
A Scenario Tool for NWL in California 
 

 

   
 

i 

 
Draft Final Report  

 
 

A Scenario Tool for Assessing the Health Benefits of Conserving, Restoring and Managing 
Natural and Working Lands in California 

 
 

Principal Investigator: 
Michael Jerrett, PhD 

 
 

Prepared for: 
  

California Air Resources Board and the California Environmental Protection Agency 
Research Division 

PO Box 2815 
Sacramento, CA 95812 

 
 
 

Contract 19RD015  
 
 
 
 

Prepared by: 
  

The Regents of the University of California, Los Angeles 
Office of Contract and Grant Administration 

10889 Wilshire Blvd., Suite 700 
Los Angeles, CA 90095-1406 

(310) 794-0236 
 
 
  

October 23, 2023 
  



A Scenario Tool for NWL in California 
 

 

   
 

ii 

The statements and conclusions in this Report are those of the contractor and not necessarily 
those of the California Air Resources Board. The mention of commercial products, their source, 

or their use in connection with material reported herein is not to be construed as actual or implied 
endorsement of such products. 

 
  



A Scenario Tool for NWL in California 
 

 

   
 

iii 

This Report was submitted in fulfillment of 19RD015: A Scenario Tool for Assessing the Health 
Benefits of Conserving, Restoring and Managing Natural and Working Lands in California 

contract number and project title by The Regents of the University of California, Los Angeles 
 under the [partial] sponsorship of the California Air Resources Board. Work was completed as 

of October 23, 2023. 
  



A Scenario Tool for NWL in California 
 

 

   
 

iv 

 
This project is funded under the ARB’s Dr. William F. Friedman Health Research Program. 
During Dr. Friedman’s tenure on the Board, he played a major role in guiding ARB’s health 

research program. His commitment to the citizens of California was evident through his personal 
and professional interest in the Board’s health research, especially in studies related to children’s 

health. The Board is sincerely grateful for all of Dr. Friedman’s personal and professional 
contributions to the State of California. 

 
 
 
  



A Scenario Tool for NWL in California 
 

 

   
 

v 

Table of Contents 

I. ACKNOWLEDGMENTS ............................................................................................................1 

II. ABSTRACT ..............................................................................................................................2 

III. EXECUTIVE SUMMARY ...........................................................................................................3 

IV. INTRODUCTION .....................................................................................................................6 

V. SCOPING REVIEW: URBAN GREEN SPACE .............................................................................. 10 

ABSTRACT .......................................................................................................................................... 10 
INTRODUCTION  ................................................................................................................................... 10 
METHODS .......................................................................................................................................... 11 
RESULTS AND DISCUSSION ...................................................................................................................... 13 
CONCLUSIONS ..................................................................................................................................... 50 

VI. SCOPING REVIEW: WILDLAND FIRES ..................................................................................... 51 

INTRODUCTION .................................................................................................................................... 51 
METHODS .......................................................................................................................................... 52 
RESULTS ............................................................................................................................................ 54 
DISCUSSION AND CONCLUSION  ............................................................................................................... 71 

VII. HEALTH IMPACT ASSESSMENT: URBAN GREEN SPACE ........................................................... 73 

INTRODUCTION .................................................................................................................................... 73 
MATERIALS AND METHODS .................................................................................................................... 77 
RESULTS AND DISCUSSION ...................................................................................................................... 80 
CONCLUSIONS AND SYNTHESIS ................................................................................................................ 85 

VIII. HEALTH IMPACT ASSESSMENT: WILDLAND FIRE MORTALITY AND CMAQ VALIDATION .......... 87 

ABSTRACT .......................................................................................................................................... 87 
INTRODUCTION .................................................................................................................................... 87 
METHODS .......................................................................................................................................... 89 
RESULTS ............................................................................................................................................ 92 
DISCUSSION ...................................................................................................................................... 100 

IX. HEALTH IMPACT ASSESSMENT: WILDFIRE FIRE MORBIDITY ................................................. 106 



A Scenario Tool for NWL in California 
 

 

   
 

vi 

INTRODUCTION .................................................................................................................................. 106 
METHODS ........................................................................................................................................ 107 
RESULTS .......................................................................................................................................... 114 
CONCLUSION..................................................................................................................................... 125 

X. SCENARIO DEVELOPMENT: STILT AND FINN VALIDATION .................................................... 126 

ABSTRACT ........................................................................................................................................ 126 
INTRODUCTION .................................................................................................................................. 126 
MATERIALS AND METHODS .................................................................................................................. 127 
RESULTS .......................................................................................................................................... 129 
DISCUSSION ...................................................................................................................................... 130 
CONCLUSIONS ................................................................................................................................... 132 
TABLES & FIGURES ............................................................................................................................. 133 

XI. STILT SCENARIO: PRESCRIBED BURNING ............................................................................. 148 

INTRODUCTION .................................................................................................................................. 148 
METHODS ........................................................................................................................................ 148 
PRELIMINARY RESULTS ........................................................................................................................ 149 
CONCLUSION..................................................................................................................................... 152 

XII. FINAL TOOL PRODUCT PAPER: A DECISION-SUPPORT TOOL TO EVALUATE HEALTH BENEFITS OF 
NATURAL AND WORKING LANDS SCENARIOS ................................................................................. 153 

ABSTRACT ........................................................................................................................................ 153 
INTRODUCTION .................................................................................................................................. 153 
METHODS ........................................................................................................................................ 154 
RESULTS  .......................................................................................................................................... 156 
DISCUSSION ...................................................................................................................................... 169 

REFERENCES .................................................................................................................................. 171 

GLOSSARY OF TERMS, ABBREVIATIONS, AND SYMBOLS .................................................................. 244 

APPENDIX A ................................................................................................................................... 250 

APPENDIX B ................................................................................................................................... 264 

 
  



A Scenario Tool for NWL in California 
 

 

   
 

vii 

List of Figures 
 
Figure 4.1a. Workflow of project tasks for Greenspace on NWL ............................................................... 7 
Figure 4.1b. Workflow of project tasks for Wildfires on NWL .................................................................. 8 
Figure 4.1c. Tasks & subtasks and glossary of terms for greenspace and wildfire workflows .................... 8 
Figure 7.1. Predicted changes in health impacts from a scenario where NDVI is increased to the mean of 
urban areas throughout California (effects for the Los Angeles County region shown here), resulting in 
decreased mortality (top) and increased life expectancy (bottom). ............................................................ 83 
Figure 8.1. CMAQ average daily fire-only PM2.5 concentrations (μg/m3) at 12-km resolution for 2008–
2018 and the average value for all years, computed as the average over all days in each grid cell in each 
time period. ................................................................................................................................................. 95 
Figure 8.2. Summary of long-term mortality impacts across California due to fire-only PM2.5 for ages 
25+, using wildfire-specific (left panel) and undifferentiated (right panel) chronic dose-response values, 
2008-2018 (total deaths attributable to fire-only PM2.5). ............................................................................ 97 
Base case = no modeled PM2.5 concentrations capped; mod cap = modeled PM2.5 concentrations capped at 
the 99.9th percentile value of all fire-only concentrations. .......................................................................... 97 
Figure 8.3. Total deaths attributable to fire-only PM2.5 (base case) in the year with the fewest deaths 
attributable to wildland fire (2010), most deaths attributable to wildland fire (2018), and the annual 
average over the eleven-year period (2008-2018). Darker colors indicate more deaths occurred in a given 
ZIP code, and white areas are outside of ZIP code designations. ............................................................... 98 
Figure 8.4. Economic valuation of mortality impacts from wildland fires and 95% CIs for the base case 
and mod cap scenarios, using the wildfire-specific dose-response value (βWL; 2015 dollars, 3% discount 
rate, 2015 income year) ............................................................................................................................. 100 
Figure 9.1. Extraction worksheet of additional coefficients for additional analyses in western U.S. ...... 109 
Figure 9.2. Selected coefficients formatted for BenMAP-CE Health Impact Function import. .............. 109 
Figure 9.3. Option for importing custom coefficients into BenMAP-CE. ............................................... 110 
Figure 9.4. File import of selected coefficients for analyses. .................................................................. 110 
Figure 9.5. Health Impact Functions can be modified using the Modify Datasets function. ................... 111 
Figure 9.6. Example pooling weights for all-cause respiratory hospital emissions in BenMAP-CE using 
dose-response functions from the peer reviewed literature. ...................................................................... 112 
Figure 9.7. BenMAP-CE display with uploaded wildfire-specific PM2.5 CMAQ concentrations for 2018 
across the county. ...................................................................................................................................... 112 
Figure 10.1. Daily California statewide emissions in the 2018 fire season (June 1st to November 30th) and 
the selected STILT days above the 75th percentile for annual PM2.5 wildfire emissions. The emissions 
estimates from the WBSE (the Wildfire Burn Severity and Emissions) inventory, a California-specific 
data source. ............................................................................................................................................... 133 
Figure 10.2. Conceptual diagram of the selection process for selecting STILT receptor sites. ............... 134 
Figure 10.3. Station monitor receptor locations are shown in blue, the boundaries and abbreviations for 
California Air Basins are in black, and the annual summed FINNv2.5 PM2.5 emissions (kg) range from 
white (0 kg) to dark red (6.6 x 106 kg). ..................................................................................................... 135 
Figure 10.4. Mean STILT Atmospheric Footprint for Cortina Indian Rancheria for 90 STILT modeling 
days between 6/5/18 and 11/21/18. The sensitivity is in units of ppm kg-1 m2 s. The locations with higher 
sensitivity values (darker red shades) have a greater contribution to pollution at the receptor site. ......... 138 
Figure 10.5. Time series of the simulated fire PM2.5 concentrations from STILT-FINNv2.5 at the receptor 
sites and the observed total PM2.5 concentrations in the 2018 fire season. ............................................... 139 
Figure 10.6. The relationships between the STILT-FINNv2.5 simulated fire PM2.5 concentrations and the 
observed PM2.5 concentrations at each receptor.   ..................................................................................... 143 
Figure 10.7.  The relationship between the STILT-FINNv2.5 simulated fire PM2.5 concentrations and the 
observed PM2.5 concentrations for all receptors. ....................................................................................... 146 



