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Project Description 
This project reviews and summarizes empirical evidence for a selection of transportation and land use 

policies, infrastructure investments, demand management programs, and pricing policies for reducing 

vehicle miles traveled (VMT) and greenhouse gas (GHG) emissions. The project explicitly considers social 

equity (fairness that accounts for differences in opportunity) and justice (equity of social systems) for 

the strategies and their outcomes. Each brief identifies the best available evidence in the peer-reviewed 

academic literature and has detailed discussions of study selection and methodological issues. 

VMT and GHG emissions reduction is shown by effect size, defined as the amount of change in VMT (or 

other measures of travel behavior) per unit of the strategy, e.g., a unit increase in density. Effect sizes 

can be used to predict the outcome of a proposed policy or strategy. They can be in absolute terms (e.g., 

VMT reduced), but are more commonly in relative terms (e.g., percent VMT reduced). Relative effect 

sizes are often reported as the percent change in the outcome divided by the percent change in the 

strategy, also called an elasticity. 

Summary  

Strategy Description 

Automated vehicles (AVs) are a rapidly 

developing technology that performs a variety 

of vehicle driving functions. AVs have varying 

degrees of vehicle control, from driver 

assistance such as adaptive cruise control to full 

automated (driverless) control. AVs are not by 

themselves a VMT reduction strategy, but the 

technology has potential impacts on VMT and 

the policies and regulations of AV deployment 

can function as levers for VMT reduction. While 

AV technology will almost universally be applied 

to electric vehicles (making their miles eVMT), 

the lack of tailpipe emissions does not make 

them entirely GHG free, and the eVMT they 

produce has other important social costs such 

as safety and upstream emissions from vehicle 

brake and tire wear.   

Behavioral Effect Size 

Evidence from three types of studies (model-

based simulations, mock AV experiments, and 

empirical analyses) suggest that deployment of 

AVs will increase VMT 13-83% depending on the 

level of automation and ownership model. The 

wide range of expected effects are also due to 

the uncertain nature of the deployment and use 

of AVs and differences in study methods.  

Strategy Extent 

AV technology is rapidly deploying, but 

projections are mixed about the speed of 

market penetration. There is potential for wide 

private adoption of AVs, although costs (that 

are expected to be many times greater than 

current cars) may constrain penetration. Shared 

fleets are likely to be more widely available 

before private AVs. 



|    2 

Strategy Synergy 

Existing pricing strategies for reducing 

congestion and VMT reported in other briefs 

from this series (e.g., facility-based, cordon, 

zonal, and distance-based), may be the most 

effective way to contain VMT from AVs. Other 

more stringent regulations could include 

mandating AVs be shared in the form of buses 

and shuttles to ensure ride pooling. 

Equity Effects 

Without strong regulations and incentives, AVs 

are likely to further exacerbate transportation 

inequities. Concerns include the inequitable 

design of AVs in terms of safety, particularly 

bias of software in uniformly detecting 

pedestrians who are Black or dark colored skin, 

children, women, etc. Also concerning is the 

potential job loss for ridehail/taxi drivers, the 

delivery industry, and other transportation 

industries including bus, train, or truck 

operators if AVs replace those jobs. However, 

AVs may also provide equity benefits. For 

example, AVs may provide access to 

destinations for people that are mobility 

challenged (e.g., disabled, no vehicle access, 

rural). However, research on the projected 

costs to purchase or use AVs versus non-AVs is 

needed to better assess these effects. 

Strategy Description 
Automated vehicles (AVs)—commonly called 

autonomous vehicles, self-driving cars, or, when 

available for hire, robotaxis—are a rapidly 

developing technology that performs a variety 

of vehicle driving functions. AVs are not a VMT 

reduction strategy, but the technology has 

potential impacts on VMT and policies and 

regulations of AV deployment can function as 

levers for VMT reduction. This brief focuses on 

AVs and their current and projected impact on 

VMT and equity to provide an estimate of a 

VMT baseline if AVs are left unregulated in 

terms of their VMT (not in terms of their safety, 

of which there are already many regulations). 

