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Project Summary/Abstract

While air quality has substantially improved over the past two decades, fine particulate
matter (PMas5) remains a critical environmental health concern in California. This project
provides one of the most comprehensive evaluations to date of how long-term PMa s exposure
affects mortality risk and life expectancy in California. Using two decades of statewide mortality
data linked to high-resolution exposure surfaces, the research team quantify PM> s-attributable
mortality and life-expectancy impacts for the periods 20002010 (Period 1) and 2011-2021
(Period 2). The study addresses a gap in the scientific literature: although many studies estimate
mortality risks from PMa s, relatively few provide life-expectancy estimates, and almost none
examine how both mortality risk and life-expectancy impacts change across two distinct decades.
There is also limited evidence on how these impacts differ across detailed age groups and race-
ethnicity groups. To our knowledge, no prior study has examined how the distribution of PM2 s
impacts changes over time.

The research team apply a dual population-weighted and death-weighted framework to
characterize the distribution of per-person PM» 5 impacts across age groups. Population-weighted
impacts reflect effects on the full population, while death-weighted impacts emphasize the age
groups that contribute most to mortality. Together, these metrics reveal whether PM» s impacts
are concentrated among older adults, younger adults, or broadly distributed across ages.
Statewide, both mortality risks and life-expectancy impacts from PM> 5 decreased from Period 1
to Period 2. Long-term PM:2 s exposure remained a significant determinant of mortality in both
decades, but with a weaker association in Period 2, consistent with California’s air quality
improvements. The death-weighted life-expectancy impact statewide declined from 0.61 to 0.37
years, demonstrating that reductions in ambient PM; 5 translated into meaningful reductions in
mortality burden. Stratified analyses reveal differences across race-ethnicity groups. In Period 1,
older adults generally bore the higher PM2 s impacts for most race-ethnicity groups. In Period 2,
younger and middle-aged groups contributed more heavily relative to earlier years. Asians
remained an exception, with population- and death-weighted impacts nearly identical in Period 1,
reflecting broad age distribution of impacts. Black populations showed consistently low impacts
among younger adults and concentrated impacts at older ages, while Hispanic populations
exhibited large benefits from PM; 5 reductions across a wide age span in Period 1 and continued
to exhibit measurable PM> s-attributable mortality and life-expectancy impacts across multiple
age groups in Period 2, despite overall declines in exposure and risk.retained-notable-sensitivity.
When comparing decades, Black and Hispanic populations experienced the largest reductions in
death-weighted life-expectancy losses, approximately 0.59 and 0.57 years, respectively,
reflecting substantial life-expectancy gains associated with improvements in ambient PM2 5
concentrations from Period 1 to Period 2 due to sustained state and federal air-quality regulations
peliey—gains. By Period 2, death-weighted impacts were lowest for Black and White populations,
whereas Asian, Hispanic, and Other groups continued to experience relatively higher PM> s-
attributable life-expectancy losses compared with other groups.
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The research team translated the age- and race-ethnicity—specific PMa 5 impact estimates to
the census-tract (CT) level. This was done by applying the modeled age-group effects for each
race-ethnicity group to the corresponding demographic composition of each tract. The resulting
spatial patterns confirm that statewide progress reduced PM; s-related death burdens but also
show persistent local variation. Some tracts experienced large improvements, while others
exhibited only modest gains, reflecting differences in composition and historical exposure
patterns. In general, tracts with larger improvements tended to be those that had higher PM3 s-
attributable life-expectancy losses in Period 1 and therefore experienced larger absolute
reductions as statewide PM2 s concentrations declined in Period 2, whereas tracts with smaller
improvements often had lower baseline PM> 5 impacts and correspondingly less room for
improvement.

Together, these findings provide a clearer understanding of how PM> s mortality impacts have
evolved in California, where policy progress achieved the largest gains, and where residual
disparities remain. The results highlight both the success of air quality regulations and the need
for continued and targeted interventions to address remaining PMa s-related mortality risks.
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Lay Person Summary

Air pollution from fine particles, known as PMz s, is one of the most harmful environmental
risks to health. Although California’s air has improved substantially over the last twenty years,
the research team still lack a clear understanding of how much this pollution affects people’s
chances of dying and how much life could be extended if there were no PM: 5 exposure. This
project looked at all recorded deaths in California from 2000 to 2021 and combined that
information with highly detailed long-term air pollution estimates. The research team studied two
separate time periods, 2000-2010 and 2011-2021, to see how the health impacts of PM; s
changed as air quality improved. The research team also looked at differences across racial and
ethnic groups and across age groups to see if PMz s affected all communities in the same way.

The research team found that PM; 5 continued to increase the risk of dying early in both time
periods, but the risk was smaller in the more recent period, consistent with declining pollution
levels across California. The research team also estimated how much longer people might live if
people were not exposed to PMb» s. This measure, referred to as PMb» s-attributable life-expectancy
loss, declined from about 0.61 years in the first decade to 0.37 years in the second, showing that
cleaner air has produced meaningful health benefits.

The study also identified important differences across age groups and communities. During
the first period, older adults were generally the most affected across most racial and ethnic
groups. In the second decade, younger and middle-aged adults accounted for a larger share of the
remaining PM> s-related health impacts. For race-ethnicity, Black and Hispanic populations
experienced the largest improvements over time, with PM3 s-related life-expectancy losses
decreasing by about half a year between the two periods. By the second period, Black and White
populations had the lowest benefits from PM; s removal, while Asian, Hispanic, and Other
groups still experienced notable life-expectancy games after removing air pollutant PMas. These
differences should be interpreted in the context of long-standing demographic patterns in
California, where Asian and Hispanic populations generally have higher baseline life expectancy
and Black populations have lower baseline life expectancy. Thus, a smaller remaining PM2 5
impact for Black populations in Period 2 does not imply lower overall vulnerability but rather
reflects reductions in PM; s-attributable burden relative to their own earlier levels.

The research team also mapped these life expectancy impacts at the community (i.e., census
tract) level across California and found that life expectancy improved from period 1 to period 2.
However, some neighborhoods were found to have benefited much more than others. Certain
areas still have PM; s-related health burdens, reflecting differences in community characteristics
and long-standing exposure patterns. Overall, the study shows that California’s efforts to reduce
air pollution have worked and have improved public health across the state. Yet important
differences remain between communities. Continued action, especially targeted efforts in places
with higher remaining impacts, is needed to make sure everyone benefits equally from cleaner
air.
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Executive Summary

a. Background

Fine particulate matter (PM2.s) continues to pose a significant public-health burden in
California, even as concentrations have declined substantially over the past two decades because
of regulatory and technological progress. Long-term exposure to PM> 5 is well established as a
contributor to premature mortality, but relatively few studies quantify life-expectancy impacts,
and even fewer examine how both mortality risks and life-expectancy losses evolve over
multiple decades. Almost no prior research has evaluated how these impacts differ
simultaneously by age group and race-ethnicity or how the distribution of PM; 5 effects, whether
concentrated in younger or older adults, changes over time. This study fills these gaps by
assessing changes in mortality risks, life-expectancy impacts, age-distribution patterns, race-
ethnicity disparities, and CT-level (census track level) outcomes across two distinct decades in
California.

b. Objectives

The objectives of this study were to quantify the mortality effects of long-term PMa 5
exposure in California, to translate those effects into life-expectancy impacts for two distinct
time periods, and to evaluate how these impacts changed over time. Specifically, they include:

¢ Quantifying the mortality effects of long-term PM2 5 exposure in California using individual-
level death records from the California Department of Public Health (CDPH) and high-
resolution exposure estimates, producing integrated and period-specific effect estimates for
2000-2010 and 2011-2021.

e Translating PM; s-related mortality risks into integrated and period-specific life-expectancy
impacts by generating all-cause and counterfactual (PMz s-removed) life tables and taking
their difference as the estimated PM» 5 impact.

e Examining heterogeneity across race-ethnicity and age groups, using matched conditional
logistic regression models stratified by age groups and by race-ethnicity categories, to assess
subgroup-specific burden and how these patterns changed over time.

e Identifying whether younger or older age groups bore the greater PM» s-related burden by
applying the study’s new dual population-weighted and death-weighted PMa. s impact
framework, which detects whether impacts were concentrated in younger, middle-aged, or
older adults in each period.

e Assessing and visualizing PM> 5 exposure, PM; s-attributable mortality, and life-expectancy
impacts at the CT level across California by producing statewide, change-over-time, and
region-specific maps, including stratification by age groups, race-ethnicity, and vulnerability,
overlays with policy-relevant boundaries, and regional atlases.

b. Methods
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The analysis linked individual-level mortality records from the California Department of
Public Health (CDPH) to high-resolution daily PM2 s exposure estimates (100-meter resolution)
developed by Dr. Su. For each decedent, long-term PM> 5 exposure was defined as the one-year
rolling average preceding the date of death. All-cause and PM» s-removed mortality rates were
derived by first estimating age-specific mortality risks using conditional logistic regression
models, where each model quantified the association between long-term PM> 5 exposure and
mortality within each age group (and race-ethnicity group, when stratified). The observed all-
cause mortality life expectancy was constructed directly from CDPH individual-level death
records and corresponding population denominators. The counterfactual PM; s-removed
mortality schedule was generated by applying the regression coefficients to predict mortality
risks under a scenario in which PM; 5 exposure was set to zero, and the resulting observed vs.
counterfactual mortality rates were then used to build life tables whose differences yielded life-
expectancy impacts. To characterize how PM; s impacts were distributed across age groups, the
study applied a dual population-weighted and death-weighted framework, enabling clear
identification of whether younger, middle-aged, or older adults contributed more to PM> s-related
losses.

CT-level life-expectancy impacts were generated by applying race-ethnicity and age-group
specific PM s effects to each tract’s demographic composition, producing spatially resolved
estimates for both Period 1 and Period 2. These results were visualized through a comprehensive
set of maps, including CT-level life-expectancy impact layers for five- and ten-age-group
frameworks, tract-level annual average PM2 s concentrations for 2010 and 2020 to illustrate long-
term regulatory progress, and statewide maps of PM; s-attributable mortality and life-expectancy
loss stratified by race-ethnicity and vulnerability. Additional change maps depict differences in
PMb s exposure and PM; s-related life-expectancy loss between the two decades, while overlays
with policy-relevant boundaries such as region, air districts, and goods-movement corridors
provide regulatory context.

c. Results

Across the full population, PM; 5 remained a statistically significant determinant of mortality
in both decades, with risk estimates weaker in Period 2 (2011-2021) than in Period 1 (2000—
2010), consistent with statewide improvements in air quality. The statewide death-weighted life-
expectancy impact declined from 0.61 years in Period 1 to 0.37 years in Period 2, demonstrating
that reductions in ambient PM> 5 translated into substantial reductions in PM> s-attributable
mortality burden. Age- and race-ethnicity-specific analyses revealed important disparities. In
Period 1, older adults generally bore larger PM s impacts across most race-ethnicity groups. In
Period 2, younger and middle-aged adults contributed relatively more to the PM; 5 impacts,
reflecting a shift in age distribution as overall pollution levels decreased. Asians were an
exception: their population-weighted and death-weighted impacts were nearly identical in Period
1 (0.94 vs. 0.91), indicating broad age distribution of impacts rather than concentration in
younger or older groups. Black populations exhibited consistently low impacts among younger
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adults in both periods and concentrated impacts among older adults. Hispanic populations
showed substantial PM s impacts in Period 1 and continued to exhibit notable impacts in Period
2. Using death-weighted changes to quantify policy gains, Black and Hispanic populations
experienced the largest reductions between decades, approximately 0.59 and 0.57 years,
indicating that regulatory progress yielded the greatest mortality improvements for these groups.
By Period 2, Black populations exhibited comparatively low PMa s life-expectancy impacts (0.08
years), whereas Asian (0.74), Hispanic (0.36), and Other (0.38) groups continued to show
meaningful remaining impacts.

Mapping analyses at community (CT) level confirmed statewide improvements but also
revealed persistent geographic variability. Tract-level death-weighted life-expectancy impacts
declined from 0.82 years to 0.61 years between decades, reflecting broad policy success. Gains
varied by neighborhood disadvantage: in the most disadvantaged tracts, mean impacts fell from
0.82 to 0.66 years, whereas in the most advantaged tracts, impacts declined from 0.81 to 0.57
years, yielding larger average policy benefits (0.25 years vs. 0.16 years).However, improvement
was uneven: some tracts experienced substantial life-expectancy gains from reduced PMz s, while
others saw only modest progress, shaped by demographic composition and spatial exposure
patterns. Spatial mapping highlighted hotspots in the San Joaquin Valley and Inland Empire,
where some tracts continued to experience PM2.5-related life expectancy losses near 0.8 years,
underscoring the persistence of environmental inequities despite overall improvements.

d. Conclusion

This study provides one of the most detailed examinations to date of how PM; 5 affects
mortality and life expectancy across age groups, race-ethnicity groups, and communities in
California, and how these impacts have changed over two decades. The findings demonstrate that
regulatory actions produced large reductions in PM> s-related mortality, with especially
substantial gains for Black and Hispanic populations. At the same time, meaningful residual
impacts persist among Asian, Hispanic, and Other race-ethnicity groups and in specific census
tracts. The results show that PM; 5 control continues to yield tangible public-health benefits, but
achieving equitable protection requires maintaining statewide emission reductions while also
targeting local areas and demographic groups with remaining high impacts. Together, these
findings underscore both the success of California’s air-quality regulations and the ongoing need
for focused policies to further reduce PMo» s-attributable mortality and address remaining
disparities.

16



Introduction

Long-term exposure to ambient air pollution is a well-established driver of premature
mortality, and the existing scientific literature is substantial, contributing to our understanding of
the mortality risks associated with particulate matter <2.5 um (PMa ) (see Task 1 Literature
Review for detail). Among the 39 studies identified in our systematic review, 32 examined PMz s
exposure and nearly all reported positive associations with all-cause mortality. These studies
provide important evidence demonstrating that even low levels of PM> 5 are associated with
elevated mortality risk. However, despite the large and growing mortality literature, few studies
have quantified the impact of air pollution on life expectancy, a metric with greater
interpretability for policymakers and the public, and one that directly reflects the cumulative
survival consequences of environmental exposures across the lifespan.

Only three of the 39 studies the research team reviewed estimated changes in life expectancy
due to long-term PM, 5 exposure.' Through these limited studies, life expectancy losses ranged
from approximately 0.3 to 0.89 years, illustrating reductions in expected lifespan associated with
sustained pollution exposure. Nonetheless, life expectancy methods remain underutilized in
environmental epidemiology despite their relevance for public health burden assessment.
Moreover, existing life expectancy studies are few in number, rely on mostly ecologic designs,
and provide limited insight into how air pollution-related life expectancy loss varies across
demographic subgroups. As a result, policymakers have had limited information on how long-
term air pollution exposure affects remaining life expectancy across age groups, race-ethnicity
populations, socioeconomic strata, and geographic settings.

Our literature review (see Task 1) also identified substantial evidence of disparities in air
pollution-related mortality. Older adults, particularly those aged 65-74, consistently showed
higher mortality risks from PM; 5 and nitrogen dioxide (NO>) exposure; Black populations in the
United States experienced greater mortality impacts per unit increase in PM» s than White
populations; and individuals with lower educational attainment or living in high-poverty
neighborhoods were consistently more vulnerable to pollution-related mortality. Urban residents,
individuals with chronic cardiometabolic or respiratory conditions, and Medicare beneficiaries
with Medicaid dual eligibility were repeatedly identified as higher-risk subgroups. However, no
identified study evaluated whether these disparities translate into differences in pollution-
attributable life expectancy, nor did any report life expectancy impacts stratify by race-ethnicity,
age group, comorbidity burden, or urbanicity. This represents a major gap in literature: although
mortality disparities by air pollution exposure are well documented, their implications for life
expectancy and therefore for cumulative survival over time have not been characterized.

An additional gap is the near absence of research examining how changes in life expectancy
attributable to air pollution evolve over time. While several studies have quantified temporal
trends in PM> s concentrations and associated mortality burdens, none of the studies in our
review compared pollution-attributable life expectancy impacts across different historical
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periods. Such analyses are essential for understanding the public health benefits of regulatory
actions, reductions in emissions, technological improvements, and changes in the built
environment. Without evaluating changes over time, it is not possible to quantify how
improvements in air quality have translated into gains in life expectancy or whether disparities in
these gains have widened or narrowed.

In this project, the research team address a series of methodological and equity-related gaps
not examined in prior literature. First, unlike most existing mortality-only studies, our project
uses life-table-based life expectancy modeling to quantify age-specific and population-wide
survival impacts from long-term (i.e., 365 days before death) PM; s exposure, providing a more
intuitive and policy-relevant measure of population health burden. Second, the research team
incorporate fine-grained demographic stratification by age and race-ethnicity to assess disparities
in PM3 s-attributable life expectancy loss. This extends beyond previous studies, which largely
confined subgroup analyses to mortality risk and did not evaluate cumulative survival outcomes.
Third, our analysis examines two separate multiyear periods, enabling assessment of whether life
expectancy improvements associated with declining PMz s levels have been uniform across
California or experienced disproportionately by specific communities. Fourth, the research team
leverage population-weighted and death-weighted estimators, along with age-specific life-table
metrics, to distinguish between population burden, mortality burden, and survivor impacts, an
approach rarely used in environmental health studies. Fifth, the research team applied modeled
race-ethnicity-specific age-group impacts to each census tract's (CT) race-ethnicity-specific age-
group composition, allowing us to estimate CT-level life expectancy impacts attributable to
PMb s for both study periods. This approach enabled us to quantify changes in tract-level life
expectancy from Period 1 to Period 2 and to evaluate whether improvements in air quality
translated into equitable gains in longevity across California’s diverse communities. Together,
these methodological advancements provide a more comprehensive, equity-centered, and policy-
relevant assessment of the long-term health benefits associated with air quality improvements in
California.

Task 1. Literature Review

Background

Ambient (outdoor) air pollution poses a major threat to human health, contributing to
approximately four million premature deaths worldwide each year.* While air pollution affects
entire populations, there is a growing recognition that certain groups based on sociodemographic
characteristics may face disproportionately greater health risks.>® Studies have reported elevated
rates of air pollution-related hospitalizations, respiratory infections, and cardiopulmonary
mortality among older adults, women, and individuals of lower socioeconomic status.”!” In the
United States, higher rates of respiratory morbidity and hospital admissions have been observed
specifically in African American communities and in areas with high poverty levels.!%!?
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Individuals with chronic conditions such as chronic obstructive lung disease (COPD) and
diabetes have also been documented with more frequent hospitalizations and exacerbations
following exposure to air pollutants compared to their counterparts.'®!3! Residents of urban
areas have been shown to experience elevated rates of air pollution-related morbidity and
mortality.!>!” These previous studies highlight the importance of elucidating both broad
population-level health impacts of air pollution and the disproportionate risks borne by specific
vulnerable subpopulations.

Particulate matter PM> s, NO», and ozone have garnered significant attention given their well-
established associations with adverse health outcomes.*>!82° Both short- and long-term
exposure to PMa s - fine inhalable particles emitted primarily from combustion processes such as
vehicle exhaust, industrial activities, and biomass burning - are consistently linked with
increased cardiopulmonary morbidity and mortality.'®!” NO,, predominantly derived from traffic
emissions and fossil fuel combustion, is known to cause airway irritation and exacerbate
respiratory conditions.!®?° Ozone, a principal component of photochemical smog, is also
associated with increased respiratory morbidity.?! In recognition of the health risks posed by
these pollutants, the World Health Organization (WHO) revised its global air quality guidelines
in 2021, recommending more stringent annual mean exposure limits of 5 pg/m? for PMzs, 10
ng/m? for NO,, and a peak-season limit of 60 pg/m? for ozone.’ The U.S. Environmental
Protection Agency (EPA) also finalized a revised National Ambient Air Quality Standard
(NAAQS) for PM; 5 that lowers the primary (health-based) annual PM; 5 standard from 12.0
ng/m?) to 9.0 pg/m?>. 22 However, air pollutant concentrations in many regions across the globe
continue to exceed recommended thresholds.?*** For example, 98.8 percent of people were
exposed to pollution levels above the WHO guideline.?®

While prior meta-analyses have assessed the relationship between long-term exposure to
PM; 5, NO, and ozone and all-cause mortality, few have systematically evaluated whether these
associations differ across the vulnerable subpopulations.?¢~® This represents a critical knowledge
gap, as understanding differential mortality risks across diverse sociodemographic populations is
essential for informing equitable public health interventions and air quality standards.

In 2023, the California Air Resources Board commissioned a project entitled “Impacts of Air
Pollution on Life Expectancy across Multiple Generations: Race, Ethnicity and Vulnerability
Perspectives.” As a part of this project, our objective was to conduct a systematic review to
evaluate associations between long-term exposure to ambient air pollutants (PMa.s, NO, and
ozone) and all-cause mortality, with a focus on assessing differential risks among potentially
more vulnerable subpopulations, specifically older adults, women, individuals with pre-existing
health conditions, socioeconomically disadvantaged communities, urban populations, and
minoritized racial and/or ethnic groups.
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Methods

Eligibility Criteria and Search Strategy

Population

This review was conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (A.1 of the Appendix).2>** The research team
included studies examining general human populations with long-term exposure to ambient air
pollution, specifically to particulate matter PM; s, ozone, or nitrogen oxides (e.g. nitrogen
dioxide). The research team excluded studies focusing on newborns, and instead included only
studies that focused on persons older than 1 year of age. Studies focusing on highly specific
disease cohorts (e.g. patients with COVID-19, respiratory disorders, cardiovascular disease) were
excluded to ensure generalizability to the broader population. Additionally, the research team
excluded studies on populations affected by time-limited acute pollution events such as wildfires
or dust storms. The research team did not place any restrictions on other demographic variables
such as sex, race, ethnicity, occupation, or residential location of study populations.

Exposure

Eligible studies assessed long-term exposure defined as 1+ years to PMa 5, 0zone, or nitrogen
oxide/dioxide (NOx/NO3). Studies evaluating pollutants other than these three (e.g. PM10, sulfur
dioxide, black carbon, etc.) were excluded. Studies focusing exclusively on occupational
exposure, or indoor air pollution were excluded. The review reflects the broader criteria pollutant
exposure relevant to health but does not explicitly stratify wildfire-specific impacts. Any studies
that assessed those criteria pollutant exposures, including those incorporating wildfire
contributions, would have been captured if they met the general inclusion criteria for long-term
ambient air pollution exposure.

Comparator

The research team only included studies that assessed air pollution exposure as a continuous
variable. Reference exposure levels varied by study but generally included a lower exposure
group within the same cohort for comparison or matched with another cohort for comparison.

Outcomes

Eligible studies reported all-cause mortality excluding accidents as an outcome. Studies
assessing cause-specific mortality only (e.g. cardiovascular mortality, respiratory mortality, or
lung cancer mortality) or morbidity outcomes (e.g. hospitalization rate, lung cancer rate) were
excluded. The research team also excluded studies reporting outcomes exclusively related to
newborns or birth-related outcomes such as maternal mortality.

Study

The research team included peer-reviewed original research studies using retrospective
cohort, prospective cohort, case-control, and observational study designs. Systematic reviews
and meta-analyses were not included in the quantitative synthesis but were reviewed for
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additional references. Conference abstracts were excluded. The research team included non-
English studies when a translation was available.

A systematic search of PubMed, MEDLINE, and Web of Science was conducted to identify
peer-reviewed articles published between January 1, 2000 and October 19, 2023. The search
strategy, detailed in the Appendix, included terms related to air pollutants (PMa.s, Ozone,
NOx/NO»), mortality outcomes, and socially vulnerable populations.

Study Selection and Data Collection

Two trained reviewers independently screened all records by title and abstract using the
Rayyan web application,®' which supports blinded dual screening, enables tagging and
categorization of studies, and automatically detects conflicts between reviewers’ decisions. Any
disagreements were resolved through discussion or consultation with the full study team. After
reviewing the full texts of studies deemed potentially eligible by title and abstract screening, the
two reviewers jointly made final decisions to include or exclude.

Two reviewers independently performed data extraction using a standardized data collection
form. Extracted data included study characteristics such as geographical location, population
demographics, sample size, and study design. The research team also recorded exposure details
including pollutant type, exposure window, calculation methods, and data sources. Length of
follow-up and mortality outcomes were documented alongside the data sources and statistical
methods used to derive effect estimates. When studies reported multiple statistical models, the
research team extracted effect estimates from the fully adjusted model. Additionally, the research
team extracted a list of confounders each study controlled for and recorded any subgroup
analyses conducted by age, sex, race, ethnicity, socioeconomic status, region, and urbanicity. Any
discrepancies in data extraction were resolved through joint review and consensus.

Risk of Bias Assessment

The risk of bias (ROB) for each included study was assessed using the Risk of Bias in Non-
Randomized Studies of Exposures (ROBINS-E) tool.*? The research team initially considered
evaluating studies using the Newcastle-Ottawa Scale (NOS), but elected to use ROBINS-E as it
provided a more comprehensive and structured assessment of bias domains critical to air
pollution studies, including exposure misclassification, time-varying confounding, and selection
bias. Two independent reviewers conducted the ROBINS-E assessments, and disagreements
were resolved through discussion. Studies were evaluated across the seven ROBINS-E domains
including risk of bias due to confounding, exposure measurement, selection of participants, post-
exposure interventions, missing data, outcome measurement, and selection of reported result.
The overall ROB based on these domains was determined as low, some concerns, high risk, or
very high risk. A summary table of completed ROBINS-E evaluations is available in the A.3. of
the Appendix.

21



Data Synthesis and Narrative Review

A narrative synthesis was conducted to summarize findings across studies, with a focus on
effect estimates such as hazard ratios and risk ratios for all-cause mortality. The research team
examined variations in risk across demographic, socioeconomic, and geographic subgroups. In
studies that only presented a graphical subgroup analysis, numeric data were extracted from
scanned images of published graphs by using the Digitizelt software, version 2.5.9,
[Germany].>*3* The research team note that this digitization process can introduce some
measurement uncertainty, particularly for smaller demographic subgroups where effect sizes or
confidence intervals are more difficult to extract precisely. Due to heterogeneity in study designs,
exposure assessment methods, and statistical models, a meta-analysis was not performed.
Instead, the research team explored sources of heterogeneity qualitatively, considering
differences in study populations and subgroup analyses. Specifically, the research team examined
how the relationship between air pollution and all-cause mortality differed in vulnerable
subpopulations, including older adults, women, historically minoritized racial or ethnic groups,
urban residents, individuals of low socioeconomic status, and those with chronic health
conditions. No formal sensitivity analyses were conducted, as findings were synthesized
narratively.

Certainty of Evidence

No formal assessment of certainty or confidence in the body of evidence (e.g. using GRADE)
was performed, as the included studies were heterogeneous in design, exposure assessment,
population characteristics, and analytic approaches, precluding standardized grading across
outcomes.

Results

Article Selection and Description

A total of 3,764 unique records were identified through our systematic electronic search from
January 1, 2020 to October 19, 2023 (Figure S 1). Two reviewers screened all 3,764 records by
title and abstract; of these, reviewers selected 192 records for full-text review. After full-text
evaluation, 39 peer-reviewed original research articles met the inclusion criteria and were
included in the final analysis. Representative examples of studies excluded after full-text
screening are available in A.4. of the Appendix.

Study periods spanned from the 1970s to the 2010s, but most studies were published within
the past decade (Figure S 2). Geographically, the majority of these studies originated from North
America (n=22) and Europe (n=9), with an increasing number of contributions from Asia,
Australia, South America, and Africa in recent years. Many of the included mortality studies rely
on national cohorts, such as Medicare populations, whose demographic composition, including
age structure and race-ethnicity, differs from that of California. Therefore, caution is warranted
when generalizing these findings to California’s population.
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Among the included studies, sample sizes ranged from 2,734 participants®> to 73.4 million*
(Table S 1). Three studies examined the association between air pollution and all-cause mortality
in children under five,?’° while the remaining studies focused on adults across a broad age
spectrum. Three studies focused specifically on middle-aged populations (40s-50s).%>*? Eleven
studies focused on individuals aged >=65, representing the Medicare population in the United
States. 364352

Other sample characteristics varied widely across the included studies. Some studies
examined specific populations only based on race (e.g. Caucasian adults only>>>), sex (women
only*>3
teachers only®®). In contrast, some studies utilized broader, nationally representative samples,
including those from the United States,’>% Spain,* Taiwan,®> China,’**’ and Brazil.*3
Overall, 32 studies evaluated ambient PM2 s as the primary air pollutant exposure in relation to
all-cause mortality; 11 studies examined nitrogen dioxides; and 9 studies included ozone.

or men only*?), residential urbanicity (urban residents only>’-%!), or occupation (e.g.

The majority of studies controlled for individual-level confounders, including age, sex,
smoking status, chronic health conditions, and at least one socioeconomic indicator most
commonly education or income level. In population-based ecologic studies lacking individual-
level data, area-level metrics (e.g. county-level or neighborhood level data) were used to adjust
for potential confounding variables.

Exposure periods varied across studies, ranging from one year>>*-1:61:6% to 31 years.>*
Follow-up durations also differed considerably, from one year preceding mortality>! to lifelong
follow-up from age 11 to death.?

