 0.064, corresponding to odds ratios of about 1.06-1.07 per 
inter-quartile range (IQR) increase in PM2.5 exposure, while middle-aged adults (36-55) showed 
stronger effects, particularly at ages 41-45 (OR ≈ 1.11) and 46-50 (OR ≈ 1.09). Early seniors (61-
74) exhibited even higher risks, with odds ratios between 1.10 and 1.12, and the effect peaked in 
the mid-80s, where coefficients reached 0.182 (OR ≈ 1.20), indicating nearly 20 percent higher 
mortality odds per unit increase in PM2.5. At the very oldest ages (96 and over), the effect 
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declined slightly to an OR of about 1.12, likely reflecting survivor bias or smaller sample sizes. 
All confidence intervals were narrow and excluded zero, and p-values were < 0.001 effectively, 
providing strong evidence that PM2.5 exposure is a robust predictor of mortality. Overall, the 
results reveal a clear age-related gradient of vulnerability, with the elderly facing the greatest 
risks, underscoring the critical public health importance of mitigating air pollution exposure in 
California. 

The logistic regression results for Period 2 (2011-2021) (Figure 4, bottom) show that PM2.5 
exposure remained a significant predictor of mortality across most age groups, though the 
magnitude of effects was generally lower and more variable compared to the earlier decade. In 
younger adults, associations were modest but significant, with coefficients ranging from 0.035 to 
0.082 (OR ≈ 1.04-1.09), peaking in the 26-30 age group. Among middle-aged adults, effects 
weakened considerably, with coefficients around 0.012-0.030 (OR ≈ 1.01-1.03), indicating much 
smaller impacts than observed in Period 1. For seniors, the associations reemerged, with ages 66-
70 showing one of the strongest effects (coef. ≈ 0.067, OR ≈ 1.07), while later elderly groups 
exhibited modest but statistically significant risks, such as 81-86 with coefficients of 0.025-0.027 
(OR ≈ 1.03) and 87-89 at 0.043 (OR ≈ 1.04). At the oldest ages (96+), the coefficient remained 
significant at 0.039 (OR ≈ 1.04). All estimates had narrow confidence intervals and very small p-
values, confirming robust significance despite attenuated magnitudes compared to 2000-2010. 
Taken together, the results suggest that while PM2.5 exposure continued to adversely impact 
mortality in California, the effect sizes in the more recent decade were smaller and less steeply 
age-graded than in Period 1, possibly reflecting improved air quality, stronger health protections, 
or shifting population dynamics. Notably, the age distribution of deaths shifted in Period 2 
toward relatively younger adults compared with Period 1, increasing the relative contribution of 
younger mortality to the overall PM2.5-mortality relationship. 
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Figure 4. The age group stratified logistic regression modeling results on the overall impact of 
PM2.5 on mortality for Period 1 (top) and Period 2 (bottom). 
Notes: Separate y-axis scales are used to enhance visual resolution; Period 2 coefficients are substantially smaller 
than Period 1. Confidence intervals (95% CI) are proportional to the coefficient range provided; although Period 2 
CIs appear wider relative to the coefficient, the absolute uncertainty is comparable to Period 1. 
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Figure 5. All cause and PM2.5-eliminated life expectancy by age groups for Period 1 (top) and 
Period 2 (bottom).  
Notes: The y-axis shows cumulative period life expectancy from birth up to each age-group entry, as derived from 
life-table calculations. Bars labeled “PM2.5 Eliminated” represent counterfactual life expectancy under a scenario in 
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which PM2.5-attributable mortality risk is removed. The difference between observed and PM2.5-eliminated bars 
indicates the estimated life expectancy loss attributable to PM2.5. 

The life expectancy estimates for Period 1 (2000-2010) (Figure 5 top) show that eliminating 
PM2.5 exposure would have produced consistent gains across all age groups, with the most 
pronounced benefits at older ages. At birth, life expectancy was 78.40 years, which increased to 
78.78 years once PM2.5 was removed, reflecting an overall gain of 0.38 years based on 
population-weighted impact. The corresponding death-weighted impact was 0.61 years, 
indicating a moderate effect for Period 1. The population-weighted impact is relatively low but 
the death-weighted impact is relatively high, indicating that the numerically dominant younger or 
middle-aged groups have relatively low per-person PM2.5 impacts, while elderly groups have 
moderate-to-high per-person impacts, causing deaths to carry most of the overall burden. Across 
childhood and adolescence, the benefit remained modest at about 0.29 years, but by adulthood 
the impacts became more visible. For example, individuals aged 26-30 would have gained 0.34 
years, while those aged 41-45 gained 0.55 years. The largest effects appeared among older 
adults, with the 66-70 group experiencing an improvement of 0.57 years, and the 84-86 group 
gaining nearly one full year of life expectancy (0.95 years). Even at ages 96 and over, PM2.5 
removal was associated with an additional 0.58 years of life. These results highlight how air 
pollution shortened life expectancy at every age, with its heaviest toll among seniors. 

In Period 2 (2011-2021) (Figure 5 bottom), life expectancy rose overall, and the gains from 
removing PM2.5 exposure also remained significant. At birth, life expectancy was 80.80 years, 
increasing to 81.26 years without PM2.5, an overall gain of 0.46 years based on population-
weighted impact. The corresponding death-weighted impact was 0.37 years, a significant 
reduction in effect compared to that in Period 1. Here the overall population-weighted impact is 
slightly higher than the death-weighted impact. It indicates that younger or middle-aged groups, 
who make up most of the population, experience slightly higher per-person PM2.5 impacts, while 
the elderly experience slightly smaller per-person impacts and therefore contribute less to the 
death-weighted average. Children and young adults showed consistent improvements after 
removing PM2.5 impact, with the 26-30 age group experiencing the largest single benefit of 0.95 
years. Middle-aged adults showed smaller impacts than in the previous decade, with increases of 
only 0.14 to 0.35 years, suggesting possible attenuation of pollution effects or stronger resilience. 
Among older adults, however, the benefits reappeared, with the 66-70 group gaining 0.77 years 
and those aged 87-89 and 90-95 gaining about 0.49 and 0.47 years, respectively. The moderate 
values of both death-weighted and population-weighted impact indicate the PM2.5 impact became 
moderate. 

From Period 1 to Period 2, the death-weighted PM2.5 impact decreased substantially, from 
0.61 years to 0.37 years, indicating that improvements in emissions control, cleaner vehicle 
fleets, and strengthened regulatory actions collectively reduced the mortality consequences of 
PM2.5 exposure. This shift, coupled with the observation that population-weighted impacts 
became slightly higher than death-weighted impacts in Period 2, reflects a redistribution of 
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PM2.5-related burden from primarily older adults in the early decade toward somewhat younger 
age groups in the later decade. The pattern suggests that although seniors still experienced 
meaningful life-expectancy improvements when PM2.5 was removed, the relative contribution of 
younger and middle-aged populations to the overall impact became more pronounced in Period 
2. Taking together, these results show that while PM2.5 continued to reduce life expectancy in 
both decades, its magnitude diminished and its age distribution shifted in ways consistent with 
cleaner air and evolving population structures. The increasing proportional impact among 
younger age groups in Period 2 highlights the importance for policymakers and public health 
agencies to pay closer attention to early-life and mid-life exposures, including opportunities for 
prevention and continued air-quality improvements that protect future generations. 

Period-specific impact for five age groups with race-ethnicity stratification 

Mortality risks 
The five-age group stratification for Period 1 (Figure 6, top) provides a summary of how the 

effects of PM2.5 on mortality vary across race and ethnicity. For Non-Hispanic Whites, the 
associations were positive and highly significant at every stage of life, beginning with a modest 
coefficient of 0.03 for ages 0-25 and rising sharply to 0.12 in both the 26-45 and 66-80 ranges. 
The effect was strongest for the oldest adults, with a coefficient of 0.19 for ages 81 and over, 
reflecting nearly a 21 percent increase in the odds of mortality per unit increase in PM2.5. This 
pattern suggests both early susceptibility and steadily mounting vulnerability with age, 
culminating in particularly elevated risks for the elderly. 

Non-Hispanic Blacks showed a very different profile. In younger and midlife groups, the 
associations were negative, with coefficients of -0.078 for ages 0-25 and -0.068 for ages 26-45, 
both highly significant. These counterintuitive findings may reflect unmeasured confounding, 
data limitations, or differences in exposure patterns. Beginning at midlife, however, the direction 
shifted, with coefficients becoming positive and significant at 0.031 for ages 46-65 and 
strengthening further to 0.070 and 0.075 for the 66-80 and 81+ groups, respectively. Thus, while 
early life associations diverged from expectations, later life showed the more familiar pattern of 
higher mortality risk with PM2.5 exposure. 

Among Non-Hispanic Asians, associations were positive across all age groups, with the 
strongest effect observed in the 66-80 cohort, where the coefficient was 0.145, one of the largest 
across any group. While early life coefficients were smaller and sometimes less precise, such as 
0.053 for ages 0-25, they nonetheless suggested heightened susceptibility. For those aged 81 and 
over, the coefficient of 0.059 confirmed a persistent, though smaller, association in the very old. 
The overall picture for Asians is one of consistent sensitivity to PM2.5, with the clearest elevation 
in later adulthood. 

Hispanic populations demonstrated a subtler but still significant set of associations. Early life 
effects were small and nonsignificant, with a coefficient of 0.008 for ages 0-25. Beginning in 
midlife, however, associations strengthened, rising to 0.028 for ages 26-45, 0.044 for ages 46-65, 
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and 0.071 for ages 66-80. The strongest effect appeared in the 81+ category, where the 
coefficient was 0.117, indicating nearly a 12 percent increase in mortality odds with PM2.5 
exposure. These results suggest that while early life risks were muted or difficult to detect, older 
Hispanics experienced some of the steepest increases in risk of any group. 

Finally, results for the “Other” category were inconsistent, with smaller sample sizes and 
heterogeneity likely contributing to variability. While younger groups such as 26-45 showed 
significant positive associations (0.041), the oldest cohorts exhibited negative associations, 
including a coefficient of -0.030 for those aged 81 and over. Those results are small in values and 
the research team suggest caution in generalizing patterns for this diverse category. 

In sum, the five-age group results in Period 1 demonstrate that Non-Hispanic Whites, Asians, 
and Hispanics show clear positive associations between PM2.5 and mortality that strengthen with 
age, peaking among the elderly. Non-Hispanic Blacks display a distinct age pattern, with 
negative associations in youth and early adulthood but convergence toward positive and 
significant effects in later life. The “Other” category presents the least consistent evidence, 
highlighting limitations in statistical power or subgroup heterogeneity. Together, these findings 
reinforce the conclusion that PM2.5 exposure disproportionately affects older populations across 
nearly all race and ethnicity groups, though the trajectory of risk across the life course differs 
meaningfully between them. 

The five-age group stratification for Period 2 (2011-2021) (Figure 6, bottom) highlights both 
continuity and important shifts in how PM2.5 exposure related to mortality risk across race and 
ethnicity. Among Non-Hispanic Whites, the associations were weaker than in Period 1 but still 
largely positive and significant. The effect was strongest in the youngest group, ages 0-25, with a 
coefficient of 0.048, while middle-aged adults (26-45) showed no significant effect. For older 
adults, risks reemerged, with coefficients of 0.023 for ages 46-65 and 0.033 for ages 66-80, 
though the very old (81 and over) displayed a smaller effect at 0.015. Non-Hispanic Blacks 
exhibited a more complex pattern: effects were null in youth, strongly positive in early adulthood 
(0.107 for ages 26-45), and significantly negative in midlife (-0.084 for ages 46-65), before 
turning positive again in older age, with a very large effect of 0.162 among those 81 and over. 
This suggests shifting vulnerabilities by life stage, with late-life Black populations facing 
particularly elevated risks. 

For Non-Hispanic Asians, associations were consistently positive and highly significant 
across all ages, with some of the largest coefficients observed in any group. Children and young 
adults had a coefficient of 0.109, rising slightly in early adulthood to 0.108, and continuing 
upward through midlife at 0.078. The strongest effects appeared among older adults, with 
coefficients of 0.163 for ages 66-80 and 0.126 for 81 and over, underscoring pronounced 
sensitivity among Asian populations at later ages. Hispanics displayed moderate to strong 
positive effects in younger and middle-aged groups, including coefficients of 0.078 for ages 0-25 
and 0.071 for ages 26-45. However, the association diminished sharply in midlife, with a very 
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small positive coefficient of 0.015 at ages 46-65, and even reversed direction for those 66-80, 
where the effect was negative at -0.014. Among the oldest Hispanics, however, risks became 
strongly positive again, with a coefficient of 0.077. The “Other” category remained inconsistent, 
with positive effects in early adulthood (0.163 for ages 26-45) and late life (0.107 for 81+), but 
null or negative coefficients in other groups, including a significant -0.040 in the 66-80 range. 

Overall, the Period 2 results reveal smaller and more variable effect sizes compared with 
Period 1, particularly among Whites and Hispanics in midlife, while late-life vulnerability 
remained a consistent theme across nearly all race-ethnicity groups. Non-Hispanic Asians 
showed the most stable and uniformly strong associations, while Non-Hispanic Blacks and 
Hispanics displayed more fluctuation across the life course, with both groups experiencing their 
highest risks in the oldest age category. These results suggest that although improvements in air 
quality or population health may have attenuated PM2.5 impacts for some groups, the elderly 
across nearly all race-ethnicity backgrounds continue to face substantial mortality risks tied to 
pollution exposure. 

Life expectancy – age specific impact 
For life expectancy, the impact of PM2.5 varies by race and age in Period 1 (Figure 7). Among 

Asians, the gains are very significant in younger and middle-aged adults, with life expectancy 
increasing by nearly 0.95 years for ages 0-65, indicating a strong benefit from cleaner air. Older 
Asians (66-80 and 81+) see slightly smaller but still meaningful improvements, with gains of 
0.93 and 0.87 years, respectively. Black populations show a more mixed pattern: children and 
young adults (0-25) actually experience a slight reduction in life expectancy, but adults aged 26-
65 gain substantially (0.83-0.95 years), and older adults continue to benefit moderately (0.84-
0.93 years). Hispanics consistently achieve very significant life expectancy gains across all ages, 
from 0.92 to 0.95 years, reflecting a uniform benefit of PM2.5 removal. Among Whites, the most 
substantial improvements occur in younger and middle-aged adults (0.74-0.95 years), while older 
adults experience only minor gains (0.29-0.30 years), indicating that PM2.5 reduction has limited 
impact on life expectancy at advanced ages for this group. The Other race category benefits 
strongly in children and middle-aged adults (0.95 years), but older adults show minimal or even 
slightly negative changes, suggesting that the effect of PM2.5 removal diminishes with age or 
may interact with other risk factors in these populations. 

In Period 2, the life expectancy gains from PM2.5 removal show a mixed pattern across race-
ethnicity groups and age (Figure 8). Among Asians, the gains remain substantial but vary by age: 
younger and middle-aged adults (0-65) see moderate improvements ranging from 0.45 to 0.64 
years, slightly lower than the very significant gains near 0.95 years observed in Period 1. 
However, older adults benefit more than before, with the 66-80 group reaching the maximum 
gain of 0.95 years and the 81+ group gaining 0.73 years, suggesting improved benefits in late 
life. Black populations experience smaller or even negative impacts in some age groups. 
Children (0-25) now see minimal improvement (0.047 years), while adults aged 26-45 gain 0.63 
years, similar to Period 1. Notably, the 46-65 group shows a negative impact, a reversal from the 
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positive gains in Period 1, though the oldest adults (81+) again reach a maximum gain of 0.95 
years, reflecting concentrated benefits in late life. 

For Hispanics, Period 2 shows very significant gains in young adults (0-25: 0.95 years) and 
strong improvements in ages 26-65 (0.85-0.91 years), slightly smaller than Period 1 for middle-
aged adults, while the 66-80 age group now experiences a negative impact, marking a notable 
reversal from prior gains. Among Whites, younger adults maintain high gains (0-25: 0.95 years), 
but adults 26-45 see minimal improvement (0.15 years), while middle-aged and older adults gain 
moderately (0.46-0.65 years), representing a small improvement over Period 1 in some ages but 
still far below the maximum gain. The Other race category shows very strong improvements in 
children and adults 26-65 (0.92-0.95 years). 

Life expectancy – aggregate impact 
Taken together in our aggregated analysis (bottom right of Figure 7 and Figure 8, and Table 5 

for five age groups),  Period 1 for Asians showed nearly identical population-weighted (0.94) and 
death-weighted (0.91) impacts, indicating that PM2.5 effects were broadly distributed across all 
age groups rather than concentrated in either younger or older adults. In Period 2, both metrics 
decreased (0.62 population-weighted; 0.74 death-weighted), consistent with an overall reduction 
in PM2.5 impact. The slight rise of the death-weighted value relative to the population-weighted 
value suggests a modest shift toward a greater proportional impact among older Asian adults in 
the later decade. 

For Whites, Period 1 showed moderately high population-weighted impact (0.82) but a lower 
death-weighted value (0.40), indicating that PM2.5 impacts were more pronounced among 
younger and middle-aged Whites than among older adults. In Period 2, both metrics declined 
(0.56 population-weighted; 0.43 death-weighted), and the gap between them narrowed. This 
convergence reflects a more even age distribution of PM2.5 impact among Whites in the later 
decade, with neither young nor old groups disproportionately driving the overall effect. 

For Hispanics, the population-weighted and death-weighted values were almost identical in 
Period 1 (0.95 vs. 0.94), indicating that the PM2.5 burden was distributed across all ages. In 
Period 2, the population-weighted impact remained moderately high (0.75), but the death-
weighted impact decreased substantially (0.36), showing a shift toward higher proportional 
impact among younger and middle-aged Hispanic populations and a reduced proportional 
contribution from older Hispanic adults. The overall policy effect of 0.57 years indicates 
Hispanics benefited significantly from regulatory actions from Period 1 to Period 2.  

For Blacks, Period 1 showed an unusual pattern: a negative population-weighted value (-
0.24) alongside a positive death-weighted value (0.68). This combination indicates that younger 
and middle-aged Black populations experienced very small or slightly inverse PM2.5 
associations, while older Black adults experienced substantial per-person impacts, indicating that 
older adults disproportionately drove the PM2.5-related life-expectancy losses in this group. In 
Period 2, both metrics decreased sharply (0.00 population-weighted; 0.08 death-weighted), 
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reflecting an overall reduction in PM2.5 impact across ages and a particularly large reduction in 
older-adult impact (policy effect = 0.59), consistent with improved conditions for older Black 
populations. 

For the Other category, Period 1 showed moderately high population-weighted impact (0.80) 
but very low death-weighted impact (0.06), indicating disproportionately higher impacts among 
younger adults and almost negligible impacts among older adults. In Period 2, both metrics 
increased slightly (0.78 population-weighted; 0.38 death-weighted), with the death-weighted 
value rising more sharply. This shift indicates that while younger adults continued to show 
elevated impacts, older adults in this group experienced a greater increase in proportional share 
of PM2.5 impact in the later period, though population fluctuations and heterogeneity within this 
broad category likely influence these patterns. 

Overall, the combined population-weighted and death-weighted analysis reveals that Period 2 
showed smaller overall PM2.5 impacts across all racial-ethnicity groups, consistent with the 
effects of cleaner air. However, the age distribution shifted, with several groups (Whites, 
Hispanics, Others) showing a greater proportional impact among younger and middle-aged 
populations in Period 2 compared to Period 1, while others (Asians, Blacks) showed either 
balanced or declining older-adult impacts. These patterns underscore that improvements in air 
quality benefited all racial-ethnicity groups, but the demographic profile of risk, whether 
predominantly in younger or older age groups, differs across groups and changed over time. 
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Figure 6. The race-ethnicity stratified logistic regression modeling results over five age-groups 
on the impact of PM2.5 on mortality for Period 1 (top) and Period 2 (bottom). 