With this purpose, the brief considers two types 

of AV operations: privately owned and operated 

(PAVs) and shared (SAVs) in the form of a 

taxi/ridehail service.  

In addition to the operational classification, AVs 

are often classified by their level of automation. 

The most common classification system is the 

six Society of Automotive Engineers (SAE) 

Automation levels1 that classify automation 

from No Driving Automation at Level 0 to Full 

1 https://www.sae.org/standards/content/j3016_202104/ 

Driving Automation at Level 5. Level 1 includes 

steering or brake/acceleration assistance, but 

not both. Level 2 automation, the highest level 

on the private vehicle market as of this writing 

(e.g., Cadillac Super Cruise, Mercedes-Benz 

Drive Pilot, Tesla Autopilot), possesses both 

steering and brake/acceleration control (SAE 

2021). Under SAE Levels 0-2, drivers are 

responsible for driving even when features are 

engaged. In Level 3 automation the vehicle 

controls all driving tasks but the driver remains 

alert and ready to take control if necessary. 

Vehicles at Levels 4-5 do not require a driver 

and some do not have a steering wheel. 

Robotaxis (e.g., Waymo) are currently in pilot 

phases and operate at SAE level 4. As many 

studies assume full automation without a clear 

classification, this brief’s use of AVs refers to 

Levels 4 and 5 (L4-5) unless otherwise specified. 

Strategy Effects 

Behavioral Effect Size 

AV adoption and implementation may influence 

a variety of travel behaviors in the short term. 

For example, allowing riders to multitask 
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reduces the generalized cost of travel which 

may increase frequency of car trips and 

increase trip distances (because the burden is 

less). People may also use AVs to pick up goods, 

which results in zero-occupancy miles. In 

addition, at least some stated preference 

evidence suggests that people would be more 

likely to replace sustainable modes such as 

biking or walking with AVs (Heubeck et al., 

2023). Parking behavior is also likely to shift, as 

owners of PAVs could send the vehicle away if a 

lot is full or if there is a charge for parking. AVs 

may even be responsible for longer-term 

changes such as vehicle ownership and 

residential location choice (Sun et al., 2023). 

These longer-term changes may also result in 

positive feedback for VMT generation. For 

example, if people choose to live farther from 

destinations because of AVs, it could encourage 

land use development patterns that are more 

sprawling, resulting in even more VMT.  

Without policies and regulations, both long-

term and short-term travel behavior changes 

are likely to further increase existing 

transportation injustice through the lack of 

initial AV investments in low-income 

communities of color, and the initial high costs 

of AVs which can only be bought by the 

wealthy. Other issues of justice, such as 

employment in the ridehail industry being 

replaced by robo-taxis, are also a concern. 

A growing number of studies agree that an 

important effect of deploying AVs is likely to be 

greater vehicle miles travel (VMT) in both SAVs 

and PAVs (Table 1, end of document). The 

eventual magnitude of VMT increase from 

shared and private AVs is uncertain due to 

study variability. Factors contributing to 

increased VMT generated by AVs include zero-

occupancy travel such as sending the AV back 

due to parking cost or availability, new users 

(those not able to currently drive themselves), 

and the lower value of travel time. One 

experimental study of PAVs suggests AVs will 

increase trip generation for zero-occupancy 

trips (picking up goods) and passenger trips 

(longer and more numerous trips) (Harb et al., 

2018 & 2022). The increase in passenger trips in 

this study was due to the ease of multitasking 

and traveling while tired or intoxicated. Trips 

were more frequent especially at night and 

longer trips were taken out of convenience and 

not having to drive (Harb et al., 2022). Even 

when not generating unoccupied VMT, 

automation is likely to increase VMT. For 

example, in one study of L2 AVs, automation 

reduced driver fatigue and stress resulting in 

longer driving time and distances as well as 

mode shift such as choosing driving over flying 

(Hardman et al., 2022). 

Without VMT-focused regulation, 

implementation of shared or private AVs is 

likely to increase VMT and reduce use of 

sustainable modes of transport. For studies of 

VMT impacts from L2 AVs, studies suggest a 

13.8% increase in VMT in Austin, Texas, 

(Asmussen et al., 2022) and a 24.7-28.7% 

increase in California (Hardman et al., 2022) 

(Table 2). Model-based studies of L4-5 AVs 

suggest an increase of VMT from 14-60% from 

the implementation of PAVs and SAVs (Table 1). 