A Scenario Tool for NWL in California 
 

 

   
 

viii 

Figure 10.8. The relationship between CMAQ annual mean fire PM2.5 concentrations at each receptor and 
the correlation coefficient between the STILT-FINNv2.5 fired-derived PM2.5 concentrations and the 
observed concentrations. ........................................................................................................................... 147 
Figure 11.1. Average STILT footprints during typical fire season in three California regions. .............. 149 
Figure 11.2. Wildfire vs. prescribed burns PM2.5 contributions ............................................................... 151 
Figure 11.3. Wildfire vs. prescribed burns 2018 mortality ...................................................................... 152 
Figure A7.1. Leading Causes of Death and Disability for California in 2019 with error bars representing 
95% CIs for each cause (Global Burden of Disease Collaborative Network & Institute for Health Metrics 
and Evaluation (IHME), 2020). ................................................................................................................ 261 
Figure B8.1. Community Multiscale Air Quality (CMAQ) average daily PM2.5 concentrations (μg/m3) at 
12-km resolution for 2008–2018 all sources (left), non-fire sources (middle), and fire-only sources (right). 
Values were computed as the average over all days in each grid cell in each time period. Note the 
differing scale for the fire-only map and differing maximum values for each panel. ............................... 274 
Figure B8.2a. Community Multiscale Air Quality (CMAQ) simulations at 12-km resolution showing the 
number of days with PM2.5 >35 μg/m3 (higher than the 24-hour NAAQS threshold) during the eleven-year 
period of 2008–2018 for all sources (left), non-fire sources (middle), and fire-only sources (right). ...... 275 
Figure B8.2b. Community Multiscale Air Quality (CMAQ) simulations at 12-km resolution showing the 
number of years with average PM2.5 >12 μg/m3 (higher than the annual NAAQS threshold) during the 
eleven-year period of 2008–2018 for all sources (left), non-fire sources (middle), and fire-only sources 
(right). ....................................................................................................................................................... 276 
Figure B8.3. Community Multiscale Air Quality (CMAQ)-simulated days with a wildland fire 
contribution (fire-only concentrations) to ambient PM2.5 >35 μg/m3 (higher than the 24-hour NAAQS 
threshold), by year. ................................................................................................................................... 277 
Figure B8.4. California wildfire perimeters > 300 acres burned, by year. ............................................... 278 
Figure B8.5. Total deaths attributable to fire-only PM2.5 (Base case), by year. ....................................... 279 
Figure B8.6. Total deaths attributable to fire-only PM2.5 over the eleven-year period of 2008 – 2018 
(Base case). ............................................................................................................................................... 280 
Figure B8.7. Location of PM2.5 monitoring stations (including AQS, IMPROVE and CASTNET 
networks) alongside fire-only sources PM2.5 estimates. ............................................................................ 286 
Figure B8.8. Time series of California PM2.5 from 2008 – 2018 with modeled all sources, non-fire, and 
observed data pairs. Monthly mean PM2.5 concentrations across California for 2008-2018 for AQS 
observations (blue solid line, square symbol), Community Multiscale Air Quality (CMAQ) all sources 
(dark red line, circle symbol) and CMAQ non-fire sources (light red line, triangle symbol). .................. 287 
 
  



A Scenario Tool for NWL in California 
 

 

   
 

ix 

List of Tables 
Table 5.1a. Search Strategy 1: Capture articles using most relevant keywords ......................................... 11 
Table 5.1b. Search Strategy 2: General search with “urban” restriction .................................................... 11 
Table 5.2. Inclusion criteria ........................................................................................................................ 12 
Table 5.3. Mortality: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban 
Green or Blue Space Impacts ...................................................................................................................... 14 
Table 5.4. Birth Outcomes: Summary of Review Studies Presenting a Quantitative Meta-Analysis of 
Urban Green or Blue Space Impacts ........................................................................................................... 19 
Table 5.5. Mental Health: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban 
Green or Blue Space Impacts ...................................................................................................................... 26 
Table 5.6. Cardiovascular Health: Summary of Review Studies Presenting a Quantitative Meta-Analysis 
of Urban Green or Blue Space Impacts ...................................................................................................... 36 
Table 5.7. Physical Activity: Summary of Review Studies Presenting a Quantitative Meta-Analysis of 
Urban Green or Blue Space Impacts ........................................................................................................... 41 
Table 5.8. Respiratory Health: Summary of Review Studies Presenting a Quantitative Meta-Analysis of 
Urban Green or Blue Space Impacts ........................................................................................................... 46 
Table 6.1. Keyword search ......................................................................................................................... 52 
Table 6.2. Inclusion and exclusion criteria ................................................................................................. 53 
Table 6.3. Relevant scoping review articles examining wildfire impacts on birth outcomes .................... 55 
Table 6.4. Relevant scoping review articles examining wildfire impacts on cancer outcomes ................. 57 
Table 6.5. Relevant scoping review articles examining wildfire impacts on cardiovascular outcomes .... 58 
Table 6.6. Relevant scoping review articles examining wildfire impacts on cerebrovascular outcomes .. 61 
Table 6.8. Relevant scoping review articles examining wildfire impacts on respiratory outcomes .......... 64 
Table 6.9. Relevant scoping review articles examining wildfire impacts on mortality ............................. 70 
Table 7.1. Dose-response functions used in the HIA. ................................................................................ 77 
Table 7.2. Health Impact Assessment for urban green space scenarios for statewide urban areas. Perfect 
of effect in communities of color is estimated for life expectancy only. .................................................... 81 
Table 8.1. Summary of Averaged Modeled PM2.5 (μg/m3) Values and Acres Burned by Year (2008-2018) 
Statewide in California ............................................................................................................................... 93 
Table 9.1. Inclusion and exclusion criteria applied to compressive peer review literature search ........... 107 
Table 9.2. U.S. EPA Standard Valuation Function preloaded in BenMAP-CE and used for economic 
estimates of health impacts ....................................................................................................................... 114 
Table 9.3. Outcome specific literature search .......................................................................................... 114 
Table 9.4. Respiratory and mortality health outcome articles evaluated for BenMAPs crosswalk. ........ 117 
Table 9.5. Dose-response values selected from the BenMAP-CE crosswalk for California-specific health 
estimates for respiratory and mortality outcomes. .................................................................................... 120 
Table 9.6a. Health outcomes for all identified dose-response coefficients from 2008-2018 for emergency 
room visit morbidity and mortality. .......................................................................................................... 122 
Table 9.7a. Health outcomes for all identified dose-response coefficients from 2008-2018 for 
hospitalizations. ........................................................................................................................................ 123 
Table 10.1. Air basin abbreviations shown in Figure 9.1 with the corresponding air basin name and the 
numbered station monitors shown in Figure 9.1 with their AQS or IMPROVE names. The station 
monitors are ranked according to annual mean fire-derived PM2.5 concentrations from CMAQ, with 1 as 
the higher fire concentration. For each receptor, the Pearson’s Correlation Coefficients (r value) and its 
significance (p value) was calculated between modeled data and the corresponding station observations.
 .................................................................................................................................................................. 136 
Table A7.1. Evaluation criteria to assess the direct and proximal indirect health effects of climate change 
in California. ............................................................................................................................................. 262 
Table B8.1. Summary Statistics of Annual Modeled PM2.5 Estimates (California) by Grid Cell (mean, 
minimum, and maximum of all grid cell annual averages) ....................................................................... 264 



A Scenario Tool for NWL in California 
 

 

   
 

x 

Table B8.2. Summary of Annual Averaged Modeled PM2.5 (μg/m3) Values by Metropolitan Statistical 
Area (MSA) in California ......................................................................................................................... 265 
Table B8.3. Summary of long-term mortality impacts across California due to fire-only PM2.5 for ages 
25+, using wildfire-specific and undifferentiated chronic dose-response values, 2008-2018 (total deaths 
attributable to fire-only PM2.5) .................................................................................................................. 266 
Table B8.4. Mortality and Valuation Impacts from Wildland Fire in California by County, 2008-2018 
(Base case scenario - no modeled values capped) .................................................................................... 267 
Table B8.5. Summary of long-term mortality impacts across California due to all sources PM2.5 for ages 
25+, using undifferentiated chronic dose-response values, 2008-2018 (total deaths attributable to all 
sources PM2.5) ........................................................................................................................................... 271 
Table B8.6. Sensitivity analysis: Summary of long-term mortality impacts across California due to fire-
only PM2.5 for ages 25+, using alternative short-term wildfire-specific dose-response value (Chen et al., 
2021 global estimate) to calculate βWL ...................................................................................................... 271 
Table B8.7. Economic valuation of mortality impacts from wildland fires, using the wildfire-specific 
dose-response value (βWL; 2015 dollars, 3% discount rate, 2015 income year) ....................................... 272 
Table B8.8. Quantiles of All Daily Modeled Fire-Only Values for CA, 2008-2018 ............................... 272 
Table B8.9. CMAQ Model Specifications ............................................................................................... 273 
Table B8.10. PM2.5 Dose-Response Estimates for All-Cause Mortality .................................................. 273 
Table B8.11. Fire season (June – October) statistics summary of paired daily averaged observations and 
all sources and non-fire sources modeled concentrations for 2008-2018 ................................................. 283 
Table B8.12. Fire season (June – October) statistics summary of paired monthly averaged observations 
and all sources and non-fire sources monthly modeled concentrations for 2008-2018 ............................ 284 
Table B8.13. Annual (not limited to fire season) statistics summary of paired monthly averaged 
observations and all sources and non-fire sources monthly modeled concentrations for 2008-2018 ....... 285 
Table B8.14. Fire season (June – October) statistics summary of paired daily averaged IMPROVE station 
observations and all sources and non-fire modeled concentrations for 2008-2018 .................................. 288 
Table B8.15. Fire season (June – October) statistics summary of paired monthly averaged IMPROVE 
station observations and all sources and non-fire monthly modeled concentrations for 2008-2018 ........ 289 
Table B8.16. Fire season (June – October) statistics summary of paired observations and with-fire and 
no-fire modeled concentrations for 2008-2018, no values capped ........................................................... 291 
Table B8.17. Fire season (June – October) statistics summary of paired IMPROVE station organic and 
elemental carbon PM2.5 observations and fire-only modeled concentrations for 2008-2018 .................... 292 
  