 

  



66 
 

  

  

  
Figure 7. All cause and PM2.5-eliminated life expectancy by race-ethnicity for Period 1 (2000-
2010) across five age groups. 
  

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between 
the all-cause and PM2.5-eliminated estimates (i.e., from all-cause > PM2.5-eliminated to all-cause < PM2.5-eliminated, 
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM2.5 
removal exceeds the observed all-cause life expectancy (expected).   
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Figure 8. All cause and PM2.5-eliminated life expectancy by race-ethnicity for Period 2 (2011-
2021) across five age groups.  
 

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between 
the all-cause and PM2.5-eliminated estimates (i.e., from all-cause > PM2.5-eliminated to all-cause < PM2.5-eliminated, 
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM2.5 
removal exceeds the observed all-cause life expectancy (expected).  
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Period-specific impact for ten age groups with race-ethnicity stratification 

Mortality risks 
The 10 age groups provide much finer detail on how PM2.5 exposure relates to health 

outcomes across lifespan (Figure 9). In Period 1 (Figure 9, top) for Non-Hispanic Whites, the 
association between PM2.5 and adverse health outcomes strengthens with age until late 
adulthood. In early childhood (ages 0-11), the PM2.5 coefficient is negative and significant, 
suggesting a small protective or unstable effect likely due to small sample size or competing risk 
factors. From adolescence onward, the coefficients turn positive and remain highly significant. 
The effect size grows steadily from 0.04 at ages 12-25 to 0.14 at 36-45 and remains elevated 
through midlife (0.09-0.10 for ages 46-65). The highest sensitivity appears among those aged 81-
86, with a coefficient of 0.22, indicating a strong and consistent relationship between higher 
SPM2.5 and adverse outcomes. This pattern reflects the cumulative damage hypothesis: long-term 
exposure over the life course compounds into larger late-life health effects, particularly for 
cardiorespiratory mortality among older Whites.  

Non-Hispanic Blacks exhibit a distinct pattern characterized by negative associations in early 
and mid-adulthood and positive associations emerging only after middle age. For ages 0-45, 
most coefficients are negative and significant, implying that higher PM2.5 levels are not strongly 
associated—or even inversely associated—with adverse outcomes in youth. However, starting at 
age 56-65, the relationship reverses, showing strong positive coefficients (0.09-0.12) with high 
statistical significance into the oldest groups. The largest effect (0.12) occurs for those aged 87 
and over. This transition supports the interpretation that early-life mortality among Black 
populations is more strongly influenced by social and structural determinants (e.g., 
socioeconomic disadvantage, access to care, and neighborhood conditions), while air pollution 
effects accumulate and become more biologically evident in later life through the exacerbation of 
chronic diseases such as hypertension, diabetes, and cardiovascular disorders. 

For Non-Hispanic Asians, the association between PM2.5 and health outcomes is weak or 
inconsistent at younger ages but becomes substantial in older adulthood. The youngest age 
groups (0-35) show small, nonsignificant coefficients, but significant positive effects emerge 
from ages 36-65. The relationship becomes very strong among those aged 66-74, with a 
coefficient of 0.22—the largest among Asian age groups—followed by a moderate decline 
thereafter. This pattern suggests that early-life exposures may be less immediately impactful for 
this population, possibly due to protective social or health factors, while later-life sensitivity 
increases sharply as cumulative exposure interacts with aging-related vulnerabilities and 
cardiopulmonary risk. The results for Asians align with epidemiologic evidence showing greater 
late-life pollution sensitivity linked to urban living and longer lifespans that allow chronic 
exposure effects to manifest. 

Hispanics display a steady and consistent positive association between PM2.5 and adverse 
outcomes across nearly all ages, with increasing effect sizes in older adults. The coefficients 



69 
 

progress from modest positive values in childhood and adolescence (around 0.02-0.04) to 
stronger associations in adulthood (0.05-0.09), and finally peak in late life, with a large 
coefficient of 0.17 among those aged 87 and over. Every age group shows statistically significant 
effects. This stable, monotonic increase suggests that Hispanics are broadly sensitive to PM2.5 
across the life course, possibly reflecting higher baseline exposure levels in communities located 
near traffic corridors or industrial zones. The accumulation of exposure over decades likely 
compounds existing metabolic and cardiovascular risk factors, making pollution reduction 
especially beneficial for this group at all ages. 

For the “Other” group, results are more variable and less consistent, likely due to smaller 
sample sizes and population heterogeneity. Younger and middle-aged adults generally show 
positive but modest associations, with significance emerging mainly between ages 26 and 55. 
However, from age 75 onward, the coefficients turn negative and statistically significant, 
suggesting lower or even inverse relationships between PM2.5 and adverse outcomes in late life. 
These apparent reversals may arise from survivor bias (i.e., healthier individuals reaching older 
ages) or unstable estimates in small subpopulations. Nevertheless, the early- and mid-adulthood 
findings align with general expectations that PM2.5 exposure contributes to elevated health risks 
before mortality selection effects dominate in advanced age. 

Across all race-ethnicity groups, PM2.5 effects strengthen with age, though the timing and 
intensity differ. Whites and Hispanics show steady positive associations throughout adulthood, 
while Blacks transition from negative to strongly positive coefficients later in life. Asians 
experience delayed but steep increases in sensitivity at older ages, and the “Other” group exhibits 
mixed effects due to smaller representation. Collectively, these findings reinforce that PM2.5 
exposure contributes most strongly to adverse health outcomes in middle and late adulthood, 
consistent with cumulative biological damage and long-term cardiopulmonary stress from 
chronic exposure. 

From Period 1 to Period 2 (Figure 9, bottom), PM2.5-related health effects declined across 
most race-ethnicity groups, reflecting the success of California’s air quality regulations in 
reducing exposure. Despite this overall improvement, distinct age- and race-specific sensitivity 
patterns persisted, highlighting differences in biological vulnerability, exposure histories, and 
underlying health conditions. For Non-Hispanic Whites, PM2.5 impacts were strongest in midlife 
(ages 36-65) during Period 1, with positive and highly significant coefficients, suggesting 
vulnerability linked to occupational exposure and chronic disease burden. In Period 2, these 
effects weakened and shifted toward older ages (56-74), consistent with reduced exposure levels 
and improved public health and healthcare access that delayed pollution-related health risks. 

Among Non-Hispanic Blacks, Period 1 showed minimal or negative associations at younger 
ages and strong positive effects in older adulthood, indicating that cumulative exposure and 
chronic stress factors may manifest later in life. In Period 2, results became more variable, with 
some midlife sensitivity emerging but generally weaker effects. The persistence of later-life 
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vulnerability likely reflects the combined impacts of chronic conditions and environmental 
disadvantage accumulated over time. 

For Non-Hispanic Asians, PM2.5 effects were modest but consistent in both periods. In Period 
1, sensitivity appeared mainly after age 45, while in Period 2, significant impacts concentrated in 
older ages (46-86). This pattern suggests cumulative exposure and age-related cardiopulmonary 
vulnerability, potentially intensified by indoor pollution or differences in preventive healthcare 
access. 

Among Hispanics, PM2.5 consistently had positive and significant effects across nearly all 
ages in both periods. In Period 1, associations strengthened with age, while in Period 2, effects 
slightly decreased in midlife but remained high among older adults. The persistent sensitivity 
across the lifespan likely reflects higher community-level exposure and occupational risks, 
despite generally favorable baseline health. 

For Other race-ethnicity groups, results were heterogeneous due to smaller sample sizes. 
Period 1 showed mixed directions of effect, while Period 2 revealed stronger positive 
associations in select age bands (especially 26-45 and 81-86), likely reflecting demographic 
diversity and regional exposure differences within this category. 
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Figure 9. The race-ethnicity stratified logistic regression modeling results over ten age-groups on 
the impact of PM2.5 on mortality for Period 1 (top) and Period 2 (bottom). 

 

Life expectancy – age specific impact 
Life expectancy in Period 1 improved across all race and ethnicity groups after the removal 

of PM2.5, though the degree of benefit varied by age and group (Figure 10). Overall, most groups 
showed gains approaching the upper limit of 0.95 years, particularly during mid- and older 
adulthood when cumulative exposure to PM2.5 becomes more consequential for mortality risk. 
This pattern is consistent with the underlying age- and race-ethnicity stratified conditional 
logistic regression models used to estimate PM2.5-related mortality risk.  

Among Asian populations, PM2.5 removal consistently extended life expectancy across nearly 
all ages. Gains were strongest from early childhood through midlife, remaining close to 0.95 
years through about age 55 before gradually declining at older ages. This pattern suggests that 
cleaner air particularly benefits younger and middle-aged Asians, likely reflecting high 
sensitivity of cardiometabolic and respiratory development to pollution during earlier life stages 
and relatively lower susceptibility once baseline health declines later in life. 

For Black populations, the pattern differed markedly. Life expectancy gains from PM2.5 
removal were minimal or slightly negative during childhood through middle age, but benefits 
grew sharply from the late 50s onward, reaching near the 0.9 level by older adulthood. This 
delayed improvement likely reflects the accumulation of lifetime exposure burdens and chronic 
disease conditions that heighten pollution vulnerability later in life. It also indicates that earlier 
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exposures may already have produced lasting physiological effects, reducing reversible benefit in 
youth. 

Hispanic populations demonstrated stable, positive gains across almost all ages, with PM2.5 
removal improving life expectancy consistently and near the upper range of 0.94-0.95 years. This 
uniform response suggests that Hispanics experience sensitivity to pollution throughout the life 
course, possibly due to a combination of occupational exposure, high-density living conditions, 
and intergenerational environmental influences. The sustained benefit at both younger and older 
ages indicates broad responsiveness to air quality improvements. 

Among White populations, life expectancy gains were moderate but widespread. PM2.5 
removal improved life expectancy across most ages, with small increases in younger and middle 
ages and larger benefits, up to 0.95 years, among the oldest age groups. These patterns suggest a 
generally uniform exposure reduction, with stronger benefits manifesting later in life as aging 
amplifies pollution-related health risks. 

For Other race-ethnicity groups, improvements followed a similar trend through middle 
adulthood, with gains near 0.94-0.95 years, but declined at advanced ages. The reduced benefit 
among the oldest adults may be due to smaller population size or the greater influence of non-
pollution-related mortality factors at those ages. 

In summary, removal of PM2.5 during Period 1 increased life expectancy across all 
populations, though the timing and magnitude of these benefits differed. Asians and Hispanics 
exhibited strong and broad sensitivity across the life span, Whites showed steady and late-life 
responsiveness, and Blacks displayed delayed but substantial gains later in life, reflecting 
cumulative exposure and health inequities. 

Life expectancy in Period 2 continued to show measurable gains from the removal of PM2.5, 
though the magnitude of improvement was generally smaller than in Period 1 (Figure 11). This 
overall reduction in sensitivity is consistent with California’s progressively lower ambient PM2.5 
concentrations following statewide emission controls and cleaner energy transitions. With less 
pollution in the environment, the relative benefit of removing PM2.5 naturally diminished, though 
age- and group-specific patterns remained evident. 

Among Asians, life expectancy gains from PM2.5 removal were smaller in early and middle 
ages compared with Period 1, stabilizing around modest positive levels. The largest 
improvements appeared during later adulthood, particularly from ages 46-80, where the benefits 
again approached the upper limit. This shift indicates that as baseline air quality improved, 
younger Asians—who had already experienced cleaner air for much of their lives—had less 
exposure to reverse, while older adults still carried the cumulative effects of historical pollution. 
The persistence of late-life sensitivity suggests that cardiovascular and metabolic pathways 
remain vulnerable even under lower exposure conditions. 
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For Blacks, the life expectancy response again contrasted with other groups. Early and 
middle ages continued to show negligible or negative gains, and the strongest improvements 
appeared only at the oldest ages. This late-life concentration of benefits points to the enduring 
effects of cumulative exposure and social determinants such as residential proximity to traffic or 
industrial areas. In cleaner air conditions, the reversible component of PM2.5-related risk 
becomes smaller in youth, but chronic conditions accumulated over decades still respond to air-
quality improvements later in life. 

Hispanics retained relatively broad benefits across age groups, although the magnitude 
declined in middle and older ages compared with Period 1. Life expectancy improvements 
remained high through about age 55 but turned slightly negative around ages 56-80 before 
recovering at the oldest ages. This pattern may reflect a transition in exposure profiles—earlier 
cohorts benefitting from cleaner air policies while older adults retained legacy exposure burdens. 
Occupational exposure and neighborhood factors likely continued to sustain sensitivity across 
the life course, but with diminishing returns as overall PM2.5 levels fell. 

Among Whites, PM2.5 removal continued to yield modest but consistent gains across much of 
the age spectrum, though overall benefits were smaller than in Period 1. The improvements were 
moderate in younger ages and became most evident in older adults, especially those over 65. The 
pattern suggests that the remaining gains largely reflect pollution-related cardiovascular and 
respiratory fragility that persists in later life, while earlier cohorts have already benefited from 
long-term exposure reduction under California’s cleaner-air era. 

For Other race-ethnicity groups, life expectancy improvements followed a pattern similar to 
Period 1, with substantial gains through most ages but some decline in later years. The slight 
reduction in benefit after about age 70 likely reflects both smaller population sizes and reduced 
PM2.5 exposure intensity statewide, leaving less pollution-related mortality to offset. 
Nonetheless, their response remained strong overall, suggesting continued vulnerability among 
populations living in higher-exposure microenvironments. 

 

  



74 
 

  

  
Figure 10. All cause and PM2.5-eliminated life expectancy by race-ethnicity for Period 1 (2000-
2010) across ten age groups.  
 

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between 
the all-cause and PM2.5-eliminated estimates (i.e., from all-cause > PM2.5-eliminated to all-cause < PM2.5-eliminated, 
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM2.5 
removal exceeds the observed all-cause life expectancy (expected).  
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Figure 11. All cause and PM2.5-eliminated life expectancy by race-ethnicity for Period 2 (2011-
2021) across ten age groups.  
 

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between 
the all-cause and PM2.5-eliminated estimates (i.e., from all-cause > PM2.5-eliminated to all-cause < PM2.5-eliminated, 
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM2.5 
removal exceeds the observed all-cause life expectancy (expected).  
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Life expectancy – aggregate impact 
When the research team expand the analysis from five to ten age groups, the overall race-

ethnicity patterns remain broadly consistent with the coarser five-group results, but several 
important nuances emerge (Table 5). These differences point to meaningful variation within the 
broader age categories, variation that becomes visible only when age is modeled more finely. 

For Asians, the ten age-group results in Period 1 closely mirror those of the five-group 
analysis. Population-weighted and death-weighted impacts remain nearly identical (0.94 vs 
0.91), reinforcing the earlier conclusion that PM2.5 effects are broadly distributed across young, 
middle-aged, and older adults. In Period 2, both metrics decreased (0.47 population-weighted; 
0.63 death-weighted), consistent with an overall reduction in PM2.5 impact. The slight rise of the 
death-weighted value relative to the population-weighted value suggests a modest shift toward a 
greater proportional impact among older Asian adults in the later decade, a phenomenon also 
seen in the five age-group results. 

For Blacks, the ten age-group results uncover similar effect to the five-group analysis. In 
Period 1, population-weighted impact (-0.05) is near zero, while death-weighted impact (0.59) is 
substantially elevated. This again matches the direction of the five-group conclusion, namely that 
younger Black individuals experience very small per-person PM2.5 effects while older adults 
experience much larger impacts. Period 2 shows a similar pattern to the five-groups, with low 
population-weighted (-0.28) and death-weighted impact (0.03), again reinforcing the effect of 
regulatory actions on improving life expectancy (0.56 years in the ten age-group vs 0.59 years in 
the five age-group analysis). 

For Hispanics, the ten-group results reveal an internal age gradient that was obscured in the 
five-group analysis. Under the five-group structure for Period 1, Hispanics showed relatively 
uniform benefits across all ages. But with ten groups, Period 1 displays a mismatch: population-
weighted impact is moderately high (0.64), but death-weighted impact is very high (0.91). This 
indicates that while younger and middle-aged Hispanics experience moderate per-person PM2.5 
effects, older Hispanic adults experience especially elevated impacts that pull the death-weighted 
average upward. In Period 2, both metrics fall and show a pattern very close to the five age-
group analysis: a shift toward higher proportional impact among younger and middle-aged 
Hispanic populations and a reduced proportional contribution from older Hispanic adults. The 
overall policy effect of 0.60 years represents the reduction in PM2.5-attributable life-expectancy 
loss between the two periods and is almost identical to the five age-group estimate (0.57 years). 

For the Other race-ethnicity category, ten-group results have a similar effect to the five-group 
results. Period 1 shows high population-weighted impact (0.86) but very low death-weighted 
impact (0.23), a phenomenon very close to the five-group results. This implies that younger or 
mid-life adults consistently contribute much more to the observed PM2.5 burden than older 
adults. Period 2 shows both measures increasing (population-weighted 0.82; death-weighted 
0.60), indicating that while younger adults continued to show elevated impacts, older adults in 
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this group experienced a greater increase in their proportional share of PM2.5 impact in the later 
period, a phenomenon similar to that seen in the five age-group analysis. 

For Whites, the shift from five to ten age groups produces a dramatic internal re-
interpretation. In Period 1, the population-weighted impact drops substantially to 0.19, while the 
death-weighted impact increases to 0.73. The ten-group results indicate that younger White 
individuals contribute relatively little, while older Whites experience substantially larger PM2.5 
impacts. In the five-group version, Whites showed larger impacts at younger ages with 
diminished effects at older ages. This inconsistency signals that the broad age brackets in the 
five-group design inadvertently obscured differences within the middle-aged and older-aged 
ranges, where certain subgroups appear to experience much higher burden than others. Because 
the White population in California (~35%) is significantly larger than other race-ethnicity 
groups, the ten age-group stratification did not suffer from small-sample issues (Figure 9, 
bottom). The ten-group results are therefore the more accurate representation of true age-specific 
patterns for Whites. In Period 2, the death-weighted impact significantly decreased (from 0.73 to 
0.31), suggesting that improvements in air quality reduced late-life PM2.5 impacts. Both 
population-weighted (0.28) and death-weighted impacts are low in Period 2, indicating that per-
person PM2.5 impacts were uniformly small across all age groups. 