The evidence from experimental studies 

suggests even greater VMT increases from L4-5 

AVs of 60-83% (Table 3) (Harb et al., 2018 & 

2022). While the current evidence has some 

validity concerns (e.g., model-based studies 

must make assumptions of adoption and rely on 

current travel patterns, and mock-AV studies 

could be subject to a strong novelty effect), the 

evidence is consistent in increasing VMT across 

the study types. 

Although VMT increases are expected, the per 

mile energy efficiency could be improved in AVs 

through factors such as automated eco-driving, 

and vehicle right-sizing (Wadud et al., 2016). 
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Strategy Extent 

Scale of Application: 

If AV technology is used primarily in SAV form, 

the technology may follow the spread of the 

ridehail industry which could lead to general 

urban use and potential inequity in deployment 

within and between urban environments. One 

likely difference between SAVs and existing 

ridehail fleets is that SAVs will not have to 

consider driver employment which may lead to 

a different growth trajectory. If AV technology is 

deployed as PAV, the scale of impact is likely to 

follow the impacts of the general vehicle 

market with the exception that earlier AV 

adopters are likely to be wealthier than existing 

car owners due to higher costs (another equity 

concern).  

Efficiency or Cost:  

Vehicle purchase costs of AVs are likely to be 

many times that of non-AVs. However, if AVs 

are implemented as SAVs, vehicle ownership 

could be reduced and so may costs for users 

(Zhang et al, 2018). One study estimating the 

effects of widespread PAVs suggests that until 

the price of AV technology drops to $10,000 

over non-AV vehicles, most people will not 

benefit from personal AV ownership (Fagnant 

and Kockelman, 2015). In addition, estimated 

per mile cost comparisons suggest that AVs are 

likely to cost more than non-AVs, but less than 

human driven ridehail/taxi (Litman, 2024).  

Time / Speed of Change:  

The deployment of AVs has been slower than 

anticipated by industry experts (Chiao et al. 

2024). While the technology still advances 

rapidly given strong private investment and 

support for AVs’ potential to improve traffic 

safety, barriers exist in technology, regulation, 

and consumer safety (Chiao et al. 2024). The 

deployment of L4-5 SAVs is likely to lead, 

followed by L4-5 PAVs. Predictions of AV 

adoption continue to change. One report 

summarizing industry expert surveys suggests 

large scale deployment of L4-5 AVs will be 

between 2028 and 2032 (Chiao et al. 2024). But 

industry experts may be optimistic. At least one 

academic report that based predictions on prior 

transportation technology adoption suggests it 

may take until 2060 or 2070 before half of the 

vehicles on the road are AVs (Litman, 2024).  

Location within the Region:  

Most model-based studies feature urban areas 

broadly applicable to most city populations.  

With AVs in rural areas, one simulation study 

suggests that VMT may be relatively unaffected 

because VMT is already at capacity as users 

must commute for work or school and will 

regardless of a mode shift (Sun et al., 2023). But 

commuting is only one reason for travel. A 

broader conceptual analysis of potential VMT 

effects of AVs in rural areas by Dowds et al., 

(2021) suggests several potential pathways for 

increased VMT from AVs in rural areas such as 

generating new and longer trips, as well as zero-

occupancy trips.  

In urban areas with low car ownership rates, 

PAV adoption may have less of an effect on 

VMT (Gkartzonikas et al., 2022). If policies and 

regulations in cities can effectively enforce or 

encourage SAVs, the potential VMT increases 

may be lower if people shift from private 

vehicles to SAVs (Sun et al., 2023). One study 

estimates that most of the zero-occupancy VMT 

will be loaded on interstate highways and 

expressways and the largest percentage 

inflation in occupied VMT is predicted to occur 

on minor local roads (Zhang et al., 2018). 

Differences between Regions:  

It is not clear how differences in regional VMT 

will be affected by AV adoption. More research 

is needed to understand this variation. 