A Scenario Tool for NWL in California 
 

 

   
 

1 

 

I. Acknowledgments 
Research reported in this manuscript was supported by the California Air Resources Board 
(CARB) under award number 21RD005 and by the UCLA Center for Healthy Climate Solutions. 
We also acknowledge Cynthia Garcia (CARB), Bonnie Holmes-Gen (CARB), Barbara Weller 
(CARB), Rick Burnett (Health Canada), Beate Ritz (UCLA), Karl O'Sharkey (UCLA), and 
Sanjali Mitra (UCLA). 
 
  



A Scenario Tool for NWL in California 
 

 

   
 

2 

II. Abstract 
 
California’s natural and working lands (NWL) are integral to achieving carbon neutrality, and 
effective land management strategies in response to increasing wildfires and other climate-related 
events could impart health co-benefits. This study evaluates the impacts that resilient NWL regions 
could have on various health outcomes through different management scenarios. We quantify the 
effects of wildfires and urban green space on human health through scoping reviews, health impact 
assessments, and validated atmospheric exposure modeling, with an overarching goal to 
incorporate all findings into a public-facing NWL Health Scenario Tool. We found evidence of 
increased risk of adverse health outcomes with increased wildfire smoke exposure and reduced 
risk of adverse health outcomes with increased urban green space exposure. We estimated 7,378 
avoided deaths, 20,649,279 years of life expectancy gained, and 5,385 avoided low birth weight 
deliveries with increased urban green space exposure, and between 52,600 to 56,140 premature 
deaths attributable to wildfire PM2.5, particulate matter with a diameter equal to or less than 2.5 
micrometers. These estimates were consolidated into the tool, which allows users to quantitatively 
assess the potential health and economic benefits associated with various management scenarios 
for urban green space and wildfires through two separate interfaces. Results will help to inform 
future policy-making and development of appropriate management strategies for these NWL-
specific environmental exposures. 
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III. Executive Summary 
 
Background 
California’s NWL, consisting of grasslands, shrublands, and forests, hold an important role in 
the state’s efforts to achieve carbon neutrality. Such NWL regions could serve as a potential 
source of carbon sequestration; however, recently, these regions have been subject to more 
carbon loss than sequestration due to the impacts from wildfires and other climate change-related 
events. Effective land management strategies can help to reduce these wildfires and the resulting 
emissions. As such, there is a growing need to assess the health impacts that certain interventions 
could impart to more comprehensively understand the benefits from different scenarios. 
Specifically, the focus of this study is to evaluate the human health impacts of wildfires and 
urban green spaces in California. Greening interventions, as climate adaptation and mitigation 
pathways, can aid in the benefits accruing from land management strategies by reducing climate-
related exposures and promoting health co-benefits. We aim to quantify the effect that resilient 
NWL regions can impart through minimizing climate- and wildfire-related emissions, and 
thereby contributing to benefits for a wide range of human health outcomes. Results would 
inform policy-makers and stakeholders working towards the development of future climate 
mitigation policies and land management strategies.  
 
Objectives and Methods 
The objectives of this study are to assess the quantitative effects of wildfires and urban green 
spaces on human health through comprehensive scoping reviews and health impact assessments 
and to incorporate such findings into a public-facing and adaptable NWL Health Scenario Tool. 
This tool offers users the opportunity to quantitatively evaluate how different NWL management 
scenarios in urban green space and wildfire regions within California could yield health and 
economic costs and benefits.  
 
The scoping reviews focus on examining the health impacts of wildfires and urban green spaces. 
Specifically, we aim to broaden our knowledge on mortality and several cause-specific morbidity 
outcomes associated with wildfire smoke particulate matter (PM) exposure and urban green 
space exposure in California. Once we identified literature that specified relationships between 
NWL-specific exposures and health outcomes, we extracted quantitative dose-response values 
from the literature that could be used to inform health impact research relevant to these topic 
areas.  
 
We conducted health impact assessments to quantify the health benefits from reduced wildfire 
smoke PM2.5 emissions and increased urban green space exposures. Applying the dose-response 
values identified from the scoping reviews, we used the U.S. Environmental Protection Agency’s 
(EPA) Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-
CE) platform and geographic specific (census tract and zip code) models to estimate the changes 
in health outcomes from wildfire smoke events and different urban green space scenarios in 
California, separately. We quantified the benefits to mortality, life expectancy, and adverse birth 
outcomes with increased green space exposure and the impacts on mortality and morbidity 
outcomes from wildfire smoke PM2.5.  
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Specifically for wildfire exposures, we employed STILT (Stochastic Time-Inverted Lagrangian 
Transport Model), a receptor-oriented atmospheric transport model, to simulate the transport of 
wildfire smoke PM2.5 emissions through the atmosphere. We combined STILT with fire 
emissions estimates from the Fire Inventory from the National Center for Atmospheric Research 
(NCAR) (FINNv2.5) in 2018 and compared the STILT-FINNv2.5 simulated PM2.5 
concentrations to observed PM2.5 concentrations at station monitors as a validation analysis.   
 
Health, population, and environmental datasets are aggregated to inform the development of the 
NWL Health Scenario Tool, which assesses the potential health benefits garnered from different 
NWL management scenarios. The tool is split into two interfaces, one for wildfires and another 
for urban green space, and was developed in Google Earth Engine (GEE).  
 
Results 
The scoping reviews found evidence of strong associations between both urban green space and 
wildfire smoke exposure with several health outcomes. For urban green space, the literature 
review was focused on both peer reviewed meta-analyses and review papers and found evidence 
for effects on mortality, birth outcomes, mental health, and cardiovascular health, with 
inconsistent evidence for physical activity and respiratory health. For wildfire smoke, few 
reviews and meta-analyses were identified, but several primary epidemiological studies found 
consistent evidence for effects on mortality and respiratory health, with mixed evidence for 
cardiovascular health, though there is a growing trend for a positive association. Further good-
quality longitudinal studies are needed to more thoroughly quantify the relationships between 
NWL-specific environmental exposures and health outcomes. Such results would help inform 
future climate-related interventions, such as wildfire management planning and various greening 
scenarios.  
 
We developed exposure estimates from various environmental datasets and validated, when 
necessary. Modeled concentrations from the STILT-FINNv2.5 simulation were significantly 
correlated with observed station monitor concentrations at 8 of the 16 selected STILT receptors, 
with varying correlation strength. Receptors with a larger fire influence had stronger and more 
significant correlations between modeled and observed concentrations. Uncertainties with this 
model do exist, particularly in areas with a smaller fire influence and larger contributions from 
other emission sources.  
 
The health impact assessment for urban green space found that increases in green space can 
contribute to large health benefits for mortality, life expectancy, and low birth weight (LBW). 
We estimated 7,378 avoided deaths, 20,649,279 years of life expectancy gained, and 5,385 LBW 
deliveries avoided from increased green space exposure. These results show that urban greening 
interventions through climate mitigation and adaptation strategies can yield health benefits, with 
a majority of those benefits arising in disadvantaged areas. Between 52,600 to 56,140 premature 
deaths were estimated to be attributable to wildfire PM2.5, with an estimated economic impact of 
$432 to $460 billion, suggesting that wildfires contribute a considerable mortality and economic 
burden.  
 
The NWL Health Scenario Tool was developed using the GEE platform and comprises both an 
urban green space and a wildfire component. The urban green space tool quantitatively evaluates 



A Scenario Tool for NWL in California 
 

 

   
 

5 

the potential health and economic benefits linked with urban greening management strategies 
and is mapped at zip-code and census tract levels. The wildfire tool quantitatively evaluates the 
health impact of wildfire PM2.5 using two atmospheric modeling simulations: (1) zip code-level 
health and economic costs from historical fire emissions using CMAQ (the Community 
Multiscale Air Quality Modeling System), and (2) county-level health and economic benefits 
from possible wildfire management strategies using STILT (additional work using the Goddard 
Earth Observing System chemical transport model [GEOS-Chem] will be detailed in final 
report).  
 