Risk of bias was assessed using the ROBINS-E tool. The majority of studies were rated as
low risk of bias across most domains. “Some concerns” were frequently identified in domains
related to confounding (D1) and classification of exposures (D3). Only a small number of studies
were rated as having “some concerns” overall, and no studies were rated as high or very high risk
of bias.

PM:> 5 and all-cause mortality risk

A total of 31 studies quantified all-cause mortality risk in association with PM 5 exposure
(Table S 2). The mean/median PM; 5 exposure levels varied widely across studies, ranging from
3.6 pg/m? in Queensland, Australia’ to 47.1 pg/m? across mainland China.®® The association
between PM; s and all-cause mortality was positive in nearly all included studies, with higher
PM2: s levels associated with higher subsequent mortality risk (HRs and RRs ranging from 1.01 to
1.19 per 10 pg/m? increase in PM» s).

Three studies estimated changes in life expectancy from long-term PMz 5 exposure*®:6%63

and
reported life expectancy loss by 0.3 years per 10 pg/m?3 increase in PM, 5% to 0.89 years per 4.5
pg/m? increase.*’

Effect sizes varied based on study-specific characteristics such as cohort size, exposure level,
and covariates. Larger-scale studies based on the U.S. Medicare population data or nationwide
ecologic data consistently reported statistically significant associations between PMa s exposure
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and all-cause mortality. In contrast, three studies,’®>*’! all with relatively smaller sample sizes,

found non-significant associations between PM: s and all-cause mortality. There-were-no-clear
trends-over-time.

Ozone and all-cause mortality risk

Nine studies assessed the association between ambient ozone exposure and all-cause
mortality (Table S 2). Mean/median ozone concentrations ranged from 21.9 ppb in South Korea®’
to 57.7 ppb in U.S. metropolitan areas.”> Compared to PMa s, the ozone-mortality relationship
was more variable and generally weaker, with risk estimates (HRs and RRs) ranging from 0.92
(95% CI: 0.89-0.96)*! to 1.18 (95% CI: 1.07-1.29)°" per 10 ppb increase in ozone exposure. Five
of the nine studies reported a significant positive association between ozone and all-cause
mortality, whereas the remaining four found non-significant results. Notably, studies with larger
cohorts**%* consistently observed positive associations, suggesting that the true effect of ozone

on mortality may be marginal and require large samples to detect.

Nitrogen oxides and all-cause mortality risk

Eleven studies evaluated all-cause mortality risk in relation to nitrogen oxide (NOx/NO3)
exposure (Table S 2). Reported mean or median nitrogen oxide concentrations varied
substantially across studies, ranging from 9.48 pug/m? in Spain® to 50 ug/m? in China.>® The
association between nitrogen oxides and all-cause mortality was generally positive with hazard
ratios (HRs) and relative risks (RRs) ranging from 0.96 (95% CI: 0.93-0.98)% per 10 ppb
increase in NO; exposure to 1.22 (95% CI: 1.10-1.35)%" per 10 pg/m? increase in NO: exposure.
The strongest associations were observed in Wang 2023%” (HR 1.22, 95% CI: 1.10-1.35) and
Heinrich 2012* (HR 1.18, 95% CI: 1.07-1.30), both conducted in regions with relatively high
NO: levels in China and Germany. Large-scale cohort studies consistently found small but
significant increases in all-cause mortality risk (HR 1.05, 95% CI: 1.04-1.05°*; HR 1.01, 95% CI:
1.00-1.037%).

Age-stratified all-cause mortality risk associated with air pollution

Studies that compared age groups <65 years and >65 years tended to report higher all-cause
mortality risk estimates for PMa 5 exposure in the older age groups (>65), although not consistent
across all studies (Table S 3). However, among populations >65 years, studies consistently found
strongest associations in the 65-74 age group, with attenuated effects observed in those >75 or
>85 years.**647 Significant age differences were observed only in large cohort studies, whereas
studies with relatively smaller sample sizes generally found no variation in risk estimates across
age groups.>>07!

For ozone exposure, one study*® conducted age-stratified analyses of all-cause mortality and
reported no significant differences across age groups.

Three studies examined age-stratified all-cause mortality risk due to nitrogen oxides and
reported a higher risk with increasing age*>%” with a decline in risk above 80 years of age.*?
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Sex-stratified all-cause mortality risk from air pollution

Twelve studies conducted sex-stratified analyses of all-cause mortality from PMz 5 exposure
and yielded mixed findings (Table S 4). Some reported higher mortality risk*"**%° and greater
reductions in life expectancy*’ in men, while others found higher risks in women.%>”! However,
most studies found no significant difference between the sexes. For ozone, two studies conducted
sex-stratified analyses and found no significant differences in all-cause mortality risk between
men and women. Two studies assessed sex differences in mortality risk associated with nitrogen
oxide/dioxide, with conflicting results.*?63¢7

Race-stratified all-cause mortality risk from air pollution

Six U.S.-based studies examined racial differences in all-cause mortality risk from ambient
air pollution (Table S 5). For PMa s, three studies reported significantly higher effect estimates
for Black individuals compared to White individuals,***-*° while two also found elevated risk
among Hispanic, Asian, and Native American populations.***’ For ozone, one study found no
significant variation in mortality risk across racial groups;*® and for nitrogen oxides, one study
reported higher mortality risk for Black individuals compared to White individuals.>

SES-stratified all-cause mortality risk from air pollution

Twelve studies examined socioeconomic status (SES) as an effect modifier in the association
between air pollution and all-cause mortality risk (Table S 6-Table S 8). SES was assessed using
individual-level indicators (e.g., education level, employment, income, Medicaid eligibility) and
area-level measures (e.g., neighborhood income level, percentage below the poverty level,
median household income).

Studies consistently found higher all-cause mortality risk from PM> s and nitrogen oxide
exposure in individuals with lower educational attainment (Table S 6). In contrast, findings for
neighborhood- and area-level SES metrics were more variable (Table S 7); while some studies
reported stronger associations in lower-income or high-poverty areas, suggesting greater
vulnerability in economically marginalized communities*****’; others found no clear pattern.

Among Medicare beneficiaries, studies used Medicaid-Medicare dual eligibility as a proxy

43,52

for low SES (Table S 8) and reported varied results, with only two studies reporting significantly
higher mortality risk among Medicaid-eligible individuals compared to non-eligible
counterparts.*®>

Comorbidity-stratified all-cause mortality risk from air pollution.

Five studies examined whether pre-existing chronic health conditions modified the
association between air pollution and all-cause mortality risk (Table S 9). One study found a
significantly higher mortality risk from PMz s among individuals with prior hospitalizations for
chronic heart failure (CHF), myocardial infarction (MI), chronic obstructive pulmonary disease
(COPD), or diabetes** compared to healthy individuals. Individuals with such cardiovascular,
respiratory, and diabetic diseases also had increased susceptibility to death by any cause from
nitrogen oxide exposure.*%” However, with few studies available, the limited evidence base
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prevents definitive conclusions. No included study examined effect modification by pre-existing
health conditions on the association between all-cause mortality and ozone exposure.

Urbanicity-stratified all-cause mortality risk from air pollution.

Fourteen studies examined the association between air pollution and all-cause mortality risk
stratified by urbanicity (Table S 10). Most studies reported higher mortality risk and life
expectancy loss from PMa s exposure in urban areas compared to rural areas.***"426%70 For ozone
and nitrogen oxide exposure, only a small number of studies analyze urban-rural differences and
reported conflicting results.

PM:> s exposure and life expectancy

Correia et al.! estimated that sustained exposure to elevated PM s levels was associated with
a 0.35-year reduction in life expectancy across U.S. counties (p = 0.033). Schwartz et al.?
reported a larger effect, finding 0.89 years of life expectancy lost (95% CI: 0.88-0.91) associated
with long-term PM; 5 exposure using updated exposure reconstruction and extended follow-up.
Chen et al.? analyzing a national cohort with additional control for socioeconomic and behavioral
factors, found a 0.3-year loss in life expectancy (95% CI: 0.1-0.6) linked to PM; 5. Together,
these limited studies show that across different analytic approaches and cohorts, PM> 5 exposure
is consistently associated with measurable reductions in population life expectancy, generally in
the range of 0.3 to 0.9 years.

Summary

Our systematic review of the relationship between air pollution (PMz s, NO; and O3) and all-
cause mortality found consistent evidence that long-term exposure to PM» 5 is associated with
increased mortality risk, with suggestive but less consistent associations for NO2 and Os.
Subgroups such as older adults, individuals with lower socioeconomic status and Black
populations in the US appear to face disproportionate health risks. These findings underscore the
need for targeted public health interventions to better understand and mitigate air pollution-
related health disparities.

Task 2. Develop PMaz.s Surfaces for the Study Population

The research team developed daily PM» s surfaces for the purpose of assigning rolling annual
average air pollution exposure for the date of death of any individual between 2000 and 2021.
The PM2 5 surfaces were thus developed for 1999-2021 to make sure each subject has an annual
average exposure before death. In developing daily land use regression (LUR) models for PMa s,
The research team YEB first identified factors (i.e., source or sink) that might impact PMz s
concentrations and use them as potential predictors. The research team also identified the optimal
distance of impact for a potential predictor and the models should be able to deal with
multicollinearity among predictors and can reduce model overfit. Further, the research team
aimed to avoid excessive number of predictors in the final selected model and will allow a
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maximum of 15 predictors (in addition to four Seasons) in a LUR model. Due to those
considerations, the research team applies the Deletion/Substitution/Addition (D/S/A) algorithm
for developing a daily prediction model.”*7¢ The modeling process is described in detail below.

Development of Comprehensive Data Sources

The research team developed comprehensive data sources that have potential impact on the
concentrations measured at California Environmental Protection Agency (CalEPA) monitoring
sites. The data sources include daily traffic data, daily remote sensing data, daily weather data,
every two-week vegetation index, one time land use and land cover data, and other potential
impact factors. The research team hypothesizes that greater daily traffic is associated with higher
PM2: s concentrations. Remote sensing Aerosol Optical Depth (AOD) data is an indirect measure
of PM> 5 concentrations with greater AOD values being directly associated with higher PM; s
concentrations. Different land use types have different impacts on PM2 s concentrations with, for
example, higher industrial and commercial land use being associated with greater concentrations.
Similarly, different land cover types can have other impacts on PM2 5 concentrations with, for
example, high intensity urban developed land cover being associated with greater concentrations
but greater vegetation cover (as a sink) being associated with lower concentrations. Further,
greener vegetation has a much better air pollutant absorption effect than less green vegetation
and thus the former helps reduce concentrations. For weather data, greater wind speed is
associated with lower concentrations while lower visibility is associated with higher
concentrations. The research team also collected daily PMz s concentrations data at the CARB
regulatory monitoring sites (i.e., CalEPA sites) for the years 1998-2021 and used them as a
response variable in generating daily PM» s concentration models. The potential predictors are
listed in Table 1.
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Table 1. The potential LUR predictors for the daily LUR model development.

Variable for . _
Category Prediction Resolution  Description
lifornia Department of T rtati
Daily Traffic vector California Department of Transportation
(CalTrans)
Agricultural, residential, commercial,
Buffer (50m- Land Use vector industrial, government and igstitutions,
Skm) open land, parks, and recreational
facilities (Parcel data)
Forest, herbaceous/grassland, shrubland,
Land Cover vector developed, agriculture, wetlands, water
and other (USGS NLCD)
Maximum temperature, minimum
temperature, precipitation accumulation,
Daily GridMET 4 km d9wnward surface s'h(')rtwave 'radiation,
wind-velocity, humidity (maximum and
minimum relative humidity and specific
humidity)
Two-week Interval 250 m Normalized difference vegetation index
Non-Buffer = Vegetation Index (NDVI) (NASA MOD13Q1.006 Terra)
Remote Daily Aerosol NASA Multiangle Implementation of
Sensing Data  Optical Depth 1 km Atmospheric Correction (MAIAC)
(AOD) algorithm
Daily O fi
Y zone. r(?m Global for both NO7 and O3
Ozone Monitoring 27 km measurements for 2004 - current (NASA)
u -cu
Instrument (OMI)
North America for 1989-2016 (Univ.
A 1 PM 1k
fnua 23 m Washington Randall Martin)
Annual NO» 1 km Global for 1990-2020 (NASA reanalysis)
Digital Elevati
e (Dg\i;on 30m U.S. Geological Survey (USGS)
Distance to Coast 30m U.S. Geological Survey (USGS)
Other Non- . .
Distance to Environmental Systems Research
buffer Roadways 30m Institute (ESRI)
Variables - way m -
Distance to Ports 30m U.S. Geological Survey (USGS)
. California Department of Transportation
Location category vector

(CalTrans)/ESRI
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Daily traffic data: For daily traffic data, the research team used the data collected by the
California Department of Transportation (CalTrans) Performance Measurement System (PeMS)
(https://dot.ca.gov/programs/traffic-operations/mpr/pems-source). PeMS data are collected in

real-time from nearly 40,000 individual detectors spanning the freeway system across all major
metropolitan areas of the State of California and provide an archived data user service that
provides over fifteen years of data for historical analysis. PeMS integrates a wide variety of
information from Caltrans and other local agency systems including traffic flow, speed,
occupancy, incident, toll charge, and other information. The research team used PeMS five-
minute road link/segment traffic flow data in the analysis. In PeMS, traffic flow (volume) is a
quantity representing the number of vehicles that passed over each detector on the roadway in a
given time period (i.e. five-minute flow, hourly flow, etc.). The detector measured traffic flow
that covered 12.52 percent highway segments and the research team summed hourly traffic to
daily traffic for all the stations across California. The following interconnected stages were used
to derive daily traffic for all the California highways for the study period:

1) For aroad segment with station traffic measure for a day, use all the station traffic
measures on that road segment to generate a daily mean traffic for that road segment for
that day.

2) For those road segments without traffic measures for a day, assign them using the
assigned segments from step 1 by matching route, county, district, route type and day, and
find the one with the smallest distance if having multiple matches. California has 58
counties which are included in one of the 12 CalTrans air districts (1 - Eureka, 2 -
Redding, 3 - Marysville / Sacramento, 4 - Bay Area / Oakland, 5 - San Luis Obispo /
Santa Barbara, 6 - Fresno / Bakersfield, 7 - Los Angeles, 8 - San Bernardino / Riverside,
9 - Bishop, 10 - Stockton, 11 - San Diego, 12 - Orange County). Highways in California
are split into at least four different types of systems: Interstate Highways, U.S. Highways,
state highways, and county highways.

3) For those road segments without traffic being assigned from steps 1 & 2, assign them
using the assigned segments from steps 1 & 2 by matching route, district, route type and
day, and find the one with the smallest distance if having multiple matches. In this step
county was not used as a restricting factor in daily traffic assignment.

4) For those road segments without traffic being assigned from the above steps, assign them
using the above assigned segments by matching route, county, district and route type,
plus at most one day difference in data availability and find the one with the smallest
distance if having multiple matches.

5) Identify those not assigned and assign them using the assigned segments from above
steps by matching county, district, route type and day and find the one with the smallest
distance if having multiple matches. Here the restricting factor of route number is
removed.
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6)

8)

Identify those not assigned and assign them using the assigned segments from the above
steps by matching district, route type and day and find the one with the smallest distance
if having multiple matches. Here the restricting factors of route number and county are
removed.

7a) Identify those not assigned and assign them using the assigned state highway
segments from the above steps by matching district and day. Here the restricting
factors of route number, route type and county are removed.

7b) Identify those not assigned and assign them using the assigned U.S. highway
segments from the above steps by matching district and day. Here the restricting
factors of route number, route type and county are removed.

7¢) Identify those not assigned and assign them using the assigned interstate highway
segments from the above steps by matching district and day. Here the restricting
factors of route number, route type and county are removed.

Identify those not assigned and assign them using the assigned segments from steps 1-4
by matching district and season to find the one with the smallest distance if having
multiple matches. Here route number, county and route type are not required to match.

Table 2 shows the daily traffic assignment statistics for the 12 California districts for the

study period. Overall, 12.52 percent California highways had daily traffic measurements for the

study period, with ranges being from 0 percent (district 9) to 38.24 percent (district 12). The
research team found that the districts with great population (i.e., metropolitan areas) had more
roadways and more traffic measures. Those districts thus had smaller proportions of roadways
being assigned traffic from greatly relaxed conditions (e.g., by gradually relaxing matching
criteria on route, county, district, route type or day). The roadways in the vastly rural districts
were the ones with much less proportion of traffic measures. Greater proportion of roadways
were thus assigned through greatly relaxed conditions for those rural districts. The CalTrans

PeMS traffic data started in 2001. A trend analysis from years 2001-2020 was used to extend the

daily traffic data back to the years 1999 and 2000.

PM:.s remote sensing data: The research team obtained Aerosol Optical Depth (AOD) data

from the Moderate Resolution Imaging Spectroradiometer instruments onboard the National

Aeronautics and Space Administration Terra and Aqua satellites. The Multiangle Implementation
of Atmospheric Correction algorithm was used to derive 1 km resolution AOD surfaces.”’ Due to

extensive missing data presented at the 1 km resolution AOD surfaces, the research team
aggregated the daily AOD surfaces into monthly means.
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Table 2. Traffic data assignment statistics based on the stages of assignment.

District #1 District #2 District #3
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS Cum RS
Stage | RS(#) (%) (#) (%) | RS#H) (%) (#) ()| RSEH (%) (#) (%)
1| 34,197 293 34,197 293 64,284 4.94 64,284 494 75,002 441 75,002 441
2 774  0.07 34971 3.00 0 0.00 64,284 494 | 142,554 8.38 217,556 12.79
3| 686,788 58.91 721,759 61.91 | 943,806 72.58 1,008,090 77.53 | 68,950 4.05 286,506 16.85
41 431,122 36.98 1,152,881 98.89 | 292,200 22.47 1,300,290 100.00 1,548 0.09 288,054 16.94
5 0 0.00 1,152,881 98.89 704,938 41.45 992,992 58.39
6 0 0.00 1,152,881 98.89 503,072 29.58 1,496,064 87.97
7.1 12,997 1.11 1,165,878 100.00 204,540 12.03 1,700,604 100.00
District #4 District #5 District #6
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS Cum RS
Stage | RS(#) (%) (#) ()| RS#H (%) (#) ()| RSH#H (%) (#) (%)
11| 360,864 17.08 360,864 17.08 | 19,666 1.44 19,666 1.44 | 53,408 3.51 53,408 3.51
21 371,428 17.58 732,292 34.66 | 83,650 6.14 103,316 7.59 | 269,068 17.67 322,476 21.18
31257,311 12.18 989,603 46.84 | 133,864 9.83 237,180 17.42 | 107,284  7.05 429,760 28.23
4 2,560 0.12 992,163 46.96 430  0.03 237,610 17.45 552 0.04 430,312 28.27
51 903,900 42.79 1,896,063 89.75 | 229,642 16.86 467,252 3432 | 922,574 60.60 1,352,886 88.87
6| 28870 1.37 1,924,933 91.12 | 887,904 65.21 1,355,156 99.52 | 70,128 4.61 1,423,014 93.47
7.1 162,368 7.69 2,087,301 98.8 4,144 030 1,359,300 99.83 | 99,348 6.53 1,522,362 100.00
7.2 0 0.00 2,087,301 98.8 2,352 0.17 1,361,652 100.00
7.3 0 0.00 2,087,301 98.8
81 25,305 1.20 2,112,606 100
District #7 District #8 District #9
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS Cum RS
Stage | RS(#) (%) (#) ()| RS#H (%) (#) ()| RSH#H (%) (#) (%)
1| 288,852 25.03 288,852 25.03 | 68,864 582 68,864 5.82 0 0.00 0 0.00
2| 315,340 27.32 604,192 5235 | 94,562 7.99 163,426 13.81 0 0.00 0 0.00
3| 23,360 2.02 627,552 5437 | 87,600 7.40 251,026 21.21 | 198,696 45.95 198,696 45.95
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4 466  0.04 628,018 54.41 194  0.02 251,220 21.23 0 0.00 198,696 45.95
51 526,172 45.59 1,154,190 100 | 867,906 73.34 1,119,126 94.57 0 0.00 198,696 45.95
6 0 0.00 1,119,126 94.57 0 0.00 198,696 45.95
7.1 64,284 543 1,183,410 100.00 | 233,760 54.05 432,456 100.00
District #10 District #11 District #12
RS Cum RS Cum RS RS Cum RS Cum RS RS Cum RS Cum RS
Stage | RS(#) (%) (#) ()| RS#H (%) (#) ()| RSH#H (%) (#) (%)
1| 146,644 9.80 146,644 9.80 | 241,134 23.85 241,134 23.85 | 160,898 38.24 160,898 38.24
2 | 438,638 29.32 585,282 39.12 | 400,820 39.65 641,954 63.50 | 139,650 33.19 300,548 71.43
31352216 23.54 937,498 62.66 | 105,120 10.40 747,074 73.89 0 0.00 300,548 71.43
4 2,288  0.15 939,786 62.82 990 0.10 748,064 73.99 290  0.07 300,838 71.50
51 544,392 36.39 1,484,178 99.21 | 262,948 26.01 1,011,012 100.00 | 119,930 28.50 420,768 100.00
6| 11,886 0.79 1,496,064 100.00

Note: RS= road segment; Cum RS=cumulative road segments; District 1, 2 and 9 had no traffic station measures and were treated the same as
respectively neighboring districts in 4, 3 and 8.

32




Parcel-level land use data: The research team acquired statewide parcel data from CARB
for 2019 for all the counties in California. The parcel data provides land use information at parcel
level, such as agricultural, residential, commercial, industrial, government and institutions, open
land, parks, and recreational facilities. For residential land use, the parcel data is further classed
into single-family homes, town houses, condominiums, and high-rise apartment buildings. The
parcel data also includes building characteristics, including building age, type and existence of
fireplace, gas ranges, and other information that can be used to calculate building-specific factors
to characterize the indoor infiltration of pollutants.

Land cover data: The research team acquired the land cover data for years 2001, 2004,
2006, 2008, 2011, 2013, 2016, and 2019 from the National Land Cover Database (NLCD). The
NLCD provides a synoptic nationwide classification of land cover into 16 classes at a spatial
resolution of 30 m. The 16 land cover classes were aggregated into eight major land cover types
including forest, herbaceous/grassland, shrubland, developed, agriculture, wetlands, water and
other, which includes ice/snow, barren areas. The research team also acquired tree canopy and
percent impervious surfaces those years having land cover classification. For LUR development,
a land cover data closest to the daily PM2.s measures was used for analysis.

Two-week interval vegetation index: The research team has acquired 16-day interval (23
surfaces for a year) vegetation index surfaces (MOD13Q1.006 Terra Vegetation Indices) for
California at a spatial resolution of 250 m for years 2012 to 2019 for the study. This dataset was
traced back to 1999 through a trend analysis.

GridMET meteorological data: The research team acquired daily high-spatial resolution
(~4 km, 1/24th degree) surface meteorological data covering the contiguous U.S. for years 1999-
2021. Primary climate variables collected include maximum temperature, minimum temperature,
precipitation accumulation, downward surface shortwave radiation, wind-velocity, humidity
(maximum and minimum relative humidity and specific humidity).

Digital elevation model (DEM) - in meters: The research team acquired the national
elevation dataset for California from the U.S. Geological Survey (USGS) (http://nationalmap.gov
and http://seamless.usgs.gov) for 2011. The data included 45 1/3 arc-second (approx. 10 meters)
raster DEM and were mosaicked into a single DEM raster for the entire State. Higher elevation is

normally associated with lower PM 5 concentrations.

Distance to coast - in meters: The California shoreline was derived from The National
Assessment of Shoreline Change: GIS Compilation of Vector Cliff Edges and Associated Cliff
Erosion Data for the California Coast (http://pubs.usgs.gov/of/2007/1112). These data are
integrated into the GIS mapping tool to produce a geographic view of topographical changes in
California’s coastline over time. The most recent view was created using data collected between

1998-2002. Greater distance is typically associated with greater PMa s concentrations.
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Distance to roadways - in meters: The research team used Business Analysts 2018 Street
Carto map layer provided by the Environmental Systems Research Institute (ESRI in Redlands,
CA) to derive distance to nearest highway (defined as feature class classification (FCC) A1 and
A2), to nearest major roadway (FCC A3) and to nearest local roadway (FCC A4). Greater
distance from roadways is typically associated with lower roadway traffic air pollution.

Location category - unitless: The research team classified the State of California into three
exclusive location categories: Goods movement corridor (GMC) - areas within 500 m of truck-
permitted freeways and ports, non-goods movement corridor (NGMC) - areas within 500 m of
truck-prohibited freeways or 300 m of a connecting roadway, and control areas (CTRL) -
locations out of GMC and NGMC. Typically, GMCs have the highest PM2 s concentrations while
CTRLs have the lowest PM; 5 concentrations. From 2012 to 2019, the number of PM3 5
monitoring stations for GMC, NGMC and CTRL was, respectively, 51, 67 and 28. The total
number of daily measurements for GMC, NGMC and CTRL for the years 2012-2019 was,
respectively, 95113, 147513, and 74107. The PM2.5s monitors were successfully deployed to
significantly measure its near source impacts (those sites in GMC and NGMC) and also had a
fairly number of sites located in the control areas to form a spatial representation of coverage.
These statistics will be updated in this new research to include all the days with PM> s regulatory
monitoring.

PM:5 data from CalEPA monitoring: CalEPA started monitoring PM2 s concentrations in
1998. The number of air quality monitors increased substantially from 1998 to the current, with
the largest number reaching 120 in 2021 (Figure 1). The minimum values below detection limit,
the mean values close to ten microgram per cubic meter (ug/m?) and the maximum values over
500 ug/m?>. Though Google Air also measured PMz s concentrations, they were measured by five
binned particle counts, not mass. The Google Air PM; 5 measurements will thus not be used in
this study.
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Figure 1. The spatial distribution of the CalEPA PM> 5 air quality monitoring stations
across California.



Development of daily PMz.s concentration models

All the data sources of vector shape (e.g., traffic data and parcel level land use data) are
converted into rasters with a spatial resolution of 30 m. The following describes a series of
interconnected steps to develop a daily PM2.s model through the D/S/A modeling framework:

Generate buffer statistics on 30 m spatial resolution potential predictors: A series of
buffer statistics of 50-5000 m at an interval of 50 m are created for the potential spatial predictors
with a spatial resolution of 30 m. They include daily traffic data, parcel-level land use data,
NLCD land cover data, and NLCD percent impervious and tree-canopy data. For each variable,
e.g., industrial land use, a total of 100 buffered statistics (i.e., covariates) are generated. For all
the potential predictors, with the inclusion of buffered and non-buffered variables, about 2,500
covariates are identified for the prediction of daily pollutant concentrations. This increases the
chance of identifying the optimal distance impact of a predictor and helps improve model
performance. However, this also creates high-dimension covariates that are highly correlated. To
solve this issue, the research team applies a data reduction strategy to reduce the number of
covariates used in predicting pollutant concentration.

Apply data reduction strategy to reduce the number of predictors: To reduce the number
of covariates and avoid high correlations between them for LUR modeling, The research team
first creates a correlation coefficient matrix between a pollutant and all the covariates. A
covariate of the highest absolute correlation coefficient with the pollutant is maintained. The
maintained covariate is then used to calculate correlation coefficients with all the remaining
covariates and those with an absolute correlation coefficient greater than 0.9 are removed from
inclusion. A second covariate from the remaining covariates with the second highest absolute
correlation coefficient with the pollutant is then maintained. Similarly, the second maintained
covariate is used to calculate correlation coefficients with all the remaining covariates and those
with an absolute correlation coefficient greater than 0.9 are removed from inclusion. This process
continues until all the significant covariates are chosen and no two chosen covariates have an
absolute correlation coefficient greater than 0.9. After applying the data reduction strategy, the
number of predictors maintained in a LUR model is typically less than 100. This process is
implemented before a D/S/A is run and it is carried out once for the sole purpose of reducing the
number of predictors that might be collinear.

Develop daily LUR models and surfaces for PMz.s: LUR modeling is a statistical
technique used to estimate the spatial distribution of air pollution concentrations based on land-
use characteristics and other variables. It analyzes measurements of air pollution levels taken at
specific locations, and then identifies the key factors that influence those levels. To develop daily
LUR models, The research team ran the model at 30 m spatial resolution through the D/S/A
algorithm.”*”> The D/S/A algorithm can deal with both linear and non-linear associations.
However, for simplicity of model development and for the clear interpretation of the predictors
selected for a model, The research team limited the predictors to be only on linear terms (the
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maximum sum of powers in each variable to be 1) and disallowed any interaction except corridor
by year. The D/S/A algorithm is an aggressive model search algorithm, which iteratively
generates polynomial generalized linear models based on the existing terms in the current 'best’
model and the following three steps: (1) a deletion step, which removes a term from the model,
(2) a substitution step, which replaces one term with another, and (3) an addition step, which
adds a term to the model. The search for the 'best' estimator starts with the base model specified
with 'formula': typically, the intercept model except when the user requires number of terms to be
forced in the final model. Before searching through the statistical model space of polynomial
functions, the original sample is randomly partitioned into V equal size subsamples. Of the V
subsamples, a subsample is retained as the validation data for testing the model, and the
remaining V-1 subsamples are used as training data. The cross-validation process is then repeated
V times, with each of the V subsamples used exactly once as the validation data. The advantage
of this method over the leave-one-out cross-validation technique is that the prediction errors are
less impacted by single outliers, and compared to repeated random sub-sampling, all
observations in the V-folds are used for both training and validation, and each observation is used
for validation once. With each iteration, an independent validation dataset is used to assess the
performance of a model built using a training dataset. This technique, therefore, minimizes over-
fitting to the data to maximize the probability that the models will predict well at locations that
have not been sampled.