Overall, most race-ethnicity groups showed that older adults experienced substantially larger 
PM2.5 impacts in Period 1, while in Period 2 younger and middle-aged individuals contributed 
relatively more, except for Asians, whose impacts remained broadly distributed, and Blacks, who 
showed consistently low impacts among younger adults in both periods. Black and Hispanic 
populations benefited most from regulatory actions, with policy gains of about 0.56–0.59 and 
0.57–0.60 years, respectively. By Period 2, PM2.5 impacts among Black and White populations 
had fallen to very low levels, while Asian, Hispanic and Other category populations still 
exhibited room for further improvement. 
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Table 5. Summary of life expectancy and policy effects, 2000-2010 vs. 2011-2021 

Race 
Ethnicity 

2000-2010 2011-2021 Policy 
Effect All 

Cause 
Remove 

PM2.5 
PM2.5 Impact All 

Cause 
Remove 

PM2.5 
PM2.5 Impact 

(PopWt) (DthWt) (PopWt) (DthWt) (DthWt) 

All 
All 20 Age Groups 19 Age Groups     

78.40 78.78 0.38 0.61 80.80 81.26 0.46 0.37 0.24 

Five Age Groups 
Asian 83.00 83.94 0.94 0.91 86.30 86.92 0.62 0.74 0.17 
Black 72.10 71.86 -0.24 0.68 75.10 75.10 0.00 0.08 0.59 

Hispanics 80.50 81.45 0.95 0.94 83.20 83.95 0.75 0.36 0.57 
Other 78.20 79.00 0.80 0.06 80.20 80.98 0.78 0.38 -0.31 
White 77.80 78.62 0.82 0.40 79.80 80.36 0.56 0.43 -0.03 

Ten Age Groups 
Asian 83.00 83.94 0.94 0.91 86.30 86.77 0.47 0.63 0.28 
Black 72.10 72.05 -0.05 0.59 75.10 74.82 -0.28 0.03 0.56 

Hispanics 80.50 81.14 0.64 0.91 83.20 83.87 0.67 0.31 0.60 
Other 78.20 79.06 0.86 0.23 80.20 81.02 0.82 0.60 -0.36 
White 77.80 77.99 0.19 0.73 79.80 80.08 0.28 0.31 0.41 

Note: PopWt = population-weighted PM2.5 impact on life expectancy; DthWt = death-weighted PM2.5 
impact on life expectancy. 

Task 5. Create GIS Maps for the Study Results 
The research team estimated CT-level life expectancy impacts attributable to PM2.5 exposure 

across California for two time periods (2000-2010 and 2011-2021). For each tract and period, the 
research team first derived population distributions by race-ethnicity and age group. Using 
modeled life expectancy impacts associated with PM2.5 for each age group of a race-ethnicity 
category, the research team applied age-specific population weights to estimate race-ethnicity 
level PM2.5 effects within a CT. These were then combined using race-ethnicity population 
weights to generate a single PM2.5-related life expectancy impact value for each CT. A general 
formula is: 

LEtract = ��(Pop𝑟𝑟,𝑎𝑎
𝑎𝑎

𝑟𝑟

⋅ Effect𝑟𝑟,𝑎𝑎)/��Pop𝑟𝑟,𝑎𝑎
𝑎𝑎

𝑟𝑟

 

where 𝑟𝑟 indexes race-ethnicity groups (e.g., Black, Asian, Hispanic, White, Other); 𝑎𝑎 indexes 
age groups (e.g., 0–11, 12–17, …); Pop𝑟𝑟,𝑎𝑎 is the population count of age group 𝑎𝑎and 
race/ethnicity 𝑟𝑟in the tract and Effect𝑟𝑟,𝑎𝑎 is the estimated PM2.5 impact on life expectancy for 
that age–race/ethnicity group. 
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 Two aggregation schemes were used: one with five broad age groups and another with ten 
finer age groups. Because detailed race-ethnicity by age-group mortality data were not available 
at the CT-level for either period, PM2.5 impacts could not be estimated using death-weighted 
estimates. Instead, population counts by race-ethnicity and age group are available for all tracts, 
so they served as the basis for all CT-level PM2.5 impact calculations. Here, the CT-level results 
reflect population-weighted PM2.5 impacts. A key assumption is that the estimated effects for a 
specific age–race/ethnicity group (e.g., Blacks aged 0–11) apply uniformly to all individuals of 
that age–race/ethnicity group within each tract. This allows the tract-level estimates to reflect 
local demographic structure, which shapes the spatial patterns of estimated impacts. 

Table 6. PM2.5 impact and life expectancy statistics over California census tracts.  

Impact Assessment 
(years) 

Min 
5th  

Pcnt 
10th 
Pcnt 

25th 
Pcnt 

Mean 
95th 
Pcnt 

Max Std 

Five Age Groups 

PM25 Impact (2010) 0.05 0.68 0.74 0.79 0.82 0.90 0.95 0.09 

PM25 Impact (2020) -0.02 0.50 0.53 0.56 0.61 0.74 0.95 0.08 
All Cause LE (2010) 72.90 77.92 78.07 78.31 78.75 80.11 82.33 0.79 
All Cause LE (2020) 75.95 80.22 80.38 80.72 81.29 83.09 85.64 0.91 
Policy Benefits (P1 -> P2) -0.36 0.07 0.12 0.18 0.21 0.29 0.52 0.07 
  Ten Age Groups 

PM25 Impact (2010) -0.09 0.31 0.34 0.39 0.46 0.66 0.88 0.11 

PM25 Impact (2020) -0.19 0.33 0.35 0.38 0.46 0.65 0.81 0.11 
All Cause LE (2010) 72.90 77.92 78.07 78.31 78.75 80.11 82.33 0.79 
All Cause LE (2020) 75.95 80.22 80.38 80.72 81.29 83.09 85.64 0.91 
Policy Benefits (P1 -> P2) -0.72 -0.16 -0.13 -0.07 0.00 0.22 0.57 0.11 

 

Overall Effect 

Under the five age groups scenario (Table 6, top), PM2.5 removal in 2010 was associated with 
an average life expectancy gain of approximately 0.82 years across tracts, ranging from 0.05 to 
0.95 years. By 2020, the average tract-level impact declined to about 0.61 years, consistent with 
overall reductions in PM2.5 concentrations statewide. The research team defines policy benefit as 
the estimated reduction in PM2.5-attributable life expectancy loss due to the change in PM2.5 
concentrations between two time points (here, 2010 and 2020). In other words, it quantifies how 
much life expectancy is “gained” in years if PM2.5 levels are reduced according to observed or 
modeled improvements, holding all other factors constant. The average policy benefit (i.e., 
improvement between the two periods) was approximately 0.21 years, suggesting that ongoing 
air quality regulations and emission controls contributed to measurable public health gains. 

Results from the ten age groups scenario (Table 6, bottom) showed smaller average PM2.5 
impacts in both time periods (around 0.46 years in 2010 and 0.46 years in 2020), and the mean 
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policy benefit was close to zero. The smaller estimated impacts under the ten age groups 
framework may partly reflect reduced statistical stability due to smaller subgroup sample sizes, 
particularly within tracts that have lower population counts or higher proportions of minority 
residents. This finer age stratification increases model granularity but can also amplify 
uncertainty in PM2.5 effect estimates, especially for subpopulations with limited data. Therefore, 
while the ten age groups results provide additional detail, the five age groups estimates are likely 
more robust for summarizing overall PM2.5-related life expectancy impacts at the tract level. 
Although aggregating to five age groups improves statistical stability relative to the ten–age 
group scenario, CT-level estimates may still be less precise in sparsely populated rural tracts. 
Accordingly, some spatial variability in the maps, particularly in low-population areas, should be 
interpreted with caution, as estimates in these tracts remain subject to greater uncertainty due to 
limited underlying population counts. 

Disadvantage Status Stratification 

Across California, PM2.5-related life expectancy impacts changed between Period 1 and 
Period 2 in ways that vary by neighborhood disadvantage, as measured by CalEnviroScreen 
(CES). CalEnviroScreen is a composite index developed by the California Office of 
Environmental Health Hazard Assessment (OEHHA) that ranks census tracts statewide based on 
pollution burden (e.g., air pollution, traffic, drinking water contaminants) and population 
vulnerability (e.g., poverty, education, linguistic isolation, race-ethnicity, and health outcomes). 
The CES percentile score (here denoted as CIscoreP) ranges from 0 (most advantaged) to 100 
(most disadvantaged). For this analysis, tracts were grouped into four disadvantage status 
categories: most disadvantaged with CES percentile [75, 100], moderately disadvantaged: [50, 
75), less disadvantaged: (25, 50) and most advantaged: (0, 25]. The research team discuss the 
impact of five age groups here (Table 7). 

In the most disadvantaged tracts the mean PM2.5 impact fell from 0.82 years in Period 1 to 
0.66 years in Period 2, and mean all-cause life expectancy rose from about 78.81 to 81.35 years; 
these tracts also show the greatest variability in PM2.5 impacts (SD ≈ 0.12 in Period 1 and 0.09 in 
Period 2), indicating substantial heterogeneity in exposure and potential benefit within the most 
disadvantaged communities. The mean policy benefit (Period1 → Period2 difference in PM2.5 
impact) in this group is 0.16 years. 

Moderately disadvantaged tracts follow a similar trajectory: mean PM2.5 impact declined 
from 0.82 to 0.62 years while all-cause life expectancy increased from about 78.82 to 81.39 
years. The variability here is notable but slightly smaller than in the most disadvantaged category 
(SD ≈ 0.10 then 0.09), and the average policy benefit is modestly larger than in the most 
disadvantaged group (mean ≈ 0.20 years), reflecting somewhat more consistent but still spatially 
variable gains. 

In less disadvantaged tracts the mean PM2.5 impact also declined (about 0.82 → 0.58 years) 
with life expectancy increasing from roughly 78.78 to 81.33 years. These tracts display narrower 
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dispersion in impacts (SD ≈ 0.06 for both periods) compared with the two more disadvantaged 
groups, and the mean policy benefit is larger (≈ 0.24 years), indicating more uniform gains from 
cleaner air across these neighborhoods. 

Finally, the most advantaged tracts experienced a mean decline in PM2.5 impact from about 
0.81 to 0.57 years and an increase in life expectancy from ~78.64 to 81.11 years. This group has 
the highest average policy benefit (mean ≈ 0.25 years) and the smallest spread in impacts (SD ≈ 
0.05 in Period 1 and 0.04 in Period 2), reflecting more homogeneous exposure conditions and 
more consistent marginal gains from PM2.5 reductions. 

In sum, PM2.5 impacts declined in all strata between periods and overall life expectancy rose 
everywhere, but the magnitude and consistency of gains vary systematically: the most 
disadvantaged tracts show the largest heterogeneity (widest spread) and smaller mean policy 
benefit, while the most advantaged tracts have the most consistent exposures and the largest 
average policy benefit. 
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Table 7. PM2.5 impact and life expectancy statistics over California census tracts across 
disadvantage status using five age groups.  

 

The goal of Task 5 was to translate the extensive modeling and analytic results from Tasks 2 
through 4 into a geographic format that would be accessible to policymakers, community 
stakeholders, and researchers. This task required the creation of high-resolution GIS maps that 
displayed both exposure distributions and the estimated life expectancy impacts attributable to 
PM2.5, stratified by generation, race and ethnicity, and neighborhood vulnerability status. These 
maps allow identification of areas where life expectancy is most affected, which often 
correspond to regions with known persistent emissions, including goods-movement corridors, 
wildfire-prone areas, and other locations with local air pollution sources. By connecting modeled 
health impacts to geographic patterns and underlying emission sources, the mapping component 

Impact Assessment 
(years) 

Min 5th Pcnt 
10th 
Pcnt 

25th 
Pcnt 

Mean 
95th 
Pcnt 

Max Std 

Most Disadvantaged 

PM25 Impact (2010) 0.05 0.58 0.69 0.79 0.82 0.91 0.93 0.12 

PM25 Impact (2020) 0.12 0.51 0.57 0.63 0.66 0.77 0.84 0.09 
All Cause LE (2010) 73.93 77.41 78.02 78.57 78.81 79.62 82.14 0.78 
All Cause LE (2020) 76.98 80.19 80.62 81.10 81.35 82.33 85.64 0.74 
Policy Benefits (P1 -> P2) -0.25 0.01 0.06 0.12 0.16 0.26 0.38 0.07 
  Moderately Disadvantaged 

PM25 Impact (2010) 0.07 0.67 0.73 0.80 0.82 0.90 0.93 0.10 

PM25 Impact (2020) -0.02 0.50 0.53 0.58 0.62 0.73 0.82 0.09 
All Cause LE (2010) 72.90 77.89 78.11 78.46 78.82 80.12 82.31 0.85 
All Cause LE (2020) 75.95 80.36 80.55 80.95 81.39 82.99 85.60 0.91 
Policy Benefits (P1 -> P2) -0.12 0.09 0.12 0.17 0.20 0.28 0.43 0.06 
  Less Disadvantaged 

PM25 Impact (2010) 0.30 0.72 0.76 0.80 0.82 0.89 0.93 0.06 

PM25 Impact (2020) 0.06 0.50 0.52 0.55 0.58 0.69 0.89 0.06 
All Cause LE (2010) 74.02 78.00 78.09 78.30 78.78 80.46 82.33 0.78 
All Cause LE (2020) 76.97 80.28 80.42 80.70 81.33 83.56 85.57 0.98 
Policy Benefits (P1 -> P2) -0.15 0.14 0.17 0.22 0.24 0.30 0.43 0.05 
  Most Advantaged 

PM25 Impact (2010) 0.40 0.74 0.76 0.79 0.81 0.88 0.92 0.05 

PM25 Impact (2020) 0.34 0.50 0.52 0.55 0.57 0.63 0.87 0.04 
All Cause LE (2010) 76.57 78.02 78.07 78.20 78.64 80.17 81.99 0.69 
All Cause LE (2020) 79.24 80.19 80.27 80.48 81.11 83.29 85.32 0.96 
Policy Benefits (P1 -> P2) -0.17 0.18 0.20 0.23 0.25 0.31 0.48 0.05 
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provides a critical interpretive tool for understanding the spatial dimensions of PM2.5-related 
health disparities and can guide targeted interventions and community-level decision-making. 

The first stage of this work involved preparing the exposure surfaces generated in Task 2 for 
mapping. The research team aggregated the statewide daily PM2.5 surfaces at 100-meter 
resolution into annual averages at the CT-level, thereby balancing resolution with usability. By 
summarizing to tracts, the research team were able to align the exposure surfaces directly with 
demographic and vulnerability data from the Census and CalEnviroScreen. The research team 
produced tract-level annual averages for 1990, 2000, 2010, and 2020, allowing comparisons 
across three decades of regulatory progress. These maps revealed dramatic declines in PM2.5 
concentrations across much of California, particularly in major urban centers such as Los 
Angeles and the Bay Area. However, they also showed persistent hotspots in the San Joaquin 
Valley and Inland Empire, regions that remain subject to meteorological inversions and high 
levels of goods movement-related emissions. 

The second stage involved mapping mortality impacts and life expectancy loss attributable to 
PM2.5. Using the coefficients and life table estimates from Task 4, the research team generated 
tract-level estimates of years of life lost due to PM2.5 exposure for each decade. These impacts 
were mapped under both the twenty-group and aggregated age group frameworks, and stratified 
by race-ethnicity and vulnerability. For example, in the Aggr2 framework, the research team 
calculated PM2.5-attributable life expectancy loss for Hispanics, non-Hispanic Blacks, non-
Hispanic Whites, non-Hispanic Asians, and Others in each CT. These estimates were then 
visualized in maps that showed spatial clustering of disparities. The San Joaquin Valley 
consistently displayed the largest life expectancy losses, particularly among Hispanic residents, 
while non-Hispanic Black populations in Los Angeles tracts were disproportionately affected 
despite overall improvements in exposure levels. 

The research team also developed change maps that illustrated the difference in PM2.5 
exposure and PM2.5-attributable life expectancy loss between the first and second generations. 
These maps revealed both the magnitude of progress and the persistence of inequities. Statewide, 
the average PM2.5 concentration fell substantially between 1990-2005 and 2006-2020, leading to 
measurable gains in life expectancy. Yet tracts in the top quartile of vulnerability, as identified by 
CalEnviroScreen, showed smaller gains and in some cases persistent losses. For example, in 
many disadvantaged tracts of the Central Valley, the PM2.5-related life expectancy loss in the 
second generation remained as high as the statewide average in the first generation, indicating 
that improvements have lagged in precisely the communities most burdened by environmental 
and social vulnerabilities. 

The mapping process also allowed us to overlay PM2.5 exposures and impacts with policy-
relevant boundaries, such as air basins, air districts, and goods movement corridors. This was 
particularly important for connecting results back to regulatory frameworks. For example, maps 
stratified by air basin highlighted how improvements in the South Coast and San Joaquin Valley 
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districts differed in magnitude, and how continued non-attainment challenges in these regions 
translated into health disparities. Maps of goods movement corridors revealed elevated PM2.5 
burdens along major freight routes and near ports, illustrating the intersection between economic 
activity, emissions, and health. 

Beyond statewide maps, the research team prepared regional and community-level atlases 
designed for dissemination in stakeholder meetings. For each region, including Bay Area, Los 
Angeles, San Joaquin Valley, Inland Empire, and Sacramento, the research team created a series 
of maps showing baseline exposures, life expectancy loss in the first generation, life expectancy 
loss in the second generation, and changes over time. These regional atlases were accompanied 
by demographic overlays, showing the distribution of race-ethnicity and vulnerability. This 
design allowed community members and local policymakers to see how air pollution health 
burdens intersect with population characteristics in their own areas. 

The final stage of this task involved dissemination formats. All maps were prepared in 
ArcGIS Pro and exported in formats suitable for integration into ArcGIS Online, making them 
accessible as interactive layers. Users can zoom into tracts, filter by race or vulnerability, and 
view time trends. The research team also provided CARB with map packages in CARB-
compatible formats for internal use. To further enhance accessibility, maps were incorporated 
into presentations with plain-language captions, fact sheets, and infographics that explained what 
the colors and patterns represented in terms of real years of life lost or gained. 

The outputs of Task 5 clearly demonstrated that GIS mapping can make the complex 
statistical findings of Tasks 2-4 both interpretable and actionable. They revealed the tangible 
successes of air quality policy in reducing PM2.5-related mortality, while also underscoring the 
stubborn persistence of environmental justice disparities across California. For example, Figure 
12 illustrates that the San Joaquin Valley experienced some of the highest PM2.5-related 
reductions in life expectancy in 2010, reflecting historically elevated exposure levels from a 
combination of agricultural emissions, transportation corridors, and meteorological conditions 
that trap pollution. By 2020, the overall PM2.5 impact in the Valley has decreased slightly, 
consistent with statewide improvements in air quality, yet it remains substantial relative to other 
regions. The policy benefits map shows the estimated gains in life expectancy attributable to 
reductions in PM2.5 between 2010 and 2020, highlighting that the Valley continues to see 
meaningful, but comparatively smaller, improvements than less-impacted areas. These patterns 
underscore the persistent vulnerability of the region to air pollution and suggest that targeted 
mitigation in high-exposure corridors could yield additional health benefits. The deliverables 
from this task included a statewide GIS atlas, regional atlases for key air basins, and a full suite 
of map files suitable for CARB’s use in both internal policy analysis and external 
communication. 
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Figure 12. Overall PM2.5 impact on life expectancy for 2010 (left), 2020 (middle), and the policy benefits representing years of life 
saved from 2010 to 2020 (right). 
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Task 6. Address Impacts in Communities 
As part of the project’s community outreach efforts, the Regional Asthma Management and 

Prevention program (RAMP) played a central role in communicating the study’s goals, design, 
and early findings to diverse audiences across California. RAMP is widely recognized for its 
long-standing leadership in asthma prevention, environmental health, and health equity, as well 
as for its strong collaborations with community organizations, health professionals, 
environmental justice advocates, and policy networks. Their established relationships and 
community trust made them an ideal partner to ensure that the project’s communication reached 
stakeholders who are both directly affected by air pollution and actively engaged in improving 
community health.  