Conclusions 
NWL-specific environmental exposures, such as wildfires and urban green space, contribute to 
human health impacts across several health outcomes, including mortality, life expectancy, birth 
outcomes, respiratory health, and more. Reduced wildfire exposure and increased urban green 
space exposure impart substantial health benefits, underscoring the influence that climate-related 
interventions could have on improving health. Our tool allows users to quantitatively explore 
these health impacts through various intervention scenarios, with the aim that it will help inform 
future policy-making and development of management strategies. Future research could further 
strengthen the evidence base of quantitative dose-responses of various health categories from 
NWL-specific environmental exposures.  
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IV. Introduction 
 
California’s NWL comprise approximately 90 percent of the state’s landmass and includes a 
biologically diverse landscape including grasslands, shrublands, and forest. The state’s NWL areas 
is a major source of carbon sequestration by providing the land area capable of capturing carbon 
through plants, trees, and soils; however, some estimates suggest that California’s NWL are 
currently a net greenhouse gas (GHG) source, losing more carbon than they sequester. In a recent 
assessment, wildfires were the largest cause of carbon loss but other losses can occur from drought, 
tree and shrub disease, and soil disturbances, conversion, and harvesting. Additionally, NWL can 
also be susceptible to climate change impacts of sea level rise, drought, and increased 
temperatures, which may further exacerbate the net GHG source from the state’s lands. 
 
In the currently funded California Air Resources Board’s (CARB) project (19RD015), we found 
that the 2018 California wildfires, which burned nearly two million acres throughout the state, 
were responsible for approximately 11,500 premature deaths from wildland fire related PM2.5. We 
estimate an economic impact of approximately $100 billion for the mortality burden from the 2018 
wildland fires. Recognizing the potentially important role of NWL the state’s carbon neutrality 
goals, the recent CARB Scoping Plan has included cutting edge modeling tools used to estimate 
the quantitative ability of NWL to remove and store carbon under different scenarios. This analysis 
showed that by applying various land management scenarios to land-use, land management, and 
eco-unit areas resulted in reductions in wildfire emissions when compared to business as usual. To 
understand more completely the benefits of various scenarios taken in California to reduce 
environmental and health impacts from wildfires in the state’s NWL, it is critical to measure the 
potential health impacts of these initiatives. In this project we have developed methodology to 
better quantify how resilient landscapes can reduce wildfire related emissions in the state’s NWL, 
with a detailed workflow depicted in Figures 4.1a - 4.1c.  
 
We conduct an in-depth literature review to identify all health impacts from greenspace exposures 
in California’s urban natural working lands (Task 1) which is further detailed in Section V 
(Scoping Review: Urban Greenspace). The literature review reveals several coefficients that may 
be used for the current tool (Subtask 2.2), allowing for subsequent analysis of health impacts from 
various greenspace exposures on health (Subtasks 2.1, 2.3 – 2.4) as detailed in Section VII (Health 
Impact Assessment: Urban Greenspace). During this time, and with careful discussion and 
guidance from various partners and CARB staff, we identified various greenspace scenarios 
expected to impact dose-response relationships for model inclusion (Subtask 2.5). We analyze 
identified greenspace management scenarios to identify various health impacts through the NWL 
Health Scenario Tool (Subtask 2.6) in Section XII (Final Tool Product Paper: A Decision-Support 
Tool To Evaluate Health Benefits Of Natural And Working Lands Scenarios).   
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Figure 4.1a. Workflow of project tasks for Greenspace on NWL 
 
Additionally, we conduct an in-depth literature review to identify all health impacts from wildfire 
specific PM2.5 exposures in California’s natural working lands (Task 1) which is further detailed 
in Section VI (Scoping Review: Wildland Fires). The literature review reveals several coefficients 
that may be used for the current tool (Subtask 2.2), allowing for subsequent analysis of health 
impacts from various wildfire exposures on health (Subtasks 2.1, 2.3 – 2.4) as detailed in Section 
VIII (Health Impact Assessment: Wildland Fire Mortality and CMAQ Validation) and Section IX 
(Health Impact Assessment: Wildfire Fire Morbidity). This included validation of exposure 
estimates (CMAQ Validation in Section IX and FINN validation work in Section X) and 
development and validation of modeling tools (STILT validation in Section X).  During this time, 
and with careful discussion and guidance from various partners and CARB staff, we identified 
several wildfire scenarios expected to impact dose-response relationships for model inclusion 
(Subtask 2.5). Preliminary estimates from prescribed burning are provided in Section XI (STILT 
Scenario: Prescribed Burning) and further detailed in Section XII (Final Tool Product Paper: A 
Decision-Support Tool to Evaluate Health Benefits of Natural and Working Lands Scenarios) 
(Subtask 2.6). Scenarios specific to the recent CARB Scoping Plan are currently in the analysis 
phase and will be provided at the end of the contract (Subtask 2.6).   
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Figure 4.1b. Workflow of project tasks for Wildfires on NWL  
 
 
Tasks and subtasks details and glossary of terms for the greenspace and wildfire workflows in 
Figures 4.1a and 4.1b, respectively, are provided in Figure 4.1c below.   

 
Figure 4.1c. Tasks & subtasks and glossary of terms for greenspace and wildfire workflows 
 
The results of this project aid in the development of future climate policies and implementation of 
NWL management strategies that maximize health benefits, reduce the risk of wildfire, and 
promote resilience to climate change. 
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V. Scoping Review: Urban Green Space  
 
Abstract 
 
California faces several serious climate hazards that can adversely affect human health, some of 
which are already occurring. Here we focus on four of California’s leading climate risks where 
urban green space management could play a role in reducing exposures and generating health co-
benefits. Specifically, we review the recent literature to qualitatively examine the role that green 
space could play in reducing adverse health effects associated with extreme heat exposure, 
flooding risk during extreme precipitation events, wildfire smoke air pollution, and infectious 
disease risk linked to dust pollution. We then quantitatively estimate the benefits to mortality, life 
expectancy, and adverse birth outcomes of increased green space in urban areas across California. 
Our findings indicate that achievable increases in urban green space could result in substantial 
health benefits, including approximately 7,378 avoided deaths and 20,649,279 years of life 
expectancy gained, with the majority of the benefits accruing to non-white populations. We also 
estimate up to 5,385 LBW deliveries avoided. Taken together, our findings show that urban and 
peri-urban green space provides direct health benefits that accrue from exposure reductions and 
health co-benefits as part of a suite of climate mitigation and adaptation strategies in California, 
with benefits concentrated in disadvantaged areas. The severity of future risks to population health 
in California will depend on atmospheric greenhouse gas concentrations, underlying population 
vulnerabilities, and local adaptation efforts, which to varying degrees can be influenced by 
effective green space interventions and policies. 

 
Urban green space and associated infrastructure is a mitigation and adaptation pathway for 
promoting climate resilience and generating substantial health co-benefits. Here we review several 
of the most serious climate-related public health threats in California and possible green space 
solutions. Our conceptual framework illustrates the possible effects of greening interventions on 
climate-related exposures, health co-benefits, and possible unintended consequences. We illustrate 
the magnitude of possible health benefits of expanding urban green space on premature mortality, 
life expectancy, and adverse birth outcomes. For all outcomes, realistic increases in green space 
would likely result in substantial health benefits, especially for socially disadvantaged groups.   
 
Introduction  
 
A rapidly expanding body of literature on green spaces and public health consists of studies 
primarily falling into three research domains: physical health, mental health, and ecosystem health 
(J. Zhang et al., 2020). An abundance of recent studies provide evidence that access to urban green 
spaces is associated with positive health outcomes such as decreased mortality, reduced incidence 
of poor birth outcomes such as low birth weight and premature birth, and improved mental health, 
measured through metrics such as reductions in depressive symptoms (Callaghan et al., 2020; 
Gascon et al., 2016, 2018; Hu et al., 2021; Rojas-Rueda et al., 2019). Proposed mechanisms 
through which green spaces likely impact these health outcomes include social connectedness, 
stress reduction, increased physical activity, and environmental buffering (e.g. against air 
pollution, heat, and noise) (Nieuwenhuijsen et al., 2017).  
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Along with a plethora of primary analyses characterizing the dose-response relationship between 
access to urban green spaces and health outcomes, there is an expansive literature of systematic 
reviews and meta-analyses attempting to summarize the state of knowledge. However, many 
different meta-analyses report on the same health outcomes, often due to multiple research groups 
conducting the analyses concurrently, or variations in analytical methods. Synthesizing the 
findings of multiple meta-analyses can support the establishment of robust dose-response values 
for use in health impact assessments. To our knowledge, no umbrella review of existing dose-
response meta-analyses currently exists, and this review attempts to bridge that gap. 
 
Therefore, the aim of the scoping review is twofold: (1) summarize existing quantitative 
synthesizes of peer-reviewed literature examining the human health impacts associated with urban 
green and blue space exposure, and (2) identify empirical research that can be used to inform future 
modeled health impact research. These results will provide critical information for the 
management of the state of California’s natural and working lands (see Figure 4.1a). Though 
green space is the primary focus of this review due to the expansive literature on the topic, studies 
evaluating the health impacts of urban blue spaces are briefly reported as well. 
 

 
Methods  
 
We conducted a scoping review of the global peer-reviewed epidemiological literature using the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) between June - 
September 2020 within the following databases: PubMed, Web of Science, American 
Psychological Association (APA) PsycInfo, and Embase. We followed the Arksey and O’Malley’s 
framework for scoping reviews and the PRISMA-ScR (Preferred Reporting Items for Systematic 
reviews and Meta-Analyses extension for Scoping Reviews) which include the following five 
phase process: (1) identifying the research questions, (2) identifying relevant publications, (3) 
selecting the publications, (4) charting the data, and (5) collating, summarizing, and reporting the 
results (Arksey & O’Malley, 2005; Tricco et al., 2018). In collaboration with the University of 
California, Los Angeles’ data librarians and project partners at CARB, we developed search terms 
to form keywords for the scoping review that would be inclusive of all potential health outcomes 
from exposures to urban green or blue spaces. A full list of search terms is included in Table 5.1 
below.  
 