During the D/S/A modeling process, The research team classified the entire dataset into 10-
folds. With each iteration, an independent validation dataset in one of the 10-folds was used to
assess the performance of the model built using data from the other 9-folds. This process
continued for 10 times until every fold of data is used for validation. The mean prediction errors
from the validation datasets were averaged across 10 iterations and compared between a series of
built models. The model with the minimum average prediction error was chosen as the final
model. During the modeling process, the air quality monitoring data (and associated predictors)
for a specific year were equally and randomly distributed into those 10 folds. Because one air
quality monitor typically has more than one observation (i.e., multiple days of measurements), a
random effect of air quality monitor (in R language this is given by 1|station_ID) was included in
the modeling process however, only the fixed effects (i.e., remove the random effect) were used
to construct PM; 5 surfaces due to the requirement of deriving PM» 5 concentrations beyond
monitoring stations. The adjusted R? for the fixed effects was used as a measure of model
performance from the LUR modeling result.

The study (Table 3) identified a positive correlation between higher aerosol optical depth
(AOD) values and elevated PM» 5 concentrations, suggesting that increased aerosol presence in
the atmosphere is associated with higher particulate matter levels. Increased traffic density
emerged as a contributing factor to higher PM» 5 concentrations, emphasizing the impact of
vehicular emissions on air quality. Weather factors such as higher relative humidity, wind speed,
and temperature were associated with lower PM> 5 concentrations. Developed open spaces were
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linked to reduced PM> 5 concentrations, and so were areas characterized by a higher vegetation
index, shrub cover, barren land, and water bodies, emphasizing the role of natural features in
mitigating air pollution. Barren land refers to areas that have little to no vegetation cover and is
often characterized by exposed soil or rock.”® Industrial land use, however, was associated with
higher PM2 5 concentrations, pointing to the impact of industrial activities on particulate matter
emissions. Greater residential areas were linked to higher PM2 5 concentrations, potentially
attributed to background concentrations. In densely populated regions, the increased density of
housing, traffic, and other activities can lead to elevated PM» s background concentrations.
Additionally, the urban heat island effect and limited air circulation in residential areas can
hinder the dispersion of pollutants, allowing background PM: s levels to rise. Additionally,
locations farther from the coast were associated with higher PMb» 5 concentrations, indicating a
spatial relationship between proximity to the coast and particulate matter levels.

The final PM> s model had a predictive performance of 0.65. The predictive performance
value of 0.65 was obtained through cross-validation comparing model-predicted PM> 5
concentrations with observed monitoring data. This metric reflects the model’s ability to
reproduce measured concentrations while prioritizing fine-scale spatial variability across
California rather than maximizing overall variance explained. In a large and heterogeneous study
domain with diverse emission sources, meteorology, and land-use characteristics, models
designed to capture small-area contrasts typically yield lower R? values than regionally smoothed
models. Importantly, a predictive performance of 0.65 corresponds to an overall correlation
exceeding 0.80 between predicted and observed concentrations, indicating strong agreement and
reliable exposure estimation. Although inclusion of additional regional predictors could have
increased R?, doing so would have reduced spatial resolution and limited the model’s suitability
for epidemiologic exposure assignment. Thus, the reported predictive performance represents an
appropriate balance between accuracy and spatial specificity for statewide health analyses.

Table 3. Daily PM» s model covering available observational periods.

Coefficient Estimates  std. Error Statistic P-Value
Year -0.139709  0.003115 -44.847889  <0.001
Season [Fall] 360.125186 6.244769 57.668292  <0.001
Season [Spring] 356.974440 6.245309 57.158809 <0.001
Season [Summer] 358.493294 6.246059 57.395114  <0.001
Season [Winter] 360.534093 6.244547 57.735832  <0.001
AOD (albedo) 0.044977 0.000221 203.299221 <0.001

Vehicle Kilometers Traveled (VKT) (350m) 0.000012 0.000001 16.793841 <0.001
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Wind Velocity (m/s) -1.239394  0.006771 -183.031784 <0.001
Minimum Temperature (K) -0.239641  0.002586 -92.662860  <0.001
Minimum Relative Humidity (%) -0.059829  0.000649 -92.242887  <0.001
Roadway Area (ha) (5000m) 0.000024 0.000002 13.114503  <0.001
Industrial (ha) (1850m) 0.000513 0.000024 21.714939  <0.001
Residential (ha) (850m) 0.001185 0.000029 41.076124  <0.001
Unknown Land Use (ha) (450m) -0.002008  0.000150 -13.387931  <0.001
Agricultural (ha) (50m) -0.311401  0.014300 -21.776931  <0.001
NDVI -0.000394  0.000010 -39.979943  <0.001
Barren Land (ha) (3000m) -0.001291  0.000013 -99.546262  <0.001
Barren Land (ha) (50m) -0.982108  0.074570 -13.170308  <0.001
Shrub Land (ha) (200m) -0.029789  0.000822 -36.232176  <0.001
Developed Open Space (ha) (4950m) -0.000037  0.000002 -16.515144 <0.001
Waterbody (ha) (1750m) -0.000578  0.000020 -29.560264  <0.001
Distance to Highway (m) -0.000029  0.000003 -8.723557 <0.001
Distance to Coast (m) 0.000017 0.000000 88.728793  <0.001
Elevation (m) -0.002428  0.000053 -46.003552  <0.001
Observations 633277

R?/ R? adjusted 0.652/0.652

Due to the requirement of more than three gigabytes of storage space for a single statewide
raster surface of spatial resolution of 30 m, The research team opted to generate daily surfaces of
PM2: s concentrations using a spatial resolution of 100 m. The 100 m spatial resolution surfaces
maintain the ability to identify small area variations of pollutant concentrations, especially those

heightened exposures endured by vulnerable communities.
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Task 3. Obtain CDPH Vital Statistics Data Including Mortality and
Covariates

In this task the research team obtained and processed the California population data,
including mortality records and individual-level covariates, for the Period 2000 through 2021.
This step was foundational because it allowed us to link health outcomes across a very large and
diverse population to the detailed PMa 5 exposure surfaces developed in Task 2. The availability
of continuous enrollment information, together with death records and address histories, enabled
us to study the impacts of air pollution on life expectancy over two time periods: 2000-2010 and
2011-2021.

The first component of this task was securing regulatory approvals and data access. The
research team submitted applications to both the UC Berkeley Institutional Review Board (for
reliance on State CPHS) and the California Health and Human Services Committee for the
Protection of Human Subjects, both of which reviewed and approved our research protocol.
Following approval, the research team worked with the California Department of Public Health
to acquire the mortality data under a strict data-use agreement to protect confidentiality. The data
was stored on secure UC Berkeley Secure Research Data Center (SRDC) servers in compliance
with HIPAA and state requirements.

For Period 1 (2000-2010), an annual average number of 219,795 deaths were recorded across
all age groups and race-ethnicity categories in the dataset provided by the California Department
of Public Health (CDPH) (Table 4). Deaths were not evenly distributed, with the vast majority
occurring in older age groups and among the White population. By race and ethnicity, Whites
accounted for the largest share of deaths, with 153,157 deaths, representing about 70% of the
total. Hispanics were the second largest group with 31,404 deaths (14%), followed by Blacks
with 16,576 deaths (8%), Asians with 13,721 deaths (6%), and Other with 4,937 deaths (2%). In
the study period analyzed, deaths among Native American populations constituted a very small
proportion of total deaths statewide; even after aggregation into the “Other” category, this group
represented only approximately 2% of all deaths. Analyzing Native American populations as a
standalone group would have resulted in unstable estimates, wide confidence intervals, and
increased risk of disclosure, particularly at finer geographic or age stratifications. These figures
reflect both population size differences and disparities in mortality patterns across groups. By
age group, deaths rose steeply with age. Only 769 deaths (0.3%) occurred among children ages
0-11, while more than a quarter of all deaths (55,585 deaths, 25%) occurred among adults aged
87 and over. The next highest concentrations were in the 81-86 age group with 41,445 deaths
(19%) and the 75-80 group with 32,887 deaths (15%). In contrast, young and middle-aged adults
(ages 12-45 combined) accounted for only about 7% of total deaths. Patterns also varied by race
within age categories. White deaths increased steadily with age, peaking in the 87+ group, while
Black deaths showed relatively higher representation in the 36-65 range compared to other
groups. Asian and Hispanic populations recorded fewer deaths overall, but their age distribution
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followed a similar pattern, with the majority of deaths concentrated in older age groups. Overall,
the data highlight how mortality between 2000 and 2010 was heavily age-dependent, with nearly
60% of deaths occurring among those older than 75. At the same time, the figures point to racial

disparities, particularly in the middle-aged groups, where Black mortality was disproportionately
higher compared with other race-ethnicity groups.

For Period 2 (2011-2021), the dataset recorded a total of 258,345 deaths across all age groups
and race-ethnicity categories, reflecting population growth, demographic aging, and changes in
mortality patterns compared to the previous decade (Table 4). Deaths occurring in 2020-2021
include those recorded in the CDPH Vital Statistics mortality files, which reflect all registered
deaths by underlying cause as coded on death certificates. COVID-19 specific deaths were not
separately identified or excluded in this analysis because COVID-19 cause-of-death information
was not available in a consistent, finalized form across all demographic and geographic strata at
the time of data preparation, and was not harmonized with earlier study years. As a result,
mortality during 2020-2021 was treated consistently with prior years as all-cause mortality. This
approach is consistent with the study’s focus on long-term, population-level PMz s impacts rather
than short-term mortality shocks. While the COVID-19 pandemic likely contributed to elevated
mortality in the later years of Period 2, particularly among older adults and vulnerable
populations, this effect is not expected to materially bias relative PM s-related life expectancy
estimates, which are driven primarily by long-term exposure contrasts rather than year-specific
causes of death. Results for Period 2 should therefore be interpreted as reflecting overall
mortality patterns during 2011-2021, inclusive of the pandemic period.

Deaths remained heavily concentrated in older age groups, but notable shifts occurred in the
youngest and middle-aged categories. For instance, the 0-11 age group saw 2,613 deaths, more
than triple the number observed in Period 1 (769 deaths), highlighting either data reporting
differences, population growth, or other epidemiologic factors affecting child mortality. Young
adults (ages 12-25) accounted for 3,420 deaths, while middle-aged adults aged 26-55 contributed
29,702 deaths (ages 26-35: 5,151; 36-45: 7,562; 46-55: 16,989). The majority of deaths
continued to occur among older adults: ages 56-65 totaled 33,998, 66-74 had 41,097, 75-80 had
32,528, 81-86 had 40,505, and 87 and over had 74,482 deaths. Overall, more than two-thirds of
deaths occurred among adults aged 66 and older, consistent with the expected age gradient in
mortality.

By race and ethnicity, Whites remained the largest group with 157,069 deaths (61%),
followed by Hispanics with 50,439 deaths (20%), Asian populations with 24,866 deaths (10%),
Blacks with 19,631 deaths (8%), and Other populations with 6,340 deaths (2%). Compared to
Period 1, the share of deaths among minority populations increased, particularly for Hispanics
and Asians, reflecting demographic growth and changing age structures within these groups. The
age-specific racial patterns also shifted: while White deaths remained concentrated among the
oldest age groups, Hispanics and Asians experienced substantial increases in both middle-aged
and older categories. Black mortality remained disproportionately elevated in middle-aged
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groups (36-65), though total counts increased only modestly compared with other groups. These
patterns illustrate not only the continuing predominance of age as a determinant of mortality but

also the evolving race-ethnicity composition of California’s population, which has implications
for public health planning and interventions aimed at reducing disparities.

For Table 4, deaths count differs between Period 1 and Period 2 in part because the

underlying population size and demographic composition of California changed substantially

over time. However, year-by-year population counts by age and race/ethnicity were not
consistently available for the full study period, particularly at the level of detail required for this

analysis. As a result, population growth and demographic shifts could not be displayed alongside
annual death counts in Table 4. Instead, baseline population distributions were applied separately

within each period to support internally consistent life expectancy calculations. Consequently,

increases in the number of deaths among Asians and Hispanics between periods should be

interpreted as reflecting a combination of population growth, aging, and changes in mortality

patterns, rather than increases in per-capita mortality risk.

Table 4. Annual average death statistics across California for the two study periods

Period Age Group White Black Asian Hispanics Other*  Total
0-11 221 83 55 373 36 769
12-25 1,217 495 206 1,608 152 3,678
26-35 1,520 556 224 1,507 153 3,960
36-45 4,053 1,028 431 2,294 290 8,095
46-55 9,751 2,147 974 3,580 554 17,006

2000-2010 56-65 15,613 2,682 1,521 4,157 747 24,720
66-74 21,025 2,831 2,117 4,813 863 31,649
75-80 23,589 2,165 2,219 4,200 714 32,887
81-86 31,742 2,135 2,676 4,219 673 41,445
87 & Over 44,426 2,454 3,299 4,652 754 55,585
Total 153,157 16,576 13,721 31,404 4,937 = 219,795
0-11 588 288 216 1,268 254 2,613
12-25 998 405 219 1,577 221 3,420
26-35 1,893 610 352 2,018 278 5,151
36-45 2,913 866 625 2,797 360 7,562
46-55 7,897 1,933 1,382 5,119 658 16,989

2011-2021 56-65 18,382 3,812 2,776 7,882 1,146 33,998
66-74 24,673 3,730 3,696 7,845 1,153 41,097
75-80 20,405 2,417 3,277 5,707 722 32,528
81-86 26,561 2,375 4,366 6,508 695 40,505
87 & Over 52,759 3,195 7,957 9,718 853 74,482
Total 157,069 19,631 24,866 50,439 6,340 258,345
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¢ The “Other” category grouped together non-Hispanic American Indian/Alaska Native, non-Hispanic
Hawaiian/Pacific Islander, non-Hispanic Other, those reporting multiple races, and those with missing or unknown
race.

Residential address histories were a particularly valuable component of the data, which
enabled us to geocode each individual’s location at high spatial resolution. The research team
then linked these geocoded addresses to the daily 100 m PM2 s surfaces produced in Task 2. For
each decedent, the research team assigned the one-year rolling average PMz 5 exposure leading
up to the date of death. For matched controls, the research team assigned exposures for the same
span of time, thereby allowing for precise contrasts between those who died and those who
survived. To structure the analysis across generations, the research team divided the population
into two periods: the years 2000-2010 defined the first generation, while 2011-2021 defined the
second generation. This division allowed us to examine how declining PM2 s concentrations
influenced life expectancy across time and to assess whether improvements were equitably
distributed.

Task 4. Calculate PMz.s-Specific Reductions in Life Expectancy
Across Two Time Periods and Identify Race-Ethnicity Disparities

The analytic foundation of Task 4 involved estimating the causal effect of PM2.s on mortality
and life expectancy across two distinct time periods and two generations of the California
population, and then examining disparities by race, ethnicity, and vulnerability. To estimate the
mortality and life-expectancy impacts attributable to long-term PMa s exposure, the research
team first quantified age-specific associations between PMb» 5 and all-cause mortality using
conditional logistic regression models. Models were fit separately within predefined age strata
and time periods, with long-term PM> s exposure defined as the one-year rolling average
preceding the date of death. These age-specific effect estimates represent the relative change in
mortality risk associated with incremental changes in PMa.s exposure and form the basis for all
subsequent counterfactual and life-expectancy calculations. Life expectancy was calculated
under two scenarios: an observed (all-cause) scenario reflecting existing PMa 5 exposure levels,
and a counterfactual scenario in which PM> 5 exposure was hypothetically removed. For each age
group, the estimated PM» s—mortality association was used to adjust age-specific mortality
hazards under the counterfactual scenario. Life tables were then constructed using standard
demographic techniques to generate age-specific survival probabilities and expected remaining
life years under both scenarios. The PM; s-attributable life-expectancy impact was defined as the
difference between life expectancy under observed conditions and life expectancy under the
PMb s-removed counterfactual. The proportion of deaths attributable to PM> 5 exposure was
quantified using a population attributable fraction (PAF) framework. For each age group and
stratum, the PAF represents the fraction of deaths that would not have occurred under the
counterfactual scenario of no PMx s exposure, given the estimated exposure-response
relationship. Because PM> s exposure was modeled as a continuous variable rather than
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dichotomized, the PAF implicitly reflects the full exposure distribution rather than a binary
exposed versus unexposed comparison. In this framework, all individuals are considered exposed
to some degree, and the PAF captures the proportional reduction in mortality that would result
from reducing exposure to the counterfactual level.

To summarize impacts across age groups, the research team implemented both population-
weighted and death-weighted aggregation approaches. Population-weighted impacts were
calculated by weighting age-specific life-expectancy changes by the size of the corresponding
population, reflecting the average per-person impact across the full population. Death-weighted
impacts were calculated by weighting age-specific life-expectancy changes by the number of
deaths occurring in each age group, thereby emphasizing the contribution of age groups that
account for the largest share of mortality. These two metrics capture complementary aspects of
PMb 5 burden and allow assessment of whether impacts are concentrated among younger, middle-
aged, or older populations.

Policy benefits were defined as the change in PMx s-attributable life-expectancy impact
between Period 1 and Period 2, with a focus on death-weighted estimates. This difference
quantifies the reduction in mortality burden attributable to lower PM2 s exposure and changing
exposure-response dynamics over time. Positive policy benefits indicate that regulatory actions
and associated emission reductions translated into meaningful decreases in PM; s-related life-
expectancy loss. Importantly, this metric does not attribute benefits to any single regulation but
instead reflects the cumulative effect of regulatory, technological, and behavioral changes that
occurred between the two periods.

For race-ethnicity and age-specific analyses, the same modeling and counterfactual
framework was applied within each subgroup. Age-specific PM» 5 effect estimates were
combined with subgroup-specific population and mortality distributions to compute both
population-weighted and death-weighted life-expectancy impacts. These stratified estimates were
subsequently used to evaluate heterogeneity in vulnerability and to assess how the distribution of
PM, 5 impacts shifted across demographic groups and time periods.

The analysis was divided into two major periods: 2000-2010 (Period 1) and 2011-2021
(Period 2). By splitting the data in this way, the research team were able to test directly how
declines in PM2 5 concentrations over time translated into reductions in mortality risk and gains
in life expectancy. Within each period, logistic regression models were run under three primary
stratification schemes to balance epidemiologic detail with statistical stability. First, models were
estimated using all twenty original age groups without race-ethnicity stratification. Second,
models were estimated after aggregating the twenty age groups into ten broader age groups
(Aggr2) with race-ethnicity stratification applied. This aggregation combined every two adjacent
age groups and was used to increase sample size within each race-ethnicity stratum while
retaining meaningful age differentiation. Third, models were estimated using five aggregated age
groups (Aggr4), formed by combining every four adjacent age groups, and with race-ethnicity
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stratification. This further aggregation was implemented to ensure sufficient numbers of deaths
and matched controls within smaller race-ethnicity groups and older age strata, where sparse data
could otherwise lead to unstable estimates. The abbreviations “Aggr2” and “Aggr4” are used
consistently to denote the ten-age-group and five-age-group aggregation schemes, respectively,
hereafter.

The research team conducted both the five-group and ten-group age analyses to balance
statistical stability with the ability to detect meaningful differences within age ranges. The five
age-group approach reduces small-sample problems, especially for smaller race-ethnicity
populations, by aggregating individuals into broader categories, ensuring reliable estimates.
However, these broader groups can mask important variations that occur within the same age
bracket. The ten age-group analysis allows us to uncover those within-group differences,
although this finer stratification can introduce small-sample limitations for some populations.
These concerns are minimal for Hispanic and White populations, which have sufficiently large
sample sizes to support the ten-group structure. Using both approaches lets us verify whether
patterns are consistent across grouping strategies and provides greater confidence that our
findings are robust and not driven by grouping artifacts. Together, these complementary
approaches provided both granularity and robustness, allowing us to see how different ways of
grouping ages and populations influenced the estimated mortality effects of PMz s.

The original twenty age groups were defined as 0-5, 6-11, 12-17, 18-25, 26-30, 31-35, 36-40,
41-45, 46-50, 51-55, 56-60, 61-65, 66-70, 71-74, 75-77, 78-80, 81-83, 84-86, 87-89, 90-95, and
96 years and over (similar to the American Community Survey categories:
https://www.census.gov/programs-surveys/acs.html). These fine-grained strata allowed us to
observe age-specific patterns of susceptibility with high resolution. The Aggr2 grouping reduced
these categories into ten broader ranges—0-11, 12-25, 26-35, 36-45, 46-55, 56-65, 66-74, 75-80,
81-86, and 87 years and over—while the Aggrd grouping condensed them further into five
ranges: 0-25, 26-45, 46-65, 66-80, and 81 years and over. Each set of groupings was carefully
tested to balance statistical power with interpretability.

Study Design

Identification of impact of PM> s exposure on mortality

The process of preparing the data for logistic regression was highly detailed and required careful
handling of age, race-ethnicity, and other covariates. Each death was matched with a maximum
of 2 controls based on birth year and month, race-ethnicity and sex. Allowing 0—2 matched
controls per death maximized use of the available mortality data while maintaining strict
matching criteria and avoiding forced or inappropriate matches. The raw mortality and matched
control data sets were compiled across the years within each period. For Period 1, death data
spanned 2000-2010, while control data extended slightly further to 2012 to allow proper
matching. Mortality records beyond 2010 were used only to identify control individuals who
were alive at the time of Period 1 case death and therefore eligible to serve as controls. For all
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controls matched to Period 1 deaths, PM2 5 exposure was defined using the same one-year rolling
average prior to the matched case death date, and no exposure information beyond 2010 for
controls was used in the Period 1 analysis. These annual files were consolidated into master
analytic data tables that included both case and control individuals, their assigned one-year
average PM s exposures, and demographic covariates. Each individual was then assigned to the
appropriate age group according to the grouping scheme being used. This matched case—control
design inherently accounts for secular trends in all-cause mortality over time. By selecting
controls who were alive at the time of each death and matched on birth year and month, sex, and
race-ethnicity, cases and controls were drawn from the same underlying population and mortality
risk context within each period. As a result, long-term improvements in healthcare, prevention,
and baseline mortality risk operate similarly on cases and controls and do not confound the
estimated PM; s effects. Calendar year indicators were not included because the analysis did not
estimate year-specific models; instead, observations were pooled within each period, and PM> 5
exposure was defined as a rolling 365-day average prior to death, making explicit year effects
neither identifiable nor necessary under this modeling framework.

Race and ethnicity were reclassified into the following categories: non-Hispanic White, non-
Hispanic Black, non-Hispanic Asian, Hispanic, and Other. This recoding ensured adequate
sample sizes for robust estimation while preserving the major race-ethnicity contrasts central to
the analysis. Marital status and education were also cleaned and reclassified, with missing
education values imputed to the lowest category (assumed less than high school diploma) and
missing marital status values assigned to “Unknown.” In the CDPH mortality data, missing
education values primarily occur for individuals with less than a high school diploma, a pattern
that reflects known limitations in death certificate reporting rather than random missingness.
Education is recorded categorically, and missingness is concentrated among individuals with
very low educational attainment. Assigning missing education to the lowest category (less than
high school) is therefore a conservative and commonly used approach that avoids overstating
socioeconomic advantage. For marital status, missing values occur predominantly among
decedents under age 18, for whom marital status is typically not reported on death certificates.
Because marital status is not meaningfully defined for these individuals, missing values were not
imputed to a specific category but instead coded as “Unknown,” allowing these records to be
retained in the analysis without introducing misclassification. Both education and marital status
were included only as adjustment covariates and were not primary variables of interest. The
matched case-control design, with matching on age, sex, and race-ethnicity, limits sensitivity of
the PM; 5 effect estimates to assumptions about these variables. Given the small proportion of
missing values and their role as control variables, this handling of missing education and marital
status is unlikely to materially affect the estimated PM2 s-related mortality risks or life-
expectancy impacts.

Before fitting the logistic regression models, the research team applied filters to reduce exposure
misclassification. Specifically, individuals with less than one year of residence in their county
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were excluded, on the grounds that their assigned exposures may not have accurately reflected
their true environmental context. This step reduced the analytic sample size slightly but
significantly improved exposure validity.

The core modeling step involved fitting logistic regressions within each age group and race-
ethnicity stratum. The dependent variable was mortality status (death vs. survival), and the
independent variable of interest was PMa.s exposure, expressed as the one-year rolling average in
micrograms per cubic meter. We selected a one-year rolling average PM> 5 exposure because the
analysis is based on individual deaths with precisely dated events and daily exposure surfaces,
rather than cohort-based long-term averages. Many chronic exposure studies rely on multi-year
averages because exposure data are only available as long-term spatial surfaces and because
outcomes are assessed at fixed follow-up intervals rather than at the time of death. In contrast,
our study links each death to a continuous daily PM> s time series and assigns exposure as the
average over the 365 days preceding death, which captures cumulative exposure immediately
relevant to mortality risk while preserving temporal alignment between exposure and outcome.
Using a one-year rolling window also avoids introducing exposure misclassification that would
arise from averaging over years well before the death event, particularly during a period of rapid
air quality improvement in California. The one-year window therefore represents a pragmatic
and epidemiologically appropriate definition of long-term exposure for a mortality-based, case-
control design with daily exposure data.

Covariates included sex, age, education, race-ethnicity, and marital status, with the exact set of
included variables adjusted according to the availability of variation within each stratum. We
conducted conditional logistic regression to account for the matched case-control design. Deaths
were matched to up to two controls based on birth year and month, sex, and race-ethnicity.
Although age, sex, and race-ethnicity defined the matching criteria, these variables were also
included as covariates in selected models. This was done because matching was not exact for all
cases (i.e., some cases had zero, one, or two matched controls), and inclusion of these variables
as covariates helps control for residual confounding arising from incomplete or unbalanced
matching while preserving adjustment across all observations. When models were stratified by
race-ethnicity or age group, race-ethnicity was not included as a covariate due to lack of
variation within strata, while age was still included as a continuous covariate to account for
residual age differences within the same age-group category. This approach ensures that the
primary association between PM; 5 exposure and mortality is estimated within matched strata
while maintaining appropriate adjustment for key demographic factors across the full analytic
sample. In some instances, for example, marital status was dropped from models of younger age
groups where all individuals were coded as “never married.” Coefficients, confidence intervals,
and significance values for PM 5 were extracted from each model, and results were organized by
age group and race-ethnicity. This modeling framework was implemented in both Period 1 and
Period 2, yielding two full sets of coefficients across all stratification schemes. Furthermore, the
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research team merged the two periods of data into a consolidated dataset to identify the overall
impact of PM 5 on mortality across major age groups.

Identification of PM:> s exposure impact on life expectancy

Building on the logistic regression models described above, the second major stage of Task 4
involved the calculation of life expectancy by race, ethnicity, and age group, and the
quantification of gains achieved between Period 1 and Period 2. This work required the
integration of population counts, death distributions, and PMx s effect coefficients into formal life
table methods. The research team implemented this process separately for three stratification
schemes in a way corresponding to their logistics modeling framework: (1) models with all
twenty detailed age groups without race-ethnicity stratification; (2) models with ten aggregated
age groups (Aggr2) across major race-ethnicity categories; and (3) models with five aggregated
age groups (Aggr4) across major race-ethnicity categories. This parallel structure ensured that
the life expectancy estimates were robust and comparable under different levels of aggregation.

Population counts by age group and race-ethnicity were drawn from the Business Analysts
data acquired by the research team, adjusted to reflect annual populations by dividing decadal
totals into annualized estimates. These population files were restructured so that the age
categories matched the aggregation scheme being used. For example, in the Aggr2 framework,
the raw Business Analyst categories (such as 0-5 and 6-11) were collapsed into a single 0-11
group. Parallel collapsing was applied to death distributions, which were estimated from the
mortality data provided by CDPH and expressed as annualized death counts by age group and
race-ethnicity. After reclassification, deaths were joined with population data, yielding a
mortality profile that aligned with the exposure-effect coefficients derived from logistic
regression.

The next step was to incorporate the estimated PM: s coefficients. For each age and race-
ethnicity group, the research team extracted the beta coefficient for PM» s from the logistic
regression models. These coefficients quantified the log-odds increase in mortality per unit PMz s
exposure. Because not all age-by-race strata had stable coefficient estimates, particularly in
smaller population groups, the research team implemented an interpolation procedure. Missing
or unstable beta values were replaced with interpolated values derived from the nearest available
age groups within the same race category. A beta coefficient was classified as unstable if the
conditional logistic regression failed to converge, produced an infinite or undefined estimate, or
yielded a standard error larger than the absolute value of the coefficient itself, indicating
insufficient information for reliable estimation. In some strata, no coefficient was estimated at all
due to the absence of informative matched case-control sets or complete separation. For strata
with missing or unstable coefficients, replacement values were derived from the closest valid
neighbors, defined as the immediately adjacent age groups within the same race-ethnicity
category for which the model converged and produced finite coefficients and standard errors.
When both adjacent age groups were available, the replacement value was calculated as the
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average of those coefficients. When only one adjacent valid age group existed, its coefficient was
carried forward or backward as appropriate. This procedure primarily affected the youngest age
groups and effectively assigned coefficients from slightly older age groups when direct
estimation was not possible, while preserving within-race smoothness across age.