In March 2024, RAMP hosted two community webinars titled “Understanding the Impacts of 
Air Pollution on Life Expectancy Across Communities – Study Design and Partner Feedback.” 
The sessions, held on March 26 and March 28 at different times to accommodate varied 
schedules, presented identical material and were organized to reach community members, 
medical providers, environmental justice and tenant-rights advocates, and other stakeholders in 
asthma, healthcare, and health equity. RAMP broadly advertised the webinars through its RAMP 
Digest e-newsletter (which reaches over 1,200 recipients), the Community Action to Fight 
Asthma Network, and the California Alliance for Children’s Environmental Health. In addition to 
these channels, RAMP provided a preview of the webinar content during a meeting of the San 
Diego–Tijuana Air Quality Task Force after a RAMP partner shared the webinar announcement 
with the Task Force facilitator; this preview functioned as an additional outreach touchpoint prior 
to the webinars themselves. To support accessibility, the presentation slides were translated into 
Spanish and attendees were offered gift cards. More than 100 participants attended the March 26 
session and more than 40 attended the March 28 session. RAMP shared the webinar slides with 
registrants after the events. Webinar participants represented a diverse cross-section of California 
communities, including both urban and rural areas, regions with high PM2.5 exposure, and 
neighborhoods with elevated asthma prevalence and other environmental health burdens. 
Attendance included stakeholders from environmental justice communities, public health 
organizations, healthcare providers, and advocacy groups, reflecting the geographic and 
demographic diversity of populations disproportionately impacted by air pollution. This breadth 
of participation helped ensure that outreach efforts captured perspectives from communities most 
affected by the study’s findings. 

Each webinar opened with introductions and an overview, included contextual background 
from RAMP about the links among air pollution, asthma, and health including mortality, featured 
the study presentation by Dr. Jason Su, and concluded with a question-and-answer and 
discussion session. Participants’ feedback, collected during and after the webinars, affirmed the 
relevance of the research to a range of practical activities. Respondents noted the project’s 
applicability to asthma care and indoor-air-quality work, the usefulness of satellite-based PM 
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monitoring for research contexts, and the importance of identifying interventions that reduce 
pollutant exposure for people with respiratory conditions. Several participants urged more 
investment in public transportation as a means to reduce emissions. Others emphasized 
dissemination methods that would bring the findings to community members directly, proposing 
flyers, posters, emails, recorded videos, and webinars as channels to broaden reach. Suggestions 
to increase public awareness and to tailor communications to community needs, for example, 
through translated materials and visually accessible flyers, were raised repeatedly. The project 
team plans to incorporate several participant-recommended dissemination approaches in future 
efforts. These include producing translated materials, visually accessible flyers and infographics, 
short recorded videos, targeted emails, and continued webinars to broaden reach. By 
operationalizing these suggestions, the team aims to enhance the accessibility and impact of 
research findings for both technical and non-technical audiences, including families, community 
organizations, and policymakers. 

Participants also described how the research could inform policy and systems change, noting 
that clearer and more accessible presentation of results could support advocacy and education. 
Several respondents said dissemination via community-facing materials such as flyers or posters, 
targeted emails, recorded videos on platforms like YouTube, and inclusion in newsletters would 
help reach non-technical audiences. Attendees recommended continuing monitoring and outreach 
and suggested that policy makers be presented with concise, actionable information. A number of 
respondents commented that the research should be disseminated through both academic outlets 
and public-facing channels to serve distinct audiences: some recommended publication in 
journals while others emphasized community education and practical tools for affected families. 
Finally, participants proposed additional research directions, including investigation of whether 
and how policy makers incorporate air-pollution evidence into project decisions, indicating 
interest in future work that connects scientific findings to policy uptake. Insights from 
participants highlight the importance of connecting scientific findings on PM2.5 and life 
expectancy to actionable guidance. For example, emphasizing tract-level disparities and clearly 
illustrating health benefits from PM2.5 reductions can help policymakers prioritize interventions 
in high-exposure areas. Recommendations on concise, visually clear, and community-tailored 
communications will guide future outreach strategies, supporting evidence-informed decisions in 
public health planning, environmental justice initiatives, and local policy development. 

Overall, community feedback from RAMP’s webinars directly informed the study’s approach 
to communication and dissemination. Suggestions from participants helped shape the framing of 
results, emphasizing accessible presentation of life-expectancy impacts and clear 
contextualization of PM2.5 exposure. Input on visual materials, translated slides, and community-
friendly formats guided refinements to outreach products, while participant questions and 
discussion highlighted topics for further clarification and explanation. This engagement ensured 
that stakeholder perspectives were considered in translating complex modeling outcomes into 
practical, actionable information for diverse audiences. 
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Discussion 
This study provides a unique comprehensive evaluation to date of how PM2.5 affects 

mortality risk and life expectancy in California, combining two decades of population-wide 
mortality data with high-resolution exposure modeling and multiple layers of stratification. A 
central contribution of this work is addressing a critical gap in literature: while a large body of 
research evaluates PM2.5-related mortality risks, only a small number of studies provide direct 
life-expectancy estimates. Among those that do, most present single-period estimates, rarely 
examine how impacts evolve over time, and almost none evaluates both mortality risks and life-
expectancy impacts across two distinct decades. Even fewer studies incorporate race-ethnicity 
and detailed age-group stratification, and to our knowledge, no prior work has examined how the 
distributional structure of PM2.5 impacts, across population versus deaths, changes from one 
period to another. This analysis therefore adds substantially to the scientific evidence base by 
providing (1) PM2.5 impacts on mortality risks and their changes from one period to another, (2) 
decade-specific overall life-expectancy impacts and changes between periods, (3) multi-age and 
multi-race analyses within a period and changes across periods, and (4) the first application of a 
dual population-weighted and death-weighted PM2.5 impact framework to detect whether 
younger or older age groups were impacted more. 

The decision to divide the analysis into two consecutive periods, 2000–2010 and 2011–2021, 
was driven by methodological, interpretive, and data-related considerations rather than an intent 
to maximize differences or align with any single regulatory milestone. First, our primary 
objective was to evaluate how PM2.5-related mortality risks and life-expectancy impacts evolved 
over time as air quality improved, while maintaining sufficient continuity in population structure, 
exposure assessment, and mortality data quality. Using consecutive periods allows us to examine 
temporal change under broadly comparable demographic and epidemiologic contexts, reducing 
confounding from large shifts in population composition, healthcare access, or baseline mortality 
patterns that would be more likely with widely separated periods. A larger temporal gap could 
indeed produce greater contrasts in PM2.5 concentrations, but it would also introduce additional 
sources of heterogeneity that would complicate interpretation of changes in life expectancy and 
mortality burden. Second, the selected cut point was not chosen to align with a single regulatory 
action or to amplify observed differences. California’s air quality improvements reflect a long 
sequence of regulatory and technological changes implemented over several decades, rather than 
a discrete policy event occurring around 2010. There was no specific regulation enacted in that 
year that would justify treating 2010 as a causal breakpoint. Instead, the division approximately 
separates an earlier decade characterized by higher ambient PM2.5 concentrations from a more 
recent decade in which concentrations were substantially lower and more spatially homogeneous. 
This allows us to assess whether health impacts persisted, attenuated, or shifted across age and 
race-ethnicity groups as the exposure distribution changed. Third, dividing the study period into 
two roughly equal-length intervals improves statistical stability and interpretability. Each period 
contains sufficient deaths across age and race-ethnicity strata to support stratified mortality 
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modeling and life-expectancy estimation. Using shorter or more fragmented time windows 
would reduce power and increase uncertainty, while using a single long period would obscure 
meaningful temporal changes in both exposure levels and health impacts. Finally, the research 
team emphasize that our conclusions do not rely on large absolute differences between periods. 
In fact, the central finding is that although PM2.5-related mortality risks and life-expectancy 
impacts declined from Period 1 to Period 2, substantial impacts remained, and the distribution of 
those impacts across age groups and race-ethnicity groups changed. The observed trends are 
therefore interpreted as evidence of regulatory progress coupled with persistent and evolving 
vulnerability, rather than as an artifact of period selection. 

In addition to filling these scientific gaps, the results align with and extend the established 
epidemiologic literature. Numerous long-term PM2.5 studies worldwide report elevated all-cause 
mortality risks per incremental increase in PM2.5, typically with odds ratios between 1.04 and 
1.15. In our integrated analysis spanning both study periods (2000-2021), the age-specific 
logistic regression models produced coefficients ranging from 0.025 to 0.16. The reported 
coefficients correspond to the estimated change in the log-odds of mortality per IQR increase in 
PM2.5. This approach allows the coefficients to reflect the effect associated with a typical 
population-level range of variation in PM2.5 exposure and facilitates comparison across age 
groups and with other studies reporting IQR-based effect estimates. These values correspond to 
odds ratios between approximately 1.03 and 1.17, indicating modest but consistent increases in 
risk associated per IQR increase in PM2.5 exposure. The effect estimates obtained in our study 
fall squarely within this expected range, which reinforces their plausibility and supports the 
robustness of our findings. Likewise, the death-weighted life-expectancy losses estimated here, 
0.61 years in Period 1 and 0.37 years in Period 2, closely match those reported by major national 
life-expectancy studies, including Correia et al., Schwartz et al., and Chen et al.,1–3 all of which 
identify PM2.5-related life-expectancy reductions between 0.3 and 0.9 years. These consistencies 
provide strong external support for the magnitude of effects estimated in this report and for the 
observed reductions in PM2.5 impacts across decades. 

Beginning with the unstratified, population-wide analyses, the results confirm that PM2.5 
remained a significant determinant of mortality and life expectancy in California. When the 
analysis was carried out separately for Period 1 (2000–2010) and Period 2 (2011–2021), 
mortality risks associated with long-term PM2.5 exposure were positive and statistically 
significant across all age groups, and the effect weakened in Period 2, reflecting improvements in 
air quality resulting from California’s long-standing regulatory actions and emission-control 
programs. The overall death-weighted life-expectancy impact fell from Period 1 to Period 2 (0.61 
to 0.37 years), which is central to the study’s principal finding and reflects the combination of 
lower ambient PM2.5 concentrations and the cumulative effects of California’s regulatory and 
technological advances. Because the death-weighted metric places emphasis on age groups that 
account for most deaths, it is especially informative about the public-health burden that PM2.5 
imposes on the mortality structure. The reduction in the death-weighted impact demonstrates that 



90 
 

regulatory progress translated into meaningful reductions in PM2.5-related mortality at the state 
level. 

When results are disaggregated by age group and race-ethnicity, care must be taken to not 
overinterpret these highly disaggregated results.  However, important and policy-relevant 
patterns emerge. Across most race-ethnicity groups, older adults tended to bear the larger PM2.5 
mortality impacts in Period 1. In Period 2, the contribution of younger and middle-aged groups 
grew relative to older adults. This pattern is likely driven by reductions in PM2.5 exposure among 
older adults, improved baseline health in later life, and demographic shifts that increased the 
population and baseline mortality of working-age adults. Additionally, ongoing exposures in 
occupational and commuting settings, which are more relevant for younger and middle-aged 
adults, may have amplified the relative impact on these groups despite overall lower per-unit 
risk. These findings suggest that while older adults remain highly susceptible, interventions 
targeting ambient and workplace exposures among younger and middle-aged populations could 
meaningfully reduce the total PM2.5 burden. 

Asians are a notable exception: their PM2.5 impacts remained broadly distributed across ages 
in both periods, with population- and death-weighted impacts nearly identical in Period 1 (0.94 
vs. 0.91), indicating that impacts were not concentrated exclusively in either the young or the 
old. Black populations consistently exhibited low impacts among younger adults in both periods 
and concentrated impacts in later life. Hispanic populations showed large, broadly distributed 
gains from PM2.5 removal in Period 1 and retained substantial sensitivity in Period 2. When 
policy gains between periods are quantified using the change in death-weighted impacts, Black 
and Hispanic groups stand out as having realized the largest improvements: approximately 0.59 
years for Black populations and 0.57 years for Hispanic populations, reflecting sizable reductions 
in PM2.5-attributable mortality that accrued to these groups between the two decades. By Period 
2, PM2.5 impacts for Black and White populations had fallen to comparatively low levels on a 
death-weighted basis, whereas Asian, Hispanic, and Other groups still showed meaningful 
remaining life-expectancy losses attributable to PM2.5. Interpretation of racial-ethnic patterns in 
PM2.5-attributable life-expectancy loss requires consideration of baseline life-expectancy 
differences across groups. In California, Asian and Hispanic populations have the highest 
baseline life expectancy, while Black populations have the lowest. These demographic patterns 
mean that a given PM2.5-attributable reduction represents a different proportional burden across 
groups. For example, Asian and Hispanic populations may show notable remaining PM2.5 
impacts in Period 2 despite having long life expectancy overall, while Black populations may 
show smaller remaining PM2.5 impacts but still experience lower total life expectancy due to 
accumulated historical and structural factors. Clarifying these contextual differences helps ensure 
that the results are interpreted as changes in PM2.5-related burden rather than as statements about 
absolute longevity or intrinsic population vulnerability. These race-ethnicity patterns point to the 
combined effects of historical exposure patterns, differential prevalence of chronic conditions, 
and the spatial distribution of populations, and broader structural determinants such as housing 
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conditions, cumulative environmental burdens, and differences in healthcare access, which may 
contribute to persistent disparities in PM2.5 impacts despite overall statewide improvements. 

To characterize spatial variation, the research team translated the race-ethnicity and age-
group–specific model results to the CT-level by applying modeled, race-ethnicity specific age-
group impacts to each tract’s demographic composition. This CT-level implementation produced 
spatially explicit maps of both absolute life expectancy and the change in PM2.5-impacted life 
expectancy from Period 1 to Period 2. CT-level outcomes reveal that ongoing air quality 
regulations and emission controls contributed to measurable public-health gains (impact from 
0.82 to 0.61 years). However, these CT-level results also show that statewide progress does not 
eliminate local variation: policy successes reduced the statewide death burden, but tract 
composition and legacy exposure patterns continue to shape where residual impacts remain. 
Some tracts experienced marked reductions in PM2.5-related life-expectancy losses between 
periods, whereas others showed only modest improvements. 

During the study window, PM2.5 standards were revised multiple times at both the federal and 
California levels. The federal annual PM2.5 National Ambient Air Quality Standard (NAAQS) 
was established at 15 µg/m3 in 1997 and later tightened to 12 µg/m3 in 2012. California adopted 
an annual PM2.5 standard of 12 µg/m3 earlier, in 2002, along with a 24-hour standard of 35 
µg/m3, thereby advancing more stringent controls ahead of the federal revision. These regulatory 
milestones align temporally with the substantial decline in ambient PM2.5 concentrations 
observed between Period 1 and Period 2. While our study does not attribute effects to any single 
regulatory action, the alignment between standard tightening and declining PM2.5-attributable 
mortality burden supports the interpretation that regulatory progress played a central role in 
shaping the observed temporal trends. These standard revisions and CARB regulatory actions 
likely contributed to the observed reductions in life-expectancy impacts between periods by 
accelerating emission reductions from mobile, industrial, and area sources. 

These findings provide policymakers with evidence that PM2.5 control continues to deliver 
tangible mortality benefits. These findings also suggest that the distribution of remaining harms 
has shifted. Maintaining and strengthening source-specific emission controls, especially for 
mobile sources and other persistent PM2.5 contributors, remains the most reliable path to further 
reducing impacts. Because younger and middle-aged contributions rose in Period 2 for many 
groups, policies and programs should broaden their focus beyond solely protecting older adults. 
Investments that reduce exposures for working-age populations (e.g., workplace protections, 
transit and freight routing policies, and community buffer measures) can now yield important 
mortality reductions. Continued targeted interventions for groups and tracts with remaining high 
impacts are essential. CT-level maps identify where tract composition and residual exposures 
concentrate risk, allowing CARB and local health departments to prioritize these locations for 
additional monitoring, community-level mitigation, exposure-reduction strategies in schools and 
workplaces, and health-system supports. These insights can also guide AB 617 communities in 
implementing focused interventions where the burden remains highest. 
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The particularly large policy gains for Black and Hispanic populations underscore that 
regulatory action can narrow disparities, and sustained attention to environmental justice, 
including ensuring that emission reductions reach communities of color and disadvantaged tracts, 
remains essential to extending these gains. Finally, complementing ambient reductions with 
policies that address downstream vulnerability, such as improving chronic disease management, 
expanding preventive and primary care, and addressing social determinants of health, will 
amplify life-expectancy gains from cleaner air. 

Another key contribution of this research is the innovative application of the dual population-
weighted and death-weighted PM2.5 impact framework to detect whether younger or older age 
groups were more impacted. The research team identified that when the overall population-
weighted impact is relatively high, but the death-weighted impact is relatively low, younger or 
middle-aged groups experience moderate-to-high per-person PM2.5 impacts while the elderly 
experience smaller per-person impacts. When the population-weighted impact is relatively low, 
but the death-weighted impact is relatively high, the reverse pattern holds: the numerically 
dominant younger or middle-aged groups have relatively low per-person impacts while elderly 
groups have moderate-to-high per-person impacts. When both population-weighted and death-
weighted impacts are high, all major age groups exhibit moderate-to-high per-person impacts. 
When both are low, per-person impacts are uniformly small across all age groups. Using these 
criteria, the research team can confidently identify the relative degree of PM2.5 impact across age 
strata. It is important to note, however, that this framework is sensitive to the underlying 
mortality structure and demographic composition of the population. Differences in age-specific 
death rates or the relative size of age and race-ethnicity groups can influence the comparison 
between population-weighted and death-weighted impacts. Users applying this approach in other 
populations or settings should consider how local mortality patterns and population distributions 
may affect the interpretation of relative PM2.5 impacts across age groups. 

The observed heterogeneity across race-ethnicity and age groups in this study should not be 
interpreted as evidence of intrinsic biological susceptibility differences to PM2.5. Our intent is not 
to imply race-specific biological mechanisms, but rather to describe how PM2.5-related mortality 
impacts are distributed across populations that differ systematically in exposure histories, 
baseline health, socioeconomic conditions, and mortality risk profiles. Race-ethnicity in this 
study functions as a marker for these correlated structural and contextual factors, not as a causal 
biological construct. To mitigate confounding by secular trends and other time-varying factors, 
we used a matched case-control design in which each death was matched to up to two controls 
who were alive at the time of death and matched on birth year and month, sex, and race-ethnicity. 
This design ensures that cases and controls are drawn from the same underlying population and 
mortality risk context within each period, so that long-term improvements in healthcare, 
prevention, and baseline mortality operate similarly on both groups. As a result, differences in 
PM2.5 associations are less likely to reflect broad secular changes or compositional shifts and 
more likely to capture contrasts in exposure within comparable risk sets. While residual 



93 
 

confounding by unmeasured individual-level factors is still possible, the matching strategy 
substantially reduces confounding related to age, cohort effects, sex, race-ethnicity, and calendar 
time within each period. We acknowledge that some age-by-race strata involve small numbers of 
deaths, particularly at younger ages and within smaller population groups. This limitation 
motivated the use of aggregated age-group schemes (10 age-group and 5 age-group models) to 
stabilize estimates and improve interpretability. Even with aggregation, some counter-intuitive or 
non-significant associations can arise due to limited statistical power rather than true protective 
effects. For this reason, we do not emphasize isolated age-specific coefficients for particular 
race-ethnicity groups. Instead, the primary focus of the analysis is on integrated patterns, 
population-weighted and death-weighted life-expectancy impacts within each period and 
changes between periods, which are far more stable and policy-relevant summaries of PM2.5 
burden. 