Table 5.1a. Search Strategy 1: Capture articles using most relevant keywords 
Concept Text Keywords 
Green/blue 
space 

“public park*” OR "greenspace*" OR "green space*" OR "greenness" OR "blue 
space*" OR "nature contact" OR "NDVI" OR “normalized difference vegetation 
index” 

Health  “health” OR “mortality” 
Review review OR meta-analy* (used database restrictions for article type, as well as 

conducted a separate title search with these keywords to ensure no articles were 
missed) 

 
Table 5.1b. Search Strategy 2: General search with “urban” restriction 
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Concept Text Keywords 
Green/blue 
space 

 “greenspace*” OR “green space*” OR “greenness” OR “natural environment*” 
OR “nature contact” OR “blue space*” OR “NDVI” OR “normalized difference 
vegetation index” OR “open space*” OR “natural space*” OR “forest*” OR 
“public park*” OR “vegetation” OR “tree*” OR “outdoors” 

Health  “health” OR “life expectancy” OR “mortality” 
Urban “urban” OR “city” OR “cities” OR “municipal” OR "urbanization” OR “built 

environment*” OR “residential” OR “residence*” OR “neighbo*hood” 
Review review OR meta-analy* (used database restrictions for article type, as well as 

conducted a separate title search with these keywords to ensure no articles were 
missed)  

 
Criteria included empirical human-health studies of all age groups, sexes and genders which 
evaluated the health impacts from green or blue space exposures. Due to a rapidly growing and 
evolving body of literature on green spaces and health, we limited our search to the last ten years 
of published articles. All health impacts were included in the scoping review search. Since this 
study aims to quantify the human health impacts of the general population, occupational exposures 
were not included. We limited our search to studies published in a peer-reviewed journal written 
in English, French, or Spanish. Ineligible studies included those using non-human subjects or 
exposure studies that did not empirically examine the relationship between green or blue spaces to 
human health to provide a quantitative impact estimate (Table 5.2). 
 
Table 5.2. Inclusion criteria 
Inclusion Criteria Exclusion Criteria 
Primary peer-reviewed literature that was 
published in the last ten years (2010 – 2020) 
in English, Spanish, or French language 

Non-peer reviewed literature (e.g. abstract 
only, conference proceedings, articles from 
the media, letters to the editor, reports, thesis, 
textbooks, etc.) published prior to 2010 and 
not in the English, Spanish, or French 
language 

Literature that explicitly describes urban 
green or blue space-specific exposures  

Literature that explicitly describes the 
inclusion of other environment types without 
including urban, real-life exposures (as 
opposed to virtual reality or laboratory 
conditions) 

Primary or secondary health data used to 
examine relationships with green or blue 
space exposures 

Surveillance data lacking an assessment of 
impact 

Empirical studies that estimate quantifiable 
impacts  

Non-empirical studies or studies that do not 
quantify exposure impacts  

Studies that explicitly investigate the 
relationship between human health outcomes 
and green or blue space exposures 

Literature that does not investigate the 
impacts of green or blue space exposures to 
human health  
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After removing duplicates, we analyzed titles and abstracts for significance, then removed studies 
that did not fit the above criteria. Once the relevant literature was identified, we systematically 
extracted and organized the data into an Excel spreadsheet that included relevant information, 
including authors, publication year, publication title, journal, study location, exposure 
measurement, and health outcome examined.  
 
The initial database searches yielded a total of 775 review articles across all four databases after 
we reviewed duplicates. After screening titles and abstracts, we identified 59 with quantitative data 
presented in tabular format within the review article for full extraction. We extracted meta-analysis 
results, as well as primary article results as presented in summary tables within each review paper, 
focusing primarily on quantitative analyses.  

We conducted additional screening searches in 2023 in PubMed and Web of Science to extract 
solely meta-analyses to include in the report and/or NWL tool. Articles from these searches are 
not included in the original extraction workbook, but the relevant data are included in this chapter. 
These searches were designed to supplement the first round of search in 2020 to ensure no recent 
articles with potentially useful dose-response values were missed. 

As the final step, we identified 46 meta-analyses to focus on in this report. Therefore, this chapter 
serves to highlight the main, highly studied outcomes and statistical associations, and includes 
brief discussion of the resulting NWL tool, but does not encompass all possible health outcomes, 
or all of the extractions included in the spreadsheet, many of which are from primary literature.   
 
A short narrative summary of each major health outcome category was developed, after which, we 
discussed the potential pathways between green space and each health outcome category and how 
we may incorporate identified dose-response values into a health impact assessment. A second 
reviewer reviewed all the listed articles and worked with the first reviewer to ensure data were 
extracted properly and accurately represented the data from the articles.  
 
Results and Discussion 
 
Health Outcomes  
 
Mortality  
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Table 5.3. Mortality: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban Green or Blue Space Impacts 
Authors/ 
Year 

Publication Title Specific Health 
Outcomes 

Green or Blue 
Space 
Exposure(s)  

Quantitative Dose-Response/Pooled 
Effect Estimate 

Main Findings 

(Bertrand 
et al., 
2021) 

Do we know enough 
to quantify the impact 
of urban green 
spaces on mortality? 
An analysis of the 
current knowledge 

All-cause mortality; 
cardiovascular 
mortality; respiratory 
mortality  

NDVI Pooled RR for 0.1 unit increase in NDVI:  
All-cause mortality: 0.96 (95% CI: 0.94, 
0.97)* 
Cardiovascular mortality: 0.98 (95% CI: 
0.96, 0.99) 
Respiratory mortality: 0.97 (95% CI: 
0.92, 1.02) 
 
*extracted from Rojas-Rueda D. et al. 
(2019) 

This study found that an 
increase in green space 
resulted in reduced risks of 
cardiovascular mortality, 
but not respiratory 
mortality. Authors reported 
a significant effect for all-
cause mortality, extracted 
directly from Rojas-Rueda 
D. et al. (2019). 

(Bianconi 
et al., 
2023) 

Impacts of urban 
green on 
cardiovascular and 
cerebrovascular 
diseases—a 
systematic review 
and meta-analysis 

Cardiovascular disease 
mortality; ischemic 
heart disease 
mortality; 
cerebrovascular 
mortality  

NDVI Pooled HR for each IQR (0.10 to 0.24) unit 
increase in NDVI at a 250-m to 500-m 
buffer: 
Cardiovascular disease morality: 0.94 
(95% CI: 0.91, 0.97) 
Ischemic heart disease mortality: 0.96 
(95% CI: 0.93, 0.99) 
Cerebrovascular mortality: 0.96 (95% 
CI: 0.94, 0.97) 

This study found that an 
increase in urban green 
resulted in reduced hazards 
of cardiovascular disease 
mortality, ischemic heart 
disease mortality, and 
cerebrovascular disease 
mortality.  

(Gascon et 
al., 2016) 

Residential green 
spaces and mortality: 
A systematic review 

All-cause mortality; 
cardiovascular 
mortality; lung cancer 
mortality  

NDVI & green 
space percentage 
by residential 
address 

Pooled RR for a 10% increase in 
greenness: 
All-cause mortality: 0.992 (95% CI: 
0.976, 1.008) 
Cardiovascular mortality: 0.993 (95% 
CI: 0.985, 1.001) 
Lung cancer mortality: 0.997 (95% CI: 
0.980, 1.013) 

This study did not find 
evidence of a relationship 
between greenness and all-
cause, cardiovascular, or 
lung cancer mortality.  

(Kua & 
Lee, 2021) 

The influence of 
residential greenness 
on mortality in the 
Asia-Pacific region: 
a systematic review 
and meta-analysis 

All-cause mortality  NDVI Pooled HR for an exposure unit increase in 
NDVI at a 500-m buffer: 
All-cause mortality: 0.97 (95% CI: 0.93, 
1.02) 

This study did not find 
evidence of a relationship 
between surrounding 
greenness and all-cause 
mortality.  
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(X.-X. Liu 
et al., 
2022) 

Green space and 
cardiovascular 
disease: A systematic 
review with meta-
analysis 

Cardiovascular disease 
(CVD) mortality, 
ischemic heart disease 
(IHD) mortality, 
cerebrovascular 
disease (CBVD) 
mortality 

NDVI Pooled OR for a 0.1 unit increase in NDVI:  
CVD mortality: 0.97 (95% CI: 0.96, 0.99) 
IHD mortality: 98 (95% CI: 0.96, 1.00) 
CBVD mortality: 0.98 (95% CI: 0.97, 
1.00) 

This study found evidence 
of a protective effect of 
NDVI on CVD mortality, 
IHD mortality, and CBVD 
mortality, with 2-3% lower 
odds. 

(Rojas-
Rueda D. et 
al., 2019) 

Green spaces and 
mortality: a 
systematic review 
and meta-analysis of 
cohort studies 

All-cause mortality NDVI Pooled HR for a 0.1 unit increase in NDVI 
at a 500-m buffer: 
All-cause mortality: 0.96 (95% CI: 0.94, 
0.97) 

This study found that an 
increase in surrounding 
greenness resulted in 
reduced hazards of all-
cause mortality.  

(N. Smith 
et al., 
2021) 

Urban blue spaces 
and human health: A 
systematic review 
and meta-analysis of 
quantitative studies 

All-cause mortality Blue space Pooled HR for presence of blue space 
within 500-m: 
All-cause mortality: 0.986, 95% CI 
(0.973, 0.999) 

This study found that the 
presence of blue space 
within 500m of peoples’ 
home address was 
associated with a 1.4% risk 
reduction in all-cause 
mortality. 