Once the data set contained complete age-specific population counts, deaths, and PM> s effect
coefficients, the research team proceeded to the life expectancy calculations. For each race and
ethnicity, the research team began by calculating baseline mortality rates within each age group
as the ratio of deaths to population. These mortality rates were then converted into probabilities
of death within the age interval, accounting for the width of each age group (denoted Ni). The
hazard ratio for PM2 s exposure was calculated as the exponential of the beta coefficient, and
from this the research team derived the population attributable fraction (PAF), which represents
the proportion of deaths within each age group attributable to PM2 5 exposure. The counterfactual
probability of death with PM» s removed was then calculated by dividing the observed hazard by
the hazard ratio, ensuring that the adjusted probability reflected the absence of pollution-related
risk. These calculations were conducted separately for Period 1 and Period, and the research
team merged the two periods of data into a consolidated dataset to identify the overall impact of
PMb s on life expectancy across major age groups. The research team calculated life expectancy
impacts attributable to PM2.s by combining mortality, population, and exposure-response
estimates (1) derived from logistic regression results. The approach translates individual-level
PMb 5 exposure effects into life expectancy impacts. Let D;and N;denote deaths and population in
age interval i, and let 8, be the exposure-response coefficient (log hazard ratio) for PMas. The
observed mortality rate in age interval i is:

D;

i =
Population,

The baseline probability of death in the interval is:
q; = 1—exp (=M; - n;)

where n;is the width of the age interval (number of years). The relative risk associated with
PM2: s is computed on the hazard scale:

RR; = exp (B1)

p.1s estimated as a log hazard ratio (HR) in the life table context. In our analysis, f;had been
derived from a logistic regression, exponentiating it would yield an odds ratio (OR), which
approximates the HR because outcome death is rare compared to population size. Because the
ORs/HRs in our study are small, this approximation is reasonable. From this, the PAF in age
interval iis:

RR; — 1

PAF; = ——
l
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The PM2 s-attributable probability of death is:
qpm,i = q; - PAF;

The counterfactual probability of death if PM» s were removed is estimated using the hazard-
scale adjustment:

’ Mi
qi=1-exp (_ RR, ni)

This ensures that the removal of PMz s is modeled consistently on the hazard scale rather than
simply adjusting probabilities linearly. In life table construction, let [, denote the number of
survivors at the beginning of each age interval:

lo=1Lolxsr =1l (1 —qx)
The counterfactual survival with PMz s removed is:

Le=L-(1—qy)
The person-years lived in the interval:

_ et e ;L b
x =T, ke =T

Cumulative person-years above age x (total years remaining):

max age max age
j— [ 14
j =X ] =X

Life expectancy at age x:

L, _TIk

!
e = —_— =
LT

The impact of PM> 5 removal on life expectancy:
Ae, = e, — e,

The research team constructed life tables using both the observed and the counterfactual death
probabilities. For each race-ethnicity and age group, the research team calculated the number of
survivors entering the interval (i), the number surviving with PM; 5 removed (1), and the
person-years lived within each age interval (Lx and L,’). The cumulative total person-years lived
above each age (Tx and Ty') was then computed, and life expectancy at each age (e« and ey’) was
obtained by dividing Tx or Ty’ by the number of survivors at the beginning of the interval. The
difference between the observed and counterfactual life expectancies yielded the life years lost
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due to PM; 5 exposure. To ground the estimates in reality, the research team anchored the life
tables to known baseline life expectancy at birth for each race-ethnicity group, based on period-
specific state and national statistics. For Period 1, these values were 83.0 years for Asians, 80.5
years for Hispanics, 77.8 years for non-Hispanic Whites, 72.1 years for non-Hispanic Blacks,
and 78.2 years for Other groups (https://www.ppic.org/wp-
content/uploads/content/pubs/cacounts/CC_504HJCC.pdf). For Period 2, these values were 86.3
years for Asians, 83.2 years for Hispanics, 79.8 years for non-Hispanic Whites, 75.1 years for
non-Hispanic Blacks, and 80.2 years for Other groups (https://www.chcf.org/wp-
content/uploads/2019/10/DisparitiesAlmanacRaceEthnicity2019.pdf). By aligning the modeled
estimates with these known values, the research team corrected for discrepancies introduced by
limited sample sizes or interpolation errors.

An additional hazard-scale adjustment method was used to ensure that the attributable
fractions and counterfactual probabilities of death were consistent with the underlying log-linear
structure of the models. This method prevented the emergence of biologically implausible
results, such as negative life years gained, and scaled impacts appropriately when mismatches
occurred between expected and observed directions of effect. In cases where the raw calculations
produced impacts exceeding plausible bounds, the results were scaled relative to the maximum
observed within-group effect, ensuring comparability across race and age groups.

Aggregate life-expectancy impact

The research team estimated the overall impact of PM> s on life expectancy across all age
groups using aggregate weighting approaches using population-weighted and death-weighted
estimates. Population-weighted estimates reflect the age distribution of the population, while
death-weighted estimates reflect the distribution of deaths across age groups.

The population-weighted PM2 5 impact on life expectancy was estimated by combining the
modeled age-specific life-expectancy impacts with the corresponding age-specific population
distribution. For each age group, the research team multiplied the estimated PM> s-attributable
life-expectancy impact by the number of individuals in that age group. These weighted
contributions were then summed across all age groups and divided by the total population
represented in the dataset. This approach ensures that age groups comprising larger portions of
the population have greater influence on the overall estimate and produces a single population-
weighted metric that reflects the demographic structure of the population.

The death-weighted PM2 s impact on life expectancy was estimated by weighting the
modeled age-specific life-expectancy impacts using the observed number of deaths in each age
group. For each age group, the research team multiplied the estimated PM> s-attributable life-
expectancy impact by the number of deaths occurring in that group. These values were summed
across all age groups and divided by the total number of deaths in the dataset to obtain a single
death-weighted estimate. This method places greater emphasis on age groups with higher
mortality, recognizing that life-expectancy impacts are driven primarily by the groups in which
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deaths occur. As a result, the death-weighted metric reflects the distribution of actual mortality
burden across age groups.

In this project, the research team focus on the death-weighted PM2 s impact because our
modeling is designed to capture the effects of PM2 s on mortality. The research team also use the
population-weighted PM; 5 impact, alongside the death-weighted PM> 5 impact, to determine
whether PM> 5 life-expectancy impact fall disproportionately on younger populations or on older
age groups.

When the population-weighted impact is relatively high but the death-weighted impact is
relatively low, it indicates that younger or middle-aged groups, who make up most of the
population, experience moderate-to-high per-person PM; s impacts, while the elderly experience
smaller per-person impacts and therefore contribute less to the death-weighted average. When
the population-weighted impact is relatively low but the death-weighted impact is relatively
high, the pattern is reversed: the numerically dominant younger or middle-aged groups have
relatively low per-person PM» s impacts, while elderly groups have moderate-to-high per-person
impacts, causing deaths to carry most of the overall burden.

When both population-weighted and death-weighted impacts are high, all major age groups,
including young, middle-aged, and elderly, exhibit moderate-to-high per-person PM> s impacts,
producing large totals regardless of whether the impacts are weighted by population or by deaths.
When both population-weighted and death-weighted impacts are low, per-person PM; s impacts
are uniformly small across all age groups, resulting in low overall values under either weighting
approach.

Study Results

Integrated analysis for 20 age groups across the entire study period (2000-2021)

To improve model stability and interpretability for younger populations, the research team
aggregated the four youngest age groups (0-5, 6-11, 12-17, and 18-25) into a single 0-25 age
category. This decision was motivated by the relatively low mortality counts and similar
exposure-response patterns across these age bands, which could otherwise lead to unstable
estimates and wide confidence intervals when modeled separately. The resulting 0-25 group thus
provides a more reliable and interpretable estimate of PM s-related mortality effects in early life
stages, while maintaining consistency across the full age spectrum.

The conditional logistic regression results (Figure 2) revealed a clear age-dependent pattern
in the association between PM s exposure and mortality risk. The estimated PM; 5 coefficients
were positive and statistically significant across all age groups for the integrated study period,
indicating that higher PM> s exposure consistently increased mortality risk throughout the
lifespan. The effect generally increased from younger to middle-aged groups, peaking between
ages 66-70 and again around 84-86, followed by a gradual decline among the oldest populations
(90 years and above). This pattern suggests that sensitivity to PMa s rises steadily through
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adulthood and early older age, possibly reflecting the accumulation of chronic disease burden
and diminished physiological resilience, before declining at extreme ages where competing
mortality risks or survivor bias may attenuate the observed associations.

The subsequent analysis of PM» s impacts on life expectancy across age groups revealed a
similar and distinct age-dependent pattern, with the magnitude of life expectancy gains from
PM: s removal varying systematically by age (Figure 3). The positive life expectancy impact of
PMb> s removal was observed across all age groups, indicating that reducing air pollution
consistently extended expected lifespan throughout the population. Among younger age groups
(0-25 years), the effect was modest, with an estimated improvement of about 0.16 years,
reflecting the lower baseline mortality risk and shorter immediate exposure windows typical of
early life. The impact then increased gradually through adulthood, peaking during the mid- to
late-older age groups (ages 84-86) with an average improvement of 0.95 years, suggesting that
chronic exposure over the lifespan culminates in greater health benefits from pollution reduction
later in life. Beyond this peak, the effect began to decline slightly in the very oldest age groups
(90 years and above), where the estimated gains ranged between 0.46 and 0.68 years.

For the aggregated impact, when using a population-weighted approach, long-term PM3 s
exposure was associated with an average loss of 0.35 years. Using a death-weighted approach,
the estimated loss increased to 0.61 years. The 0.61 years indicate a moderate life expectancy
loss from air pollution PMz 5. The population-weighted impact is relatively low but the death-
weighted impact is relatively high, and this clearly indicates that the numerically dominant
younger or middle-aged groups have relatively low PMz s impacts, while elderly groups have
moderate-to-high per-person impacts, causing deaths to carry most of the overall burden.

In summary, this pattern underscores how cumulative exposure and age-related vulnerability
shape the life expectancy benefits of cleaner air. The steady increase in PM; s-related life
expectancy gains from young adulthood to late old age likely reflects both longer exposure
histories and the compounding effects of pollution on chronic diseases such as cardiovascular
and respiratory conditions. The slight decline at the extreme ages may be due to survivor bias,
where only the healthiest individuals reach those ages and the limited room for further life
expectancy extension in very old populations. Further, increased exposure misclassification
might occur among older adults who spend more time indoors. Despite this, exposure studies’”
have documented strong positive correlations between ambient and indoor PMb» 5 concentrations,
indicating that outdoor PM2 s is a dominant contributor to personal exposure (e.g., Pearson r >
0.90 in community residential settings and correlation approaches 1.0 in urban areas under
typical conditions) and supports the use of ambient concentrations as a surrogate in long-term
mortality modeling.
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PM, 5 Effect by Age Group (2000-2021)
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Figure 2. The impact of PM> s on mortality across the major age groups for the entire study
period (2000-2021).

Notes: The y-axis displays regression coefficients (B;) from age-specific mortality models, expressed per
interquartile range (IQR) increase in PM, 5. These coefficients quantify log-scale mortality risk effects and may be
exponentiated to obtain odds ratios. Coefficients are shown to maintain consistency with subsequent life-table and
population impact calculations.
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Life Expectancy by Age Group (2000-2021)
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Figure 3. The impact of PM> 5 on life expectancy across the major age groups for the entire study
period (2000-2021).

Notes: The y-axis shows cumulative period life expectancy from birth up to each age-group entry, as derived from
life-table calculations. It is not the expected remaining years of life conditional on survival to that age. For example,
the 90-95 age group has a y-axis value of ~40 because this represents the cumulative life expectancy measure at the
entry to that age interval, not the remaining years a 90-year-old individual is expected to live. Bars labeled “PM, 5
Eliminated” represent counterfactual life expectancy under a scenario in which PM, s-attributable mortality risk is
removed. The difference between observed and PM, s-eliminated bars indicates the estimated life expectancy loss
attributable to PMas.

Period-specific impact for twenty age groups without race-ethnicity stratification

The logistic regression modeling results for Period 1 (2000-2010) (Figure 4, top) demonstrate
that PM> 5 exposure is consistently and significantly associated with increased mortality risk
across age groups, with effects strengthening as age advances. Among younger adults (18-35),
coefficients ranged from 0.056 to 0.064, corresponding to odds ratios of about 1.06-1.07 per
inter-quartile range (IQR) increase in PMa 5 exposure, while middle-aged adults (36-55) showed
stronger effects, particularly at ages 41-45 (OR = 1.11) and 46-50 (OR = 1.09). Early seniors (61-
74) exhibited even higher risks, with odds ratios between 1.10 and 1.12, and the effect peaked in
the mid-80s, where coefficients reached 0.182 (OR = 1.20), indicating nearly 20 percent higher
mortality odds per unit increase in PMas. At the very oldest ages (96 and over), the effect

55



declined slightly to an OR of about 1.12, likely reflecting survivor bias or smaller sample sizes.
All confidence intervals were narrow and excluded zero, and p-values were < 0.001-effeetively,
providing strong evidence that PM» s exposure is a robust predictor of mortality. Overall, the
results reveal a clear age-related gradient of vulnerability, with the elderly facing the greatest
risks, underscoring the critical public health importance of mitigating air pollution exposure in
California.

The logistic regression results for Period 2 (2011-2021) (Figure 4, bottom) show that PM> s
exposure remained a significant predictor of mortality across most age groups, though the
magnitude of effects was generally lower and more variable compared to the earlier decade. In
younger adults, associations were modest but significant, with coefficients ranging from 0.035 to
0.082 (OR = 1.04-1.09), peaking in the 26-30 age group. Among middle-aged adults, effects
weakened considerably, with coefficients around 0.012-0.030 (OR = 1.01-1.03), indicating much
smaller impacts than observed in Period 1. For seniors, the associations reemerged, with ages 66-
70 showing one of the strongest effects (coef. = 0.067, OR = 1.07), while later elderly groups
exhibited modest but statistically significant risks, such as 81-86 with coefficients of 0.025-0.027
(OR = 1.03) and 87-89 at 0.043 (OR = 1.04). At the oldest ages (96+), the coefficient remained
significant at 0.039 (OR = 1.04). All estimates had narrow confidence intervals and very small p-
values, confirming robust significance despite attenuated magnitudes compared to 2000-2010.
Taken together, the results suggest that while PM> 5 exposure continued to adversely impact
mortality in California, the effect sizes in the more recent decade were smaller and less steeply
age-graded than in Period 1, possibly reflecting improved air quality, stronger health protections,
or shifting population dynamics. Notably, the age distribution of deaths shifted in Period 2
toward relatively younger adults compared with Period 1, increasing the relative contribution of
younger mortality to the overall PM» s-mortality relationship.
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Figure 4. The age group stratified logistic regression modeling results on the overall impact of
PMb s on mortality for Period 1 (top) and Period 2 (bottom).

Notes: Separate y-axis scales are used to enhance visual resolution; Period 2 coefficients are substantially smaller

than Period 1. Confidence intervals (95% CI) are proportional to the coefficient range provided; although Period 2
CIs appear wider relative to the coefficient, the absolute uncertainty is comparable to Period 1.
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Life Expectancy by Age Group (2000-2010)
80 0.29 H

ause
. hﬁ%lnaﬁd

Life Expectancy (years)
F-S
o

20 i
0 L]
b - ~ [Te] o wn o wn o wn o w o < ~ (=] [ (1] [<2] wn -
o T T 8 ® ® ¥ ¥ B ®» 8 o K K K & 8@ ® @ o 9
[1-] o~ -] [1-] - w -— w -~ =] - (1] -— w [-<] - < ~ (=] (=)
- - o~ [} ™ < Ay w wn ©w ©w ~ ~ ~ -] [--] (-] » -
&
[1-3
(-]
Age Group
Life Expectancy by Age Group (2011-2021)
5 | |
5 All Cause
weo B R A B 2 'PM2.5 Eliminate
o .
-o_>¢‘ - 0
W] ] i
c €2 0.25
S4n 1 1 1 1 1 1 1 1 1 1 1 || 0'31 0.29
Q
Q
j=1
e
i
£
20

v.49 0.47
II |

05 |
6-11

TN ® 9 ¥ FJ W @ 9 K N F Q@ @ @ 9 9
N 0 W T W T W W T W T W W T T N~ © o0
-—-—Nmnevm:noh-h-h-oocooocn.u
&
0
[-2]

Age Group

Figure 5. All cause and PM s-eliminated life expectancy by age groups for Period 1 (top) and
Period 2 (bottom).

Notes: The y-axis shows cumulative period life expectancy from birth up to each age-group entry, as derived from
life-table calculations. Bars labeled “PM, s Eliminated” represent counterfactual life expectancy under a scenario in
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which PM; s-attributable mortality risk is removed. The difference between observed and PM2.5-eliminated bars
indicates the estimated life expectancy loss attributable to PM; s.

The life expectancy estimates for Period 1 (2000-2010) (Figure 5 top) show that eliminating
PMb 5 exposure would have produced consistent gains across all age groups, with the most
pronounced benefits at older ages. At birth, life expectancy was 78.40 years, which increased to
78.78 years once PM» s was removed, reflecting an overall gain of 0.38 years based on
population-weighted impact. The corresponding death-weighted impact was 0.61 years,
indicating a moderate effect for Period 1. The population-weighted impact is relatively low but
the death-weighted impact is relatively high, indicating that the numerically dominant younger or
middle-aged groups have relatively low per-person PM: s impacts, while elderly groups have
moderate-to-high per-person impacts, causing deaths to carry most of the overall burden. Across
childhood and adolescence, the benefit remained modest at about 0.29 years, but by adulthood
the impacts became more visible. For example, individuals aged 26-30 would have gained 0.34
years, while those aged 41-45 gained 0.55 years. The largest effects appeared among older
adults, with the 66-70 group experiencing an improvement of 0.57 years, and the 84-86 group
gaining nearly one full year of life expectancy (0.95 years). Even at ages 96 and over, PM> 5
removal was associated with an additional 0.58 years of life. These results highlight how air
pollution shortened life expectancy at every age, with its heaviest toll among seniors.

In Period 2 (2011-2021) (Figure 5 bottom), life expectancy rose overall, and the gains from
removing PM> 5 exposure also remained significant. At birth, life expectancy was 80.80 years,
increasing to 81.26 years without PM> s, an overall gain of 0.46 years based on population-
weighted impact. The corresponding death-weighted impact was 0.37 years, a significant
reduction in effect compared to that in Period 1. Here the overall population-weighted impact is
slightly higher than the death-weighted impact. It indicates that younger or middle-aged groups,
who make up most of the population, experience slightly higher per-person PM, s impacts, while
the elderly experience slightly smaller per-person impacts and therefore contribute less to the
death-weighted average. Children and young adults showed consistent improvements after
removing PMz s impact, with the 26-30 age group experiencing the largest single benefit of 0.95
years. Middle-aged adults showed smaller impacts than in the previous decade, with increases of
only 0.14 to 0.35 years, suggesting possible attenuation of pollution effects or stronger resilience.
Among older adults, however, the benefits reappeared, with the 66-70 group gaining 0.77 years
and those aged 87-89 and 90-95 gaining about 0.49 and 0.47 years, respectively. The moderate
values of both death-weighted and population-weighted impact indicate the PM> s impact became
moderate.

From Period 1 to Period 2, the death-weighted PM» s impact decreased substantially, from
0.61 years to 0.37 years, indicating that improvements in emissions control, cleaner vehicle
fleets, and strengthened regulatory actions collectively reduced the mortality consequences of
PMb s exposure. This shift, coupled with the observation that population-weighted impacts
became slightly higher than death-weighted impacts in Period 2, reflects a redistribution of

59



PMb s-related burden from primarily older adults in the early decade toward somewhat younger
age groups in the later decade. The pattern suggests that although seniors still experienced
meaningful life-expectancy improvements when PM» s was removed, the relative contribution of
younger and middle-aged populations to the overall impact became more pronounced in Period
2. Taking together, these results show that while PMz 5 continued to reduce life expectancy in
both decades, its magnitude diminished and its age distribution shifted in ways consistent with
cleaner air and evolving population structures. The increasing proportional impact among
younger age groups in Period 2 highlights the importance for policymakers and public health
agencies to pay closer attention to early-life and mid-life exposures, including opportunities for
prevention and continued air-quality improvements that protect future generations.

Period-specific impact for five age groups with race-ethnicity stratification

Mortality risks

The five-age group stratification for Period 1 (Figure 6, top) provides a summary of how the
effects of PM» s on mortality vary across race and ethnicity. For Non-Hispanic Whites, the
associations were positive and highly significant at every stage of life, beginning with a modest
coefficient of 0.03 for ages 0-25 and rising sharply to 0.12 in both the 26-45 and 66-80 ranges.
The effect was strongest for the oldest adults, with a coefficient of 0.19 for ages 81 and over,
reflecting nearly a 21 percent increase in the odds of mortality per unit increase in PMa.s. This
pattern suggests both early susceptibility and steadily mounting vulnerability with age,
culminating in particularly elevated risks for the elderly.

Non-Hispanic Blacks showed a very different profile. In younger and midlife groups, the
associations were negative, with coefficients of -0.078 for ages 0-25 and -0.068 for ages 26-45,
both highly significant. These counterintuitive findings may reflect unmeasured confounding,
data limitations, or differences in exposure patterns. Beginning at midlife, however, the direction
shifted, with coefficients becoming positive and significant at 0.031 for ages 46-65 and
strengthening further to 0.070 and 0.075 for the 66-80 and 81+ groups, respectively. Thus, while
early life associations diverged from expectations, later life showed the more familiar pattern of
higher mortality risk with PM» s exposure.

Among Non-Hispanic Asians, associations were positive across all age groups, with the
strongest effect observed in the 66-80 cohort, where the coefficient was 0.145, one of the largest
across any group. While early life coefficients were smaller and sometimes less precise, such as
0.053 for ages 0-25, they nonetheless suggested heightened susceptibility. For those aged 81 and
over, the coefficient of 0.059 confirmed a persistent, though smaller, association in the very old.
The overall picture for Asians is one of consistent sensitivity to PM; s, with the clearest elevation
in later adulthood.

Hispanic populations demonstrated a subtler but still significant set of associations. Early life
effects were small and nonsignificant, with a coefficient of 0.008 for ages 0-25. Beginning in
midlife, however, associations strengthened, rising to 0.028 for ages 26-45, 0.044 for ages 46-65,
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and 0.071 for ages 66-80. The strongest effect appeared in the 81+ category, where the
coefficient was 0.117, indicating nearly a 12 percent increase in mortality odds with PM2 s
exposure. These results suggest that while early life risks were muted or difficult to detect, older
Hispanics experienced some of the steepest increases in risk of any group.

Finally, results for the “Other” category were inconsistent, with smaller sample sizes and
heterogeneity likely contributing to variability. While younger groups such as 26-45 showed
significant positive associations (0.041), the oldest cohorts exhibited negative associations,
including a coefficient of -0.030 for those aged 81 and over. Those results are small in values and
the research team suggest caution in generalizing patterns for this diverse category.

In sum, the five-age group results in Period 1 demonstrate that Non-Hispanic Whites, Asians,
and Hispanics show clear positive associations between PMz s and mortality that strengthen with
age, peaking among the elderly. Non-Hispanic Blacks display a distinct age pattern, with
negative associations in youth and early adulthood but convergence toward positive and
significant effects in later life. The “Other” category presents the least consistent evidence,
highlighting limitations in statistical power or subgroup heterogeneity. Together, these findings
reinforce the conclusion that PM s exposure disproportionately affects older populations across
nearly all race and ethnicity groups, though the trajectory of risk across the life course differs
meaningfully between them.

The five-age group stratification for Period 2 (2011-2021) (Figure 6, bottom) highlights both
continuity and important shifts in how PMz s exposure related to mortality risk across race and
ethnicity. Among Non-Hispanic Whites, the associations were weaker than in Period 1 but still
largely positive and significant. The effect was strongest in the youngest group, ages 0-25, with a
coefficient of 0.048, while middle-aged adults (26-45) showed no significant effect. For older
adults, risks reemerged, with coefficients of 0.023 for ages 46-65 and 0.033 for ages 66-80,
though the very old (81 and over) displayed a smaller effect at 0.015. Non-Hispanic Blacks
exhibited a more complex pattern: effects were null in youth, strongly positive in early adulthood
(0.107 for ages 26-45), and significantly negative in midlife (-0.084 for ages 46-65), before
turning positive again in older age, with a very large effect of 0.162 among those 81 and over.
This suggests shifting vulnerabilities by life stage, with late-life Black populations facing
particularly elevated risks.

For Non-Hispanic Asians, associations were consistently positive and highly significant
across all ages, with some of the largest coefficients observed in any group. Children and young
adults had a coefficient of 0.109, rising slightly in early adulthood to 0.108, and continuing
upward through midlife at 0.078. The strongest effects appeared among older adults, with
coefficients of 0.163 for ages 66-80 and 0.126 for 81 and over, underscoring pronounced
sensitivity among Asian populations at later ages. Hispanics displayed moderate to strong
positive effects in younger and middle-aged groups, including coefficients of 0.078 for ages 0-25
and 0.071 for ages 26-45. However, the association diminished sharply in midlife, with a very
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small positive coefficient of 0.015 at ages 46-65, and even reversed direction for those 66-80,
where the effect was negative at -0.014. Among the oldest Hispanics, however, risks became
strongly positive again, with a coefficient of 0.077. The “Other” category remained inconsistent,
with positive effects in early adulthood (0.163 for ages 26-45) and late life (0.107 for 81+), but
null or negative coefficients in other groups, including a significant -0.040 in the 66-80 range.

Overall, the Period 2 results reveal smaller and more variable effect sizes compared with
Period 1, particularly among Whites and Hispanics in midlife, while late-life vulnerability
remained a consistent theme across nearly all race-ethnicity groups. Non-Hispanic Asians
showed the most stable and uniformly strong associations, while Non-Hispanic Blacks and
Hispanics displayed more fluctuation across the life course, with both groups experiencing their
highest risks in the oldest age category. These results suggest that although improvements in air
quality or population health may have attenuated PM> s impacts for some groups, the elderly
across nearly all race-ethnicity backgrounds continue to face substantial mortality risks tied to
pollution exposure.

Life expectancy — age specific impact

For life expectancy, the impact of PM» s varies by race and age in Period 1 (Figure 7). Among
Asians, the gains are very significant in younger and middle-aged adults, with life expectancy
increasing by nearly 0.95 years for ages 0-65, indicating a strong benefit from cleaner air. Older
Asians (66-80 and 81+) see slightly smaller but still meaningful improvements, with gains of
0.93 and 0.87 years, respectively. Black populations show a more mixed pattern: children and
young adults (0-25) actually experience a slight reduction in life expectancy, but adults aged 26-
65 gain substantially (0.83-0.95 years), and older adults continue to benefit moderately (0.84-
0.93 years). Hispanics consistently achieve very significant life expectancy gains across all ages,
from 0.92 to 0.95 years, reflecting a uniform benefit of PM> s removal. Among Whites, the most
substantial improvements occur in younger and middle-aged adults (0.74-0.95 years), while older
adults experience only minor gains (0.29-0.30 years), indicating that PM> 5 reduction has limited
impact on life expectancy at advanced ages for this group. The Other race category benefits
strongly in children and middle-aged adults (0.95 years), but older adults show minimal or even
slightly negative changes, suggesting that the effect of PMa s removal diminishes with age or
may interact with other risk factors in these populations.

In Period 2, the life expectancy gains from PM> s removal show a mixed pattern across race-
ethnicity groups and age (Figure 8). Among Asians, the gains remain substantial but vary by age:
younger and middle-aged adults (0-65) see moderate improvements ranging from 0.45 to 0.64
years, slightly lower than the very significant gains near 0.95 years observed in Period 1.
However, older adults benefit more than before, with the 66-80 group reaching the maximum
gain of 0.95 years and the 81+ group gaining 0.73 years, suggesting improved benefits in late
life. Black populations experience smaller or even negative impacts in some age groups.
Children (0-25) now see minimal improvement (0.047 years), while adults aged 26-45 gain 0.63
years, similar to Period 1. Notably, the 46-65 group shows a negative impact, a reversal from the
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positive gains in Period 1, though the oldest adults (81+) again reach a maximum gain of 0.95
years, reflecting concentrated benefits in late life.

For Hispanics, Period 2 shows very significant gains in young adults (0-25: 0.95 years) and
strong improvements in ages 26-65 (0.85-0.91 years), slightly smaller than Period 1 for middle-
aged adults, while the 66-80 age group now experiences a negative impact, marking a notable
reversal from prior gains. Among Whites, younger adults maintain high gains (0-25: 0.95 years),
but adults 26-45 see minimal improvement (0.15 years), while middle-aged and older adults gain
moderately (0.46-0.65 years), representing a small improvement over Period 1 in some ages but
still far below the maximum gain. The Other race category shows very strong improvements in
children and adults 26-65 (0.92-0.95 years).