Equity Effects 

Studies that examine proposed AV 

implementation segmented by demographics 

suggest VMT will increase for the travel-
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restricted, youth, and elderly (Harper 2016, 

Harb et al., 2018 & 2022). This is explained by 

the lack of car access for these populations, 

where AVs provide a needed equity benefit 

while increasing VMT. The purported safety of 

AVs may reduce traffic deaths and injuries in a 

way that helps to remedy the current inequity 

in these deaths and injuries. However, policies 

and regulations are needed to ensure safety 

benefits are equitable.  

VMT increases for those with existing car access 

are not expected to be uniform. Harper (2016) 

suggests women may make up the greatest 

increase in VMT, and Assmussen et al. (2022) 

reports that older women are expected to have 

the highest percentage increase in VMT from 

AVs. Because current AV use is from L2 AV 

owners (a particularly affluent and male 

population), the mobility benefits are currently 

inequitable, and even within the L2 AV owner 

population VMT varies by socio-demographics 

(e.g., younger demographic groups and 

residents in urban areas have estimated greater 

VMT) (Hardman et al. 2022). Additionally, not 

only are the benefits of L2 VMT inequitable, 

given the social costs of added VMT have 

historically disproportionally impacted low-

income communities of color, the costs of L2 

AVs may go beyond the inequitable access to 

the technology.  

It is important to note that affordability likely 

impacts whom AVs will serve. It is very likely 

that the wealthier will benefit more from AVs 

due to the initial costs to own or use without 

countervailing pricing policies, exacerbating 

existing injustice in transportation. SAV 

business models may be more equitable, 

although price and regulation play a key role in 

promoting mobility to those who do not own a 

vehicle (Sun et al., 2023). The extent of 

operations of SAVs may also exacerbate 

inequitable access to AVs if SAVs follow the 

2 https://www.perpetuallineup.org/ 

path of the ridehail industry and put profits 

(capturing demand) ahead of providing access. 

Uptake for PAVs would almost entirely begin 

with higher income households, while low-

income households are less likely to benefit 

from PAVs (Zhang 2018). To encourage SAV use 

for lower-income households, policy and price 

incentives can be used to promote more 

equitable use of AVs. Additionally, AV 

technology could be utilized on buses or public 

transit to reduce VMT and serve those in need 

by focusing on access and affordability. 

AVs also have several other concerns that have 

been raised by interested groups. One concern 

is the inequitable design of AVs, particularly 

their software in detecting pedestrians 

uniformly. At least one study reported 

detection bias of those who are Black or dark 

colored skin, children, women, and suggests 

biased algorithm training data as the primary 

cause (Li et al. 2024). This concern is like that 

documented in using facial recognition for 

policing.2  

Another concern is the economic hardship of 

the ridehail/taxi driver industry if AVs replace 

those jobs. More public forms of AVs (AV busses 

and shuttles) or partnerships with transit 

agencies and private AV companies may be one 

way forward to increase the equity of the 

technology and possibly constrain the expected 

increases in VMT.  

Although there is potential for AVs to further 

injustice, there is also potential for equity 

benefits. For example, AVs may help provide 

access to important destinations for people that 

are mobility challenged if appropriately 

designed (Harb et al., 2018 & 2022). Finally, 

several connected indirect equity effects from 

AV deployment need further study such as 

where investments in infrastructure supporting 
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AVs might be made and how those investments 

might replace others such as in public transit. 

Strategy Synergy 

While the implementation of AVs will likely 

increase VMT, methods to prevent or mitigate 

VMT increases exist. 

Existing pricing strategies for reducing 

congestion and VMT reported in other briefs 

from this series (e.g., facility-based, cordon, 

zonal, and distance-based), may be ways to 

contain VMT from AVs, as one simulation study 

suggests (Sun et al., 2023).  