(Twohig-
Bennett & 
Jones, 
2018) 

The health benefits of 
the great outdoors: A 
systematic review 
and meta-analysis of 
greenspace exposure 
and health outcomes 

All-cause mortality; 
cardiovascular 
mortality 

Multiple, 
including NDVI, 
land cover maps, 
tree canopy and 
street tree data, 
and subjective 
measures of 
greenness 

Pooled OR for a comparison of high to low 
green space exposure: 
All-cause mortality: 0.69 (95% CI: 0.55, 
0.87) 
Cardiovascular mortality: 0.84 (95% CI: 
0.76, 0.93) 

This study found that 
exposure to high green 
space resulted in reduced 
odds of all-cause and 
cardiovascular mortality.  

(Yuan et 
al., 2020) 

Green space 
exposure on mortality 
and cardiovascular 
outcomes in older 
adults: a systematic 
review and meta-
analysis of 
observational studies 

All-cause mortality; 
stroke mortality  

NDVI Pooled HR for 0.1 unit increase in NDVI: 
All-cause mortality: 0.99 (95% CI: 0.97, 
1.00) 
Stroke mortality: 0.77 (95% CI: 0.59, 
1.00) 

This study found that an 
increase in green space 
resulted in reduced hazards 
of all-cause and stroke 
mortality in older adults.  

Notes: HR = hazard ratio; OR = odds ratio; RR = risk ratio; IQR = interquartile range; NDVI = normalized difference vegetation index; CVD = cardiovascular 
disease; IHD = ischemic heart disease; CBVD = cerebrovascular disease; CI = confidence interval.  
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We identified eight peer-reviewed meta-analyses that calculated dose-response estimates of the 
relationship between exposure to urban green space and mortality, including all-cause and cause-
specific mortality. Studies included in these meta-analyses were conducted in the United States 
(U.S.), Canada, Europe, Asia, Australia, and Oceania. All meta-analyses used normalized 
difference vegetation index (NDVI) as a green space exposure metric, with two meta-analyses also 
including other exposure indicators such as residential green space and land cover (Gascon et al., 
2016; Twohig-Bennett & Jones, 2018). Several meta-analyses found a significant, inverse 
association between green space and mortality, supporting evidence for a reduction in mortality 
with increased green space exposure (Bianconi et al., 2023; X.-X. Liu et al., 2022; Rojas-Rueda 
D. et al., 2019; Twohig-Bennett & Jones, 2018; Yuan et al., 2020). Although, some meta-analyses 
did not find statistically significant results (Gascon et al., 2016; Kua & Lee, 2021). Additionally, 
we identified one meta-analysis that investigated the relationship between urban blue space and 
mortality, which found reduced risk of mortality associated with increased blue space exposure 
(N. Smith et al., 2021). 
 
All-cause Mortality  
 
The Rojas-Rueda D. et al. (2019) study is a recent meta-analysis of cohort studies conducted to 
improve upon existing analyses, such as Gascon et al. (2016) and Twohig-Bennett & Jones (2018), 
that incorporated observational data into their pooled estimates. The authors focused solely on all-
cause mortality and found a significantly decreased risk (Hazard ratio [HR]: 0.96, 95% confidence 
interval [CI]: 0.94 to 0.97) per 0.1 unit increase in NDVI within a buffer of 500-m or less of an 
individual’s residence. The dose-response values from this study have also been applied in a recent 
health impact analysis for European cities (Barboza et al., 2021). However, the authors noted some 
limitations. Heterogeneity between the included studies restricted comparability (Rojas-Rueda D. 
et al., 2019). Additionally, NDVI was selected as the primary green space exposure; however, 
NDVI does not provide information about the quality or accessibility of such green spaces (Rojas-
Rueda D. et al., 2019), which was also a limitation of all analyses using a greenness metric derived 
from satellite imagery.  
 
Within the existing literature, five other meta-analyses also studied urban green space and all-
cause mortality (Bertrand et al., 2021; Gascon et al., 2016; Kua & Lee, 2021; Twohig-Bennett & 
Jones, 2018; Yuan et al., 2020), though Rojas-Rueda D. et al. (2019) is still the most recent study 
that did not limit population or geographic region. Two found significant effects of green space 
exposure on all-cause mortality (Twohig-Bennett & Jones, 2018; Yuan et al., 2020), while two 
found effects that were non-significant (Gascon et al., 2016; Kua & Lee, 2021). One meta-analysis 
studied urban blue space and all-cause mortality and found significantly reduced risk of all-cause 
mortality associated with increased urban blue space (N. Smith et al., 2021). Bertrand et al. (2021) 
aimed to identify exposure-response functions for quantitative health impact assessments of green 
space on mortality and directly extracted the Rojas-Rueda D. et al. (2019) estimate because it 
included all of the studies that the authors had identified in their analysis. The authors ultimately 
reported a significant association between green space exposure and reduced risk for all-cause 
mortality based on this extracted estimate. Twohig-Bennett & Jones (2018) found a significantly 
lower risk for all-cause mortality associated with high compared to low green space, a much larger 
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estimate than the dose-response value that Rojas-Rueda D. et al. (2019) reported. This was likely 
due to differences in the studies included, with the former meta-analysis including fewer and older 
studies, of which one of the studies found an effect for older adults that was transformed by the 
meta-analysis into an estimate of large magnitude (Odds ratio [OR]: 0.23, 95% CI: 0.14 to 0.40) 
(Sulander et al., 2016). Similarly, Yuan et al. (2020) also found a significant association between 
NDVI and reduced risk for all-cause mortality in older adults only; however, the upper confidence 
interval for the effect estimate was 1.00, which is on the border of conventional tests of statistical 
significance. Gascon et al. (2016) did not find evidence of a statistically significant association 
between greenness and all-cause mortality. Consequently, the authors suggested that more cohort 
studies should be analyzed, which ultimately prompted the meta-analysis led by Rojas-Rueda D. 
et al. (2019). 
 
Overall, the recent meta-analysis from Rojas-Rueda et al. (2019) provides evidence of a causal 
relationship between greenness and all-cause mortality, with an available dose-response value for 
application in health impact assessments, as asserted by Bertrand et al. (2021). Further research 
would continue to strengthen this evidence.   
 
Cause-specific Mortality  
 
Six meta-analyses studied cause-specific mortality (Bertrand et al., 2021; Bianconi et al., 2023; 
Gascon et al., 2016; X.-X. Liu et al., 2022; Twohig-Bennett & Jones, 2018; Yuan et al., 2020). 
Five of the six studies found significant effect estimates between greenness and cardiovascular 
mortality, ischemic heart disease mortality, cerebrovascular mortality, and stroke mortality 
(Bertrand et al., 2021; Bianconi et al., 2023; X.-X. Liu et al., 2022; Twohig-Bennett & Jones, 2018; 
Yuan et al., 2020), with significance varying across different types of cause-specific mortality in 
Bertrand et al. (2021). Bertrand et al. (2021) found significantly reduced risk for cardiovascular 
mortality (Relative risk [RR]: 0.98, 95% CI: 0.96 to 0.99) but non-significant effects for respiratory 
mortality. Similarly, Twohig-Bennett & Jones (2018) found a significant effect for cardiovascular 
mortality associated with high compared to low green space levels. Both Bianconi et al. (2023) 
and X.-X. Liu et al. (2022) also found evidence of statistically significant relationships between 
urban green exposure and reduced risk of cardiovascular mortality, ischemic heart disease 
mortality, and cerebrovascular mortality. While Bertrand et al. (2021) found a small effect for 
cardiovascular mortality, Bianconi et al. (2023) found an effect of larger magnitude but with a 
wider confidence interval (HR: 0.94, 95% CI: 0.91, 0.97). Yuan et al. (2020) estimated lower risk 
of stroke mortality associated with increased NDVI, with an upper confidence interval on the 
border of conventional tests of statistical significance. Gascon et al. (2016) did not find evidence 
of an association between greenness and cardiovascular and lung cancer mortality.  
 
Several of the meta-analyses shared limitations that also apply to the other health outcomes 
discussed throughout this report. Heterogeneity between the studies (e.g. variations in study 
population, exposure assessment, outcome estimations) was a common limitation reported by all 
meta-analyses (Bertrand et al., 2021; Bianconi et al., 2023; Gascon et al., 2016; Kua & Lee, 2021; 
X.-X. Liu et al., 2022; Rojas-Rueda D. et al., 2019; N. Smith et al., 2021; Twohig-Bennett & Jones, 
2018; Yuan et al., 2020). Bianconi et al. (2023) and Kua & Lee (2021) reported similar issues 
regarding NDVI as a nonspecific measure. Other limitations included high statistical heterogeneity 
for associations between green space and mortality and issues of generalizability due to influences 
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by urbanicity and culture (Bertrand et al., 2021; Bianconi et al., 2023; X.-X. Liu et al., 2022; Yuan 
et al., 2020). Despite these limitations, several meta-analyses also had notable strengths. Similar 
to Rojas-Rueda D. et al. (2019), Yuan et al. (2020) reported the inclusion of cohort studies as a 
strength to support the causal relationship between green space and health. Other strengths 
included comprehensive literature searches, rigorous critical appraisal, and quality scoring (Kua 
& Lee, 2021; Twohig-Bennett & Jones, 2018; Yuan et al., 2020).   
 
To summarize, the existing meta-analyses suggest an association between urban green space and 
mortality, though confidence in these relationships varies across meta-analyses and different 
causes of mortality. The associations between urban green space and cardiovascular mortality and 
all-cause mortality are generally consistent across included meta-analyses. More research is 
required to confidently understand the effects of urban green space on respiratory mortality and 
other types of cause-specific mortality, such as stroke mortality and lung cancer mortality, as well 
as to explore the mechanisms behind these effects.  
 