Life expectancy — aggregate impact

Taken together in our aggregated analysis (bottom right of Figure 7 and Figure 8, and Table 5
for five age groups), Period 1 for Asians showed nearly identical population-weighted (0.94) and
death-weighted (0.91) impacts, indicating that PM> 5 effects were broadly distributed across all
age groups rather than concentrated in either younger or older adults. In Period 2, both metrics
decreased (0.62 population-weighted; 0.74 death-weighted), consistent with an overall reduction
in PM2s impact. The slight rise of the death-weighted value relative to the population-weighted
value suggests a modest shift toward a greater proportional impact among older Asian adults in
the later decade.

For Whites, Period 1 showed moderately high population-weighted impact (0.82) but a lower
death-weighted value (0.40), indicating that PM> s impacts were more pronounced among
younger and middle-aged Whites than among older adults. In Period 2, both metrics declined
(0.56 population-weighted; 0.43 death-weighted), and the gap between them narrowed. This
convergence reflects a more even age distribution of PM; s impact among Whites in the later
decade, with neither young nor old groups disproportionately driving the overall effect.

For Hispanics, the population-weighted and death-weighted values were almost identical in
Period 1 (0.95 vs. 0.94), indicating that the PM» s burden was distributed across all ages. In
Period 2, the population-weighted impact remained moderately high (0.75), but the death-
weighted impact decreased substantially (0.36), showing a shift toward higher proportional
impact among younger and middle-aged Hispanic populations and a reduced proportional
contribution from older Hispanic adults. The overall policy effect of 0.57 years indicates
Hispanics benefited significantly from regulatory actions from Period 1 to Period 2.

For Blacks, Period 1 showed an unusual pattern: a negative population-weighted value (-
0.24) alongside a positive death-weighted value (0.68). This combination indicates that younger
and middle-aged Black populations experienced very small or slightly inverse PM2 s
associations, while older Black adults experienced substantial per-person impacts, indicating that
older adults disproportionately drove the PMa s-related life-expectancy losses in this group. In
Period 2, both metrics decreased sharply (0.00 population-weighted; 0.08 death-weighted),
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reflecting an overall reduction in PM 5 impact across ages and a particularly large reduction in
older-adult impact (policy effect = 0.59), consistent with improved conditions for older Black
populations.

For the Other category, Period 1 showed moderately high population-weighted impact (0.80)
but very low death-weighted impact (0.06), indicating disproportionately higher impacts among
younger adults and almost negligible impacts among older adults. In Period 2, both metrics
increased slightly (0.78 population-weighted; 0.38 death-weighted), with the death-weighted
value rising more sharply. This shift indicates that while younger adults continued to show
elevated impacts, older adults in this group experienced a greater increase in proportional share
of PM2 s impact in the later period, though population fluctuations and heterogeneity within this
broad category likely influence these patterns.

Overall, the combined population-weighted and death-weighted analysis reveals that Period 2
showed smaller overall PM s impacts across all racial-ethnicity groups, consistent with the
effects of cleaner air. However, the age distribution shifted, with several groups (Whites,
Hispanics, Others) showing a greater proportional impact among younger and middle-aged
populations in Period 2 compared to Period 1, while others (Asians, Blacks) showed either
balanced or declining older-adult impacts. These patterns underscore that improvements in air
quality benefited all racial-ethnicity groups, but the demographic profile of risk, whether
predominantly in younger or older age groups, differs across groups and changed over time.
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PM2.5 Coefficients by Age Group (5 Categories) and Race/Ethnicity
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Figure 6. The race-ethnicity stratified logistic regression modeling results over five age-groups
on the impact of PM2 5 on mortality for Period 1 (top) and Period 2 (bottom).

65




Life Expectancy by Age Group (5 Categories) - Asian Life Expectancy by Age Group (5 Categories) - Black
80
60
e [
E E
> >
g g0
o o
L £
5 20 520
0 ‘ 0
8 3 8 8 £ g b 8 g £
s © ® ® 3 s © e @ 3
o~ L3 3 o~ - ©w
o3 o3
= =
Age Group Age Group
Life Expectancy by Age Group (5 Categories) - Hispanics Life Expectancy by Age Group (5 Categories) - White
80
80
) 7 60
© «©
E £
> >
g g
§. 40 gl 40
ol o
£ £
=20 =20
0 0
8 b 3 8 s g b 3 8 §
° Q < 2 o ° 8 < 2 o
o o
= =
Age Group Age Group
Life Expectancy by Age Group (5 Categories) - Other PM2.5 Impact on Life Expectancy by Race-Ethnicity
1.00 i
80
=60 |
[ -
© 4
g ©
2 g 0.50
Q
Sa E
i £ 0.25
n &
D20 e
0.00
-0.95
0 0.25
E # S ?p E Asian Hispanics White
° & € 8 2 Race-Ethnicity
Age Group & . F i igl Impact . Death-weig Impact

Figure 7. All cause and PM s-eliminated life expectancy by race-ethnicity for Period 1 (2000-
2010) across five age groups.

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between
the all-cause and PM; s-eliminated estimates (i.e., from all-cause > PM; s-climinated to all-cause < PM s-climinated,
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM; 5
removal exceeds the observed all-cause life expectancy (expected).

66



Life Expectancy by Age Group (5 Categories) - Asian

3
=3

Life Expectancy by Age Group (5 Categories) - Black

|
g b g 2
© 8 € 8
Age Group

81 & Over

0.0

Asian

3 3
g g
= =
=50 =
Q Q
€ € 40
¢ i
o o
% 25 % 20
0 0
8 b 8 g & 8 3 8 8 £
{ < 2 o ° & < 8 o
o3 o3
= =
Age Group Age Group
Life Expectancy by Age Group (5 Categories) - Hispanics Life Expectancy by Age Group (5 Categories) - White
80 —
80
=
7 iminate z
g 60 limina g 60
E £
> >
Q Q
c c
§ a0 g 40
ol o
£ £
=20 S20
0 0 ‘ ‘
8 b 3 8 s g b 3 8 §
° 8 L 3 o ° 8 L 2 o
o o
= =
Age Group Age Group
Life Expectancy by Age Group (5 Categories) - Other PM2.5 Impact on Life Expectancy by Race-Ethnicity
0.8 078
80
Beo o6
s ®
> 3
> o)
2 B
a0 g o4
g E
& o
& =
=20 S o2

0.00

Other

Black Hispanics

Race-Ethnicity

. Population-weighted Impact . Death-weighted Impact

White

Figure 8. All cause and PM s-eliminated life expectancy by race-ethnicity for Period 2 (2011-

2021) across five age groups.

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between
the all-cause and PM; s-eliminated estimates (i.e., from all-cause > PM; s-climinated to all-cause < PM s-climinated,
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM; 5

removal exceeds the observed all-cause life expectancy (expected).
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Period-specific impact for ten age groups with race-ethnicity stratification

Mortality risks

The 10 age groups provide much finer detail on how PM; 5 exposure relates to health
outcomes across lifespan (Figure 9). In Period 1 (Figure 9, top) for Non-Hispanic Whites, the
association between PM2 s and adverse health outcomes strengthens with age until late
adulthood. In early childhood (ages 0-11), the PM; 5 coefficient is negative and significant,
suggesting a small protective or unstable effect likely due to small sample size or competing risk
factors. From adolescence onward, the coefficients turn positive and remain highly significant.
The effect size grows steadily from 0.04 at ages 12-25 to 0.14 at 36-45 and remains elevated
through midlife (0.09-0.10 for ages 46-65). The highest sensitivity appears among those aged 81-
86, with a coefficient of 0.22, indicating a strong and consistent relationship between higher
SPM> 5 and adverse outcomes. This pattern reflects the cumulative damage hypothesis: long-term
exposure over the life course compounds into larger late-life health effects, particularly for
cardiorespiratory mortality among older Whites.

Non-Hispanic Blacks exhibit a distinct pattern characterized by negative associations in early
and mid-adulthood and positive associations emerging only after middle age. For ages 0-45,
most coefficients are negative and significant, implying that higher PM> 5 levels are not strongly
associated—or even inversely associated—with adverse outcomes in youth. However, starting at
age 56-65, the relationship reverses, showing strong positive coefficients (0.09-0.12) with high
statistical significance into the oldest groups. The largest effect (0.12) occurs for those aged 87
and over. This transition supports the interpretation that early-life mortality among Black
populations is more strongly influenced by social and structural determinants (e.g.,
socioeconomic disadvantage, access to care, and neighborhood conditions), while air pollution
effects accumulate and become more biologically evident in later life through the exacerbation of
chronic diseases such as hypertension, diabetes, and cardiovascular disorders.

For Non-Hispanic Asians, the association between PM> s and health outcomes is weak or
inconsistent at younger ages but becomes substantial in older adulthood. The youngest age
groups (0-35) show small, nonsignificant coefficients, but significant positive effects emerge
from ages 36-65. The relationship becomes very strong among those aged 66-74, with a
coefficient of 0.22—the largest among Asian age groups—followed by a moderate decline
thereafter. This pattern suggests that early-life exposures may be less immediately impactful for
this population, possibly due to protective social or health factors, while later-life sensitivity
increases sharply as cumulative exposure interacts with aging-related vulnerabilities and
cardiopulmonary risk. The results for Asians align with epidemiologic evidence showing greater
late-life pollution sensitivity linked to urban living and longer lifespans that allow chronic
exposure effects to manifest.

Hispanics display a steady and consistent positive association between PMz s and adverse
outcomes across nearly all ages, with increasing effect sizes in older adults. The coefficients
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progress from modest positive values in childhood and adolescence (around 0.02-0.04) to
stronger associations in adulthood (0.05-0.09), and finally peak in late life, with a large
coefficient of 0.17 among those aged 87 and over. Every age group shows statistically significant
effects. This stable, monotonic increase suggests that Hispanics are broadly sensitive to PMa 5
across the life course, possibly reflecting higher baseline exposure levels in communities located
near traffic corridors or industrial zones. The accumulation of exposure over decades likely
compounds existing metabolic and cardiovascular risk factors, making pollution reduction
especially beneficial for this group at all ages.

For the “Other” group, results are more variable and less consistent, likely due to smaller
sample sizes and population heterogeneity. Younger and middle-aged adults generally show
positive but modest associations, with significance emerging mainly between ages 26 and 55.
However, from age 75 onward, the coefficients turn negative and statistically significant,
suggesting lower or even inverse relationships between PM; 5 and adverse outcomes in late life.
These apparent reversals may arise from survivor bias (i.e., healthier individuals reaching older
ages) or unstable estimates in small subpopulations. Nevertheless, the early- and mid-adulthood
findings align with general expectations that PM2. s exposure contributes to elevated health risks
before mortality selection effects dominate in advanced age.

Across all race-ethnicity groups, PMb» s effects strengthen with age, though the timing and
intensity differ. Whites and Hispanics show steady positive associations throughout adulthood,
while Blacks transition from negative to strongly positive coefficients later in life. Asians
experience delayed but steep increases in sensitivity at older ages, and the “Other” group exhibits
mixed effects due to smaller representation. Collectively, these findings reinforce that PM> s
exposure contributes most strongly to adverse health outcomes in middle and late adulthood,
consistent with cumulative biological damage and long-term cardiopulmonary stress from
chronic exposure.

From Period 1 to Period 2 (Figure 9, bottom), PM> s-related health effects declined across
most race-ethnicity groups, reflecting the success of California’s air quality regulations in
reducing exposure. Despite this overall improvement, distinct age- and race-specific sensitivity
patterns persisted, highlighting differences in biological vulnerability, exposure histories, and
underlying health conditions. For Non-Hispanic Whites, PM2 5 impacts were strongest in midlife
(ages 36-65) during Period 1, with positive and highly significant coefficients, suggesting
vulnerability linked to occupational exposure and chronic disease burden. In Period 2, these
effects weakened and shifted toward older ages (56-74), consistent with reduced exposure levels
and improved public health and healthcare access that delayed pollution-related health risks.

Among Non-Hispanic Blacks, Period 1 showed minimal or negative associations at younger
ages and strong positive effects in older adulthood, indicating that cumulative exposure and
chronic stress factors may manifest later in life. In Period 2, results became more variable, with
some midlife sensitivity emerging but generally weaker effects. The persistence of later-life
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vulnerability likely reflects the combined impacts of chronic conditions and environmental
disadvantage accumulated over time.

For Non-Hispanic Asians, PM 5 effects were modest but consistent in both periods. In Period
1, sensitivity appeared mainly after age 45, while in Period 2, significant impacts concentrated in
older ages (46-86). This pattern suggests cumulative exposure and age-related cardiopulmonary
vulnerability, potentially intensified by indoor pollution or differences in preventive healthcare
access.

Among Hispanics, PM> s consistently had positive and significant effects across nearly all
ages in both periods. In Period 1, associations strengthened with age, while in Period 2, effects
slightly decreased in midlife but remained high among older adults. The persistent sensitivity
across the lifespan likely reflects higher community-level exposure and occupational risks,
despite generally favorable baseline health.

For Other race-ethnicity groups, results were heterogeneous due to smaller sample sizes.
Period 1 showed mixed directions of effect, while Period 2 revealed stronger positive
associations in select age bands (especially 26-45 and 81-86), likely reflecting demographic
diversity and regional exposure differences within this category.

PM2.5 Coefficients by Age Group (10 Categories) and Race/Ethnicity
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PM2.5 Coefficients by Age Group and Race/Ethnicity
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Figure 9. The race-ethnicity stratified logistic regression modeling results over ten age-groups on
the impact of PM> s on mortality for Period 1 (top) and Period 2 (bottom).

Life expectancy — age specific impact

Life expectancy in Period 1 improved across all race and ethnicity groups after the removal
of PM> 5, though the degree of benefit varied by age and group (Figure 10). Overall, most groups
showed gains approaching the upper limit of 0.95 years, particularly during mid- and older
adulthood when cumulative exposure to PM2.s becomes more consequential for mortality risk.
This pattern is consistent with the underlying age- and race-ethnicity stratified conditional
logistic regression models used to estimate PM> s-related mortality risk.

Among Asian populations, PM» s removal consistently extended life expectancy across nearly
all ages. Gains were strongest from early childhood through midlife, remaining close to 0.95
years through about age 55 before gradually declining at older ages. This pattern suggests that
cleaner air particularly benefits younger and middle-aged Asians, likely reflecting high
sensitivity of cardiometabolic and respiratory development to pollution during earlier life stages
and relatively lower susceptibility once baseline health declines later in life.

For Black populations, the pattern differed markedly. Life expectancy gains from PMa s
removal were minimal or slightly negative during childhood through middle age, but benefits
grew sharply from the late 50s onward, reaching near the 0.9 level by older adulthood. This
delayed improvement likely reflects the accumulation of lifetime exposure burdens and chronic
disease conditions that heighten pollution vulnerability later in life. It also indicates that earlier
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exposures may already have produced lasting physiological effects, reducing reversible benefit in
youth.

Hispanic populations demonstrated stable, positive gains across almost all ages, with PM2 s
removal improving life expectancy consistently and near the upper range of 0.94-0.95 years. This
uniform response suggests that Hispanics experience sensitivity to pollution throughout the life
course, possibly due to a combination of occupational exposure, high-density living conditions,
and intergenerational environmental influences. The sustained benefit at both younger and older
ages indicates broad responsiveness to air quality improvements.

Among White populations, life expectancy gains were moderate but widespread. PMa s
removal improved life expectancy across most ages, with small increases in younger and middle
ages and larger benefits, up to 0.95 years, among the oldest age groups. These patterns suggest a
generally uniform exposure reduction, with stronger benefits manifesting later in life as aging
amplifies pollution-related health risks.

For Other race-ethnicity groups, improvements followed a similar trend through middle
adulthood, with gains near 0.94-0.95 years, but declined at advanced ages. The reduced benefit
among the oldest adults may be due to smaller population size or the greater influence of non-
pollution-related mortality factors at those ages.

In summary, removal of PM2 5 during Period 1 increased life expectancy across all
populations, though the timing and magnitude of these benefits differed. Asians and Hispanics
exhibited strong and broad sensitivity across the life span, Whites showed steady and late-life
responsiveness, and Blacks displayed delayed but substantial gains later in life, reflecting
cumulative exposure and health inequities.

Life expectancy in Period 2 continued to show measurable gains from the removal of PM; s,
though the magnitude of improvement was generally smaller than in Period 1 (Figure 11). This
overall reduction in sensitivity is consistent with California’s progressively lower ambient PMb 5
concentrations following statewide emission controls and cleaner energy transitions. With less
pollution in the environment, the relative benefit of removing PM> s naturally diminished, though
age- and group-specific patterns remained evident.

Among Asians, life expectancy gains from PM> s removal were smaller in early and middle
ages compared with Period 1, stabilizing around modest positive levels. The largest
improvements appeared during later adulthood, particularly from ages 46-80, where the benefits
again approached the upper limit. This shift indicates that as baseline air quality improved,
younger Asians—who had already experienced cleaner air for much of their lives—had less
exposure to reverse, while older adults still carried the cumulative effects of historical pollution.
The persistence of late-life sensitivity suggests that cardiovascular and metabolic pathways
remain vulnerable even under lower exposure conditions.
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For Blacks, the life expectancy response again contrasted with other groups. Early and
middle ages continued to show negligible or negative gains, and the strongest improvements
appeared only at the oldest ages. This late-life concentration of benefits points to the enduring
effects of cumulative exposure and social determinants such as residential proximity to traffic or
industrial areas. In cleaner air conditions, the reversible component of PM> s-related risk
becomes smaller in youth, but chronic conditions accumulated over decades still respond to air-
quality improvements later in life.

Hispanics retained relatively broad benefits across age groups, although the magnitude
declined in middle and older ages compared with Period 1. Life expectancy improvements
remained high through about age 55 but turned slightly negative around ages 56-80 before
recovering at the oldest ages. This pattern may reflect a transition in exposure profiles—earlier
cohorts benefitting from cleaner air policies while older adults retained legacy exposure burdens.
Occupational exposure and neighborhood factors likely continued to sustain sensitivity across
the life course, but with diminishing returns as overall PM; s levels fell.

Among Whites, PM2 s removal continued to yield modest but consistent gains across much of
the age spectrum, though overall benefits were smaller than in Period 1. The improvements were
moderate in younger ages and became most evident in older adults, especially those over 65. The
pattern suggests that the remaining gains largely reflect pollution-related cardiovascular and
respiratory fragility that persists in later life, while earlier cohorts have already benefited from
long-term exposure reduction under California’s cleaner-air era.

For Other race-ethnicity groups, life expectancy improvements followed a pattern similar to
Period 1, with substantial gains through most ages but some decline in later years. The slight
reduction in benefit after about age 70 likely reflects both smaller population sizes and reduced
PMb s exposure intensity statewide, leaving less pollution-related mortality to offset.
Nonetheless, their response remained strong overall, suggesting continued vulnerability among
populations living in higher-exposure microenvironments.
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Life Expectancy by Age Group (10 Categories) - Hispanics

80

Life Expectancy (years)
8 2

nN
S

|
T 8% & § % & & g8 8 %
s & @ & © ® & b - 3
- o~ o - w o ~ @ &
5
Age Group Age Group

Life Expectancy (years)

Life Expectancy by Age Group (10 Categories) - White

Life Expectancy by Age Group (10 Categories) - Other

80

@
=3

&
o

Life Expectancy (years)

~ w w w w w - w0
I & 3 g 2 g 5 3 2
3 B 2 d b £ 3 2 I
- o =3 A w o ~ ©

Age Group

87 & Over

e
~
o

PM2.5 Impact (years)
&

2
i
&

0.00

Asian

¥ by Race-Ethnicit

PM2.5 Impact on Life Expect

White

Black Hispanics Other

Race-Ethnicity

. F i i Impact . Death

Impact

Figure 10. All cause and PM; s-eliminated life expectancy by race-ethnicity for Period 1 (2000-

2010) across ten age groups.

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between
the all-cause and PM; s-eliminated estimates (i.e., from all-cause > PM; s-climinated to all-cause < PM s-climinated,
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM; 5

removal exceeds the observed all-cause life expectancy (expected).
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Life Expectancy by Age Group (10 Categories) - Asian Life Expectancy by Age Group (10 Categories) - Black
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Figure 11. All cause and PM> s-eliminated life expectancy by race-ethnicity for Period 2 (2011-
2021) across ten age groups.

Note: The dashed vertical line indicates the point at which the relative magnitude of life expectancy shifts between
the all-cause and PM, s-eliminated estimates (i.e., from all-cause > PM, s-eliminated to all-cause < PM s-climinated,
or vice versa). The shaded grey area denotes age groups for which the estimated life expectancy under PM, 5

removal exceeds the observed all-cause life expectancy (expected).



Life expectancy — aggregate impact

When the research team expand the analysis from five to ten age groups, the overall race-
ethnicity patterns remain broadly consistent with the coarser five-group results, but several
important nuances emerge (Table 5). These differences point to meaningful variation within the
broader age categories, variation that becomes visible only when age is modeled more finely.

For Asians, the ten age-group results in Period 1 closely mirror those of the five-group
analysis. Population-weighted and death-weighted impacts remain nearly identical (0.94 vs
0.91), reinforcing the earlier conclusion that PM» 5 effects are broadly distributed across young,
middle-aged, and older adults. In Period 2, both metrics decreased (0.47 population-weighted;
0.63 death-weighted), consistent with an overall reduction in PM 5 impact. The slight rise of the
death-weighted value relative to the population-weighted value suggests a modest shift toward a
greater proportional impact among older Asian adults in the later decade, a phenomenon also
seen in the five age-group results.

For Blacks, the ten age-group results uncover similar effect to the five-group analysis. In
Period 1, population-weighted impact (-0.05) is near zero, while death-weighted impact (0.59) is
substantially elevated. This again matches the direction of the five-group conclusion, namely that
younger Black individuals experience very small per-person PM> 5 effects while older adults
experience much larger impacts. Period 2 shows a similar pattern to the five-groups, with low
population-weighted (-0.28) and death-weighted impact (0.03), again reinforcing the effect of
regulatory actions on improving life expectancy (0.56 years in the ten age-group vs 0.59 years in
the five age-group analysis).

For Hispanics, the ten-group results reveal an internal age gradient that was obscured in the
five-group analysis. Under the five-group structure for Period 1, Hispanics showed relatively
uniform benefits across all ages. But with ten groups, Period 1 displays a mismatch: population-
weighted impact is moderately high (0.64), but death-weighted impact is very high (0.91). This
indicates that while younger and middle-aged Hispanics experience moderate per-person PMo s
effects, older Hispanic adults experience especially elevated impacts that pull the death-weighted
average upward. In Period 2, both metrics fall and show a pattern very close to the five age-
group analysis: a shift toward higher proportional impact among younger and middle-aged
Hispanic populations and a reduced proportional contribution from older Hispanic adults. The
overall policy effect of 0.60 years represents the reduction in PM> s-attributable life-expectancy
loss between the two periods and is almost identical to the five age-group estimate (0.57 years).

For the Other race-ethnicity category, ten-group results have a similar effect to the five-group
results. Period 1 shows high population-weighted impact (0.86) but very low death-weighted
impact (0.23), a phenomenon very close to the five-group results. This implies that younger or
mid-life adults consistently contribute much more to the observed PM2 s burden than older
adults. Period 2 shows both measures increasing (population-weighted 0.82; death-weighted
0.60), indicating that while younger adults continued to show elevated impacts, older adults in

76



this group experienced a greater increase in their proportional share of PM; s impact in the later
period, a phenomenon similar to that seen in the five age-group analysis.

For Whites, the shift from five to ten age groups produces a dramatic internal re-
interpretation. In Period 1, the population-weighted impact drops substantially to 0.19, while the
death-weighted impact increases to 0.73. The ten-group results indicate that younger White
individuals contribute relatively little, while older Whites experience substantially larger PM2 s
impacts. In the five-group version, Whites showed larger impacts at younger ages with
diminished effects at older ages. This inconsistency signals that the broad age brackets in the
five-group design inadvertently obscured differences within the middle-aged and older-aged
ranges, where certain subgroups appear to experience much higher burden than others. Because
the White population in California (~35%) is significantly larger than other race-ethnicity
groups, the ten age-group stratification did not suffer from small-sample issues (Figure 9,
bottom). The ten-group results are therefore the more accurate representation of true age-specific
patterns for Whites. In Period 2, the death-weighted impact significantly decreased (from 0.73 to
0.31), suggesting that improvements in air quality reduced late-life PM> s impacts. Both
population-weighted (0.28) and death-weighted impacts are low in Period 2, indicating that per-
person PM» s impacts were uniformly small across all age groups.

Overall, most race-ethnicity groups showed that older adults experienced substantially larger
PM2: s impacts in Period 1, while in Period 2 younger and middle-aged individuals contributed
relatively more, except for Asians, whose impacts remained broadly distributed, and Blacks, who
showed consistently low impacts among younger adults in both periods. Black and Hispanic
populations benefited most from regulatory actions, with policy gains of about 0.56-0.59 and
0.57-0.60 years, respectively. By Period 2, PM» s impacts among Black and White populations
had fallen to very low levels, while Asian, Hispanic and Other category populations still
exhibited room for further improvement.
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Table 5. Summary of life expectancy and policy effects, 2000-2010 vs. 2011-2021

Race 2000-2010 2011-2021 Policy
Ethnicity All Remove PM, s Impact All Remove PM, s Impact Effect
Cause  PMas  (popwy (Dwy  Cause PMas  (popwt)  (Dthwo)  (Dthwo)
All 20 Age Groups 19 Age Groups
All

78.40 78.78 0.38 0.61 80.80 81.26 0.46 0.37 0.24

Five Age Groups

Asian 83.00 83.94 0.94 0.91 86.30 86.92 0.62 0.74 0.17
Black 72.10 71.86 -0.24 0.68 75.10 75.10 0.00 0.08 0.59
Hispanics 80.50 81.45 0.95 0.94 83.20 83.95 0.75 0.36 0.57
Other 78.20 79.00 0.80 0.06 80.20 80.98 0.78 0.38 -0.31
White 77.80 78.62 0.82 0.40 79.80 80.36 0.56 0.43 -0.03

Ten Age Groups

Asian 83.00 83.94 0.94 0.91 86.30 86.77 0.47 0.63 0.28
Black 72.10 72.05 -0.05 0.59 75.10 74.82 -0.28 0.03 0.56
Hispanics 80.50 81.14 0.64 0.91 83.20 83.87 0.67 0.31 0.60
Other 78.20 79.06 0.86 0.23 80.20 81.02 0.82 0.60 -0.36
White 77.80 77.99 0.19 0.73 79.80 80.08 0.28 0.31 041

Note: PopWt = population-weighted PM, s impact on life expectancy; DthWt = death-weighted PM> s
impact on life expectancy.

Task 5. Create GIS Maps for the Study Results

The research team estimated CT-level life expectancy impacts attributable to PM2 s exposure
across California for two time periods (2000-2010 and 2011-2021). For each tract and period, the
research team first derived population distributions by race-ethnicity and age group. Using
modeled life expectancy impacts associated with PM s for each age group of a race-ethnicity
category, the research team applied age-specific population weights to estimate race-ethnicity
level PM2 5 effects within a CT. These were then combined using race-ethnicity population
weights to generate a single PM; s-related life expectancy impact value for each CT. A general

formula is:
LEque = E > (Pop, , - Effect, )/ E > Pop,,,
a a
T T

where r indexes race-ethnicity groups (e.g., Black, Asian, Hispanic, White, Other); a indexes
age groups (e.g., 011, 12-17, ...); Pop,. , is the population count of age group aand
race/ethnicity rin the tract and Effect, , is the estimated PM2.5 impact on life expectancy for
that age—race/ethnicity group.
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Two aggregation schemes were used: one with five broad age groups and another with ten
finer age groups. Because detailed race-ethnicity by age-group mortality data were not available
at the CT-level for either period, PM2.5 impacts could not be estimated using death-weighted
estimates. Instead, population counts by race-ethnicity and age group are available for all tracts,
so they served as the basis for all CT-level PM2.s impact calculations. Here, the CT-level results
reflect population-weighted PM 5 impacts. A key assumption is that the estimated effects for a
specific age—race/ethnicity group (e.g., Blacks aged 0—11) apply uniformly to all individuals of
that age—race/ethnicity group within each tract. This allows the tract-level estimates to reflect
local demographic structure, which shapes the spatial patterns of estimated impacts.

Table 6. PM2 s impact and life expectancy statistics over California census tracts.