Confidence 

Evidence Quality 

The impact of AVs on VMT is still highly 

uncertain, especially the impact of L4-5 AVs, 

because of the limited number of available 

studies. Most evidence comes from model-

based simulation studies (Table 1), with a few 

experimental designs with mock-AVs in real-

world settings (Table 3). Some evidence 

suggests that policies and regulations may allow 

AVs to have less of an effect on increasing VMT 

through incentivized pooling (concurrent 

sharing) of vehicles. However, if pooling is not 

substantial (and no evidence suggests 

substantial pooling will happen without strong 

regulation and incentives), large increases in 

VMT are expected. Additionally, use of other 

modes of transportation including biking, 

walking, and public transit may decrease 

without appropriate investments. 

Caveats 

The model-based studies assumed that vehicles 

were fully autonomous (L4-5) and focused on 

effects in entire metropolitan regions. Because 

model-based studies used existing travel survey 

data with assumptions about future AVs, they 

may miss important changes in travel behavior 

that will occur with AVs. For example, the Zhang 

et al. (2018) model assumes no change in 

induced travel demand or transportation 

patterns and 100% market penetration, with 

the resulting VMT change only from AV zero-

occupancy travel to serve multiple members in 

a household.  

Studies of VMT changes from L2 automation are 

able to examine more empirical data. However, 

these studies rely on cross-sectional 

comparisons, not longitudinal change, to 

understand VMT effects. For example, Hardman 

et al. (2021) estimates the effect of L2 of 

automation by comparing mileage of matched 

drivers with and without L2 to estimate the 

effect of L2 on VMT. 

Finally, experimental studies of mock-AVs 

(chauffeur simulations), have different types of 

caveats. While these studies were longitudinal 

and had experimental control which increases 

their internal validity in some ways, they were 

limited by sample size and types of people 

willing to participate in the study (Harb et al., 

2022). These experiments selected individuals 

who already owned a vehicle. Also, the authors 

noted the experiment may have had a “novelty 

effect” where users felt as if they had to use the 

chauffeur since they had access to it. Actual 

behavior may vary with a PAV compared to a 

chauffeur. 
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Technical & Background Information 

Study Selection 

The effect of widespread adoption of AVs on VMT is difficult to assess given the lack of available studies on 

real-world use of AVs. By choosing model and experimental studies, a wider range of results were able to 

be considered, as the two methods have drastically varying sample sizes and results. Most studies we 

selected considered the future of L4-5 AVs. Additionally, empirical studies of L2 AVs looked at travel 

behavior of owners of L2 vehicles with owners of similar vehicles without L2 automation. This L2-related 

evidence provides an estimate of the immediate effect AV technology is having on VMT today, which may 

give some indication of the future effects of widespread L4-5 automation.  

Methodological Considerations 

Model-based Simulation Studies 

Model-based simulation studies use data on existing travel behavior (usually data from travel demand 

models), assumptions about AVs, and simulate the potential outcomes for entire populations or 

subpopulations in city or regional geographies. These studies have included many assumptions about AV 

technology and the use of such technology that are needed to project the effects into the future. While 

these studies are based on existing demand, they have the benefit of predicting the wider scale of effects 

because of their population-based scope. 

Most model-based simulation studies assume a high market penetration rate of light-duty PAVs. Bhardwaj 

(2023) suggests consumer adoption of AVs will be 15-36% by 2035, and Litman (2024) suggests 2060-2070 

before 50% market penetration. Studies that examine VMT changes use existing travel demand models and 

set assumptions for behavior change to simulate effects. For example, Sun et al. (2023) uses California 

Statewide Travel Demand Model Version 3.0 (CSTDM V3.0) to forecast travel for years 2015-2050 based on 

the 2010–2012 California Household Travel Survey (2012 CHTS). Using the 2015-2050 forecast as the 

baseline and studying various scenarios, Sun et al. (2023) ran several assumed future scenarios with PAVs, 

SAVs, electrification, and pricing changes. In general, their results suggest without concurrent pricing 

policies, high growth in PAV and SAV scenarios both greatly increase VMT. Differences between PAV and 

SAV scenarios were quite similar in their VMT increases, and only by including pricing did their predictions 

show a chance of reduced VMT (see Table 1). Because the scenario analyses are based on assumptions of 

adoption and travel behavior, Sun et al. (2023) conducted both lower and upper bounded predictions which 

indicated roughly a 25% variance in results depending on assumptions.  