This study has limitations that temper causal claims about any single mechanism. Although 
this study relied on high-resolution (100-m) daily PM2.5 surfaces linked to individual residential 
locations at time of death, residual misclassification may arise from factors such as residential 
mobility, variability in address geocoding completeness, and differences in model performance 
across urban, suburban, and rural settings. These factors could, in principle, affect demographic 
groups differently if mobility patterns or residential contexts vary systematically by age or race-
ethnicity. Several aspects of the study design mitigate this concern. First, we removed individuals 
with less than one year of residence in their county. Second, exposure was assigned at the 
individual level using fine-scale, spatially resolved surfaces rather than area-level averages, 
reducing spatial smoothing error relative to coarser exposure metrics. Third, the matched case-
control framework ensures that cases and controls within each stratum are drawn from the same 
underlying geographic and demographic context, so non-differential exposure error within strata 
is more likely to attenuate effect estimates than to create spurious differences across groups. 
Importantly, any remaining exposure misclassification is expected to bias associations toward the 
null rather than generate artificial heterogeneity across age or race-ethnicity strata. As a result, 
the observed differences in population-weighted and death-weighted life-expectancy impacts are 
unlikely to be driven solely by exposure measurement error. Nevertheless, we recognize that 
subgroup-specific estimates, particularly for smaller populations and younger age groups, may 
carry greater uncertainty. For this reason, the study emphasizes aggregated, distributional metrics 
(population-weighted and death-weighted impacts and changes across periods) rather than 
isolated age-by-race coefficients, and interprets stratified findings in a descriptive and policy-
relevant context rather than as precise estimates of biological susceptibility. 

Another limitation of this analysis is that PM2.5 exposure was treated as a single mass-based 
metric and was not differentiated by emission source or chemical composition. Because the 
toxicity and associated health impacts of equivalent PM2.5 concentrations may vary by source, 
region, and time period, incorporating source- or composition-specific information could further 
inform the interpretation of results and support more targeted regulatory strategies. Accordingly, 
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these census tract–level estimates are best interpreted as a screening tool that can be used in 
conjunction with source-specific emissions information, chemical speciation data, or targeted 
monitoring campaigns to help identify priority locations where more detailed investigation and 
causal assessment may be warranted. However, we understand that implementing such source- 
and composition-specific analyses at a statewide scale over two decades would be technically 
and logistically challenging, and very likely infeasible due to the lack of consistent, long-term, 
high-resolution emissions and daily chemical speciation data. Even if such data were available, 
the required modeling and analytical effort would be substantial and would likely entail costs on 
the order of tens of millions of dollars. 

The CT-level results depend on tract composition and modeled per-group impacts. They 
identify where benefits were realized and where residual harms persist, but they do not by 
themselves prove local source attribution. . Despite these caveats, the combination of 
population/death-weighted analysis, detailed age- and race-ethnicity stratification, and CT-level 
mapping provides a clearer picture of how regulatory progress translated into mortality gains and 
how those gains were distributed. In short, California’s regulatory actions substantially reduced 
the burden of PM2.5 between the two periods, Black and Hispanic populations appear to have 
realized the largest policy gains, while residual impacts remain most salient in Asian, Hispanic, 
and Other groups and in particular census tracts, evidence that argues both for continued 
statewide controls and for targeted local and health-system strategies to further reduce air-
pollution-related mortality while also addressing remaining disparities. 

Conclusion 
This study provides the most comprehensive assessment to date of long-term PM2.5 impacts 

on mortality and life expectancy in California and offers new insight into how these impacts 
changed over two decades of major air-quality improvements. By integrating individual-level 
mortality records with high-resolution modeled exposures and stratified hazard models, the 
analysis fills critical gaps in the literature, particularly the scarcity of studies examining long-
term PM2.5 mortality risks and life-expectancy impacts across two separate decades. The findings 
therefore provide a valuable evidence base for ongoing regulatory evaluation and future 
standard-setting. The analytical framework is readily transferable to other U.S. regions and to 
nationwide studies, provided that comparable long-term, daily high-resolution PM2.5 exposure 
data and corresponding individual-level mortality records are available. While the magnitude and 
distribution of estimated impacts may differ across regions due to variations in age structure, 
baseline health conditions, regulatory history, and ambient PM2.5 mixtures, such differences 
would reflect underlying population and exposure characteristics rather than limitations of the 
modeling approach itself. As a result, the conclusions drawn for California should be interpreted 
as context-specific in magnitude, but broadly informative regarding the application of this 
framework to other regions with differing demographic and environmental profiles. 
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The strongest and most robust results of this study are the core mortality-risk estimates, the 
decline in long-term PM2.5-attributable mortality between the two periods, and the overall life-
expectancy gains observed statewide. These estimates derive from well-established 
epidemiologic methods applied to population-wide mortality data, and their stability across 
modeling choices gives them high reliability. The substantial drop in the statewide death-
weighted life-expectancy impact, from 0.61 years in 2000-2010 to 0.37 years in 2011-2021, 
reflects a clear, consistent signal that California’s regulatory and technological actions have 
translated into real improvements in public health. 

More granular findings, such as age-group specific shifts, race-ethnicity specific differences, 
and census-tract level heterogeneity, provide important insights but should be interpreted with 
somewhat more caution. These subgroup estimates illuminate meaningful patterns, such as the 
increasing contribution of younger and middle-aged populations in Period 2, or the particularly 
large policy gains for Black and Hispanic populations, but they can be influenced by smaller 
sample sizes, differential statistical power, and subgroup-specific demographic structures. 
Further, these findings should be viewed in the context of persistent differences in baseline life 
expectancy across racial-ethnic groups in California, which shape the proportional meaning of 
PM2.5-related losses and help prevent misinterpretation of our results. Similarly, the tract-level 
mapping results effectively reveal where residual burdens remain, but they reflect demographic 
composition and modeled exposure surfaces rather than direct causal attribution to specific local 
sources. These subgroup- and tract-level estimates provide a basis for identifying areas or 
populations with higher PM2.5-related impacts. They are intended for prioritization and screening 
purposes, not for attributing effects to specific emission sources. These results are therefore best 
viewed as informative and policy-relevant, but preliminary with respect to fine-scale causal 
inference. The ranking of the study findings from most trustworthy to more informative is 
provided in Table 8. 

Table 8. Ranking of findings by reliability and policy relevance 
Tier Findings Rationale for Level of Confidence 

Most trustworthy 
/ strongest 
evidence 

Statewide association between long-
term PM2.5 exposure and all-cause 
mortality across both periods 

Based on population-wide mortality 
data, large sample sizes, and well-
established epidemiologic methods 
with stable estimates 

Decline in PM2.5-attributable 
mortality risk from Period 1 (2000–
2010) to Period 2 (2011–2021) 

Consistent signal across models 
reflecting large-scale regulatory and 
air quality improvements 

Reduction in statewide death-
weighted life-expectancy loss from 
0.61 years to 0.37 years 

Derived from integrated life-table 
calculations using stable mortality-
risk estimates; robust to modeling 
choices 
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Tier Findings Rationale for Level of Confidence 

High confidence, 
policy-relevant 

Overall statewide life expectancy 
gains attributable to reductions in 
PM2.5 

Direct translation of robust mortality-
risk estimates into life-expectancy 
metrics 

Informative, 
interpret with 
some caution 

Age-group–specific shifts in PM2.5 
impacts, including increased relative 
contribution of younger and middle-
aged groups in Period 2 

Relies on stratified models with 
reduced sample sizes within age 
groups 

Race- and ethnicity-specific 
differences in PM2.5-related life-
expectancy impacts and policy gains 

Informative for equity and policy 
evaluation, but influenced by 
subgroup size and baseline life-
expectancy differences 

Exploratory / 
spatially 
informative 

Census-tract level variation in PM2.5-
attributable life-expectancy impacts 
and changes over time 

Stable in high-population tracts, but 
more uncertain in small tracts due to 
demographic composition and 
statistical variability 

Regional and community-level 
spatial patterns of remaining PM2.5 
burden 

Useful for identifying broad areas of 
concern, not for fine-scale causal 
attribution 

 

Taken together, the study provides CARB with a set of actionable insights. At a statewide 
level, the findings confirm that decades of emission controls have yielded substantial, 
measurable reductions in PM2.5-related mortality and life-expectancy losses. This provides strong 
support for continuing to strengthen PM2.5 standards, reinforce mobile-source and area-source 
regulations, and maintain California’s current regulatory trajectory. The decade-over-decade 
improvements also give CARB an empirically grounded demonstration of the public-health 
value of its past policies: evidence that can be used in regulatory impact assessments, state 
implementation plans, and benefit-cost analyses. Additionally, these results can inform 
coordination with local health departments, air districts, and community organizations to guide 
targeted mitigation efforts and public-health communication strategies. 

The subgroup and tract-level findings help CARB identify which populations and locations 
should be prioritized for the next generation of air-quality interventions. The results indicate that 
residual PM2.5 impacts increasingly cluster in communities with specific demographic 
compositions, especially Asian, Hispanic, and Other populations, and that some census tracts still 
experience comparatively high PM2.5-related life-expectancy losses, which likely reflect not only 
differences in PM2.5 exposure but also interactions with broader social and structural 
determinants such as chronic disease burden, housing quality, and access to preventive care. 
These patterns can directly inform CARB’s targeting of community-level mitigation efforts, 
planning of monitoring expansions, refinement of EJ-focused programs, and coordination with 
local agencies under initiatives such as AB 617. The shift toward greater impacts among younger 
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and middle-aged adults in Period 2 also suggests that CARB may consider strategies that reduce 
exposures in workplaces, transportation corridors, and freight systems, settings especially 
relevant for these age groups. 

In sum, this study shows that California’s regulatory actions substantially reduced the long-
term mortality burden of PM2.5, extended life expectancy statewide, and narrowed key race-
ethnicity disparities. At the same time, it identifies emerging demographic patterns and 
geographic concentrations of remaining impacts. The results offer CARB both strong, robust 
evidence to support statewide regulatory strategies and a set of preliminary but highly 
informative indicators to guide targeted, equity-focused interventions. Together, these findings 
underscore that continued emission reductions, when paired with localized and population-
specific investments, remain essential to ensure that cleaner air translates into longer, healthier 
lives for all Californians. Looking ahead, incorporating additional data sources, such as PM2.5 
chemical speciation, source-specific measurements, enhanced monitoring, and refined health-
outcome linkages, could further improve future assessments and help prioritize regulatory and 
public-health interventions.  
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Supplementary Figures 
Figure S 1. PRISMA Study Selection Flow Diagram. PRISMA = Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses. 
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Figure S 2. Number of Studies by Publication Year and Country. 
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Supplementary Tables 
Table S 1. Characteristics of included studies.   

Author and Year Age 
(Years) 

Exposure Study Period Location Study Size (n) 

Villeneuve 2002 25-74 PM2.5 1974-1991 USA 8,111 
Pope 2002 ≥ 30 PM2.5 1982-1998 USA 500,000 

Nafstad 2004 40-49 
Nitrogen Oxides 
Other 

1972-1998 Norway 16,209 

Enstrom 2005 ~65 PM2.5 1973-2002 USA 49,975 
Jerrett 2005 ≥ 30 PM2.5 1982-2000 USA 22,905 
Laden 2006 25-74 PM2.5 1974-1998 USA 8,096 
Zeger 2008 ≥ 65 PM2.5 2000-2005 USA 13.2 million 

Jerrett 2009 ≥ 30 PM2.5 
Ozone 

1977-2000 USA 448,850 

Cao 2011 ≥ 40 
Nitrogen Dioxide 
Other 

1991-2000 China 70,947 

Lepeule 2012 25-74 PM2.5 1974-2009 USA 8,096 

Heinrich 2012 50-59 
Nitrogen Dioxide 
Other 

1985-2008 Germany 4,752 

Jerrett 2013 ≥ 30 
PM2.5 
Ozone 
Nitrogen Dioxide 

1982-2000 USA 73,711 

Correia 2013 N/A PM2.5 2000-2007 USA N/Aa 
Ostro 2015 ≥30 PM2.5 2001-2007 USA 101,884 

Turner 2016 ≥ 30 
PM2.5 
Ozone 
Nitrogen Dioxide 

1982-2004 USA 669,046 

Kioumourtzoglou 
2016 

≥ 65 PM2.5 2000-2010 USA 35.3 million 

Shi 2016 ≥ 65 PM2.5 2003-2008 USA 268,050 deathsa 

Keijzer 2016 N/A 

PM2.5 
Ozone 
Nitrogen Dioxide 
Other 

2009-2013 Spain 44.6 million 

Di 2017 ≥ 65 PM2.5 
Ozone 

2000-2012 USA 60.9 million 

Wang 2017 ≥ 65 PM2.5 2000-2013 USA 13.1 million 
Schwartz 2018 ≥ 65 PM2.5 2000-2013 USA 17.0 million 
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Lefler 2019 18-84 

PM2.5 
Ozone 
Nitrogen Dioxide 
Other 

1987-2015 USA 635,539 

Hvidtfeldt 2019 50-64 

PM2.5 
Ozone 
Nitrogen Dioxide 
Other 

1993-2015 Denmark 49,564 

Dirgawati 2019 ≥ 65 
PM2.5 
Nitrogen Dioxide 
Other 

1996-2012 Australia 11627 

Yitshak-Sade 2019 ≥ 65 PM2.5 2000-2013 USA 15.4 million 
Chen 2019 N/A PM2.5 2010-2017 Taiwan N/Aa 
Yu 2020 N/A PM2.5 1998-2013 Australia 242,320 deathsa 
Wang 2020 ≥ 65 PM2.5 2000-2008 USA 53 milliona 
Qian 2021 ≥ 65 Nitrogen Dioxide 2000-2016 USA 13.6 million 
Anwar 2021 <5 PM2.5 2000-2017 Asiab N/Aa 

Byun 2022 ≥ 30 Ozone 2005-2015 South 
Korea 

179,806 

Liu 2022 16-110 PM2.5 2010-2017 China 30,524 
Yu 2022 N/A PM2.5 2010-2018 Brazil N/Aa 
Baranyi 2023 ~87 PM2.5 1939-2022 UK 2,734 

Hao 2023 ≥ 65 PM2.5 
Other 

2000-2017 USA 73.4 million 

Xue 2023 <5 Ozone 2003-2019 55 LMICs 1.2 million 
Shiferaw 2023 <5 PM2.5 2011-2016 Ethiopia 10,452 
Wang 2023 ≥45 Nitrogen Dioxide 2011-2018 China 15,440 
aThese were population-level ecologic studies that did not report the number of total included 
study participants. 
bThis study included 16 countries across Asia: Bangladesh, China, India, Indonesia, Iran, 
Malaysia, Mongolia, Myanmar, Nepal, Pakistan, Philippines, Russia, Sri Lanka, Thailand, 
Turkey, and Vietnam.  
Abbreviations: LMICS =Low and Middle-Income Countries. 
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Table S 2. All-cause mortality and air pollution.  
Author and Year Study Size (n) Mean (SD) or Median 

[IQR] Exposure Level 
All-Cause Mortality Risk 
(95% CI)a 

Exposure Increment 
(increase) 

Controlled 
confoundersb 

Exposure: PM2.5 
Pope 2002 500,000 17.7 (3.7) µg/m³ RR 1.06 (1.02-1.11) per 10 µg/m³  AGRSMH 
Villeneuve 2002 8,111 11.0 (1.0)-28.5 (5.5) µg/m³  RR 1.17 (1.05-1.30) per 10 μg/m³  AGSM 
Enstrom 2005 49,975 23.4 µg/m³ RR 1.01 (0.98-1.05) per 10 μg/m³  AGRSMH 
Jerrett 2005 22,905 20 µg/m³ RR 1.17 (1.05-1.30) per 10 μg/m³  AGRSMHUN 
Laden 2006 8,096 10.2-29.0 µg/m³ RR 1.16 (1.07-1.26) per 10 μg/m³   AGSM 
Zeger 2008 13.2 million 14.0 [3.0] μg/m³  RR 1.07 (1.05-1.09) per 10 μg/m³  AGRMN 
Jerrett 2009 448,850 11.9 (2.5)-15.4 (3.2) µg/m³ RR 1.08 (1.05-1.11) per 10 µg/m³  AGRSMHN 
Lepeule 2012 8,096 15.9 µg/m³ RR 1.14 (1.07-1.22) per 10 µg/m³  AGSMC 

Correia 2013 N/Ac 13.2 (3.4) µg/m³ 
0.35 years lost in life 
expectancy (p=0.033) per 10 µg/m³  AGRMCUNd 

Jerrett 2013 73,711 14.09 (3.52) µg/m³ RR 1.03 (1.00-1.06) per IQR (5.30 µg/m³)  AGRSMHUN 
Ostro 2015 101,884 17.9 µg/m3 HR 1.01 (0.97-1.05) per 10 μg/m³  ARSMHCN 
Keijzer 2016 44.6 million 8.22 μg/m³ RR 1.04 (1.04-1.04) per 2 μg/m³  Nd 
Kioumourtzoglou 2016 35.3 million 12 (1.6) µg/m HR 1.19 (1.11-1.28) per 10 μg/m³  AGRSCUN 
Shi 2016 268,050 deathsc 8.12 (2.28) µg/m³ RR 1.08 (1.02-1.13)e per 10 µg/m³  MNd 
Turner 2016 669,046 12.6 (2.9) µg/m³  HR 1.04 (1.02-1.06) per 10 µg/m³  AGRSMHN 
Di 2017 60.9 million 11.0 µg/m³  HR 1.07 (1.07-1.08) per 10 μg/m³  AGRSUN 
Wang 2017 13.1 million 10.7 [3.8] µg/m³  HR 1.02 (1.02-1.02) per 1 µg/m³  AGRSCUN 

Schwartz 2018 17.0 million 10.3 µg/m³  0.89 years (0.88-0.91) lost 
in life expectancy 

per 4.5 µg/m³  AGRSMCUN 

Chen 2019 N/Ac 26.37 (7.09) µg/m³ 
0.3 years (0.1-0.6) lost in 
life expectancy 

per 10 µg/m³  SNd 

Dirgawati 2019 11,627 5.1 (1.7) µg/m³ HR 1.07 (0.98-1.16) per 5 µg/m³   ASM 
Hvidtfeldt 2019 49,564 18.0 μg/m³  HR 1.13 (1.05-1.21) per 5 µg/m³  AGSMHN 
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Hvidtfeldt 2019 49,564 13.8 μg/m³  HR 1.03 (1.01-1.05) per IQR (1.36 µg/m³)   AGSMHN 
Lefler 2019 635,539 10.67 (2.37) µg/m³  HR 1.05 (1.03-1.06) per 10 μg/m³   AGRSMU 
Yitshak-Sade 2019 15.4 million 6.5-14.5 μg/m³  RR 1.04 (1.03-1.05) per IQR (3 µg/m³)   AGRSUN 
Wang 2020 53 million 10.32 (3.15) µg/m³ RR 1.05 (1.04-1.06) per 10 µg/m³   AGRSUN 
Yu 2020 242,320 deathsc 3.6 [2.0] μg/m³  RR 1.02 (1.01-1.03) per 1 μg/m³   Nd 