Sth 10th 25th 95th
Min Mean Ma Std
Impact Assessment Pent Pent Pent Pent X
(years) -

Five Age Groups
PM>s Impact (2010) 0.05 0.68 0.74 0.79 0.82 0.90 0.95 0.09
PM>s Impact (2020) -0.02 0.50 0.53 0.56 0.61 0.74 0.95 0.08
All Cause LE (2010) 72.90 77.92 78.07 78.31 78.75 80.11 82.33 0.79
All Cause LE (2020) 75.95 80.22 80.38 80.72 81.29 83.09 85.64 0.91
Policy Benefits (P1 -> P2) -0.36 0.07 0.12 0.18 0.21 0.29 0.52 0.07

Ten Age Groups
PM,;s Impact (2010) -0.09 0.31 0.34 0.39 0.46 0.66 0.88 0.11
PM,;s Impact (2020) -0.19 0.33 0.35 0.38 0.46 0.65 0.81 0.11
All Cause LE (2010) 72.90 77.92 78.07 78.31 78.75 80.11 82.33 0.79
All Cause LE (2020) 75.95 80.22 80.38 80.72 81.29 83.09 85.64 0.91
Policy Benefits (P1 -> P2) -0.72 -0.16 -0.13 -0.07 0.00 0.22 0.57 0.11

Overall Effect

Under the five age groups scenario (Table 6, top), PM2 s removal in 2010 was associated with
an average life expectancy gain of approximately 0.82 years across tracts, ranging from 0.05 to
0.95 years. By 2020, the average tract-level impact declined to about 0.61 years, consistent with
overall reductions in PM s concentrations statewide. The research team defines policy benefit as
the estimated reduction in PM> s-attributable life expectancy loss due to the change in PMb 5
concentrations between two time points (here, 2010 and 2020). In other words, it quantifies how
much life expectancy is “gained” in years if PM2 s levels are reduced according to observed or
modeled improvements, holding all other factors constant. The average policy benefit (i.e.,
improvement between the two periods) was approximately 0.21 years, suggesting that ongoing
air quality regulations and emission controls contributed to measurable public health gains.

Results from the ten age groups scenario (Table 6, bottom) showed smaller average PM> 5
impacts in both time periods (around 0.46 years in 2010 and 0.46 years in 2020), and the mean
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policy benefit was close to zero. The smaller estimated impacts under the ten age groups
framework may partly reflect reduced statistical stability due to smaller subgroup sample sizes,
particularly within tracts that have lower population counts or higher proportions of minority
residents. This finer age stratification increases model granularity but can also amplify
uncertainty in PM3 s effect estimates, especially for subpopulations with limited data. Therefore,
while the ten age groups results provide additional detail, the five age groups estimates are likely
more robust for summarizing overall PM; s-related life expectancy impacts at the tract level.
Although aggregating to five age groups improves statistical stability relative to the ten—age
group scenario, CT-level estimates may still be less precise in sparsely populated rural tracts.
Accordingly, some spatial variability in the maps, particularly in low-population areas, should be
interpreted with caution, as estimates in these tracts remain subject to greater uncertainty due to
limited underlying population counts.

Disadvantage Status Stratification

Across California, PM; s-related life expectancy impacts changed between Period 1 and
Period 2 in ways that vary by neighborhood disadvantage, as measured by CalEnviroScreen
(CES). CalEnviroScreen is a composite index developed by the California Office of
Environmental Health Hazard Assessment (OEHHA) that ranks census tracts statewide based on
pollution burden (e.g., air pollution, traffic, drinking water contaminants) and population
vulnerability (e.g., poverty, education, linguistic isolation, race-ethnicity, and health outcomes).
The CES percentile score (here denoted as ClscoreP) ranges from 0 (most advantaged) to 100
(most disadvantaged). For this analysis, tracts were grouped into four disadvantage status
categories: most disadvantaged with CES percentile [75, 100], moderately disadvantaged: [50,
75), less disadvantaged: (25, 50) and most advantaged: (0, 25]. The research team discuss the
impact of five age groups here (Table 7).

In the most disadvantaged tracts the mean PMz s impact fell from 0.82 years in Period 1 to
0.66 years in Period 2, and mean all-cause life expectancy rose from about 78.81 to 81.35 years;
these tracts also show the greatest variability in PM; s impacts (SD = 0.12 in Period 1 and 0.09 in
Period 2), indicating substantial heterogeneity in exposure and potential benefit within the most
disadvantaged communities. The mean policy benefit (Periodl — Period2 difference in PM; s
impact) in this group is 0.16 years.

Moderately disadvantaged tracts follow a similar trajectory: mean PM; s impact declined
from 0.82 to 0.62 years while all-cause life expectancy increased from about 78.82 to 81.39
years. The variability here is notable but slightly smaller than in the most disadvantaged category
(SD = 0.10 then 0.09), and the average policy benefit is modestly larger than in the most
disadvantaged group (mean = 0.20 years), reflecting somewhat more consistent but still spatially
variable gains.

In less disadvantaged tracts the mean PM> 5 impact also declined (about 0.82 — 0.58 years)
with life expectancy increasing from roughly 78.78 to 81.33 years. These tracts display narrower
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dispersion in impacts (SD = 0.06 for both periods) compared with the two more disadvantaged
groups, and the mean policy benefit is larger (= 0.24 years), indicating more uniform gains from
cleaner air across these neighborhoods.

Finally, the most advantaged tracts experienced a mean decline in PM» 5 impact from about
0.81 to 0.57 years and an increase in life expectancy from ~78.64 to 81.11 years. This group has
the highest average policy benefit (mean ~ 0.25 years) and the smallest spread in impacts (SD =
0.05 in Period 1 and 0.04 in Period 2), reflecting more homogeneous exposure conditions and
more consistent marginal gains from PMa 5 reductions.

In sum, PM 5 impacts declined in all strata between periods and overall life expectancy rose
everywhere, but the magnitude and consistency of gains vary systematically: the most
disadvantaged tracts show the largest heterogeneity (widest spread) and smaller mean policy
benefit, while the most advantaged tracts have the most consistent exposures and the largest
average policy benefit.
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Table 7. PM2.s impact and life expectancy statistics over California census tracts across
disadvantage status using five age groups.

loth 25th 95th
Mi 5% Pent M M Std
Impact Assessment mn cn Pent Pent ean Pent ax
(years) ;
Most Disadvantaged
PM;;s Impact (2010) 0.05 0.58 0.69 0.79 0.82 0.91 0.93 0.12
PM,;5 Impact (2020) 0.12 0.51 0.57 0.63 0.66 0.77 0.84 0.09
All Cause LE (2010) 73.93 77.41 78.02 78.57 78.81 79.62 82.14 0.78
All Cause LE (2020) 76.98 80.19 80.62 81.10 81.35 82.33 85.64 0.74
Policy Benefits (P1 -> P2) -0.25 0.01 0.06 0.12 0.16 0.26 0.38 0.07
Moderately Disadvantaged
PM>s Impact (2010) 0.07 0.67 0.73 0.80 0.82 0.90 0.93 0.10
PM>s Impact (2020) -0.02 0.50 0.53 0.58 0.62 0.73 0.82 0.09
All Cause LE (2010) 72.90 77.89 78.11 78.46 78.82 80.12 82.31 0.85
All Cause LE (2020) 75.95 80.36 80.55 80.95 81.39 82.99 85.60 0.91
Policy Benefits (P1 -> P2) -0.12 0.09 0.12 0.17 0.20 0.28 0.43 0.06
Less Disadvantaged
PMb>s Impact (2010) 0.30 0.72 0.76 0.80 0.82 0.89 0.93 0.06
PM>s Impact (2020) 0.06 0.50 0.52 0.55 0.58 0.69 0.89 0.06
All Cause LE (2010) 74.02 78.00 78.09 78.30 78.78 80.46 82.33 0.78
All Cause LE (2020) 76.97 80.28 80.42 80.70 81.33 83.56 85.57 0.98
Policy Benefits (P1 -> P2) -0.15 0.14 0.17 0.22 0.24 0.30 0.43 0.05
Most Advantaged

PM>s Impact (2010) 0.40 0.74 0.76 0.79 0.81 0.88 0.92 0.05
PM>s Impact (2020) 0.34 0.50 0.52 0.55 0.57 0.63 0.87 0.04
All Cause LE (2010) 76.57 78.02 78.07 78.20 78.64 80.17 81.99 0.69
All Cause LE (2020) 79.24 80.19 80.27 80.48 81.11 83.29 85.32 0.96
Policy Benefits (P1 -> P2) -0.17 0.18 0.20 0.23 0.25 0.31 0.48 0.05

The goal of Task 5 was to translate the extensive modeling and analytic results from Tasks 2
through 4 into a geographic format that would be accessible to policymakers, community
stakeholders, and researchers. This task required the creation of high-resolution GIS maps that
displayed both exposure distributions and the estimated life expectancy impacts attributable to
PMz: s, stratified by generation, race and ethnicity, and neighborhood vulnerability status. These
maps allow identification of areas where life expectancy is most affected, which often
correspond to regions with known persistent emissions, including goods-movement corridors,
wildfire-prone areas, and other locations with local air pollution sources. By connecting modeled
health impacts to geographic patterns and underlying emission sources, the mapping component
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provides a critical interpretive tool for understanding the spatial dimensions of PM; s-related
health disparities and can guide targeted interventions and community-level decision-making.

The first stage of this work involved preparing the exposure surfaces generated in Task 2 for
mapping. The research team aggregated the statewide daily PM» s surfaces at 100-meter
resolution into annual averages at the CT-level, thereby balancing resolution with usability. By
summarizing to tracts, the research team were able to align the exposure surfaces directly with
demographic and vulnerability data from the Census and CalEnviroScreen. The research team
produced tract-level annual averages for 1990, 2000, 2010, and 2020, allowing comparisons
across three decades of regulatory progress. These maps revealed dramatic declines in PM» 5
concentrations across much of California, particularly in major urban centers such as Los
Angeles and the Bay Area. However, they also showed persistent hotspots in the San Joaquin
Valley and Inland Empire, regions that remain subject to meteorological inversions and high
levels of goods movement-related emissions.

The second stage involved mapping mortality impacts and life expectancy loss attributable to
PMb 5. Using the coefficients and life table estimates from Task 4, the research team generated
tract-level estimates of years of life lost due to PMa s exposure for each decade. These impacts
were mapped under both the twenty-group and aggregated age group frameworks, and stratified
by race-ethnicity and vulnerability. For example, in the Aggr2 framework, the research team
calculated PM: s-attributable life expectancy loss for Hispanics, non-Hispanic Blacks, non-
Hispanic Whites, non-Hispanic Asians, and Others in each CT. These estimates were then
visualized in maps that showed spatial clustering of disparities. The San Joaquin Valley
consistently displayed the largest life expectancy losses, particularly among Hispanic residents,
while non-Hispanic Black populations in Los Angeles tracts were disproportionately affected
despite overall improvements in exposure levels.

The research team also developed change maps that illustrated the difference in PMa s
exposure and PM; s-attributable life expectancy loss between the first and second generations.
These maps revealed both the magnitude of progress and the persistence of inequities. Statewide,
the average PM; 5 concentration fell substantially between 1990-2005 and 2006-2020, leading to
measurable gains in life expectancy. Yet tracts in the top quartile of vulnerability, as identified by
CalEnviroScreen, showed smaller gains and in some cases persistent losses. For example, in
many disadvantaged tracts of the Central Valley, the PM2 s-related life expectancy loss in the
second generation remained as high as the statewide average in the first generation, indicating
that improvements have lagged in precisely the communities most burdened by environmental
and social vulnerabilities.

The mapping process also allowed us to overlay PMb» s exposures and impacts with policy-
relevant boundaries, such as air basins, air districts, and goods movement corridors. This was
particularly important for connecting results back to regulatory frameworks. For example, maps
stratified by air basin highlighted how improvements in the South Coast and San Joaquin Valley
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districts differed in magnitude, and how continued non-attainment challenges in these regions
translated into health disparities. Maps of goods movement corridors revealed elevated PM s
burdens along major freight routes and near ports, illustrating the intersection between economic
activity, emissions, and health.

Beyond statewide maps, the research team prepared regional and community-level atlases
designed for dissemination in stakeholder meetings. For each region, including Bay Area, Los
Angeles, San Joaquin Valley, Inland Empire, and Sacramento, the research team created a series
of maps showing baseline exposures, life expectancy loss in the first generation, life expectancy
loss in the second generation, and changes over time. These regional atlases were accompanied
by demographic overlays, showing the distribution of race-ethnicity and vulnerability. This
design allowed community members and local policymakers to see how air pollution health
burdens intersect with population characteristics in their own areas.

The final stage of this task involved dissemination formats. All maps were prepared in
ArcGIS Pro and exported in formats suitable for integration into ArcGIS Online, making them
accessible as interactive layers. Users can zoom into tracts, filter by race or vulnerability, and
view time trends. The research team also provided CARB with map packages in CARB-
compatible formats for internal use. To further enhance accessibility, maps were incorporated
into presentations with plain-language captions, fact sheets, and infographics that explained what
the colors and patterns represented in terms of real years of life lost or gained.

The outputs of Task 5 clearly demonstrated that GIS mapping can make the complex
statistical findings of Tasks 2-4 both interpretable and actionable. They revealed the tangible
successes of air quality policy in reducing PM; s-related mortality, while also underscoring the
stubborn persistence of environmental justice disparities across California. For example, Figure
12 illustrates that the San Joaquin Valley experienced some of the highest PM, s-related
reductions in life expectancy in 2010, reflecting historically elevated exposure levels from a
combination of agricultural emissions, transportation corridors, and meteorological conditions
that trap pollution. By 2020, the overall PMz s impact in the Valley has decreased slightly,
consistent with statewide improvements in air quality, yet it remains substantial relative to other
regions. The policy benefits map shows the estimated gains in life expectancy attributable to
reductions in PMz 5 between 2010 and 2020, highlighting that the Valley continues to see
meaningful, but comparatively smaller, improvements than less-impacted areas. These patterns
underscore the persistent vulnerability of the region to air pollution and suggest that targeted
mitigation in high-exposure corridors could yield additional health benefits. The deliverables
from this task included a statewide GIS atlas, regional atlases for key air basins, and a full suite
of map files suitable for CARB’s use in both internal policy analysis and external
communication.
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saved from 2010 to 2020 (right).



Task 6. Address Impacts in Communities

As part of the project’s community outreach efforts, the Regional Asthma Management and
Prevention program (RAMP) played a central role in communicating the study’s goals, design,
and early findings to diverse audiences across California. RAMP is widely recognized for its
long-standing leadership in asthma prevention, environmental health, and health equity, as well
as for its strong collaborations with community organizations, health professionals,
environmental justice advocates, and policy networks. Their established relationships and
community trust made them an ideal partner to ensure that the project’s communication reached
stakeholders who are both directly affected by air pollution and actively engaged in improving
community health.

In March 2024, RAMP hosted two community webinars titled “Understanding the Impacts of
Air Pollution on Life Expectancy Across Communities — Study Design and Partner Feedback.”
The sessions, held on March 26 and March 28 at different times to accommodate varied
schedules, presented identical material and were organized to reach community members,
medical providers, environmental justice and tenant-rights advocates, and other stakeholders in
asthma, healthcare, and health equity. RAMP broadly advertised the webinars through its RAMP
Digest e-newsletter (which reaches over 1,200 recipients), the Community Action to Fight
Asthma Network, and the California Alliance for Children’s Environmental Health. In addition to
these channels, RAMP provided a preview of the webinar content during a meeting of the San
Diego—Tijuana Air Quality Task Force after a RAMP partner shared the webinar announcement
with the Task Force facilitator; this preview functioned as an additional outreach touchpoint prior
to the webinars themselves. To support accessibility, the presentation slides were translated into
Spanish and attendees were offered gift cards. More than 100 participants attended the March 26
session and more than 40 attended the March 28 session. RAMP shared the webinar slides with
registrants after the events. Webinar participants represented a diverse cross-section of California
communities, including both urban and rural areas, regions with high PM> 5 exposure, and
neighborhoods with elevated asthma prevalence and other environmental health burdens.
Attendance included stakeholders from environmental justice communities, public health
organizations, healthcare providers, and advocacy groups, reflecting the geographic and
demographic diversity of populations disproportionately impacted by air pollution. This breadth
of participation helped ensure that outreach efforts captured perspectives from communities most
affected by the study’s findings.

Each webinar opened with introductions and an overview, included contextual background
from RAMP about the links among air pollution, asthma, and health including mortality, featured
the study presentation by Dr. Jason Su, and concluded with a question-and-answer and
discussion session. Participants’ feedback, collected during and after the webinars, affirmed the
relevance of the research to a range of practical activities. Respondents noted the project’s
applicability to asthma care and indoor-air-quality work, the usefulness of satellite-based PM
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monitoring for research contexts, and the importance of identifying interventions that reduce
pollutant exposure for people with respiratory conditions. Several participants urged more
investment in public transportation as a means to reduce emissions. Others emphasized
dissemination methods that would bring the findings to community members directly, proposing
flyers, posters, emails, recorded videos, and webinars as channels to broaden reach. Suggestions
to increase public awareness and to tailor communications to community needs, for example,
through translated materials and visually accessible flyers, were raised repeatedly. The project
team plans to incorporate several participant-recommended dissemination approaches in future
efforts. These include producing translated materials, visually accessible flyers and infographics,
short recorded videos, targeted emails, and continued webinars to broaden reach. By
operationalizing these suggestions, the team aims to enhance the accessibility and impact of
research findings for both technical and non-technical audiences, including families, community
organizations, and policymakers.

Participants also described how the research could inform policy and systems change, noting
that clearer and more accessible presentation of results could support advocacy and education.
Several respondents said dissemination via community-facing materials such as flyers or posters,
targeted emails, recorded videos on platforms like YouTube, and inclusion in newsletters would
help reach non-technical audiences. Attendees recommended continuing monitoring and outreach
and suggested that policy makers be presented with concise, actionable information. A number of
respondents commented that the research should be disseminated through both academic outlets
and public-facing channels to serve distinct audiences: some recommended publication in
journals while others emphasized community education and practical tools for affected families.
Finally, participants proposed additional research directions, including investigation of whether
and how policy makers incorporate air-pollution evidence into project decisions, indicating
interest in future work that connects scientific findings to policy uptake. Insights from
participants highlight the importance of connecting scientific findings on PM: s and life
expectancy to actionable guidance. For example, emphasizing tract-level disparities and clearly
illustrating health benefits from PMa s reductions can help policymakers prioritize interventions
in high-exposure areas. Recommendations on concise, visually clear, and community-tailored
communications will guide future outreach strategies, supporting evidence-informed decisions in
public health planning, environmental justice initiatives, and local policy development.

Overall, community feedback from RAMP’s webinars directly informed the study’s approach
to communication and dissemination. Suggestions from participants helped shape the framing of
results, emphasizing accessible presentation of life-expectancy impacts and clear
contextualization of PM; s exposure. Input on visual materials, translated slides, and community-
friendly formats guided refinements to outreach products, while participant questions and
discussion highlighted topics for further clarification and explanation. This engagement ensured
that stakeholder perspectives were considered in translating complex modeling outcomes into
practical, actionable information for diverse audiences.
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Discussion

This study provides a unique comprehensive evaluation to date of how PMx s affects
mortality risk and life expectancy in California, combining two decades of population-wide
mortality data with high-resolution exposure modeling and multiple layers of stratification. A
central contribution of this work is addressing a critical gap in literature: while a large body of
research evaluates PM; s-related mortality risks, only a small number of studies provide direct
life-expectancy estimates. Among those that do, most present single-period estimates, rarely
examine how impacts evolve over time, and almost none evaluates both mortality risks and life-
expectancy impacts across two distinct decades. Even fewer studies incorporate race-ethnicity
and detailed age-group stratification, and to our knowledge, no prior work has examined how the
distributional structure of PM s impacts, across population versus deaths, changes from one
period to another. This analysis therefore adds substantially to the scientific evidence base by
providing (1) PM2 s impacts on mortality risks and their changes from one period to another, (2)
decade-specific overall life-expectancy impacts and changes between periods, (3) multi-age and
multi-race analyses within a period and changes across periods, and (4) the first application of a
dual population-weighted and death-weighted PM> s impact framework to detect whether
younger or older age groups were impacted more.

The decision to divide the analysis into two consecutive periods, 2000-2010 and 2011-2021,
was driven by methodological, interpretive, and data-related considerations rather than an intent
to maximize differences or align with any single regulatory milestone. First, our primary
objective was to evaluate how PMb s-related mortality risks and life-expectancy impacts evolved
over time as air quality improved, while maintaining sufficient continuity in population structure,
exposure assessment, and mortality data quality. Using consecutive periods allows us to examine
temporal change under broadly comparable demographic and epidemiologic contexts, reducing
confounding from large shifts in population composition, healthcare access, or baseline mortality
patterns that would be more likely with widely separated periods. A larger temporal gap could
indeed produce greater contrasts in PM» 5 concentrations, but it would also introduce additional
sources of heterogeneity that would complicate interpretation of changes in life expectancy and
mortality burden. Second, the selected cut point was not chosen to align with a single regulatory
action or to amplify observed differences. California’s air quality improvements reflect a long
sequence of regulatory and technological changes implemented over several decades, rather than
a discrete policy event occurring around 2010. There was no specific regulation enacted in that
year that would justify treating 2010 as a causal breakpoint. Instead, the division approximately
separates an earlier decade characterized by higher ambient PM> s concentrations from a more
recent decade in which concentrations were substantially lower and more spatially homogeneous.
This allows us to assess whether health impacts persisted, attenuated, or shifted across age and
race-ethnicity groups as the exposure distribution changed. Third, dividing the study period into
two roughly equal-length intervals improves statistical stability and interpretability. Each period
contains sufficient deaths across age and race-ethnicity strata to support stratified mortality
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modeling and life-expectancy estimation. Using shorter or more fragmented time windows
would reduce power and increase uncertainty, while using a single long period would obscure
meaningful temporal changes in both exposure levels and health impacts. Finally, the research
team emphasize that our conclusions do not rely on large absolute differences between periods.
In fact, the central finding is that although PM; s-related mortality risks and life-expectancy
impacts declined from Period 1 to Period 2, substantial impacts remained, and the distribution of
those impacts across age groups and race-ethnicity groups changed. The observed trends are
therefore interpreted as evidence of regulatory progress coupled with persistent and evolving
vulnerability, rather than as an artifact of period selection.

In addition to filling these scientific gaps, the results align with and extend the established
epidemiologic literature. Numerous long-term PMa> s studies worldwide report elevated all-cause
mortality risks per incremental increase in PM; s, typically with odds ratios between 1.04 and
1.15. In our integrated analysis spanning both study periods (2000-2021), the age-specific
logistic regression models produced coefficients ranging from 0.025 to 0.16. The reported
coefficients correspond to the estimated change in the log-odds of mortality per IQR increase in
PM: 5. This approach allows the coefficients to reflect the effect associated with a typical
population-level range of variation in PM2 5 exposure and facilitates comparison across age
groups and with other studies reporting IQR-based effect estimates. These values correspond to
odds ratios between approximately 1.03 and 1.17, indicating modest but consistent increases in
risk associated per IQR increase in PMz 5 exposure. The effect estimates obtained in our study
fall squarely within this expected range, which reinforces their plausibility and supports the
robustness of our findings. Likewise, the death-weighted life-expectancy losses estimated here,
0.61 years in Period 1 and 0.37 years in Period 2, closely match those reported by major national
life-expectancy studies, including Correia et al., Schwartz et al., and Chen et al.,' all of which
identify PM; s-related life-expectancy reductions between 0.3 and 0.9 years. These consistencies
provide strong external support for the magnitude of effects estimated in this report and for the
observed reductions in PM» 5 impacts across decades.

Beginning with the unstratified, population-wide analyses, the results confirm that PM> 5
remained a significant determinant of mortality and life expectancy in California. When the
analysis was carried out separately for Period 1 (2000-2010) and Period 2 (2011-2021),
mortality risks associated with long-term PM> s exposure were positive and statistically
significant across all age groups, and the effect weakened in Period 2, reflecting improvements in
air quality resulting from California’s long-standing regulatory actions and emission-control
programs. The overall death-weighted life-expectancy impact fell from Period 1 to Period 2 (0.61
to 0.37 years), which is central to the study’s principal finding and reflects the combination of
lower ambient PM3 s concentrations and the cumulative effects of California’s regulatory and
technological advances. Because the death-weighted metric places emphasis on age groups that
account for most deaths, it is especially informative about the public-health burden that PM; s
imposes on the mortality structure. The reduction in the death-weighted impact demonstrates that
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regulatory progress translated into meaningful reductions in PM» s-related mortality at the state
level.

When results are disaggregated by age group and race-ethnicity, care must be taken to not
overinterpret these highly disaggregated results. However, important and policy-relevant
patterns emerge. Across most race-ethnicity groups, older adults tended to bear the larger PM> 5
mortality impacts in Period 1. In Period 2, the contribution of younger and middle-aged groups
grew relative to older adults. This pattern is likely driven by reductions in PM» 5 exposure among
older adults, improved baseline health in later life, and demographic shifts that increased the
population and baseline mortality of working-age adults. Additionally, ongoing exposures in
occupational and commuting settings, which are more relevant for younger and middle-aged
adults, may have amplified the relative impact on these groups despite overall lower per-unit
risk. These findings suggest that while older adults remain highly susceptible, interventions
targeting ambient and workplace exposures among younger and middle-aged populations could
meaningfully reduce the total PM» s burden.

Asians are a notable exception: their PM» s impacts remained broadly distributed across ages
in both periods, with population- and death-weighted impacts nearly identical in Period 1 (0.94
vs. 0.91), indicating that impacts were not concentrated exclusively in either the young or the
old. Black populations consistently exhibited low impacts among younger adults in both periods
and concentrated impacts in later life. Hispanic populations showed large, broadly distributed
gains from PM; s removal in Period 1 and retained substantial sensitivity in Period 2. When
policy gains between periods are quantified using the change in death-weighted impacts, Black
and Hispanic groups stand out as having realized the largest improvements: approximately 0.59
years for Black populations and 0.57 years for Hispanic populations, reflecting sizable reductions
in PM s-attributable mortality that accrued to these groups between the two decades. By Period
2, PM2.5 impacts for Black and White populations had fallen to comparatively low levels on a
death-weighted basis, whereas Asian, Hispanic, and Other groups still showed meaningful
remaining life-expectancy losses attributable to PM> 5. Interpretation of racial-ethnic patterns in
PM> s-attributable life-expectancy loss requires consideration of baseline life-expectancy
differences across groups. In California, Asian and Hispanic populations have the highest
baseline life expectancy, while Black populations have the lowest. These demographic patterns
mean that a given PM> s-attributable reduction represents a different proportional burden across
groups. For example, Asian and Hispanic populations may show notable remaining PM> s
impacts in Period 2 despite having long life expectancy overall, while Black populations may
show smaller remaining PMz s impacts but still experience lower total life expectancy due to
accumulated historical and structural factors. Clarifying these contextual differences helps ensure
that the results are interpreted as changes in PM; s-related burden rather than as statements about
absolute longevity or intrinsic population vulnerability. These race-ethnicity patterns point to the
combined effects of historical exposure patterns, differential prevalence of chronic conditions,
and the spatial distribution of populations, and broader structural determinants such as housing
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conditions, cumulative environmental burdens, and differences in healthcare access, which may
contribute to persistent disparities in PMz s impacts despite overall statewide improvements.

To characterize spatial variation, the research team translated the race-ethnicity and age-
group—specific model results to the CT-level by applying modeled, race-ethnicity specific age-
group impacts to each tract’s demographic composition. This CT-level implementation produced
spatially explicit maps of both absolute life expectancy and the change in PM2 s-impacted life
expectancy from Period 1 to Period 2. CT-level outcomes reveal that ongoing air quality
regulations and emission controls contributed to measurable public-health gains (impact from
0.82 to 0.61 years). However, these CT-level results also show that statewide progress does not
eliminate local variation: policy successes reduced the statewide death burden, but tract
composition and legacy exposure patterns continue to shape where residual impacts remain.
Some tracts experienced marked reductions in PM> s-related life-expectancy losses between
periods, whereas others showed only modest improvements.

During the study window, PM; 5 standards were revised multiple times at both the federal and
California levels. The federal annual PM» s National Ambient Air Quality Standard (NAAQS)
was established at 15 pg/m® in 1997 and later tightened to 12 pg/m® in 2012. California adopted
an annual PM s standard of 12 pg/m? earlier, in 2002, along with a 24-hour standard of 35
ng/m?, thereby advancing more stringent controls ahead of the federal revision. These regulatory
milestones align temporally with the substantial decline in ambient PM> s concentrations
observed between Period 1 and Period 2. While our study does not attribute effects to any single
regulatory action, the alignment between standard tightening and declining PM; s-attributable
mortality burden supports the interpretation that regulatory progress played a central role in
shaping the observed temporal trends. These standard revisions and CARB regulatory actions
likely contributed to the observed reductions in life-expectancy impacts between periods by
accelerating emission reductions from mobile, industrial, and area sources.

These findings provide policymakers with evidence that PM; s control continues to deliver
tangible mortality benefits. These findings also suggest that the distribution of remaining harms
has shifted. Maintaining and strengthening source-specific emission controls, especially for
mobile sources and other persistent PM; 5 contributors, remains the most reliable path to further
reducing impacts. Because younger and middle-aged contributions rose in Period 2 for many
groups, policies and programs should broaden their focus beyond solely protecting older adults.
Investments that reduce exposures for working-age populations (e.g., workplace protections,
transit and freight routing policies, and community buffer measures) can now yield important
mortality reductions. Continued targeted interventions for groups and tracts with remaining high
impacts are essential. CT-level maps identify where tract composition and residual exposures
concentrate risk, allowing CARB and local health departments to prioritize these locations for
additional monitoring, community-level mitigation, exposure-reduction strategies in schools and
workplaces, and health-system supports. These insights can also guide AB 617 communities in
implementing focused interventions where the burden remains highest.
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The particularly large policy gains for Black and Hispanic populations underscore that
regulatory action can narrow disparities, and sustained attention to environmental justice,
including ensuring that emission reductions reach communities of color and disadvantaged tracts,
remains essential to extending these gains. Finally, complementing ambient reductions with
policies that address downstream vulnerability, such as improving chronic disease management,
expanding preventive and primary care, and addressing social determinants of health, will
amplify life-expectancy gains from cleaner air.