Additionally, other types of assumptions of more nuanced travel behavior change are made in model-based 

studies. For example, Harper (2016) separated groups into travel demand scenarios assuming total VMT will 

increase for underserved populations such as nondrivers (<19 years), elderly without travel-restricted 

conditions, and working adults (19-64 years) with travel-restricted medical conditions. The study then used 

2009 NHTS data to estimate each demand scenario.  

In some cases, policy and cost impacts were explored in combination with assumptions of travel behavior 

change due to AVs. Sun et al. (2023) reported that VMT for both PAVs and SAVs are lower than baseline 

when coupled with road user pricing strategies (specifically they assumed operating costs increased 50% 

over the baseline $0.30/mile). Similarly, AV induced GHG emissions were relatively lower under 

assumptions of ZEV mandates requiring 100% ZEV sales by 2035, going from 1.5% to 0.6% over baseline 

(Bhardwaj et al., 2023).  
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Empirical studies of L2 AV use 

Assmusen et al. (2022) groups various partially-automated feature (PAFs) such as back-up camera, adaptive 

cruise control, adaptive breaking, lane keeping, and blind spot monitoring into packages and analyzes VMT 

and travel behaviors for various demographics. Using a joint model the study examines the uptake of five 

PAFs based on binary revealed choice data at once. The same study examines how the presence of PAFs 

affect annual VMT in a joint model. By analyzing PAF uptake and the effects of PAFs on VMT, self-selection 

is accounted for. Additionally, this model uses stochastic latent attitudes/lifestyle constructs with 

demographics with adaptation of PAF and their interaction with VMT changes which helps to reduce 

confounding. The results suggest an increase in VMT due to PAF strongly varies by socio-demographics, 

with middle-aged men with the highest absolute change (increase of 2,462 miles per year), and older 

women the largest relative change (40% increase). The types of features also showed signs of variation in 

effects on VMT increases with packages of more PAFs resulting in greater VMT. For example, on average, 

only including an automated breaking system (ABS) was expected to increase VMT by 607 miles per year 

(5%), while a package of ABS with adaptive cruise control and a backup camera was expected to increase 

VMT by 2,297 miles per year (18.9%). 

Hardman et al. (2021) uses data from a cohort survey of plug-in electric vehicle owners in California 

administered by the authors in 2019. Because the survey has self-selection bias in causal analysis, the study 

used a pseudo-randomized control trial where the treatment is randomly allocated in the sample, satisfying 

the assumption of conditional independence or un-confoundedness (Hardman et al., 2021). The study uses 

a propensity score matching and propensity score stratification, comparing VMT of Tesla vehicle owners 

with Autopilot and Tesla vehicle owners without Autopilot (control group), and matched L2 AVs to 

comparable non-AVs to evaluate the impact of L2 automation. Since the sample is choice-based, it cannot 

rule out the possibility that the differences between the groups in terms of travel need precede the choice 

to buy the vehicle, but the large differences do suggest a potential ability of L2 automation to induce more 

miles of travel. The results from this matched analysis indicated Tesla autopilot owners traveled 4,059–

4,971 more miles compared to non-autopilot Tesla owners, holding all other covariates at their mean.  

Experimental Mock-AV Studies 

In the experimental studies, Harb et al. (2018 & 2022) administered a survey before and after the 3 weeks 

of tracked travel with the middle week being chauffeured (simulating a L4-5 AV). The study recruited 

various cohorts: millennials, families, and retirees in the San Francisco Bay area and Sacramento regions. 

While subjects had various socioeconomic characteristics and ages, they all had college education and the 

recruitment pulled from largely affluent communities. The benefit of this design is the ability to collect 

revealed preference data on the use of PAVs. No other study design provides this ability. The primary 

internal validity concern of these studies is the potential for a “novelty” effect of having a chauffeur, and 

how having a chauffeur might differ from owning an AV. It could be that people used their chauffeur during 

the experiment because it was free to them, and they were experimenting with the service. In addition, 

these two studies, because of the small and self-selected samples, may not generalize to the population of 