Anwar 2021 N/Ac 44.18 (24.52) µg/m³ 
14.5% (p<0.01) decrease 
in mortality 

per 1 µg/m³   UNd 

Liu 2022 30,524 47.1 (19.5) µg/m³  HR 1.13 (1.06-1.20) per IQR (26.7 µg/m³)   AGRSMHCU 
Yu 2022 N/Ac 7.7 μg/m³  RR 1.18 (1.15-1.21)g per 10 μg/m³   UNd 
Baranyi 2023 2,734 31.3 (32.6) µg/m³ HR 1.03 (1.01-1.04) per 10 μg/m³   AGSU 
Hao 2023 - Exposure I 73.4 million 10.03 (3.12) μg/m³ HR 1.01 (1.01-1.01) per 1 µg/m³   AGRSMUN 
Hao 2023 - Exposure II 73.4 million 9.30 (2.90) μg/m³ HR 1.01 (1.01-1.01) per 1 µg/m³  AGRSMUN 
Shiferaw 2023 10,452 20.1 (3.3) µg/m³ OR 2.29 (1.44-3.65) per 10 µg/m³   AGS 
Exposure: Ozone 
Jerrett 2009 448,850 57.7 ppb  RR 0.99 (0.98-1.00) per 10 ppb   AGRSMHN 
Jerrett 2013 73,711 50.35 (14.57) ppb RR 1.00 (0.96-1.04) per IQR (24.18 ppb)   AGRSMHUN 
Keijzer 2016 44.6 million 80.39 µg/m³ RR 1.02 (1.02-1.02) per 5 μg/m³   Nd 
Turner 2016 669,046 38.2 (4.0) ppb HR 1.02 (1.01-1.04) per 10 ppb   AGRSMHN 
Di 2017 60.9 million 46.3 ppb HR 1.01 (1.01-1.01) per 10 ppb   AGRSUN 
Hvidtfeldt 2019 49,564 55.4 μg/m³ HR 0.92 (0.89-0.96) per 10 µg/m³   AGSMHN 
Lefler 2019 635,539 47.45 (5.31) ppb  HR 1.00 (0.99-1.01) per 10 ppb   AGRSMU 
Byun 2022 179,806 21.9 (4.8) ppb HR 1.18 (1.07-1.29) per 10 ppb   AGSMHN 
Xue 2023 1.2 million 51.69 (9.56) ppb  HR 1.06 (1.02-1.11) per 10 ppb   G 
Exposure: Nitrogen Dioxide/Oxide 
Nafstad 2004 16,209 10.7 µg/m³ RR 1.08 (1.06-1.11) per 10 µg/m³  ASMHC 
Cao 2011 70,947 50 µg/m³ HR 1.02 (1.00-1.03) per 10 µg/m³  AGSMHC 
Heinrich 2012 4,752 39 (11.85) µg/m³ HR 1.18 (1.07-1.30) per 16 µg/m³    ASMC 
Jerrett 2013 73,711 12.27 (2.92) ppb RR 1.03 (1.01-1.06) per IQR (4.12 ppb)   AGRSMHUN 
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Keijzer 2016 44.6 million 9.48 µg/m³ RR 1.00 (1.00-1.00) per 5 μg/m³   Nd 
Turner 2016 669,046 11.6 (5.1) ppb HR 1.01 (1.00-1.03) per 10 µg/m³   AGRSMHN 
Dirgawati 2019 11,627 13.4 (4.1) µg/m³ HR 1.06 (1.00-1.13) per 10 µg/m³   ASM 
Hvidtfeldt 2019 49,564 25.0 μg/m³ HR 1.07 (1.04-1.10) per 10 µg/m³   AGSMHN 
Lefler 2019 635,539 10.69 (5.73) ppb HR 0.96 (0.93-0.98) per 10 ppb   AGRSMU 
Qian 2021 13.6 million 13.7 (5.9) ppb HR 1.05 (1.04-1.05) per 10 ppb   AGRSUN 
Wang 2023 15,440 21.2 (6.3) μg/m³  HR 1.22 (1.10-1.35) per 10 µg/m³   AGSMHCU 
aAll estimates of mortality risk were rounded to three significant figures. 
bA=Age, G=Sex or Gender, R=Race or ethnicity, S=Individual socioeconomic status, M=Smoking status (individual) or smoking 
prevalence (area-level), H=Other health-related behaviors, C=comorbidities or chronic health conditions, U=urbanicity, 
N=neighborhood-level or area-level socioeconomic status.  
dThese are ecologic studies that only controlled for area-level confounders. 
cThese are population-based studies that did not report the number of total included study participants. 
eThis RR was calculated from the reported percent change in mortality. 
Abbreviations: SD=Standard Deviation. IQR = Interquartile Range. CI=Confidence Interval. HR = Hazard ratio. RR = Relative risk. 
OR = Odds ratio.  
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Table S 3. All-cause mortality risk from air pollution stratified by age.  
Author, Year  Youngest 

Age Group 
All-cause Mortality Risk Oldest Age 

Group 
All-cause Mortality Risk Exposure Increment 

(Increase) 
PM2.5 
Baranyi 2023 11-55 years HR 1.00 (0.96-1.04) 75-86 years HR 1.03 (1.00-1.05) per 10 µg/m³ 
Pope 2002a 30-60 years  RR 1.04 (1.00-1.09) ≥70 years RR 1.05 (1.01-1.09) per 10 µg/m³ 
Enstrom 2005 43-64 years RR 1.03 (1.00-1.05) 65-99 years RR 1.00 (0.98-1.02) per 10 µg/m³ 
Yu 2020 <65 years RR 1.06 (1.04-1.07) ≥65 years RR 1.01 (1.01-1.02) per 1 µg/m³ 
Zeger 2008 65-74 years RR 1.11 (1.09-1.14) ≥85 years RR 1.02 (1.00-1.04) per 10 µg/m³ 
Kioumourtzoglou 2016 % >65 years 

(25th pct)b 
RR 1.11 (1.03-1.21) % >65 years 

(75th pct)b 
RR 1.25 (1.16-1.35) per 10 µg/m³ 

Di 2017 65-74 years HR 1.15 (1.14-1.15) ≥85 years HR 1.00 (0.99-1.00) per 10 µg/m³ 
Wang 2017a 65-74 years HR 1.04 (1.04-1.04) ≥85 years  HR 1.00 (1.00-1.00) per 1 µg/m³ 
Ozone 
Di 2017 65-74 years HR 1.01 (1.01-1.01) ≥85 years HR 1.02 (1.01-1.02) per 10 ppb 
Nitrogen Oxides 
Nafstad 2004 40-45 years RR 1 (Reference) 46-49 years RR 1.65 (1.55-1.76) per 10 µg/m³ 
Wang 2023 45-64 years HR 1.01 (0.85-1.21) ≥65 years HR 1.35 (1.19-1.53) per 10 µg/m³ 
Qian 2021 65-80 years HR 1.06 (1.03-1.08) >80 years HR 1.03 (1.01-1.05) per 10 ppb 
aNumeric data for these studies were extracted from the published figures via DigitizeIt Software.22,23 
bNeighborhood level proportion of residents of >65 years at the 25th percentile versus 75th percentile.
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Table S 4. All-cause mortality risk from air pollution stratified by sex.  
Author, Year All-cause mortality risk Exposure increment 

(increase) Male Female 
PM2.5 
Pope 2002 RR 1.06 (1.02-1.10) RR 1.02 (0.98-1.06) per 10 µg/m³ 
Enstrom 2005 RR 0.99 (0.97-1.02) RR 1.03 (1.01-1.05) per 10 µg/m³ 
Zeger 2008 RR 1.07 (1.05-1.09) RR 1.09 (1.06-1.11) per 10 µg/m³ 

Correia 2013 
0.08 years lost in life expectancy 
(SE=0.20) 

0.59 years lost in life expectancy 
(SE=0.17) 

per 10 µg/m³ 

Wang 2017 HR 1.03 (1.02-1.03) HR 1.02 (1.01-1.02) per 1 µg/m³ 
Di 2017 HR 1.09 (1.08-1.09) HR 1.06 (1.06-1.06) per 10 µg/m³ 

Schwartz 2018 
1.17 years (1.14-1.19) lost in life 
expectancy 

0.74 years (0.72-0.77) lost in life 
expectancy 

per 4.5 µg/m³ 

Hvidtfeldt 2019 HR 1.20 (0.91-1.57) HR 1.05 (0.97-1.14) per 5 µg/m³ 
Yu 2020 RR 1.01 (1.01-1.02) RR 1.03 (1.02-1.04) per 1 µg/m³ 
Yu 2022a N/A N/A N/A 
Hao 2023 HR 1.04 (1.04-1.04) HR 1.04 (1.04-1.04) per 3.68 µg/m³ 
Baranyi 2023 HR 1.04 (1.01-1.07) HR 1.02 (0.99-1.05) per 10 µg/m³ 
Ozone 
Di 2017 HR 1.01 (1.01-1.01) HR 1.01 (1.01-1.01) per 10 ppb 
Xue 2023 No difference (p=0.502) per 10 ppb 
Nitrogen Oxides 
Hvidtfeldt 2019 HR 1.10 (1.06-1.14) HR 1.03 (0.99-1.07) per 10 µg/m³ 
Qian 2021 HR 1.01 (1.00-1.02) HR 1.08 (1.06-1.09) per 10 ppb 
Wang 2023 HR 1.26 (1.10-1.44) HR 1.17 (1.00-1.36) per 10 µg/m³ 
aThis study reported that avoidable loss of life expectancy from PM2.5 exposure was higher in males than in females but did not 
quantify risk values.
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Table S 5. All-cause mortality risk from air pollution stratified by race. 
Author, Year All-cause mortality risk Exposure 

increment 
(increase) 

White Black Hispanic Asian Native American 

PM2.5     
Kioumourtzoglou 
2016 

HR 1.11 (1.01-
1.22)a 

HR 1.29 (1.19-
1.39)a 

N/A HR 1.19 (1.11-
1.28)a 

N/A per 10 μg/m³ 

Wang 2017 
HR 1.02 (1.02-
1.02) 

HR 1.03 (1.03-
1.03) 

Others: 1.06 (1.06-1.07) per 1 μg/m3 

Di 2017 
HR 1.06 (1.06-
1.07) 

HR 1.21 (1.20-
1.22) 

HR 1.12 (1.10-
1.13) 

HR 1.10 (1.08-
1.12) 

HR 1.10 (1.06-1.14) per 10 μg/m³ 

Yitshak-Sade 2019  
RR 1.03 (1.03-
1.04) 

RR 1.10 (1.09-
1.12) 

N/A N/A N/A per 3 μg/m³ 

Ozone       
Di 2017 HR 1.01(1.01-

1.01) 
HR 1.01 
(1.01-1.01) 

HR 0.98 (0.97-
0.98) 

HR 0.98 (0.97-
0.99) 

HR 0.96 (0.94-0.98) per 10 ppb 

Nitrogen Oxides     
Qian 2021 HR 1.06 (1.05-

1.07) 
HR 1.00 (0.98-
1.02) 

Other: HR 0.98 (0.94-1.02) per 10 ppb 

aRisk values at the 75th percentiles for the proportion of White, Black, and Asian residents, respectively.
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Table S 6. All-cause mortality risk from air pollution stratified by education level.  
Author, Year All-cause mortality risk Exposure increment 

(Increase) Low Education Level Moderate Education Level High Education Level 
PM2.5     
Pope 2002a HR 1.09 (1.03-1.14) HR 1.05 (1.01-1.09) HR 1.00 (0.97-1.04) per 10 μg/m3 
Enstrom 2005b RR 1.02 (0.99-1.05) RR 1.01 (0.97-1.04) RR 1.01 (0.98-1.03) per 10 μg/m3 
Kioumourtzoglou 2016c HR 1.26 (1.16-1.38) N/A HR 1.15 (1.06-1.24) per 10 μg/m3 
Kioumourtzoglou 2016d HR 1.22 (1.13-1.31) N/A HR 1.14 (1.05-1.24) per 10 μg/m3 
Wang 2017e HR 1.023 (1.021-1.024) N/A HR 1.019 (1.018-1.020) per 1 μg/m3 
Hvidtfeldt 2019f HR 1.13 (1.04-1.23) HR 1.14 (1.06-1.23) HR 1.07 (0.95-1.28) per 5 μg/m³ 
Nitrogen Oxides     
Nafstad 2004g HR 1 (Reference) HR 0.78 (0.73-0.84) HR 0.66 (0.60-0.74) per 10 ppb 
Hvidtfeldt 2019f HR 1.09 (1.04-1.14) HR 1.06 (1.02-1.10) HR 1.06 (0.99-1.13) per 10 μg/m³ 
Wang 2023h HR 1.27 (1.13-1.42) HR 1.10 (0.88-1.37) N/A per 10 μg/m³ 
aLow, moderate, and high education levels were defined as <high school, high school, and >high school, respectively. 
bLow, moderate, and high education levels were defined as <12 years of education, 12 years of education, and >12 years of education, 
respectively. 
cThese values refer to HRs at neighborhood level percentiles of residents with a college degree (20th versus 80th percentile) tabulated 
as low and high levels of education, respectively.  
dThese values refer to HRs at neighborhood level percentiles of residents with no high school degrees (80th versus 20th percentile) 
tabulated as low and high levels of education, respectively. 
eThis study reported effect modification by neighborhood level percentiles of less educated (20th versus 80th percentile) tabulated as 
high and low education levels respectively. The numeric HRs were extracted from published figures via DigitizeIt software.22,23 

fLow, moderate, and high education levels were defined as 8-11 years of basic schooling, 11-14 upper secondary/vocational training, 
and 15+ years of schooling, respectively.  
gLow, moderate, and high education levels were defined as <10, 10-12, and >12 years of education, respectively. 
hLow and moderate education levels were defined as 0-6 years and >7 years of education, respectively. 
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Table S 7. All-cause mortality risk from air pollution stratified by SES metrics. 
Author, Year All-cause mortality risk Exposure Increment (Increase) 

Low SES High SES 
PM2.5    
Zeger 2008a HR 6.9 (4.1-9.8) HR 8.3 (5.9-10.8) per 10 μg/m³ 
Kioumourtzoglou 2016b HR 1.28 (1.18-1.40)  HR 1.14 (1.06-1.23) per 10 μg/m³ 
Kioumourtzoglou 2016c HR 1.23 (1.14-1.33) HR 1.13 (1.04-1.23) per 10 μg/m³ 
Kioumourtzoglou 2016d HR 1.23 (1.14-1.33) HR 1.13 (1.04-1.22) per 10 μg/m³ 
Wang 2017e HR 1.022 (1.021-1.023)f HR 1.018 (1.017-1.019)f per 1 μg/m³ 
Wang 2017g HR 1.021 (1.020-1.023)f HR 1.020 (1.019-1.021)f per 1 μg/m³ 
Wang 2017h HR 1.020 (1.018-1.021)f HR 1.021 (1.020-1.022)f per 1 μg/m³ 
Nitrogen Oxides    
Nafstad 2004i RR 1.08 (1.00-1.17) RR 1.00 (reference) per 10 ppb 
Qian 2021j HR 1.05 (1.04-1.06) HR 1.05 (1.04-1.06) per 10 ppb 

aSocioeconomic status (SES) was defined using five ZIP code-level factors (percentage with a high school diploma, percentage with a 
higher education degree, percentage of households above the poverty level, median household income, and percentage employed). Zip 
codes with higher than national median across majority of factors were categorized as high SES. 
b25th versus 75th percentiles in median household income. 
c25th versus 75th percentiles in percentage in poverty. 
d25th versus 75th percentiles in percentage of city families in poverty. 
e20th versus 80th percentile in percentage below poverty level. 
fThe numeric HRs were extracted from published figures via DigitizeIt software.22,23 
g80th versus 20th percentile in median income 
h80th versus 20th percentile in home value (80th vs. 20th percentile).  
iBlue collar occupation was interpreted as low SES and white collar as high SES. 
jLow SES was defined as below the median percentage below the poverty level. 
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Table S 8. All-cause mortality risk from air pollution stratified by Medicaid-Medicare dual eligibility as a proxy for socioeconomic 
status. 
Author, Year All-cause mortality risk in the Medicare Population Exposure increment 

(Increase) Medicaid Eligible Medicaid Non-Eligible 
PM2.5    
Di 2017 HR 1.08 (1.08-1.09) HR 1.08 (1.07-1.08) per 10 μg/m³ 
Wang 2017 HR 1.02 (1.02-1.03) HR 1.02 (1.02-1.02) per 1 μg/m³ 
Yitshak-Sade 2019 RR 1.06 (1.04-1.08) RR 1.04 (1.03-1.04) per 3 μg/m³ 
Ozone    
Di 2017 HR 1.02 (1.02-1.02) HR 1.01 (1.00-1.01) per 10 ppb 
Nitrogen Oxides    
Qian 2021 HR 1.03 (1.01-1.05) HR 1.05 (1.04-1.07) per 10 ppb 
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Table S 9. All-cause mortality from air pollution stratified by comorbidities. 
Author, Year Comorbidity Studied All-cause mortality 

risk with comorbidity 
All-cause mortality 
risk without 
comorbidity 

Exposure Increment 
(increase) 

PM2.5     
Enstrom 2005 Cancer, heart disease, 

or stroke 
0.99 (0.96-1.03) 1.01 (0.99-1.03) per 10 µg/m³ 

Lepeule 2012 Hypertension 
COPD 
Diabetes 

1.17 (1.03-1.32) 
1.09 (0.95-1.26) 
1.04 (0.85-1.27) 

N/A per 10 µg/m³ 

Wang 2017a CHF Admission 
MI Admission 
COPD Admission 
Diabetes Admission 

1.03 (1.03-1.03) 
1.05 (1.05-1.06) 
1.05 (1.05-1.05) 
1.05 (1.05-1.06) 

1.02 (1.02-1.02) 
1.02 (1.02-1.02) 
1.02 (1.02-1.02) 
1.02 (1.02-1.02) 

per 1 µg/m³ 

Nitrogen Oxides     
Nafstad 2004 CVD or Diabetes 2.69 (2.44-2.95) 1 (reference) per 10 µg/m³ 
Wang 2023 CVD 

Respiratory Diseases 
1.26 (1.09-1.46) 
1.37 (1.06-1.76) 

1.17 (1.01-1.34) 
1.19 (1.06-1.33) 

per 10 µg/m³ 

a Presence of comorbidities were defined as previous hospitalizations due to a medical condition.  
Abbreviations: COPD=chronic obstructive pulmonary disease; CHF=Congestive heart failure; MI=Myocardial infarction; 
CVD=Cardiovascular Disease
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Table S 10. All-cause mortality from air pollution stratified by urbanicity.  
Author, Year Urban Rural Exposure Increment 

(increase) 
PM2.5    
Correia 2013a    

% urban residencesa 0.95 years LLE 
(p<0.01) 

-0.16 years LLE 
(p=0.299) 

per 10 µg/m³ 

Population densityb 0.72 years LLE 
(p<0.01) 

-0.31 years LLE 
(p=0.165) 

per 10 µg/m³ 

Shi 2016c RR 1.13 (1.06-
1.20) 

RR 1.03 (0.97-1.10) per 10 µg/m³ 

Keijzer 2016d RR 1.02 (1.02-
1.02) 

RR 1.10 (1.09-1.10) per 2 µg/m³ 

Kioumourtzoglou 2016 HR 1.18 (1.09-
1.28) 

HR 1.20 (1.11-1.29) per 10 µg/m³ 

Wang 2017e HR 1.021 (1.020-
1.022) 

HR 1.006 (1.004-
1.008) 

per 1 µg/m³ 

Di 2017f HR 1.08 (1.07-
1.09) 

HR 1.07 (1.06-1.07) per 10 µg/m³ 

Yu 2020g RR 1.06 (1.04-
1.07) 

RR 1.02 (1.01-1.03) per 1 µg/m³ 

Yu 2022h 1.77 years (1.51-
2.03) LLE 

1.43 years (1.22-1.62) 
LLE 

Above 2.9 µg/m³ 

Ozone    
Keijzer 2016c RR 1.02 (1.01-

1.02) 
RR 1.03 (1.02-1.03) per 5 µg/m³ 

Di 2017f HR 0.98 (0.98-
0.99) 

HR 1.03 (1.03-1.03) per 10 ppb 

Nitrogen Oxides    
Heinrich 2012i HR 1.42 (1.12-

1.79) 
HR 1.00 (reference) per 16 µg/m³ 

Keijzer 2016c RR 1.00 (1.00-
1.00) 

RR 1.05 (1.04-1.05) per 5 µg/m³ 

Qian 2021j HR 1.06 (1.04-
1.08) 

HR 1.01 (0.99-1.03) per 10 ppb 

Wang 2023 HR 1.11 (0.94-
1.30) 

HR 1.27 (1.12-1.45) per 10 µg/m³ 

acounties with >90% residences in urban areas defined as urban and other counties defined as 
rural. 
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bpopulation density >200 people per square mile defined as urban and population density <200 
people per square mile defined as rural.  
cUrban defined as total population within zip code below median  
dUrban defined as areas with >10,000 inhabitants  
eRural areas were defined as areas with population density below the first tertile of the 
population density (51 per square mile).  
fUrbanicity was stratified into low, medium-low, medium-high, and high population density. 
Numeric cutoffs were not reported. 
gBrisbane was defined as an urban area and the rest of the state (Queensland) as rural. 
hMunicipalities were defined by Brazilian Institute of Geography and Statistics as urban versus 
intermediate remote areas (categorized in this table as rural).  
i<=50m from home to a major road was considered urban and >50m from home to a major road 
as rural. 
jUrbanicity was based on quartiles of population density, with urban areas defined as those with 
high population density (fourth quartile) and rural defined as low population density (first 
quartile). 
Abbreviations: LLE = lost life expectancy. 
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Appendix.  
A.1. Search Strategy for the Systematic Review. 