Another key contribution of this research is the innovative application of the dual population-
weighted and death-weighted PM> s impact framework to detect whether younger or older age
groups were more impacted. The research team identified that when the overall population-
weighted impact is relatively high, but the death-weighted impact is relatively low, younger or
middle-aged groups experience moderate-to-high per-person PM> 5 impacts while the elderly
experience smaller per-person impacts. When the population-weighted impact is relatively low,
but the death-weighted impact is relatively high, the reverse pattern holds: the numerically
dominant younger or middle-aged groups have relatively low per-person impacts while elderly
groups have moderate-to-high per-person impacts. When both population-weighted and death-
weighted impacts are high, all major age groups exhibit moderate-to-high per-person impacts.
When both are low, per-person impacts are uniformly small across all age groups. Using these
criteria, the research team can confidently identify the relative degree of PM» s impact across age
strata. It is important to note, however, that this framework is sensitive to the underlying
mortality structure and demographic composition of the population. Differences in age-specific
death rates or the relative size of age and race-ethnicity groups can influence the comparison
between population-weighted and death-weighted impacts. Users applying this approach in other
populations or settings should consider how local mortality patterns and population distributions
may affect the interpretation of relative PMa 5 impacts across age groups.

The observed heterogeneity across race-ethnicity and age groups in this study should not be
interpreted as evidence of intrinsic biological susceptibility differences to PM».s. Our intent is not
to imply race-specific biological mechanisms, but rather to describe how PM> s-related mortality
impacts are distributed across populations that differ systematically in exposure histories,
baseline health, socioeconomic conditions, and mortality risk profiles. Race-ethnicity in this
study functions as a marker for these correlated structural and contextual factors, not as a causal
biological construct. To mitigate confounding by secular trends and other time-varying factors,
we used a matched case-control design in which each death was matched to up to two controls
who were alive at the time of death and matched on birth year and month, sex, and race-ethnicity.
This design ensures that cases and controls are drawn from the same underlying population and
mortality risk context within each period, so that long-term improvements in healthcare,
prevention, and baseline mortality operate similarly on both groups. As a result, differences in
PMb s associations are less likely to reflect broad secular changes or compositional shifts and
more likely to capture contrasts in exposure within comparable risk sets. While residual
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confounding by unmeasured individual-level factors is still possible, the matching strategy
substantially reduces confounding related to age, cohort effects, sex, race-ethnicity, and calendar
time within each period. We acknowledge that some age-by-race strata involve small numbers of
deaths, particularly at younger ages and within smaller population groups. This limitation
motivated the use of aggregated age-group schemes (10 age-group and 5 age-group models) to
stabilize estimates and improve interpretability. Even with aggregation, some counter-intuitive or
non-significant associations can arise due to limited statistical power rather than true protective
effects. For this reason, we do not emphasize isolated age-specific coefficients for particular
race-ethnicity groups. Instead, the primary focus of the analysis is on integrated patterns,
population-weighted and death-weighted life-expectancy impacts within each period and
changes between periods, which are far more stable and policy-relevant summaries of PM> 5
burden.

This study has limitations that temper causal claims about any single mechanism. Although
this study relied on high-resolution (100-m) daily PM> s surfaces linked to individual residential
locations at time of death, residual misclassification may arise from factors such as residential
mobility, variability in address geocoding completeness, and differences in model performance
across urban, suburban, and rural settings. These factors could, in principle, affect demographic
groups differently if mobility patterns or residential contexts vary systematically by age or race-
ethnicity. Several aspects of the study design mitigate this concern. First, we removed individuals
with less than one year of residence in their county. Second, exposure was assigned at the
individual level using fine-scale, spatially resolved surfaces rather than area-level averages,
reducing spatial smoothing error relative to coarser exposure metrics. Third, the matched case-
control framework ensures that cases and controls within each stratum are drawn from the same
underlying geographic and demographic context, so non-differential exposure error within strata
is more likely to attenuate effect estimates than to create spurious differences across groups.
Importantly, any remaining exposure misclassification is expected to bias associations toward the
null rather than generate artificial heterogeneity across age or race-ethnicity strata. As a result,
the observed differences in population-weighted and death-weighted life-expectancy impacts are
unlikely to be driven solely by exposure measurement error. Nevertheless, we recognize that
subgroup-specific estimates, particularly for smaller populations and younger age groups, may
carry greater uncertainty. For this reason, the study emphasizes aggregated, distributional metrics
(population-weighted and death-weighted impacts and changes across periods) rather than
isolated age-by-race coefficients, and interprets stratified findings in a descriptive and policy-
relevant context rather than as precise estimates of biological susceptibility.

Another limitation of this analysis is that PM» 5 exposure was treated as a single mass-based
metric and was not differentiated by emission source or chemical composition. Because the
toxicity and associated health impacts of equivalent PM> 5 concentrations may vary by source,
region, and time period, incorporating source- or composition-specific information could further
inform the interpretation of results and support more targeted regulatory strategies. Accordingly,
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these census tract—level estimates are best interpreted as a screening tool that can be used in
conjunction with source-specific emissions information, chemical speciation data, or targeted
monitoring campaigns to help identify priority locations where more detailed investigation and
causal assessment may be warranted. However, we understand that implementing such source-
and composition-specific analyses at a statewide scale over two decades would be technically
and logistically challenging, and very likely infeasible due to the lack of consistent, long-term,
high-resolution emissions and daily chemical speciation data. Even if such data were available,
the required modeling and analytical effort would be substantial and would likely entail costs on
the order of tens of millions of dollars.

The CT-level results depend on tract composition and modeled per-group impacts. They
identify where benefits were realized and where residual harms persist, but they do not by
themselves prove local source attribution. . Despite these caveats, the combination of
population/death-weighted analysis, detailed age- and race-ethnicity stratification, and CT-level
mapping provides a clearer picture of how regulatory progress translated into mortality gains and
how those gains were distributed. In short, California’s regulatory actions substantially reduced
the burden of PM2 s between the two periods, Black and Hispanic populations appear to have
realized the largest policy gains, while residual impacts remain most salient in Asian, Hispanic,
and Other groups and in particular census tracts, evidence that argues both for continued
statewide controls and for targeted local and health-system strategies to further reduce air-
pollution-related mortality while also addressing remaining disparities.

Conclusion

This study provides the most comprehensive assessment to date of long-term PMb» s impacts
on mortality and life expectancy in California and offers new insight into how these impacts
changed over two decades of major air-quality improvements. By integrating individual-level
mortality records with high-resolution modeled exposures and stratified hazard models, the
analysis fills critical gaps in the literature, particularly the scarcity of studies examining long-
term PM; s mortality risks and life-expectancy impacts across two separate decades. The findings
therefore provide a valuable evidence base for ongoing regulatory evaluation and future
standard-setting. The analytical framework is readily transferable to other U.S. regions and to
nationwide studies, provided that comparable long-term, daily high-resolution PM; 5 exposure
data and corresponding individual-level mortality records are available. While the magnitude and
distribution of estimated impacts may differ across regions due to variations in age structure,
baseline health conditions, regulatory history, and ambient PM s mixtures, such differences
would reflect underlying population and exposure characteristics rather than limitations of the
modeling approach itself. As a result, the conclusions drawn for California should be interpreted
as context-specific in magnitude, but broadly informative regarding the application of this
framework to other regions with differing demographic and environmental profiles.
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The strongest and most robust results of this study are the core mortality-risk estimates, the
decline in long-term PM> s-attributable mortality between the two periods, and the overall life-
expectancy gains observed statewide. These estimates derive from well-established
epidemiologic methods applied to population-wide mortality data, and their stability across
modeling choices gives them high reliability. The substantial drop in the statewide death-
weighted life-expectancy impact, from 0.61 years in 2000-2010 to 0.37 years in 2011-2021,
reflects a clear, consistent signal that California’s regulatory and technological actions have
translated into real improvements in public health.

More granular findings, such as age-group specific shifts, race-ethnicity specific differences,
and census-tract level heterogeneity, provide important insights but should be interpreted with
somewhat more caution. These subgroup estimates illuminate meaningful patterns, such as the
increasing contribution of younger and middle-aged populations in Period 2, or the particularly
large policy gains for Black and Hispanic populations, but they can be influenced by smaller
sample sizes, differential statistical power, and subgroup-specific demographic structures.
Further, these findings should be viewed in the context of persistent differences in baseline life
expectancy across racial-ethnic groups in California, which shape the proportional meaning of
PMb s-related losses and help prevent misinterpretation of our results. Similarly, the tract-level
mapping results effectively reveal where residual burdens remain, but they reflect demographic
composition and modeled exposure surfaces rather than direct causal attribution to specific local
sources. These subgroup- and tract-level estimates provide a basis for identifying areas or
populations with higher PMz s-related impacts. They are intended for prioritization and screening
purposes, not for attributing effects to specific emission sources. These results are therefore best
viewed as informative and policy-relevant, but preliminary with respect to fine-scale causal
inference. The ranking of the study findings from most trustworthy to more informative is
provided in Table 8.

Table 8. Ranking of findings by reliability and policy relevance

Tier Findings Rationale for Level of Confidence

Based on population-wide mortality
data, large sample sizes, and well-
established epidemiologic methods
with stable estimates

Statewide association between long-
term PM; 5 exposure and all-cause
mortality across both periods

Most trustworthy Dpecline in PM, s-attributable Consistent signal across models
/ s?rongest mortality risk from Period 1 (2000— reflecting large-scale regulatory and
evidence 2010) to Period 2 (2011-2021) air quality improvements

Derived from integrated life-table
calculations using stable mortality-
risk estimates; robust to modeling
choices

Reduction in statewide death-
weighted life-expectancy loss from
0.61 years to 0.37 years
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Tier Findings Rationale for Level of Confidence

Overall statewide life expectancy Direct translation of robust mortality-
gains attributable to reductions in risk estimates into life-expectancy
PM2s metrics

High confidence,
policy-relevant

Age-group—specific shifts in PMa.s
impacts, including increased relative
contribution of younger and middle-

Relies on stratified models with
reduced sample sizes within age

.Informatlve.e, aged groups in Period 2 groups
interpret with Inf five f " dooli
some caution Race- and ethnicity-specific normative ot equity and poticy
. . . evaluation, but influenced by
differences in PM; s-related life- . .
expectancy impacts and policy gains subgroup size and baseline life-
expectancy differences
Census-tract level variation in PM; s- Stable in hlgh-pp pulation tracts, but
. . . more uncertain in small tracts due to
Exol / attributable life-expectancy impacts demosraphic composition and
Xp .oratory and changes over time Jographic comp
spatially statistical variability
informative Regional and community-level Useful for identifying broad areas of
spatial patterns of remaining PM>5  concern, not for fine-scale causal
burden attribution

Taken together, the study provides CARB with a set of actionable insights. At a statewide
level, the findings confirm that decades of emission controls have yielded substantial,
measurable reductions in PM» s-related mortality and life-expectancy losses. This provides strong
support for continuing to strengthen PMb s standards, reinforce mobile-source and area-source
regulations, and maintain California’s current regulatory trajectory. The decade-over-decade
improvements also give CARB an empirically grounded demonstration of the public-health
value of its past policies: evidence that can be used in regulatory impact assessments, state
implementation plans, and benefit-cost analyses. Additionally, these results can inform
coordination with local health departments, air districts, and community organizations to guide
targeted mitigation efforts and public-health communication strategies.

The subgroup and tract-level findings help CARB identify which populations and locations
should be prioritized for the next generation of air-quality interventions. The results indicate that
residual PM; s impacts increasingly cluster in communities with specific demographic
compositions, especially Asian, Hispanic, and Other populations, and that some census tracts still
experience comparatively high PMa s-related life-expectancy losses, which likely reflect not only
differences in PM2 5 exposure but also interactions with broader social and structural
determinants such as chronic disease burden, housing quality, and access to preventive care.
These patterns can directly inform CARB’s targeting of community-level mitigation efforts,
planning of monitoring expansions, refinement of EJ-focused programs, and coordination with
local agencies under initiatives such as AB 617. The shift toward greater impacts among younger

96



and middle-aged adults in Period 2 also suggests that CARB may consider strategies that reduce
exposures in workplaces, transportation corridors, and freight systems, settings especially
relevant for these age groups.

In sum, this study shows that California’s regulatory actions substantially reduced the long-
term mortality burden of PM> 5, extended life expectancy statewide, and narrowed key race-
ethnicity disparities. At the same time, it identifies emerging demographic patterns and
geographic concentrations of remaining impacts. The results offer CARB both strong, robust
evidence to support statewide regulatory strategies and a set of preliminary but highly
informative indicators to guide targeted, equity-focused interventions. Together, these findings
underscore that continued emission reductions, when paired with localized and population-
specific investments, remain essential to ensure that cleaner air translates into longer, healthier
lives for all Californians. Looking ahead, incorporating additional data sources, such as PM> 5
chemical speciation, source-specific measurements, enhanced monitoring, and refined health-
outcome linkages, could further improve future assessments and help prioritize regulatory and
public-health interventions.
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Supplementary Figures

Figure S 1. PRISMA Study Selection Flow Diagram. PRISMA = Preferred Reporting Items for
Systematic Reviews and Meta-Analyses.
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Figure S 2. Number of Studies by Publication Year and Country.
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Supplementary Tables

Table S 1. Characteristics of included studies.

/Author and Year Age Exposure Study Period [Location [Study Size (n)
(Years)

Villeneuve 2002 2574 PM2.5 1974-1991  |[USA 8,111

Pope 2002 >30  PM2.5 1982-1998  |USA 500,000

Nafstad 2004 449 amogen Oxides 00y 1008 Norway 16,209
Other

Enstrom 2005 65 PM2.5 1973-2002  |USA 49,975

Jerrett 2005 >30  PM2.5 1982-2000  |USA 22,905

Laden 2006 2574 PM2.5 1974-1998  |USA 8,096

Zeger 2008 >65  PM2.5 2000-2005  |USA 13.2 million

Jerrett 2009 30 P23 1977-2000  [USA 448,850
Ozone

Cao 2011 L g0 ptrogenDioxide | og) 2000 China 70,947
Other

Lepeule 2012 2574 PM2.5 19742009  |USA 8,096

Heinrich 2012 5059 itrogen Dioxide |y g0s 508 Germany 4,752
Other
PM2.5

Jerrett 2013 >30  |Ozone 1982-2000  [USA 73,711
INitrogen Dioxide

Correia 2013 NA  PM25 2000-2007  |USA N/A®

Ostro 2015 >30 PM2.5 2001-2007  |USA 101,884
PM2.5

Turner 2016 >30  [Ozone 1982-2004  [USA 669,046
Nitrogen Dioxide

g?gmouﬂzoglou >65  |PM2.5 2000-2010  [USA 35.3 million

Shi 2016 >65  PM2.5 2003-2008  |USA 268,050 deaths®
PM2.5

Keijzer 2016 NA OPmC  b0092013  [Spain M4.6 million
Nitrogen Dioxide
Other

Di 2017 s M2 2000-2012  [USA 60.9 million
Ozone

Wang 2017 >65  PM2.5 2000-2013  |USA 13.1 million

Schwartz 2018 >65  PM2.5 2000-2013  |USA 17.0 million
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PM2.5
Ozone

Lefler 2019 18-84 ) .. 1987-2015  |USA 635,539
Nitrogen Dioxide
Other
PM2.5
Hvidtfeldt 2019 s0-64 07" 119932015 [Denmark 149,564
INitrogen Dioxide
Other
PM2.5
Dirgawati 2019 > 65 Nitrogen Dioxide (1996-2012  |Australia |11627
Other
Yitshak-Sade 2019 > 65 PM2.5 2000-2013  |[USA 15.4 million
Chen 2019 IN/A PM2.5 2010-2017  [Taiwan N/A?
'Yu 2020 IN/A PM2.5 1998-2013  |Australia 242,320 deaths®
Wang 2020 > 65 PM2.5 2000-2008  |[USA 53 million?
Qian 2021 > 65 Nitrogen Dioxide 2000-2016  [USA 13.6 million
Anwar 2021 <5 PM2.5 2000-2017  |Asia® N/A®
Byun 2022 > 30 Ozone 2005-2015 South 179,806
Korea
Liu 2022 16-110 |PM2.5 2010-2017  (China 30,524
Yu 2022 IN/A PM2.5 2010-2018  |Brazil N/A?
Baranyi 2023 ~87 PM2.5 1939-2022  |UK 2,734
Hao 2023 > 65 PM2.5 2000-2017  |[USA 73.4 million
Other
Xue 2023 <5 Ozone 2003-2019 |55 LMICs |[1.2 million
Shiferaw 2023 <5 PM2.5 2011-2016  |Ethiopia 10,452
Wang 2023 >45 INitrogen Dioxide 2011-2018  [China 15,440

*These were population-level ecologic studies that did not report the number of total included

study participants.

"This study included 16 countries across Asia: Bangladesh, China, India, Indonesia, Iran,

Malaysia, Mongolia, Myanmar, Nepal, Pakistan, Philippines, Russia, Sri Lanka, Thailand,

Turkey, and Vietnam.

Abbreviations: LMICS =Low and Middle-Income Countries.
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Table S 2. All-cause mortality and air pollution.

/Author and Year Study Size (n) Mean (SD) or Median All-Cause Mortality Risk|[Exposure Increment Controlled
[IOR] Exposure Level (95% CI)? (increase) confounders®
Exposure: PM2.5
Pope 2002 500,000 17.7 (3.7) pg/m? RR 1.06 (1.02-1.11) per 10 ng/m? AGRSMH
Villeneuve 2002 8,111 11.0 (1.0)-28.5 (5.5) pg/m* RR 1.17 (1.05-1.30) per 10 pg/m? AGSM
Enstrom 2005 49,975 23.4 pg/m? RR 1.01 (0.98-1.05) per 10 pg/m? AGRSMH
Jerrett 2005 22,905 20 ng/m? RR 1.17 (1.05-1.30) per 10 pg/m? AGRSMHUN
Laden 2006 8,096 10.2-29.0 pg/m? RR 1.16 (1.07-1.26) per 10 pg/m? AGSM
Zeger 2008 13.2 million 14.0 [3.0] ug/m? RR 1.07 (1.05-1.09) per 10 pg/m? AGRMN
Jerrett 2009 448,850 11.9 (2.5)-15.4 (3.2) pg/m* RR 1.08 (1.05-1.11) per 10 pg/m? AGRSMHN
Lepeule 2012 8,096 15.9 pg/m? RR 1.14 (1.07-1.22) per 10 pg/m? AGSMC
Correia 2013 N/A® 13.2 (3.4) pg/m’ 2}'; Se Cy;ir:;‘(’;tzlon é;f;’) per 10 pg/m?® AGRMCUN?
Jerrett 2013 73,711 14.09 (3.52) pg/m? RR 1.03 (1.00-1.06) per IQR (5.30 pg/m*) AGRSMHUN
Ostro 2015 101,884 17.9 pg/m? HR 1.01 (0.97-1.05) per 10 pg/m? ARSMHCN
Keijzer 2016 44.6 million 8.22 ug/m? RR 1.04 (1.04-1.04) per 2 ug/m? N¢
Kioumourtzoglou 2016 35.3 million 12 (1.6) ug/m HR 1.19 (1.11-1.28) per 10 pg/m? AGRSCUN
Shi 2016 268,050 deaths® [8.12 (2.28) pg/m? RR 1.08 (1.02-1.13)° per 10 pg/m? MN4
Turner 2016 669,046 12.6 (2.9) pg/m? HR 1.04 (1.02-1.06) per 10 ug/m? AGRSMHN
Di 2017 60.9 million 11.0 pg/m? HR 1.07 (1.07-1.08) per 10 pg/m? AGRSUN
Wang 2017 13.1 million 10.7 [3.8] ug/m? HR 1.02 (1.02-1.02) per 1 pg/m? AGRSCUN
Schwartz 2018 17.0 million  [10.3 pg/m? 0-89 years (0.88-091) lost |y 5 1 o/m> AGRSMCUN
in life expectancy
Chen 2019 N/AS 26.37 (7.09) pg/m’ ﬁfi ZZ?CS;CYO'@ SN per 10 pg/n SN*
Dirgawati 2019 11,627 5.1 (1.7) pg/m? HR 1.07 (0.98-1.16) per 5 pg/m? ASM
Hvidtfeldt 2019 49,564 18.0 ug/m? HR 1.13 (1.05-1.21) per 5 pg/m? AGSMHN
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Hvidtfeldt 2019 49,564 13.8 ug/m? HR 1.03 (1.01-1.05) per IQR (1.36 ng/m?*) ]AGSMHN
Lefler 2019 635,539 10.67 (2.37) pg/m? HR 1.05 (1.03-1.06) per 10 pg/m? AGRSMU
Yitshak-Sade 2019 15.4 million 6.5-14.5 pg/m? RR 1.04 (1.03-1.05) per IQR (3 pg/m®) |AGRSUN
Wang 2020 53 million 10.32 (3.15) pg/m? RR 1.05 (1.04-1.06) per 10 ug/m? AGRSUN
'Yu 2020 242,320 deaths® 3.6 [2.0] ug/m? RR 1.02 (1.01-1.03) per 1 pg/m? N¢
Anwar 2021 N/A® 44.18 (24.52) pg/m?® 14.5% (p=0.01) decrease 1 o/ UN¢

in mortality
Liu 2022 30,524 47.1 (19.5) pg/m? HR 1.13 (1.06-1.20) per IQR (26.7 pg/m*) AGRSMHCU
Yu 2022 N/A® 7.7 ng/m? RR 1.18 (1.15-1.21)% per 10 pg/m? UN¢
Baranyi 2023 2,734 31.3 (32.6) pg/m? HR 1.03 (1.01-1.04) per 10 pg/m? AGSU
Hao 2023 - Exposure [ 73.4 million 10.03 (3.12) pg/m? HR 1.01 (1.01-1.01) per 1 pg/m? AGRSMUN
Hao 2023 - Exposure II {73.4 million 0.30 (2.90) pg/m? HR 1.01 (1.01-1.01) per 1 pg/m? AGRSMUN
Shiferaw 2023 10,452 20.1 (3.3) pg/m? OR 2.29 (1.44-3.65) per 10 pg/m? AGS
Exposure: Ozone
Jerrett 2009 448,850 57.7 ppb RR 0.99 (0.98-1.00) per 10 ppb AGRSMHN
Jerrett 2013 73,711 50.35 (14.57) ppb RR 1.00 (0.96-1.04) per IQR (24.18 ppb) |AGRSMHUN
Keijzer 2016 44.6 million 80.39 ng/m? RR 1.02 (1.02-1.02) per 5 ug/m? N¢
Turner 2016 669,046 38.2 (4.0) ppb HR 1.02 (1.01-1.04) per 10 ppb AGRSMHN
Di 2017 60.9 million  46.3 ppb HR 1.01 (1.01-1.01) per 10 ppb AGRSUN
Hvidtfeldt 2019 49,564 55.4 ug/m? HR 0.92 (0.89-0.96) per 10 pg/m? AGSMHN
Lefler 2019 635,539 47.45 (5.31) ppb HR 1.00 (0.99-1.01) per 10 ppb AGRSMU
Byun 2022 179,806 21.9 (4.8) ppb HR 1.18 (1.07-1.29) per 10 ppb AGSMHN
Xue 2023 1.2 million 51.69 (9.56) ppb HR 1.06 (1.02-1.11) per 10 ppb G
Exposure: Nitrogen Dioxide/Oxide
Nafstad 2004 16,209 10.7 ug/m? RR 1.08 (1.06-1.11) per 10 pg/m? ASMHC
Cao 2011 70,947 50 pg/m? HR 1.02 (1.00-1.03) per 10 pg/m? AGSMHC
Heinrich 2012 4,752 39 (11.85) pg/m? HR 1.18 (1.07-1.30) per 16 pg/m? ASMC
Jerrett 2013 73,711 12.27 (2.92) ppb RR 1.03 (1.01-1.06) per IQR (4.12 ppb) |AGRSMHUN
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Keijzer 2016 44.6 million 0.48 ng/m? RR 1.00 (1.00-1.00) per 5 ug/m? N¢

Turner 2016 669,046 11.6 (5.1) ppb HR 1.01 (1.00-1.03) per 10 pg/m? AGRSMHN
Dirgawati 2019 11,627 13.4 (4.1) pg/m? HR 1.06 (1.00-1.13) per 10 pg/m? ASM
Hvidtfeldt 2019 49,564 25.0 ug/m? HR 1.07 (1.04-1.10) per 10 pg/m? AGSMHN
Lefler 2019 635,539 10.69 (5.73) ppb HR 0.96 (0.93-0.98) per 10 ppb AGRSMU
Qian 2021 13.6 million 13.7 (5.9) ppb HR 1.05 (1.04-1.05) per 10 ppb AGRSUN
Wang 2023 15,440 21.2 (6.3) pg/m? HR 1.22 (1.10-1.35) per 10 pg/m? AGSMHCU

2All estimates of mortality risk were rounded to three significant figures.
bA=Age, G=Sex or Gender, R=Race or ethnicity, S=Individual socioeconomic status, M=Smoking status (individual) or smoking
prevalence (area-level), H=Other health-related behaviors, C=comorbidities or chronic health conditions, U=urbanicity,

N=neighborhood-level or area-level socioeconomic status.

These are ecologic studies that only controlled for area-level confounders.
“These are population-based studies that did not report the number of total included study participants.
°This RR was calculated from the reported percent change in mortality.
Abbreviations: SD=Standard Deviation. IQR = Interquartile Range. CI=Confidence Interval. HR = Hazard ratio. RR = Relative risk.

OR = Odds ratio.
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Table S 3. All-cause mortality risk from air pollution stratified by age.

Author, Year Youngest | All-cause Mortality Risk | Oldest Age |All-cause Mortality Risk [Exposure Increment
Age Group Group (Increase)
pM25
Baranyi 2023 11-55 years |HR 1.00 (0.96-1.04) 75-86 years  |[HR 1.03 (1.00-1.05) per 10 pg/m?
Pope 2002? 30-60 years |RR 1.04 (1.00-1.09) >70 years RR 1.05 (1.01-1.09) per 10 ug/m?
Enstrom 2005 43-64 years |RR 1.03 (1.00-1.05) 65-99 years  |RR 1.00 (0.98-1.02) per 10 ug/m?
'Yu 2020 <65 years RR 1.06 (1.04-1.07) >65 years RR 1.01 (1.01-1.02) per 1 pg/m?
Zeger 2008 65-74 years |[RR 1.11 (1.09-1.14) >85 years RR 1.02 (1.00-1.04) per 10 pg/m?
Kioumourtzoglou 2016 (% >65 years RR 1.11 (1.03-1.21) % >65 years |RR 1.25 (1.16-1.35) per 10 pg/m?
(25% pet)® (75 pet)®
Di 2017 65-74 years |HR 1.15 (1.14-1.15) >85 years HR 1.00 (0.99-1.00) per 10 pg/m?
Wang 20172 65-74 years |HR 1.04 (1.04-1.04) >85 years HR 1.00 (1.00-1.00) per 1 pg/m?

Di 2017 65-74 years |HR 1.01 (1.01-1.01) >85 years  HR 1.02 (1.01-1.02) per 10 ppb

Nafstad 2004 40-45 years |RR 1 (Reference) 46-49 years  |[RR 1.65 (1.55-1.76) per 10 pg/m?
Wang 2023 45-64 years |[HR 1.01 (0.85-1.21) >65 years HR 1.35 (1.19-1.53) per 10 pg/m?
Qian 2021 65-80 years |HR 1.06 (1.03-1.08) >80 years HR 1.03 (1.01-1.05) per 10 ppb

*Numeric data for these studies were extracted from the published figures via Digitizelt Software.

22,23

®Neighborhood level proportion of residents of >65 years at the 25™ percentile versus 75" percentile.
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Table S 4. All-cause mortality risk from air pollution stratified by sex.