AV owners. The first study (Harb et al., 2018) only had a sample of 13 people, 5 of whom were retired. The 

follow up study (Harb et al. 2022), included a larger and more diverse sample of 43 households reported a 

large effect size (increases in VMT of 60%) and reductions in more sustainable modes at very high levels 

(e.g., a 70% reduction in transit trips).  
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Table 1: Model-Based Simulations 

Model 

Study 
Study Location Study Size 

Study 

Years 
Study Type 

Travel 
Variable 

Association 

(Percentage) 

Harper, et 
al., 2016 

US 2009 NHTS data 
150,147 households 

2016 AV on 3 sectors (under 
19, working adults, 
elderly) 

PAV3 VMT +14%

(295 billion
miles)

Zhang et al., 
2018 

Atlanta, 
(Metropolitan Area) 
GA, US 

2011 Atlanta Travel 
survey data 

2015 trip 
profile 

Vehicle ownership 
reduction potentials and 
unoccupied VMT 

PAV VMT +59.5%

Zhang et al., 2018 Atlanta, (Metropolitan Area) 

GA, US 

2011 Atlanta Travel survey data 2015 trip profile Vehicle ownership reduction potentials and 

unoccupied VMT 

PAV Vehicle 
Ownership 

-18.7% of
households

Bhardwaj et 
al. 2023 

Canada CPEVS Survey 2017 2020-2035 
(simulated) 

Long term emissions 
from AV under climate 
policies 

PAV GHG from VKT 
(new users) 

+20%

Sun et al., 
2023 

California, US California Household 
Travel Survey (2012 
CHTS) 

42,500 households 

2010-2012 
(data) 

2050 
(simulated) 

AV scenarios for pricing 
strategies on VMT and 
GHG emissions 

PAV & 
SAV 

VMT +3% – +35%

(1,174–1,616
million miles)

Sun et al. 2023 California, US California Household Travel Survey 
(2012 CHTS) 

42,500 households 

2010-2012 (data) 

2050 (simulated) 

AV scenarios for pricing strategies on VMT and 

GHG emissions 

PAV & SAV VMT (with 
pricing) 

-23% – +6%
(904–1,217
million miles)

3 Assumed to be PAV because source data is primarily private vehicles. 



|    12 

Table 2: Empirical L2 AV Studies 

Model 

Study 
Study Location Study Size 

Study 

Years 
Study Type 

Travel 

Variable 

Association 

(Percentage) 

Asmussen 

et al., 2022 

Austin, 

(Metropolitan Area) 

TX, US  

978 respondents (with 

motorized vehicles) 

2019 Impact and uptake of 

partially autonomous 

features (PAFs) 

PAV VMT +13.8%

(2,462 miles)

Hardman 

et al., 2022 

California, US 4,925 Plug-in Electric 

Vehicles (PEV) Owners 

2019 Comparing travel 

behavior for L2 vehicles 

with those of L0 similar 

vehicles 

PAV VMT 4,059–4,971 more miles 

per year 

(+24.7-28.7 %)4 

Table 3: Mock-AV Experiments 

Experimental 

Study 
Study Location Study Size 

Study 

Years 
Variable (PAV) 

Travel 

Variable 

Association 

(Percentage) 

Harb et al., 

2018 

San Francisco Bay Area 

CA, US 

13 individuals5 2017 60-hour Chauffeur (mimic PAV) VMT +83%

Harb et al., 

2022 

Sacramento, CA, US 43 households 60h Chauffeur (mimic PAV) 
VMT +60%

Harb et al., 2022 Sacramento, CA, US 43 households 60h Chauffeur (mimic PAV) Zero occupancy Trips 

(of additional trips) 

+85%

Harb et al., 2022 Sacramento, CA, US 43 households 60h Chauffeur (mimic PAV) Transit -70%

Harb et al., 2022 Sacramento, CA, US 43 households 60h Chauffeur (mimic PAV) Biking -38%

Harb et al., 2022 Sacramento, CA, US 43 households 60h Chauffeur (mimic PAV) Walking -10%

4 Calculated from entire study average VMT (from communication with authors), because of the unavailability of the propensity score matched mean VMT. 
5 5 of the 13 participants are retirees so it is not (meant to be) a representative sample. 
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