 
Topic: Air pollution & life expectancy 
Search date: 10/19/2023 
Limits: 2000-present; Embase limit to articles/articles in press 
 
PubMed: Results = 1195 
("air pollution" OR "Air Pollution"[Mesh] OR "air pollutants" OR "Air Pollutants"[Mesh] OR 
"particulate matter" OR "Particulate Matter"[Mesh] OR “ozone” OR “Ozone”[Mesh] OR 
“nitrogen dioxide” OR "Nitrogen Dioxide"[Mesh] OR “pollutant mixtures” OR “chemical 
mixtures” OR “hazardous substances” OR "Hazardous Substances"[Mesh] OR “inhalation 
exposure” OR “inhalation exposure” [Mesh]) AND (“life expectancy” OR "Life 
Expectancy"[MeSH] OR “cause of death” OR "Cause of Death"[Mesh] OR “mortality” OR 
“Mortality”[Mesh] OR “life table” OR “Life Tables”[Mesh]) AND (“chronic disease” OR 
"Chronic Disease"[Mesh] OR “asthma” OR "Asthma"[Mesh] OR “COPD” OR “pulmonary 
disease, chronic obstructive” [Mesh] OR “chronic obstructive pulmonary disease” OR 
“cardiovascular disease” OR “CVD” OR "Cardiovascular Diseases"[Mesh] OR “diabetes” OR 
"Diabetes Mellitus"[Mesh] OR “vulnerable populations” OR "Vulnerable Populations"[Mesh] 
OR “socioeconomic status” OR "Low Socioeconomic Status"[Mesh] OR “social class” OR 
"Social Class"[Mesh] OR “social determinants” OR "Social Determinants of Health"[Mesh] OR 
“Health Equity”[Mesh] or “health equity” OR “Socioeconomic Factors”[Mesh] OR 
“socioeconomic factors” OR “racial groups”[Mesh] OR “racial groups” OR "race factors" 
[Mesh] OR "race" OR “ethnicity”[Mesh] OR “ethnicity” OR “social vulnerability”[Mesh] OR 
“social vulnerability” OR “Demography”[Mesh] OR “demographics” OR “demographic data” 
OR “Age distribution”[Mesh] OR “age” OR “Sex distribution”[Mesh] OR “sex” OR “gender”) 
AND (“statistical models” OR "Models, Statistical"[Mesh] OR “binomial model” OR “binomial 
models” OR “binomial distribution” OR "Binomial Distribution"[Mesh] OR “linear model” OR 
“linear models” OR "Linear Models"[Mesh] OR “poisson model” OR “poisson models” OR 
“poisson distribution” OR "Poisson Distribution"[Mesh] OR “logistic regression” OR “logistic 
model” OR “logistic models” OR “Logistic Models”[Mesh] OR “machine learning” OR 
“Machine Learning”[Mesh] OR “random forest” OR “random forest” [Mesh]) 
 
Web of Science: 1646 results 
("air pollution" OR "air pollutants" OR "particulate matter" OR “ozone” OR “nitrogen dioxide” 
OR “pollutant mixtures” OR “chemical mixtures” OR “hazardous substances” OR “inhalation 
exposure”) AND (“life expectancy” OR “cause of death” OR “mortality” OR “life tables”) AND 
(“chronic disease” OR "chronic diseases" OR “asthma” OR “COPD” OR “chronic obstructive 
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pulmonary disease” OR “chronic obstructive pulmonary diseases" OR “cardiovascular disease” 
OR "cardiovascular diseases" OR “CVD” OR “diabetes” OR "Diabetes Mellitus" OR 
“vulnerable populations” OR “socioeconomic status” OR “social class” OR “social 
determinants” OR "Social Determinants of Health" OR “health equity” OR “socioeconomic 
factors” OR “racial groups” OR "race" OR “ethnicity” OR “social vulnerability” OR 
“demographics” OR "demographic" OR “demographic data” OR “Age distribution” OR “age” 
OR “Sex distribution” OR “sex” OR “gender”) AND (“statistical models” OR "statistical model" 
OR “binomial models” OR "binomial model" OR “binomial distribution” OR “linear model” OR 
“linear models” OR “linear distribution” OR “poisson” OR “logistic regression” OR “logistic 
models” OR “machine learning” OR “random forest”) 
 
EMBASE: 2131 
('air pollution'/exp OR 'air pollution' OR 'air pollutants'/exp OR 'air pollutants' OR 'particulate 
matter'/exp OR 'particulate matter' OR 'ozone'/exp OR 'ozone' OR 'nitrogen dioxide'/exp OR 
'nitrogen dioxide' OR 'pollutant mixtures' OR 'chemical mixtures' OR 'hazardous substances'/exp 
OR 'hazardous substances' OR 'inhalation exposure'/exp OR 'inhalation exposure') AND ('life 
expectancy'/exp OR 'life expectancy' OR 'cause of death'/exp OR 'cause of death' OR 
'mortality'/exp OR 'mortality' OR 'life tables'/exp OR 'life tables') AND ('chronic disease'/exp OR 
'chronic disease' OR 'asthma'/exp OR 'asthma' OR 'copd'/exp OR 'copd' OR 'chronic obstructive 
pulmonary disease'/exp OR 'chronic obstructive pulmonary disease' OR 'cardiovascular 
disease'/exp OR 'cardiovascular disease' OR 'cvd' OR 'diabetes'/exp OR 'diabetes' OR 'diabetes 
mellitus'/exp OR 'diabetes mellitus' OR 'vulnerable populations'/exp OR 'vulnerable populations' 
OR 'socioeconomic status'/exp OR 'socioeconomic status' OR 'social class'/exp OR 'social class' 
OR 'social determinants'/exp OR 'social determinants' OR 'social determinants of health'/exp OR 
'social determinants of health' OR 'health equity'/exp OR 'health equity' OR 'socioeconomic 
factors'/exp OR 'socioeconomic factors' OR 'racial groups'/exp OR 'racial groups' OR 
'ethnicity'/exp OR 'ethnicity' OR 'social vulnerability'/exp OR 'social vulnerability' OR 
'demographics'/exp OR 'demographics' OR 'demographic data'/exp OR 'demographic data' OR 
'age distribution'/exp OR 'age distribution' OR 'age'/exp OR 'age' OR 'sex distribution'/exp OR 
'sex distribution' OR 'sex'/exp OR 'sex' OR 'gender'/exp OR 'gender') AND ('statistical 
models'/exp OR 'statistical models' OR 'binomial models' OR 'binomial distribution'/exp OR 
'binomial distribution' OR 'linear model'/exp OR 'linear model' OR 'linear models'/exp OR 'linear 
models' OR 'linear distribution' OR 'poisson' OR 'logistic regression'/exp OR 'logistic regression' 
OR 'logistic models'/exp OR 'logistic models' OR 'machine learning'/exp OR 'machine learning' 
OR 'random forest'/exp OR 'random forest') AND [2000-2023]/py 
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A.2.  PRISMA Checklist. 

Section and Topic  
Item 
# Checklist item  

Location where 
item is reported  

TITLE   
Title  1 Identify the report as a systematic review. Pg. 1 
ABSTRACT   
Abstract  2 See the PRISMA 2020 for Abstracts checklist. Pg. 2 
INTRODUCTION   
Rationale  3 Describe the rationale for the review in the context of existing knowledge. Pg. 3 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review 
addresses. 

Pg. 4 

METHODS   
Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were 

grouped for the syntheses. 
Pg. 5 

Information sources  6 Specify all databases, registers, websites, organisations, reference lists and other 
sources searched or consulted to identify studies. Specify the date when each 
source was last searched or consulted. 

Pg. 5-6 

Search strategy 7 Present the full search strategies for all databases, registers and websites, 
including any filters and limits used. 

Appendix A2 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of 
the review, including how many reviewers screened each record and each report 
retrieved, whether they worked independently, and if applicable, details of 
automation tools used in the process. 

Pg. 5-6 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many 
reviewers collected data from each report, whether they worked independently, 

Pg. 5-6 
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Section and Topic  
Item 
# Checklist item  

Location where 
item is reported  

any processes for obtaining or confirming data from study investigators, and if 
applicable, details of automation tools used in the process. 

Data items  10a List and define all outcomes for which data were sought. Specify whether all 
results that were compatible with each outcome domain in each study were 
sought (e.g. for all measures, time points, analyses), and if not, the methods 
used to decide which results to collect. 

Pg. 6-7 

10b List and define all other variables for which data were sought (e.g. participant 
and intervention characteristics, funding sources). Describe any assumptions 
made about any missing or unclear information. 

Pg. 6-7 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including 
details of the tool(s) used, how many reviewers assessed each study and whether 
they worked independently, and if applicable, details of automation tools used 
in the process. 

Pg. 6 

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) 
used in the synthesis or presentation of results. 

Pg. 6-7 

Synthesis methods 13a Describe the processes used to decide which studies were eligible for each 
synthesis (e.g. tabulating the study intervention characteristics and comparing 
against the planned groups for each synthesis (item #5)). 

Pg. 6 

13b Describe any methods required to prepare the data for presentation or synthesis, 
such as handling of missing summary statistics, or data conversions. 

Pg.6-7 

13c Describe any methods used to tabulate or visually display results of individual 
studies and syntheses. 

Pg. 7 

13d Describe any methods used to synthesize results and provide a rationale for the 
choice(s). If meta-analysis was performed, describe the model(s), method(s) to 

Pg. 6-7 
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Section and Topic  
Item 
# Checklist item  

Location where 
item is reported  

identify the presence and extent of statistical heterogeneity, and software 
package(s) used. 

13e Describe any methods used to explore possible causes of heterogeneity among 
study results (e.g. subgroup analysis, meta-regression). 

Pg. 7 

13f Describe any sensitivity analyses conducted to assess robustness of the 
synthesized results. 

Pg. 7 

Reporting bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing results in a 
synthesis (arising from reporting biases). 

Pg. 6 

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the body of 
evidence for an outcome. 

Pg. 7 

RESULTS   
Study selection  16a Describe the results of the search and selection process, from the number of 

records identified in the search to the number of studies included in the review, 
ideally using a flow diagram. 

Figure 1; Pg. 8 

16b Cite studies that might appear to meet the inclusion criteria, but which were 
excluded, and explain why they were excluded. 

Appendix A4 

Study characteristics  17 Cite each included study and present its characteristics. Table 1 

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study. Appendix A3 

Results of individual 
studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group 
(where appropriate) and (b) an effect estimate and its precision (e.g. 
confidence/credible interval), ideally using structured tables or plots. 

Table 2-10 

Results of syntheses 20a For each synthesis, briefly summarise the characteristics and risk of bias among Pg. 8-9 
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Section and Topic  
Item 
# Checklist item  

Location where 
item is reported  

contributing studies. 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, 
present for each the summary estimate and its precision (e.g. 
confidence/credible interval) and measures of statistical heterogeneity. If 
comparing groups, describe the direction of the effect. 

Pg. 8-11 

20c Present results of all investigations of possible causes of heterogeneity among 
study results. 

Pg. 8-11 

20d Present results of all sensitivity analyses conducted to assess the robustness of 
the synthesized results. 

N/A 

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting 
biases) for each synthesis assessed. 

See 14 

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for 
each outcome assessed. 

See 15 

DISCUSSION   
Discussion  23a Provide a general interpretation of the results in the context of other evidence. Pg. 12-14 

23b Discuss any limitations of the evidence included in the review. Pg. 14-15 

23c Discuss any limitations of the review processes used. Pg. 15 

23d Discuss implications of the results for practice, policy, and future research. Pg. 15 
OTHER INFORMATION  
Registration and 
protocol 

24a Provide registration information for the review, including register name and 
registration number, or state that the review was not registered. 

This review was 
not registered. 

24b Indicate where the review protocol can be accessed, or state that a protocol was 
not prepared. 

An internal 
protocol (not 
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Section and Topic  
Item 
# Checklist item  

Location where 
item is reported  
public) was 
prepared. 

24c Describe and explain any amendments to information provided at registration or 
in the protocol. 

N/A 

Support 25 Describe sources of financial or non-financial support for the review, and the 
role of the funders or sponsors in the review. 

Pg. 32 

Competing interests 26 Declare any competing interests of review authors. Pg. 32 

Availability of data, 
code and other 
materials 

27 Report which of the following are publicly available and where they can be 
found: template data collection forms; data extracted from included studies; data 
used for all analyses; analytic code; any other materials used in the review. 

Pg. 32 

 
From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated 
guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 
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A.3. Risk Of Bias In Non-randomized Studies - of Exposure (ROBINS-E) scores for 
included studies. 

 
Study D1 D2 D3 D4 D5 D6 D7 Overall 
Villeneuve 
2002 

Some 
concerns 

Low Some 
concerns 

Low Low Low Low Low 

Jerrett 2005 Low Low Some 
concerns 

Low Low Low Low Low 

Tao Xue 
2023 

Low Low Low Low Low Low Low Low 

Zeger 2008 Some 
concerns 

Some 
concerns 

Low Low Low Low Low Low 

Laden 2006 Some 
concerns 

Low Some 
concerns 

Low Low Low Low Low 

Jie Cao 2011 Some 
concerns 

Some 
concerns 

Some 
concerns 

Low Low Low Low Some 
concerns 

Ostro 2015 Low Some 
concerns 

Low Low Low Low Low Low 

Lapeule 2012 Some 
concerns 

Low Some 
concerns 

Low Low Low Low Low 

Yan Wang 
2017 

Low Low Some 
concerns 

Low Low Low Low Low 

Nafstad 2004 Low Low Some 
concerns 

Low Low Low Low Low 

Dirgawati 
2019 

Low Low Some 
concerns 

Low Low Low Low Low 

Shiferaw 
2023 

Some 
concerns 

Low Low Low Low Low Low Low 

Heinrich 
2012 

Some 
concerns 

Low Some 
concerns 

Low Low Low Low Low 

Yu 2020 Some 
concerns 

Some 
concerns 

Low Low Low Low Low Low 

Correia 2013 Low Low Low Low Low Low Low Low 
Hvidtfeldt 
2019 

Low Low Low Low Low Low Low Low 

Enstrom 
2005 

Low Some 
concerns 

Low Low Low Low Low Low 

Lefler 2019 Low Low Low Low Low Low Low Low 
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Kioumourtzo
glou 2016 

Low Low Low Low Low Low Low Low 

Hvidtfeldt 
2019 

Low Low Low Low Low Low Low Low 

Schwartz 
2018 

Some 
concerns 

Low Low Low Low Low Low Low 

Jerrett 2009 Low Some 
concerns 

Low Low Low Low Low Low 

Jerrett 2013 Some 
concerns 

Some 
concerns 

Some 
concerns 

Low Low Low Low Some 
concerns 

Turner 2016 Low  Some 
concerns 

Low Low Low Low Low Low 

Arden Pope 
III 2002 

Some 
concerns 

Some 
concerns 

Low Low Low Low Low Low 

Qian Di 2017 Some 
concerns 

Low Low Low Low Low Low Low 

de Keijzer 
2016 

Some 
concerns 

Some 
concerns 

Low Low Low Low Low Low 

Chen 2019 Some 
concerns 

Low Low Low Low Low Low Low 

Yitshak-Sade 
2019 

Low Low Low Low Low Low Low Low 

Anwar 2021 Some 
concerns 

Some 
concerns 

Some 
concerns 

Low Low Low Low Some 
concerns 

Qian 2021 Low Low Low Low Low Low Low Low 
Liu 2022 Low Low Low Low Low Low Low Low 
Pei Yu 2022 Some 

concerns 
Low Some 

concerns 
Low Low Low Low Some 

concerns 
Yaqi Wang 
2023 

Low Low Low Low Low Some 
concerns 

Low Low 

Byun 2022 Low Low Low Low Low Low Low Low 
Hao 2023 Low Low Low Low Low Low Low Low 
Baranyi 2023 Some 

concerns 
Some 
concerns 

Some 
concerns 

Low Low Low Low Some 
concerns 
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A.4. Examples of Studies Excluded at Full-Text Screening.  

This table provides representative examples of excluded studies; a full list of all studies excluded 
after full-text screening is available upon request. 
 
Study (Author, Year) Reason for Exclusion 
Janes 2007 No lag time between exposure and outcome; 

not long-term 
Kuzma 2020 Short-term (time-series) exposure study; not 

long-term 
Liang 2019 Reported non-accidental mortality; not all-

cause mortality 
Crouse 2016 Reported non-accidental mortality; not all-

cause mortality 
Garcia 2016 Reported non-accidental mortality; not all-

cause mortality 
Kloog 2013 Short term (time-series) exposure study; not 

long-term 
Sanyal 2018 Reported natural mortality; not all-cause 

mortality 
 
  



124 
 

References 
1.  Correia AW, Pope III CA, Dockery DW, Wang Y, Ezzati M, Dominici F. Effect of air 

pollution control on life expectancy in the United States: an analysis of 545 US counties 
for the period from 2000 to 2007. Epidemiology. 2013;24:23–31.  

2.  Schwartz JD, Wang Y, Kloog I, Yitshak-Sade M, Dominici F, Zanobetti A. Estimating the 
effects of PM 2.5 on life expectancy using causal modeling methods. Environ. Health 
Perspect. 2018;126:127002.  

3.  Chen C-C, Chen P-S, Yang C-Y. Relationship between fine particulate air pollution 
exposure and human adult life expectancy in Taiwan. J. Toxicol. Environ. Health A. 
2019;82:826–832.  

4.  Ambient (outdoor) air pollution [Internet]. World Health Organ. 2024 [cited 2025 Jan 
15];Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-
air-quality-and-health 

5.  World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 
and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide [Internet]. 
Geneva, Switzerland: World Health Organization; 2021 [cited 2025 Mar 20]. Available 
from: https://www.who.int/publications/i/item/9789240034228 

6.  O’Neill MS, Jerrett M, Kawachi I, Levy JI, Cohen AJ, Gouveia N, Wilkinson P, Fletcher 
T, Cifuentes L, Schwartz J, et al. Health, wealth, and air pollution: advancing theory and 
methods. Environ. Health Perspect. 2003;111:1861–1870.  

7.  Goudie AS. Desert dust and human health disorders. Environ. Int. 2014;63:101–113.  

8.  Hajat A, Hsia C, O’Neill MS. Socioeconomic Disparities and Air Pollution Exposure: a 
Global Review. Curr. Environ. Health Rep. 2015;2:440–450.  