Author, Year  |All-cause mortality risk Exposure increment
Male Female (increase)
Pope 2002 RR 1.06 (1.02-1.10) RR 1.02 (0.98-1.06) per 10 pg/m?
Enstrom 2005  |RR 0.99 (0.97-1.02) RR 1.03 (1.01-1.05) per 10 pg/m?
Zeger 2008 RR 1.07 (1.05-1.09) RR 1.09 (1.06-1.11) per 10 pg/m?
0.08 years lost in life expectancy 0.59 years lost in life expectancy per 10 ug/m?
Correia 2013 (SE=0.20) (SE=0.17)
Wang 2017 HR 1.03 (1.02-1.03) HR 1.02 (1.01-1.02) per 1 pg/m?
D1 2017 HR 1.09 (1.08-1.09) HR 1.06 (1.06-1.06) per 10 pg/m?
1.17 years (1.14-1.19) lost in life 0.74 years (0.72-0.77) lost in life per 4.5 pug/m?
Schwartz 2018  fexpectancy expectancy
Hvidtfeldt 2019 HR 1.20 (0.91-1.57) HR 1.05 (0.97-1.14) per 5 ug/m?
Yu 2020 RR 1.01 (1.01-1.02) RR 1.03 (1.02-1.04) per 1 pg/m?
'Yu 2022° IN/A IN/A N/A
Hao 2023 HR 1.04 (1.04-1.04) HR 1.04 (1.04-1.04) per 3.68 pg/m?
Baranyi 2023 HR 1.04 (1.01-1.07) HR 1.02 (0.99-1.05) per 10 pg/m?
Di 2017 HR 1.01 (1.01-1.01) HR 1.01 (1.01-1.01) er 10 ppb
Xue 2023 No difference (p=0.502) er 10 ppb
Hvidtfeldt 2019 HR 1.10 (1.06-1.14) HR 1.03 (0.99-1.07) per 10 pg/m?
Qian 2021 HR 1.01 (1.00-1.02) HR 1.08 (1.06-1.09) per 10 ppb
Wang 2023 HR 1.26 (1.10-1.44) HR 1.17 (1.00-1.36) per 10 pg/m?

This study reported that avoidable loss of life expectancy from PM2.5 exposure was higher in males than in females but did not

quantify risk values.
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Table S 5. All-cause mortality risk from air pollution stratified by race.

/Author, Year

All-cause mortality risk

Exposure

White

Black

Hispanic Asian

Native American

increment
(increase)

Kioumourtzoglou [HR 1.11 (1.01- HR 1.29 (1.19- |N/A HR 1.19 (1.11- [N/A per 10 pug/m?
2016 1.22)* 1.39)* 1.28)*

HR 1.02 (1.02- HR 1.03 (1.03- |Others: 1.06 (1.06-1.07) per 1 pg/m?
Wang 2017 1.02) 1.03)

HR 1.06 (1.06- HR 1.21 (1.20- [HR 1.12(1.10- |HR 1.10 (1.08- HR 1.10 (1.06-1.14) |per 10 pg/m?
Di 2017 1.07) 1.22) 1.13) 1.12)

RR 1.03 (1.03- |[RR 1.10(1.09- N/A IN/A N/A per 3 pg/m?
'Yitshak-Sade 2019 [1.04) 1.12)
ozne
Di 2017 HR 1.01(1.01- |HR 1.01 HR 0.98 (0.97- [HR 0.98 (0.97- [HR 0.96 (0.94-0.98) |per 10 ppb

1.01) (1.01-1.01) 0.98) 0.99)
Nitrogen OXdes
Qian 2021 HR 1.06 (1.05- |HR 1.00 (0.98- [Other: HR 0.98 (0.94-1.02) per 10 ppb

1.07) 1.02)

®Risk values at the 75th percentiles for the proportion of White, Black, and Asian residents, respectively.

107



Table S 6. All-cause mortality risk from air pollution stratified by education level.

Author, Year All-cause mortality risk Exposure increment
Low Education Level Moderate Education Level |[High Education Level |(Increase)
Pope 2002* HR 1.09 (1.03-1.14) HR 1.05 (1.01-1.09) HR 1.00 (0.97-1.04) per 10 pug/m?
Enstrom 2005° RR 1.02 (0.99-1.05) RR 1.01 (0.97-1.04) RR 1.01 (0.98-1.03) per 10 pug/m?
Kioumourtzoglou 2016° HR 1.26 (1.16-1.38) N/A HR 1.15 (1.06-1.24) per 10 pg/m?
Kioumourtzoglou 20164 [HR 1.22 (1.13-1.31) N/A HR 1.14 (1.05-1.24) per 10 pg/m?
Wang 2017°¢ HR 1.023 (1.021-1.024) [N/A HR 1.019 (1.018-1.020) [per 1 ug/m’
Hvidtfeldt 2019f HR 1.13 (1.04-1.23) HR 1.14 (1.06-1.23) HR 1.07 (0.95-1.28) per 5 pg/m?
Nafstad 2004 HR 1 (Reference) HR 0.78 (0.73-0.84) HR 0.66 (0.60-0.74) per 10 ppb
Hvidtfeldt 2019f HR 1.09 (1.04-1.14) HR 1.06 (1.02-1.10) HR 1.06 (0.99-1.13) per 10 pg/m?
Wang 2023" HR 1.27 (1.13-1.42) HR 1.10 (0.88-1.37) N/A per 10 pg/m?

*Low, moderate, and high education levels were defined as <high school, high school, and >high school, respectively.
®Low, moderate, and high education levels were defined as <12 years of education, 12 years of education, and >12 years of education,

respectively.

°These values refer to HRs at neighborhood level percentiles of residents with a college degree (20" versus 80" percentile) tabulated
as low and high levels of education, respectively.
4These values refer to HRs at neighborhood level percentiles of residents with no high school degrees (80™ versus 20™ percentile)
tabulated as low and high levels of education, respectively.
°This study reported effect modification by neighborhood level percentiles of less educated (20" versus 80 percentile) tabulated as

high and low education levels respectively. The numeric HRs were extracted from published figures via Digitizelt software.

22,23

‘Low, moderate, and high education levels were defined as 8-11 years of basic schooling, 11-14 upper secondary/vocational training,

and 15+ years of schooling, respectively.
£Low, moderate, and high education levels were defined as <10, 10-12, and >12 years of education, respectively.
"L ow and moderate education levels were defined as 0-6 years and >7 years of education, respectively.
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Table S 7. All-cause mortality risk from air pollution stratified by SES metrics.

Author, Year All-cause mortality risk Exposure Increment (Increase)
Low SES High SES
Zeger 2008? HR 6.9 (4.1-9.8) HR 8.3 (5.9-10.8) per 10 pg/m?
Kioumourtzoglou 2016° HR 1.28 (1.18-1.40) HR 1.14 (1.06-1.23) per 10 pg/m?
Kioumourtzoglou 2016° HR 1.23 (1.14-1.33) HR 1.13 (1.04-1.23) per 10 pg/m?
Kioumourtzoglou 20164 HR 1.23 (1.14-1.33) HR 1.13 (1.04-1.22) per 10 pg/m?
Wang 2017°¢ HR 1.022 (1.021-1.023)f HR 1.018 (1.017-1.019)f per 1 pg/m?
Wang 2017# HR 1.021 (1.020-1.023)" HR 1.020 (1.019-1.021)" per 1 pg/m?
Wang 2017" HR 1.020 (1.018-1.021)" HR 1.021 (1.020-1.022)" per 1 pg/m?
Nafstad 2004 RR 1.08 (1.00-1.17) RR 1.00 (reference) per 10 ppb
Qian 2021 HR 1.05 (1.04-1.06) HR 1.05 (1.04-1.06) per 10 ppb

aSocioeconomic status (SES) was defined using five ZIP code-level factors (percentage with a high school diploma, percentage with a
higher education degree, percentage of households above the poverty level, median household income, and percentage employed). Zip
codes with higher than national median across majority of factors were categorized as high SES.

b25% versus 75" percentiles in median household income.

25M versus 75™ percentiles in percentage in poverty.

425%™ versus 75" percentiles in percentage of city families in poverty.

¢20th versus 80 percentile in percentage below poverty level.

"The numeric HRs were extracted from published figures via Digitizelt software.
£80th versus 20" percentile in median income

h80th versus 20™ percentile in home value (80™ vs. 20™ percentile).

Blue collar occupation was interpreted as low SES and white collar as high SES.
"Low SES was defined as below the median percentage below the poverty level.

22,23
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Table S 8. All-cause mortality risk from air pollution stratified by Medicaid-Medicare dual eligibility as a proxy for socioeconomic
status.

Author, Year All-cause mortality risk in the Medicare Population Exposure increment
Medicaid Eligible Medicaid Non-Eligible (Increase)

Di 2017 HR 1.08 (1.08-1.09) HR 1.08 (1.07-1.08) per 10 pg/m?

Wang 2017 HR 1.02 (1.02-1.03) HR 1.02 (1.02-1.02) per 1 ug/m?

Yitshak-Sade 2019 | RR 1.06 (1.04-1.08) RR 1.04 (1.03-1.04) per 3 ug/m?

Di 2017 HR 1.02 (1.02-1.02) HR 1.01 (1.00-1.01) per 10 ppb

Qian 2021 HR 1.03 (1.01-1.05) HR 1.05 (1.04-1.07) per 10 ppb
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Table S 9. All-cause mortality from air pollution stratified by comorbidities.

Author, Year

Comorbidity Studied

All-cause mortality
risk with comorbidity

All-cause mortality
risk without
comorbidity

Exposure Increment
(increase)

Nafstad 2004

CVD or Diabetes

2.69 (2.44-2.95)

1 (reference)

Enstrom 2005 Cancer, heart disease, | 0.99 (0.96-1.03) 1.01 (0.99-1.03) per 10 pg/m?
or stroke

Lepeule 2012 Hypertension 1.17 (1.03-1.32) N/A per 10 pg/m?
COPD 1.09 (0.95-1.26)
Diabetes 1.04 (0.85-1.27)

Wang 2017? CHF Admission 1.03 (1.03-1.03) 1.02 (1.02-1.02) per 1 pg/m?
MI Admission 1.05 (1.05-1.06) 1.02 (1.02-1.02)
COPD Admission 1.05 (1.05-1.05) 1.02 (1.02-1.02)
Diabetes Admission 1.05 (1.05-1.06) 1.02 (1.02-1.02)

per 10 pg/m?

Wang 2023

CVD
Respiratory Diseases

1.26 (1.09-1.46)
1.37 (1.06-1.76)

1.17 (1.01-1.34)
1.19 (1.06-1.33)

per 10 pg/m?

# Presence of comorbidities were defined as previous hospitalizations due to a medical condition.
Abbreviations: COPD=chronic obstructive pulmonary disease; CHF=Congestive heart failure; MI=Myocardial infarction;

CVD=Cardiovascular Disease
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Table S 10. All-cause mortality from air pollution stratified by urbanicity.

Author, Year

Urban

Rural

Exposure Increment
(increase)

Correia 2013
% urban residences® | 0.95 years LLE -0.16 years LLE per 10 ug/m?
(p<0.01) (p=0.299)
Population density® | 0.72 years LLE -0.31 years LLE per 10 pg/m?
(p<0.01) (p=0.165)
Shi 2016°¢ RR 1.13 (1.06- RR 1.03 (0.97-1.10) per 10 pg/m?
1.20)
Keijzer 20164 RR 1.02 (1.02- RR 1.10 (1.09-1.10) per 2 pg/m?
1.02)
Kioumourtzoglou 2016 | HR 1.18 (1.09- HR 1.20 (1.11-1.29) per 10 pg/m?
1.28)
Wang 2017¢ HR 1.021 (1.020- | HR 1.006 (1.004- per 1 pg/m?
1.022) 1.008)
Di 2017f HR 1.08 (1.07- HR 1.07 (1.06-1.07) per 10 pg/m?
1.09)
Yu 2020# RR 1.06 (1.04- RR 1.02 (1.01-1.03) per 1 pg/m?
1.07)
Yu 2022" 1.77 years (1.51- | 1.43 years (1.22-1.62) | Above 2.9 pg/m?
2.03) LLE LLE

Keijzer 2016° RR 1.02 (1.01- RR 1.03 (1.02-1.03) per 5 pg/m?
1.02)

Di 2017F HR 0.98 (0.98- HR 1.03 (1.03-1.03) per 10 ppb
0.99)

Heinrich 2012 HR 1.42 (1.12- HR 1.00 (reference) per 16 pg/m?
1.79)

Keijzer 2016° RR 1.00 (1.00- RR 1.05 (1.04-1.05) per 5 pg/m?
1.00)

Qian 2021} HR 1.06 (1.04- HR 1.01 (0.99-1.03) per 10 ppb
1.08)

Wang 2023 HR 1.11 (0.94- HR 1.27 (1.12-1.45) per 10 pg/m?
1.30)

acounties with >90% residences in urban areas defined as urban and other counties defined as

rural.
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®population density >200 people per square mile defined as urban and population density <200
people per square mile defined as rural.

“Urban defined as total population within zip code below median

dUrban defined as areas with >10,000 inhabitants

‘Rural areas were defined as areas with population density below the first tertile of the
population density (51 per square mile).

fUrbanicity was stratified into low, medium-low, medium-high, and high population density.
Numeric cutoffs were not reported.

£Brisbane was defined as an urban area and the rest of the state (Queensland) as rural.
BMunicipalities were defined by Brazilian Institute of Geography and Statistics as urban versus
intermediate remote areas (categorized in this table as rural).

i<=50m from home to a major road was considered urban and >50m from home to a major road
as rural.

iUrbanicity was based on quartiles of population density, with urban areas defined as those with
high population density (fourth quartile) and rural defined as low population density (first
quartile).

Abbreviations: LLE = lost life expectancy.
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Appendix.

A.1. Search Strategy for the Systematic Review.

Topic: Air pollution & life expectancy
Search date: 10/19/2023
Limits: 2000-present; Embase limit to articles/articles in press

PubMed: Results = 1195

("air pollution" OR "Air Pollution"[Mesh] OR "air pollutants" OR "Air Pollutants"[Mesh] OR
"particulate matter" OR "Particulate Matter"[Mesh] OR “ozone” OR “Ozone”[Mesh] OR
“nitrogen dioxide” OR "Nitrogen Dioxide"[Mesh] OR “pollutant mixtures” OR “chemical
mixtures” OR “hazardous substances” OR "Hazardous Substances"[Mesh] OR “inhalation
exposure” OR “inhalation exposure” [Mesh]) AND (“life expectancy” OR "Life
Expectancy"[MeSH] OR “cause of death” OR "Cause of Death"[Mesh] OR “mortality” OR
“Mortality”’[Mesh] OR “life table” OR “Life Tables”’[Mesh]) AND (“chronic disease” OR
"Chronic Disease"[Mesh] OR “asthma” OR "Asthma"[Mesh] OR “COPD” OR “pulmonary
disease, chronic obstructive” [Mesh] OR “chronic obstructive pulmonary disease”” OR
“cardiovascular disease” OR “CVD” OR "Cardiovascular Diseases"[Mesh] OR “diabetes” OR
"Diabetes Mellitus"[Mesh] OR “vulnerable populations” OR "Vulnerable Populations"[Mesh]
OR “socioeconomic status” OR "Low Socioeconomic Status"[Mesh] OR “social class” OR
"Social Class"[Mesh] OR “social determinants” OR "Social Determinants of Health"[Mesh] OR
“Health Equity”[Mesh] or “health equity”” OR “Socioeconomic Factors”[Mesh] OR
“socioeconomic factors” OR “racial groups”[Mesh] OR “racial groups” OR "race factors"
[Mesh] OR "race" OR “ethnicity”’[Mesh] OR “ethnicity” OR “social vulnerability”’[Mesh] OR
“social vulnerability” OR “Demography”’[Mesh] OR “demographics” OR “demographic data”
OR “Age distribution”’[Mesh] OR “age” OR “Sex distribution”’[Mesh] OR “sex” OR “gender”)
AND (“statistical models” OR "Models, Statistical"[Mesh] OR “binomial model” OR “binomial
models” OR “binomial distribution” OR "Binomial Distribution"[Mesh] OR “linear model” OR
“linear models” OR "Linear Models"[Mesh] OR “poisson model” OR “poisson models”” OR
“poisson distribution” OR "Poisson Distribution"[Mesh] OR “logistic regression” OR “logistic
model” OR “logistic models” OR “Logistic Models”[Mesh] OR “machine learning” OR
“Machine Learning”[Mesh] OR “random forest” OR “random forest” [Mesh])

Web of Science: 1646 results

("air pollution" OR "air pollutants" OR "particulate matter" OR “ozone” OR “nitrogen dioxide”
OR “pollutant mixtures” OR “chemical mixtures” OR “hazardous substances” OR “inhalation
exposure”) AND (“life expectancy” OR “cause of death” OR “mortality” OR “life tables”) AND
(“chronic disease” OR "chronic diseases" OR “asthma” OR “COPD” OR “chronic obstructive
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pulmonary disease”” OR “chronic obstructive pulmonary diseases" OR “cardiovascular disease”
OR "cardiovascular diseases" OR “CVD” OR “diabetes” OR "Diabetes Mellitus" OR
“vulnerable populations” OR “socioeconomic status” OR “social class” OR “social
determinants” OR "Social Determinants of Health" OR “health equity” OR “socioeconomic
factors” OR “racial groups” OR "race" OR “ethnicity” OR “social vulnerability” OR
“demographics” OR "demographic" OR “demographic data” OR “Age distribution” OR “age”
OR “Sex distribution” OR “sex” OR “gender”’) AND (“statistical models” OR "statistical model"
OR “binomial models” OR "binomial model" OR “binomial distribution” OR “linear model” OR
“linear models” OR “linear distribution” OR “poisson” OR “logistic regression” OR “logistic
models” OR “machine learning” OR “random forest™)

EMBASE: 2131

(‘air pollution'/exp OR 'air pollution' OR 'air pollutants'/exp OR 'air pollutants' OR 'particulate
matter'/exp OR 'particulate matter' OR 'ozone'/exp OR 'ozone' OR 'nitrogen dioxide'/exp OR
'nitrogen dioxide' OR 'pollutant mixtures' OR 'chemical mixtures' OR 'hazardous substances'/exp
OR 'hazardous substances' OR 'inhalation exposure'/exp OR 'inhalation exposure') AND ('life
expectancy'/exp OR 'life expectancy' OR 'cause of death'/exp OR 'cause of death' OR
'mortality'/exp OR 'mortality' OR 'life tables'/exp OR 'life tables') AND ('chronic disease'/exp OR
'chronic disease' OR 'asthma'/exp OR 'asthma' OR 'copd'/exp OR 'copd' OR 'chronic obstructive
pulmonary disease'/exp OR 'chronic obstructive pulmonary disease' OR 'cardiovascular
disease'/exp OR 'cardiovascular disease' OR 'cvd' OR 'diabetes'/exp OR 'diabetes' OR 'diabetes
mellitus'/exp OR 'diabetes mellitus' OR 'vulnerable populations'/exp OR 'vulnerable populations'
OR 'socioeconomic status'/exp OR 'socioeconomic status' OR 'social class'/exp OR 'social class'
OR 'social determinants'/exp OR 'social determinants' OR 'social determinants of health'/exp OR
'social determinants of health' OR 'health equity'/exp OR 'health equity' OR 'socioeconomic
factors'/exp OR 'socioeconomic factors' OR 'racial groups'/exp OR 'racial groups' OR
‘ethnicity'/exp OR 'ethnicity' OR 'social vulnerability'/exp OR 'social vulnerability' OR
'demographics'/exp OR 'demographics' OR 'demographic data'/exp OR 'demographic data' OR
'age distribution'/exp OR 'age distribution' OR 'age'/exp OR 'age' OR 'sex distribution'/exp OR
'sex distribution' OR 'sex'/exp OR 'sex' OR 'gender'/exp OR 'gender') AND ('statistical
models'/exp OR 'statistical models' OR 'binomial models' OR 'binomial distribution'/exp OR
'binomial distribution’ OR 'linear model'/exp OR 'linear model' OR 'linear models'/exp OR 'linear
models' OR 'linear distribution' OR 'poisson' OR 'logistic regression'/exp OR 'logistic regression'
OR 'logistic models'/exp OR 'logistic models' OR 'machine learning'/exp OR "'machine learning'
OR 'random forest'/exp OR 'random forest') AND [2000-2023]/py
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A.2. PRISMA ChecKlist.

Location where

Section and Topic Checklist item . )

item is reported

TITLE

Title Identify the report as a systematic review. Pg. 1

ABSTRACT

Abstract See the PRISMA 2020 for Abstracts checklist. Pg.2

INTRODUCTION

Rationale Describe the rationale for the review in the context of existing knowledge. Pg. 3

Objectives Provide an explicit statement of the objective(s) or question(s) the review Pg. 4
addresses.

METHODS

Eligibility criteria Specify the inclusion and exclusion criteria for the review and how studies were | Pg. 5
grouped for the syntheses.

Information sources Specify all databases, registers, websites, organisations, reference lists and other | Pg. 5-6
sources searched or consulted to identify studies. Specify the date when each
source was last searched or consulted.

Search strategy Present the full search strategies for all databases, registers and websites, Appendix A2
including any filters and limits used.

Selection process Specify the methods used to decide whether a study met the inclusion criteria of | Pg. 5-6
the review, including how many reviewers screened each record and each report
retrieved, whether they worked independently, and if applicable, details of
automation tools used in the process.

Data collection Specify the methods used to collect data from reports, including how many Pg. 5-6

process reviewers collected data from each report, whether they worked independently,
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Section and Topic

Checklist item

any processes for obtaining or confirming data from study investigators, and if
applicable, details of automation tools used in the process.

Location where

item is reported

Data items

10a

List and define all outcomes for which data were sought. Specify whether all
results that were compatible with each outcome domain in each study were
sought (e.g. for all measures, time points, analyses), and if not, the methods
used to decide which results to collect.

Pg. 6-7

10b

List and define all other variables for which data were sought (e.g. participant
and intervention characteristics, funding sources). Describe any assumptions
made about any missing or unclear information.

Pg. 6-7

Study risk of bias
assessment

11

Specify the methods used to assess risk of bias in the included studies, including
details of the tool(s) used, how many reviewers assessed each study and whether
they worked independently, and if applicable, details of automation tools used
in the process.

Pg. 6

Effect measures

12

Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference)
used in the synthesis or presentation of results.

Pg. 6-7

Synthesis methods

13a

Describe the processes used to decide which studies were eligible for each
synthesis (e.g. tabulating the study intervention characteristics and comparing
against the planned groups for each synthesis (item #5)).

Pg. 6

13b

Describe any methods required to prepare the data for presentation or synthesis,
such as handling of missing summary statistics, or data conversions.

Pg.6-7

13¢

Describe any methods used to tabulate or visually display results of individual
studies and syntheses.

Pg. 7

13d

Describe any methods used to synthesize results and provide a rationale for the
choice(s). If meta-analysis was performed, describe the model(s), method(s) to

Pg. 6-7
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Section and Topic

Checklist item

identify the presence and extent of statistical heterogeneity, and software
package(s) used.

Location where

item is reported

13e | Describe any methods used to explore possible causes of heterogeneity among | Pg. 7
study results (e.g. subgroup analysis, meta-regression).
13f | Describe any sensitivity analyses conducted to assess robustness of the Pg. 7
synthesized results.
Reporting bias 14 | Describe any methods used to assess risk of bias due to missing results in a Pg. 6
assessment synthesis (arising from reporting biases).
Certainty assessment 15 | Describe any methods used to assess certainty (or confidence) in the body of Pg. 7
evidence for an outcome.
RESULTS
Study selection 16a | Describe the results of the search and selection process, from the number of Figure 1; Pg. 8
records identified in the search to the number of studies included in the review,
ideally using a flow diagram.
16b | Cite studies that might appear to meet the inclusion criteria, but which were Appendix A4
excluded, and explain why they were excluded.
Study characteristics 17 | Cite each included study and present its characteristics. Table 1
Risk of bias in 18 | Present assessments of risk of bias for each included study. Appendix A3
studies
Results of individual 19 | For all outcomes, present, for each study: (a) summary statistics for each group | Table 2-10
studies (where appropriate) and (b) an effect estimate and its precision (e.g.
confidence/credible interval), ideally using structured tables or plots.
Results of syntheses 20a | For each synthesis, briefly summarise the characteristics and risk of bias among | Pg. 8-9
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Section and Topic

Checklist item

Location where

item is reported

contributing studies.
20b | Present results of all statistical syntheses conducted. If meta-analysis was done, | Pg. 8-11
present for each the summary estimate and its precision (e.g.
confidence/credible interval) and measures of statistical heterogeneity. If
comparing groups, describe the direction of the effect.
20c | Present results of all investigations of possible causes of heterogeneity among Pg. 8-11
study results.
20d | Present results of all sensitivity analyses conducted to assess the robustness of | N/A
the synthesized results.
Reporting biases 21 | Present assessments of risk of bias due to missing results (arising from reporting | See 14
biases) for each synthesis assessed.
Certainty of 22 | Present assessments of certainty (or confidence) in the body of evidence for See 15
evidence each outcome assessed.
DISCUSSION
Discussion 23a | Provide a general interpretation of the results in the context of other evidence. Pg. 12-14
23b | Discuss any limitations of the evidence included in the review. Pg. 14-15
23c | Discuss any limitations of the review processes used. Pg. 15
23d | Discuss implications of the results for practice, policy, and future research. Pg. 15
OTHER INFORMATION
Registration and 24a | Provide registration information for the review, including register name and This review was
protocol registration number, or state that the review was not registered. not registered.
24b | Indicate where the review protocol can be accessed, or state that a protocol was | An internal
not prepared. protocol (not
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Location where

Section and Topic ChecKklist item X X
item is reported
public) was
prepared.
24c | Describe and explain any amendments to information provided at registration or | N/A
in the protocol.
Support 25 | Describe sources of financial or non-financial support for the review, and the Pg. 32
role of the funders or sponsors in the review.
Competing interests 26 | Declare any competing interests of review authors. Pg. 32
Availability of data, 27 | Report which of the following are publicly available and where they can be Pg. 32
code and other found: template data collection forms; data extracted from included studies; data
materials used for all analyses; analytic code; any other materials used in the review.

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated
guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71
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A.3. Risk Of Bias In Non-randomized Studies - of Exposure (ROBINS-E) scores for
included studies.

Study D1 D2 D3 D4 D5 D6 D7 Overall
Villeneuve |Some Low Some Low |Low |Low Low |Low
2002 concerns concerns
Jerrett 2005 |Low Low Some Low |Low |Low Low |Low
concerns
Tao Xue Low Low Low Low |Low |Low Low |Low
2023
Zeger 2008  |Some Some Low Low |Low |Low Low |Low
concerns |concerns
Laden 2006 |Some Low Some Low |Low |Low Low |Low
concerns concerns
Jie Cao 2011 |Some Some Some Low |Low |Low Low |Some
concerns |[concerns |concerns concerns
Ostro 2015  |Low Some Low Low |Low |Low Low |Low
concerns
Lapeule 2012 [Some Low Some Low |Low |Low Low |Low
concerns concerns
Yan Wang Low Low Some Low |Low [Low Low |Low
2017 concerns
Nafstad 2004 |Low Low Some Low |Low |Low Low |Low
concerns
Dirgawati Low Low Some Low |Low |Low Low |Low
2019 concerns
Shiferaw Some Low Low Low |Low |Low Low |Low
2023 concerns
Heinrich Some Low Some Low |Low |Low Low |Low
2012 concerns concerns
Yu 2020 Some Some Low Low |Low |Low Low |Low
concerns |concerns
Correia 2013 |Low Low Low Low |Low |Low Low |Low
Hvidtfeldt Low Low Low Low |Low |Low Low |Low
2019
Enstrom Low Some Low Low |Low |[Low Low |Low
2005 concerns
Lefler 2019 |Low Low Low Low |Low |Low Low |Low
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Kioumourtzo |Low Low Low Low |Low |Low Low |Low

glou 2016

Hvidtfeldt Low Low Low Low |Low |Low Low |Low

2019

Schwartz Some Low Low Low |Low |Low Low |Low

2018 concerns

Jerrett 2009 |Low Some Low Low |Low |Low Low |Low

concerns

Jerrett 2013 |Some Some Some Low |Low |Low Low |Some
concerns |concerns |concerns concerns

Turner 2016 |Low Some Low Low |Low |Low Low |Low

concerns

Arden Pope |Some Some Low Low |Low [Low Low |Low

111 2002 concerns |concerns

Qian Di 2017 |Some Low Low Low |Low |Low Low |Low
concerns

de Keijzer Some Some Low Low |Low |Low Low |Low

2016 concerns |concerns

Chen 2019  |Some Low Low Low |Low |Low Low |Low
concerns

Yitshak-Sade |Low Low Low Low |Low |Low Low |Low

2019

Anwar 2021 |Some Some Some Low |Low |Low Low |Some
concerns |[concerns |concerns concerns

Qian 2021 Low Low Low Low |Low |Low Low |Low

Liu 2022 Low Low Low Low |Low |Low Low |Low

Pei Yu 2022 |Some Low Some Low |Low |Low Low |Some
concerns concerns concerns

Yaqi Wang  |Low Low Low Low |Low |Some Low |Low

2023 concerns

Byun 2022  |Low Low Low Low |Low |Low Low |Low

Hao 2023 Low Low Low Low |Low |Low Low |Low

Baranyi 2023 |Some Some Some Low |Low |Low Low |Some
concerns |[concerns |concerns concerns
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A.4. Examples of Studies Excluded at Full-Text Screening.

This table provides representative examples of excluded studies; a full list of all studies excluded
after full-text screening is available upon request.

Study (Author, Year) Reason for Exclusion

Janes 2007 No lag time between exposure and outcome;
not long-term

Kuzma 2020 Short-term (time-series) exposure study; not
long-term

Liang 2019 Reported non-accidental mortality; not all-
cause mortality

Crouse 2016 Reported non-accidental mortality; not all-
cause mortality

Garcia 2016 Reported non-accidental mortality; not all-
cause mortality

Kloog 2013 Short term (time-series) exposure study; not
long-term

Sanyal 2018 Reported natural mortality; not all-cause
mortality
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