Birth Outcomes 
 
We identified six systematic reviews including meta-analyses that focused on exposure to urban 
green space and birth outcomes (Akaraci et al., 2020; Dzhambov et al., 2014; Hu et al., 2021; K. 
J. Lee et al., 2020; Twohig-Bennett & Jones, 2018; Zhan et al., 2020), with Akaraci et al. (2020) 
also examining urban blue space (all included in Table 5.4). All reviews including meta-analyses 
were published between 2014-2021. All reviews analyzed NDVI as the green space exposure, with 
two of the studies analyzing other green space exposures in addition to NDVI (Dzhambov et al., 
2014; Twohig-Bennett & Jones, 2018). The most analyzed birth outcomes were birth weight, 
LBW, preterm birth, and small for gestational age (SGA), with four of the studies analyzing all 
four outcomes (Akaraci et al., 2020; Hu et al., 2021; K. J. Lee et al., 2020; Zhan et al., 2020).  
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Table 5.4. Birth Outcomes: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban Green or Blue Space 
Impacts 
Authors/ 
Year 

Publication Title Specific Health 
Outcomes 

Green or 
Blue Space 
Exposure(s)  

Quantitative Dose-
Response/Pooled Effect 
Estimate 

Main Findings 

(Akaraci et 
al., 2020) 

A systematic 
review and meta-
analysis of 
associations 
between green and 
blue spaces and 
birth outcomes 

Birth weight, 
LBW, preterm 
birth, small for 
gestational age 
(SGA), term birth 
weight, term LBW 

NDVI; blue 
space 
 

Pooled standardized ß coefficient 
for an increase in NDVI at a 250-
m/300-m buffer: 
Birth weight: 0.001 (95% CI: 
<0.001, 0.002) 
Term birth weight: 0.0009 (95% 
CI: –0.0002, 0.002) 
 
Pooled OR for an increase in NDVI 
at a 250-m/300-m buffer: 
LBW: 0.96 (95% CI: 0.91, 1.01) 
SGA: 0.95 (95% CI: 0.92, 0.97) 
Preterm birth: 0.99 (95% CI: 0.97, 
1.02) 
Term LBW: 0.97 (95% CI: 0.80, 
1.18) 
 

This study found that an 
increase in residential 
greenness is associated with 
increased birth weight and 
resulted in reduced odds of 
SGA. No associations were 
found between blue space 
and birth outcomes.  

(Dzhambov 
et al., 
2014) 

Association 
between 
residential 
greenness and 
birth weight: 
Systematic review 
and meta-analysis 

Birth weight NDVI and tree 
canopy (aerial 
imagery) 
 

Birth weight:  
For an increase in greenness at a 
100-m buffer under a quality effects 
model: 
Pooled standardized ß coefficient: 
0.001 (95% CI = -0.001–0.003) 
 
For an increase in greenness at a 
100-m buffer under a random-
effects model: 
Pooled standardized ß coefficient: 
0.002 (95% CI: 0.001, 0.003) 
 

This study found that an 
increase in neighborhood 
greenness is associated with 
higher birth weight under the 
random-effects model, but 
not under the quality effects 
model.  

(Hu et al., 
2021) 

Residential 
greenness and 
birth outcomes: a 
systematic review 

Birth weight, 
LBW, preterm 
birth, SGA 

NDVI For 0.1 unit increase in NDVI: 
Birth weight: Green exposure 
buffers in six groups: (50-m, 100-m, 
250-m, 300-m, 500-m, 1000-m) 

This study found that an 
increase in residential 
greenness is associated with 
increased birth weight in all 
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and meta-analysis 
of observational 
studies 

Pooled ß coefficient and 95% CI: 
11.22 (3.11, 19.33), 15.22 (8.75, 
21.69), 7.99 (4.29, 11.70), 15.35 
(11.41, 19.29), 13.42 (6.57, 20.27), 
and 14.77 (2.45, 27.09), respectively 
 
Green exposure buffers in five 
groups: (100-m, 250-m, 300-m, 
500-m, 1000-m): 
LBW: Pooled OR and 95% CI:  
0.87 (0.77, 0.98), 0.93 (0.86, 1.00), 
0.79 (0.65, 0.96), 0.90 (0.83, 0.99), 
and 0.87 (0.62, 1.22), respectively 
Preterm birth: Pooled OR and 
95% CI:  
0.98 (0.96, 1.00), 0.99 (0.97, 1.01), 
1.00 (0.81, 1.23), 0.99 (0.97, 1.00), 
and 0.98 (0.97, 0.99), respectively 
SGA: Pooled OR and 95% CI:  
0.96 (0.90, 1.02), 0.99 (0.97, 1.01), 
0.78 (0.61, 0.99), 1.00 (0.91, 1.09), 
and 0.97 (0.90, 1.03), respectively 
 

buffer groups and resulted in 
reduced odds of LBW in 
some buffer groups. 
Significant associations were 
observed in only one buffer 
group for preterm birth and 
SGA, with the others being 
non-significant. 

(K. J. Lee 
et al., 
2020) 

Greenness, civil 
environment, and 
pregnancy 
outcomes: 
perspectives with 
a systematic 
review and meta-
analysis 

Poor pregnancy 
outcomes (LBW, 
very low birth 
weight, and SGA), 
preterm birth, birth 
weight and term 
birth weight  

NDVI For an increase in NDVI: 
Green exposure buffers in four 
groups: (100-m, 250-m, 500-m, 
overall): 
Term birth weight: Pooled ß 
coefficient and 95% CI:  
0.0022 (0.0005, 0.0038), 0.0026 
(0.0005, 0.0048), 0.0034 (0.0010, 
0.0058), and 0.0025 (0.0015, 
0.0035), respectively 
Birth weight: Pooled ß coefficient 
and 95% CI: 0.0022 (0.0005, 
0.0038), 0.0026 (0.0005, 0.0048), 
0.0034 (0.0010, 0.0058), and 0.0025 
(0.0015, 0.0035), respectively 
Poor pregnancy outcomes: Pooled 
OR and 95% CI were 0.90 (0.79, 

This study found that an 
increase in greenness is 
associated with increased 
term birth weight in all buffer 
groups and resulted in 
reduced odds of poor 
pregnancy outcomes in only 
the overall group and preterm 
birth.  
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1.01), 0.97 (0.95, 1.00), 0.91 (0.80, 
1.03), and 0.94 (0.92, 0.97), 
respectively 
 
Preterm birth at a 100-m buffer: 
Pooled OR: 0.98 (95% CI: 0.97, 
0.99) 
 

(Twohig-
Bennett & 
Jones, 
2018) 

The health 
benefits of the 
great outdoors: A 
systematic review 
and meta-analysis 
of greenspace 
exposure and 
health outcomes.  

Gestational age, 
preterm birth, and 
SGA 

Multiple, 
including 
NDVI, land 
cover maps, 
tree canopy 
and street tree 
data, and 
subjective 
measures of 
greenness 

Pooled OR for a comparison of high 
to low green space exposure: 
Preterm birth: 0.87 (95% CI: 0.80, 
0.94) 
SGA: 0.81 (95% CI: 0.76, 0.86) 
 
Pooled mean difference for a 
comparison of high to low green 
space exposure: 
Gestational age: <–0.01 (95% CI: 
–0.05, 0.05) 

This study found that 
exposure to high green space 
resulted in reduced odds of 
preterm birth and SGA.  

(Zhan et 
al., 2020) 

Influence of 
residential 
greenness on 
adverse 
pregnancy 
outcomes: A 
systematic review 
and dose-response 
meta-analysis.  

Birth weight, 
gestational age, 
gestational 
diabetes, 
gestational 
hypertension, head 
circumference, 
LBW, mental 
health disorders, 
preeclampsia, 
preterm birth, 
SGA 

NDVI Pooled ß coefficient for a 
comparison of highest to lowest 
greenness exposure at a 100-m 
buffer*: 
Birth weight: 20.22 grams (95% 
CI: 13.50, 26.93) 
 
Pooled OR for a comparison of 
highest to lowest greenness 
exposure at a 100-m buffer*: 
LBW: 0.86 (95% CI: 0.75, 0.99) 
SGA: 0.93 (95% CI: 0.88, 1.00) 
Preterm birth: 0.98 (95% CI: 0.95, 
1.02) 
 
Green exposure buffers in at least 
one of two groups: (≤300-m, >300-
m) 
Gestational age: Pooled ß 
coefficient and 95% CI were –0.01 

This study found that 
exposure to high greenness is 
associated with increased 
birth weight, increased head 
circumference, and reduced 
odds of LBW, SGA, and 
mental health disorders. No 
statistically significant 
associations were observed 
for preterm birth, gestational 
age, gestational diabetes, 
gestational hypertension, and 
preeclampsia. 
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(–0.02, 0.01) and –0.02 (–0.07, 
0.03), respectively 
Head circumference: Pooled ß 
coefficient at a >300-m buffer was 
1.73 (95% CI: 0.69, 2.76) 
Gestational diabetes: Pooled OR at 
a ≤300-m buffer was 0.81 (95% CI: 
0.57, 1.15) 
Mental health: Pooled OR at a 
>300-m buffer was 0.87 (95% CI:  
0.77, 0.99) 

Notes: OR = odds ratio; NDVI = normalized difference vegetation index; LBW = low birth weight; SGA = small for gestational age; CI = confidence interval. 
*Additional estimates were calculated at 250-m, 300-m, 500-m, and 1,000-m buffers but not included in the table for brevity. 
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Three of the six meta-analyses shared similar results, though had notable differences in their 
methodologies (Akaraci et al., 2020; Hu et al., 2021; Zhan et al., 2020). All three studies included 
birth outcomes with similar definitions, had no restrictions on the study types included, and used 
similar heterogeneity and publication bias tests. While Zhan et al. (2020) focused on both birth 
and pregnancy outcomes, Akaraci et al. (2020) and Hu et al. (2021) only assessed birth outcomes. 
Akaraci et al. (2020) also investigated the relationship between blue space and birth outcomes, but 
did not find evidence of an association. Hu et al. (2021) discussed the differences in exposure 
analysis between the three studies, emphasizing the use of more comprehensive and specific 
methods in comparison to the other two studies. Hu et al. (2021) maintained that their statistical 
analysis was more comprehensive as well, since they employed both random-effect and quality 
effects models, while Zhan et al. (2020) and Akaraci et al. (2020) only used one of the two. 
Additionally, Hu et al. (2021) assessed risk of bias and gauged certainty of evidence, neither of 
which the other two studies considered.  
 