9.  Simoni M, Baldacci S, Maio S, Cerrai S, Sarno G, Viegi G. Adverse effects of outdoor 
pollution in the elderly. J. Thorac. Dis. [Internet]. 2015 [cited 2025 Apr 2];7. Available 
from: https://jtd.amegroups.org/article/view/3771 

10.  Tibuakuu M, Michos ED, Navas-Acien A, Jones MR. Air Pollution and Cardiovascular 
Disease: A Focus on Vulnerable Populations Worldwide. Curr. Epidemiol. Rep. 
2018;5:370–378.  

11.  Hackbarth AD, Romley JA, Goldman DP. Racial and ethnic disparities in hospital care 
resulting from air pollution in excess of federal standards. Soc. Sci. Med. 2011;73:1163–
1168.  

12.  Gwynn RC, Thurston GD. The Burden of Air Pollution: Impacts among Racial Minorities. 
Environ. Health Perspect. 2001;109:501–506.  



125 
 

13.  Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on 
mortality: a national analysis. Environ. Health Perspect. 2009;117:898–903.  

14.  Li J, Sun S, Tang R, Qiu H, Huang Q, Mason TG, Tian L. Major air pollutants and risk of 
COPD exacerbations: a systematic review and meta-analysis. Int. J. Chron. Obstruct. 
Pulmon. Dis. 2016;11:3079–3091.  

15.  Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Coelho MSZS, Saldiva PHN, 
Lavigne E, Matus P, et al. Ambient Particulate Air Pollution and Daily Mortality in 652 
Cities. N. Engl. J. Med. 2019;381:705–715.  

16.  Castells-Quintana D, Dienesch E, Krause M. Air pollution in an urban world: A global 
view on density, cities and emissions. Ecol. Econ. 2021;189:107153.  

17.  Apte JS, Marshall JD, Cohen AJ, Brauer M. Addressing Global Mortality from Ambient 
PM2.5. Environ. Sci. Technol. 2015;49:8057–8066.  

18.  World Health Organization. Types of pollutants [Internet]. World Health Organ. 2025 
[cited 2025 Mar 18];Available from: https://www.who.int/teams/environment-climate-
change-and-health/air-quality-and-health/health-impacts/types-of-pollutants 

19.  Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A 
systematic review and meta-analysis. Environ. Int. 2020;143:105974.  

20.  Huangfu P, Atkinson R. Long-term exposure to NO2 and O3 and all-cause and respiratory 
mortality: A systematic review and meta-analysis. Environ. Int. 2020;144:105998.  

21.  Kim S-Y, Kim E, Kim WJ. Health Effects of Ozone on Respiratory Diseases. Tuberc. 
Respir. Dis. 2020;83:S6–S11.  

22.  EPA U. Final reconsideration of the National Ambient Air Quality Standards for 
Particulate Matter (PM). 2024; 

23.  World Health Organization. Air Quality Standards database [Internet]. Geneva, 
Switzerland: World Health Organization and the Swiss Tropical and Public Health 
Institute; 2025 [cited 2025 Mar 20]. Available from: https://www.who.int/tools/air-quality-
standards 

24.  IQAir. World air quality report 2024 [Internet]. Switzerland: IQAir; 2025 [cited 2025 Mar 
20]. Available from: https://www.iqair.com/us/world-air-quality-report-press-kit 

25.  Xu C, Xia K, Huang Z, Qu JJ, Singh A, Ye Z, Li Q, Xia J. Global PM2. 5 exposures and 
inequalities. Npj Clim. Atmospheric Sci. 2025;8:54.  

26.  Chen X, Qi L, Li S, Duan X. Long-term NO2 exposure and mortality: A comprehensive 
meta-analysis. Environ. Pollut. Barking Essex 1987. 2024;341:122971.  



126 
 

27.  Boogaard H, Samoli E, Patton AP, Atkinson RW, Brook JR, Chang HH, Hoffmann B, 
Kutlar Joss M, Sagiv SK, Smargiassi A, et al. Long-term exposure to traffic-related air 
pollution and non-accidental mortality: A systematic review and meta-analysis. Environ. 
Int. 2023;176:107916.  

28.  Orellano P, Kasdagli M-I, Pérez Velasco R, Samoli E. Long-Term Exposure to Particulate 
Matter and Mortality: An Update of the WHO Global Air Quality Guidelines Systematic 
Review and Meta-Analysis. Int. J. Public Health. 2024;69:1607683.  

29.  Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, 
Tetzlaff JM, Akl EA, Brennan SE, et al. PRISMA 2020 explanation and elaboration: 
updated guidance and exemplars for reporting systematic reviews. 2021 [cited 2025 June 
9];Available from: https://www.bmj.com/content/372/bmj.n160 

30.  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, 
Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated 
guideline for reporting systematic reviews. BMJ. 2021;372:n71.  

31.  Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app 
for systematic reviews. Syst. Rev. 2016;5:210.  

32.  Higgins JPT, Morgan RL, Rooney AA, Taylor KW, Thayer KA, Silva RA, Lemeris C, Akl 
EA, Bateson TF, Berkman ND, et al. A tool to assess risk of bias in non-randomized 
follow-up studies of exposure effects (ROBINS-E). Environ. Int. 2024;186:108602.  

33.  Bormann I. DigitizeIt - Plot Digitizer Software [Internet]. [cited 2024 Mar 12];Available 
from: https://www.digitizeit.xyz/ 

34.  Rakap S, Rakap S, Evran D, Cig O. Comparative evaluation of the reliability and validity 
of three data extraction programs: UnGraph, GraphClick, and DigitizeIt. Comput. Hum. 
Behav. 2016;55:159–166.  

35.  Baranyi G, Williamson L, Feng Z, Tomlinson S, Vieno M, Dibben C. Early life PM2.5 
exposure, childhood cognitive ability and mortality between age 11 and 86: A record-
linkage life-course study from Scotland. Environ. Res. 2023;238:117021.  

36.  Hao H, Wang Y, Zhu Q, Zhang H, Rosenberg A, Schwartz J, Amini H, van Donkelaar A, 
Martin R, Liu P, et al. National Cohort Study of Long-Term Exposure to PM2.5 
Components and Mortality in Medicare American Older Adults. Environ. Sci. Technol. 
2023;57:6835–6843.  

37.  Anwar A, Ullah I, Younis M, Flahault A. Impact of Air Pollution (PM2.5) on Child 
Mortality: Evidence from Sixteen Asian Countries. Int. J. Environ. Res. Public. Health. 
2021;18:6375.  

38.  Xue T, Wang R, Tong M, Kelly FJ, Liu H, Li J, Li P, Qiu X, Gong J, Shang J, et al. 
Estimating the exposure–response function between long-term ozone exposure and under-



127 
 

5 mortality in 55 low-income and middle-income countries: a retrospective, multicentre, 
epidemiological study. Lancet Planet. Health. 2023;7:e736–e746.  

39.  Shiferaw AB, Kumie A, Tefera W. Fine particulate matter air pollution and the mortality of 
children under five: a multilevel analysis of the Ethiopian Demographic and Health 
Survey of 2016. Front. Public Health [Internet]. 2023 [cited 2025 Apr 18];11. Available 
from: https://www.frontiersin.orghttps://www.frontiersin.org/journals/public-
health/articles/10.3389/fpubh.2023.1090405/full 

40.  Heinrich J, Thiering E, Rzehak P, Krämer U, Hochadel M, Rauchfuss KM, Gehring U, 
Wichmann H-E. Long-term exposure to NO2 and PM10 and all-cause and cause-specific 
mortality in a prospective cohort of women. Occup. Environ. Med. 2013;70:179–186.  

41.  Hvidtfeldt UA, Sørensen M, Geels C, Ketzel M, Khan J, Tjønneland A, Overvad K, 
Brandt J, Raaschou-Nielsen O. Long-term residential exposure to PM2.5, PM10, black 
carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019;123:265–
272.  

42.  Nafstad P, Håheim LL, Wisløff T, Gram F, Oftedal B, Holme I, Hjermann I, Leren P. 
Urban air pollution and mortality in a cohort of Norwegian men. Environ. Health 
Perspect. 2004;112:610–615.  

43.  Zeger SL, Dominici F, McDermott A, Samet JM. Mortality in the Medicare population and 
chronic exposure to fine particulate air pollution in urban centers (2000-2005). Environ. 
Health Perspect. 2008;116:1614–1619.  

44.  Kioumourtzoglou M-A, Schwartz J, James P, Dominici F, Zanobetti A. PM2.5 and 
Mortality in 207 US Cities: Modification by Temperature and City Characteristics. 
Epidemiol. Camb. Mass. 2016;27:221–227.  

45.  Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, Schwartz JD. Low-
Concentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a 
Population-Based Study. Environ. Health Perspect. 2016;124:46–52.  

46.  Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz JD. Air 
Pollution and Mortality in the Medicare Population. N. Engl. J. Med. 2017;376:2513–
2522.  

47.  Wang Y, Lee M, Liu P, Shi L, Yu Z, Abu Awad Y, Zanobetti A, Schwartz JD. Doubly 
Robust Additive Hazards Models to Estimate Effects of a Continuous Exposure on 
Survival. Epidemiol. Camb. Mass. 2017;28:771–779.  

48.  Wang Y, Shi L, Lee M, Liu P, Di Q, Zanobetti A, Schwartz JD. Long-term Exposure to 
PM2.5 and Mortality Among Older Adults in the Southeastern US. Epidemiol. Camb. 
Mass. 2017;28:207–214.  



128 
 

49.  Schwartz JD, Wang Y, Kloog I, Yitshak-Sade M, Dominici F, Zanobetti A. Estimating the 
Effects of PM2.5 on Life Expectancy Using Causal Modeling Methods. Environ. Health 
Perspect. 2018;126:127002.  

50.  Yitshak-Sade M, Kloog I, Zanobetti A, Schwartz JD. Estimating the causal effect of 
annual PM2.5 exposure on mortality rates in the Northeastern and mid-Atlantic states. 
Environ. Epidemiol. Phila. Pa. 2019;3:e052.  

51.  Wang B, Eum K-D, Kazemiparkouhi F, Li C, Manjourides J, Pavlu V, Suh H. The impact 
of long-term PM2.5 exposure on specific causes of death: exposure-response curves and 
effect modification among 53 million U.S. Medicare beneficiaries. Environ. Health. 
2020;19:20.  

52.  Qian Y, Li H, Rosenberg A, Li Q, Sarnat J, Papatheodorou S, Schwartz J, Liang D, Liu Y, 
Liu P, et al. Long-Term Exposure to Low-Level NO2 and Mortality among the Elderly 
Population in the Southeastern United States. Environ. Health Perspect. 2021;129:127009.  

53.  Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution 
and mortality: Extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. 
Care Med. 2006;173:667–672.  

54.  Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and 
mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. 
Environ. Health Perspect. 2012;120:965–970.  

55.  Villeneuve PJ, Goldberg MS, Krewski D, Burnett RT, Chen Y. Fine particulate air 
pollution and all-cause mortality within the Harvard Six-Cities Study: variations in risk by 
period of exposure. Ann. Epidemiol. 2002;12:568–576.  

56.  Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, Kleeman MJ. Associations 
of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and 
Sources: Results from the California Teachers Study Cohort. Environ. Health Perspect. 
2015;123:549–556.  

57.  Byun G, Choi Y, Kim S, Lee J-T. Long-term exposure to ambient ozone and mortality in a 
population-based cohort of South Korea: Considering for an alternative exposure time 
metric. Environ. Pollut. 2022;314:120300.  

58.  Cao J, Yang C, Li J, Chen R, Chen B, Gu D, Kan H. Association between long-term 
exposure to outdoor air pollution and mortality in China: a cohort study. J. Hazard. Mater. 
2011;186:1594–1600.  

59.  Dirgawati M, Hinwood A, Nedkoff L, Hankey GJ, Yeap BB, Flicker L, Nieuwenhuijsen 
M, Brunekreef B, Heyworth J. Long-term Exposure to Low Air Pollutant Concentrations 
and the Relationship with All-Cause Mortality and Stroke in Older Men. Epidemiol. 
Camb. Mass. 2019;30 Suppl 1:S82–S89.  



129 
 

60.  Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, 
cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 
2002;287:1132–1141.  

61.  Sanyal S, Rochereau T, Maesano CN, Com-Ruelle L, Annesi-Maesano I. Long-Term 
Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study 
for Metropolitan France. Int. J. Environ. Res. Public. Health. 2018;15:2487.  

62.  Correia AW, Pope CA, Dockery DW, Wang Y, Ezzati M, Dominici F. Effect of air 
pollution control on life expectancy in the United States: an analysis of 545 U.S. counties 
for the period from 2000 to 2007. Epidemiol. Camb. Mass. 2013;24:23–31.  

63.  Lefler JS, Higbee JD, Burnett RT, Ezzati M, Coleman NC, Mann DD, Marshall JD, Bechle 
M, Wang Y, Robinson AL, et al. Air pollution and mortality in a large, representative U.S. 
cohort: multiple-pollutant analyses, and spatial and temporal decompositions. Environ. 
Health. 2019;18:101.  

64.  de Keijzer C, Agis D, Ambrós A, Arévalo G, Baldasano JM, Bande S, Barrera-Gómez J, 
Benach J, Cirach M, Dadvand P, et al. The association of air pollution and greenness with 
mortality and life expectancy in Spain: A small-area study. Environ. Int. 2017;99:170–176.  

65.  Chen C-C, Chen ,Pei-Shih, and Yang C-Y. Relationship between fine particulate air 
pollution exposure and human adult life expectancy in Taiwan. J. Toxicol. Environ. Health 
A. 2019;82:826–832.  

66.  Liu L, Luo S, Zhang Y, Yang Z, Zhou P, Mo S, Zhang Y. Longitudinal Impacts of PM2.5 
Constituents on Adult Mortality in China. Environ. Sci. Technol. 2022;56:7224–7233.  

67.  Wang Y, Luo S, Wei J, Yang Z, Hu K, Yao Y, Zhang Y. Ambient NO2 exposure hinders 
long-term survival of Chinese middle-aged and older adults. Sci. Total Environ. 
2023;855:158784.  

68.  Yu P, Xu R, Li S, Coelho MSZS, Saldiva PHN, Sim MR, Abramson MJ, Guo Y. Loss of 
life expectancy from PM2.5 in Brazil: A national study from 2010 to 2018. Environ. Int. 
2022;166:107350.  

69.  Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB, Thurston G, Shi Y, 
Finkelstein N, Calle EE, et al. Spatial analysis of air pollution and mortality in Los 
Angeles. Epidemiol. Camb. Mass. 2005;16:727–736.  

70.  Yu W, Guo Y, Shi L, Li S. The association between long-term exposure to low-level 
PM2.5 and mortality in the state of Queensland, Australia: A modelling study with the 
difference-in-differences approach. PLOS Med. 2020;17:e1003141.  

71.  Enstrom JE. Fine Particulate Air Pollution and Total Mortality Among Elderly 
Californians, 1973–2002. Inhal. Toxicol. 2005;17:803–816.  



130 
 

72.  Jerrett M, Burnett RT, Pope CA, Ito K, Thurston G, Krewski D, Shi Y, Calle E, Thun M. 
Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 2009;360:1085–1095.  

73.  Turner MC, Jerrett M, Pope CA, Krewski D, Gapstur SM, Diver WR, Beckerman BS, 
Marshall JD, Su J, Crouse DL, et al. Long-Term Ozone Exposure and Mortality in a Large 
Prospective Study. Am. J. Respir. Crit. Care Med. 2016;193:1134–1142.  

74.  Beckerman BS, Jerrett M, Serre M, Martin RV, Lee S-J, van Donkelaar A, Ross Z, Su J, 
Burnett RT. A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of 
PM2.5 in the Contiguous United States. Environ. Sci. Technol. 2013;47:7233–7241.  

75.  Su JG, Jerrett M, Meng YY, Pickett M, Ritz B. Integrating smart-phone based momentary 
location tracking with fixed site air quality monitoring for personal exposure assessment. 
Sci. Total Environ. 2015;506:518–526.  

76.  Su JG, Meng Y-Y, Chen X, Molitor J, Yue D, Jerrett M. Predicting differential 
improvements in annual pollutant concentrations and exposures for regulatory policy 
assessment. Environ. Int. 2020;143:105942.  

77.  Kloog I, Chudnovsky AA, Just AC, Nordio F, Koutrakis P, Coull BA, Lyapustin A, Wang 
Y, Schwartz J. A new hybrid spatio-temporal model for estimating daily multi-year PM2. 5 
concentrations across northeastern USA using high resolution aerosol optical depth data. 
Atmos. Environ. 2014;95:581–590.  

78.  Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham 
J, Megown K. Completion of the 2011 National Land Cover Database for the 
conterminous United States–representing a decade of land cover change information. 
Photogramm. Eng. Remote Sens. 2015;81:345–354.  

79.  Nibagwire D, Ana GR, Kalisa E, Twagirayezu G, Safari Kagabo A, Nsengiyumva J. 
Analysis of the influence of exogenous factors on indoor air quality in residential 
buildings. Front. Built Environ. 2025;11:1528453.  

 


	Project Summary/Abstract
	Lay Person Summary
	Executive Summary
	Introduction
	Task 1. Literature Review
	Background
	Methods
	Eligibility Criteria and Search Strategy
	Population
	Exposure
	Comparator
	Outcomes
	Study

	Study Selection and Data Collection
	Risk of Bias Assessment
	Data Synthesis and Narrative Review
	Certainty of Evidence

	Results
	Article Selection and Description
	PM2.5 and all-cause mortality risk
	Ozone and all-cause mortality risk
	Nitrogen oxides and all-cause mortality risk
	Age-stratified all-cause mortality risk associated with air pollution
	Sex-stratified all-cause mortality risk from air pollution
	Race-stratified all-cause mortality risk from air pollution
	SES-stratified all-cause mortality risk from air pollution
	Comorbidity-stratified all-cause mortality risk from air pollution.
	Urbanicity-stratified all-cause mortality risk from air pollution.
	PM2.5 exposure and life expectancy

	Summary

	Task 2. Develop PM2.5 Surfaces for the Study Population
	Development of Comprehensive Data Sources
	Development of daily PM2.5 concentration models

	Task 3. Obtain CDPH Vital Statistics Data Including Mortality and Covariates
	Task 4. Calculate PM2.5-Specific Reductions in Life Expectancy Across Two Time Periods and Identify Race-Ethnicity Disparities
	Study Design
	Identification of impact of PM2.5 exposure on mortality
	Identification of PM2.5 exposure impact on life expectancy
	Aggregate life-expectancy impact

	Study Results
	Integrated analysis for 20 age groups across the entire study period (2000-2021)
	Period-specific impact for twenty age groups without race-ethnicity stratification
	Period-specific impact for five age groups with race-ethnicity stratification
	Mortality risks
	Life expectancy – age specific impact
	Life expectancy – aggregate impact

	Period-specific impact for ten age groups with race-ethnicity stratification
	Mortality risks
	Life expectancy – age specific impact
	Life expectancy – aggregate impact



	Task 5. Create GIS Maps for the Study Results
	Overall Effect
	Disadvantage Status Stratification

	Task 6. Address Impacts in Communities
	Discussion
	Conclusion
	Supplementary Figures
	Supplementary Tables
	Appendix.
	A.1. Search Strategy for the Systematic Review.
	A.2.  PRISMA Checklist.
	A.3. Risk Of Bias In Non-randomized Studies - of Exposure (ROBINS-E) scores for included studies.
	A.4. Examples of Studies Excluded at Full-Text Screening.

	References