While Twohig-Bennett & Jones (2018) did evaluate some birth outcomes, their analysis spanned 
several other health outcomes as well, which added value to the literature with its expansive topic 
area within one study. However, this type of approach resulted in substantial pooling of green 
space exposures, and fewer modeling resources designated to investigating specific outcomes in 
depth. Their meta-analyses for birth outcomes only pooled together three to six studies for different 
birth outcomes, which was fewer than the number of pooled studies in the other meta-analyses 
within this health category (Akaraci et al., 2020; Dzhambov et al., 2014; Hu et al., 2021; Zhan et 
al., 2020), with some variation across buffer groups for Akaraci et al. (2020) and Zhan et al. (2020). 
 
Birth Weight and Low Birth Weight (LBW) 
 
All of the five studies that evaluated birth weight, a continuous outcome, found evidence of a 
significant relationship between urban green space and birth weight (Akaraci et al., 2020; 
Dzhambov et al., 2014; Hu et al., 2021; K. J. Lee et al., 2020; Zhan et al., 2020). Akaraci et al. 
(2020) and Zhan et al. (2020) found a significantly positive relationship between urban green space 
exposure and birth weight at buffers of 250-m/300-m and 100-m, respectively. Hu et al. (2021) 
and Lee et al. (2020) also found similar relationships for all buffer groups analyzed. Dzhambov et 
al. (2014) found that increased urban greenness exposure was significantly associated with 
increased birth weight under random-effects model, but not under the quality effects model.  
 
Three of the four studies that examined LBW (infants less than 2,500 grams at birth, a dichotomous 
outcome), found evidence of an association between urban green space and LBW (Hu et al., 2021; 
K. J. Lee et al., 2020; Zhan et al., 2020). One of the studies evaluated LBW in combination with 
other poor pregnancy outcomes as shown in Table 5.4 (K. J. Lee et al., 2020), while the other two 
studies focused on LBW as an individual outcome indicator (Hu et al., 2021; Zhan et al., 2020). 
Lee et al. (2020) found a significant relationship between NDVI and a combination of poor 
pregnancy outcomes (including LBW, very LBW, and SGA) overall, but not for stratified buffers. 
Zhan et al. (2020) stratified the meta-analysis by buffer groups and found a significant association 
between NDVI and LBW at a 100-m buffer at highest greenness exposure (OR: 0.86, 95% CI: 
0.75 to 0.99). The authors also estimated a dose-response value at a 300-m buffer and observed a 
very small but significant effect estimate (OR: 0.98, 95% CI: 0.97 to 0.99) per 0.1 unit increase in 
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NDVI (Zhan et al., 2020). Hu et al. (2021) found a significant association between NDVI and 
LBW in some buffer groups, with an OR of 0.93 (95% CI: 0.86 to 1.00) and OR of 0.79 (95% CI: 
0.65, 0.96) per 0.1 unit increase in NDVI at 250-m and 300-m buffers, respectively. Akaraci et al. 
(2020) did not find a statistically significant relationship between NDVI and LBW (OR: 0.96, 95% 
CI: 0.91 to 1.01) per NDVI increase, although this study only used 250-m or 300-m buffers.    
 
In comparing their LBW analyses, both Zhan et al. (2020) and Akaraci et al. (2020) included very 
similar studies. However, Zhan et al. (2020) presented pooled results stratified by five buffer 
groups (for the estimates comparing highest versus lowest greenness exposure), while Akaraci et 
al. (2020) presented a singular pooled result at a buffer of 250-m/300-m. The heterogeneity in 
buffer groups and how these two studies presented their results contributed to the difficulty in 
comparing the meta-analyses. If we were to compare the estimate from Akaraci et al. (2020) with 
the singular dose-response estimate at a 300-m buffer from Zhan et al. (2020) instead of their 
stratified estimates, Akaraci et al. (2020) found a larger effect estimate, but it was not quite 
statistically significant. Ultimately, it was challenging to determine what factors contributed to the 
different results between the two studies.  
 
The literature on birth weight and LBW is consistent, with most studies in agreement of an 
association between green space and birth weight and LBW. Specifically, Hu et al. (2021) 
explicitly aimed to improve upon the methods of Zhan et al. (2020) and Akaraci et al. (2020) and 
was more recently conducted, and thus serves as the recommended dose-response estimate 
between green space and LBW. 
 
Preterm Birth 
 
Three of the five studies that analyzed preterm birth found significant associations between urban 
green space exposure and preterm birth (Hu et al., 2021; K. J. Lee et al., 2020; Twohig-Bennett & 
Jones, 2018). Hu et al. (2021) found a significant association between NDVI and preterm birth at 
a 1000-m buffer, but it was a very small effect estimate. The authors also found borderline 
significant results at 100-m and 500-m buffers (Hu et al., 2021). Similarly, Lee et al. (2020) found 
a statistically significant relationship between NDVI and preterm birth at a 100-m buffer, but the 
effect estimate was also very small (OR: 0.98, 95% CI: 0.97 to 0.99). Contrastingly, Twohig-
Bennett & Jones (2018) observed a large effect estimate for preterm birth when comparing high to 
low green space exposure. Both Akaraci et al. (2020) and Zhan et al. (2020) did not find evidence 
of a relationship between urban green space exposure and preterm birth. Both meta-analyses 
assigned the highest weight to insignificant effect estimates from different primary studies (Cusack 
et al., 2017; Laurent et al., 2013). 
 
The literature on preterm birth is inconsistent, with several studies reporting small or insignificant 
estimates, including the most recent meta-analysis available (Hu et al., 2021). At this stage, there 
is not sufficient evidence to include preterm birth in health impact assessment analyses.  
 
Small for Gestational Age  
 
All of the five studies that evaluated SGA found evidence of a significant relationship between 
urban green space and SGA (Akaraci et al., 2020; Hu et al., 2021; K. J. Lee et al., 2020; Twohig-
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Bennett & Jones, 2018; Zhan et al., 2020). Again, Lee et al. (2020) found a significant relationship 
between NDVI and poor pregnancy outcomes (including SGA, LBW, and very LBW) overall, but 
not for stratified buffers. Both Akaraci et al. (2020) and Twohig-Bennett & Jones (2018) found 
statistically significant associations between green space exposure and SGA (OR: 0.95, 95% CI: 
0.92 to 0.97 and OR: 0.81, 95% CI: 0.76 to 0.86 for an NDVI increase and high green space 
exposure, respectively), with the former study observing effects at a 250-m or 300-m buffer and 
the latter study observing effects when comparing high to low green space exposure. Hu et al. 
(2021) found a significant relationship between NDVI and SGA at a 300-m buffer, but not for all 
other buffer groups. Finally, Zhan et al. (2020) found evidence of an association between urban 
green space and SGA, although the estimated upper confidence interval for the SGA analyses is 
1.00, which is on the border of statistical significance (Zhan et al., 2020). 
 
To summarize, the existing meta-analyses suggest a protective but relatively small effect on 
adverse birth outcomes, although the certainty of these effects varies between the meta-analyses, 
likely due to methodological differences in the selection of studies and exposure buffers. The 
relationships between urban green space with LBW and SGA are generally consistent across the 
meta-analyses; however, significant effects were mostly found at certain exposure buffers and not 
others, which also varied across the meta-analyses. This could suggest that the relationship 
between greenness and birth outcomes changes with changing greenness for different radii around 
the residence. More analysis is needed for the relationship between urban green space and preterm 
birth, as well as other less commonly analyzed birth outcomes, such as gestational age and head 
circumference.  
 
Mental Health 
 
The body of literature on green spaces and mental health spans many different health outcomes, 
including mood, depression, anxiety, stress, restoration, and other indicators of mental distress. 
Studies evaluated short-term impacts of nature-based interventions in urban and rural settings on 
biological indicators of mental health challenges, as well as the effect of long-term exposures on 
clinical conditions. The challenges in quantitatively synthesizing the extensive body of research 
on urban green and blue spaces on mental health has been characterized in a systematic review 
from 2015, citing a lack of estimates and confidence intervals included in primary literature, and 
acknowledging the importance of meta-analyses of long-term impacts for providing information 
to policy-makers (Gascon et al., 2015). 
 
An overview of relevant meta-analyses focused on mental health outcomes has been incorporated 
into Table 5.5.
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Table 5.5. Mental Health: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban Green or Blue Space 
Impacts 
Authors/ 
Year 

Publication Title Specific 
Health 
Outcomes 

Green or Blue 
Space 
Exposure(s)  

Quantitative Dose-Response/Pooled 
Effect Estimate 

Main Findings 

(Bowler et 
al., 2010b) 

A systematic review 
of evidence for the 
added benefits to 
health of exposure 
to natural 
environments 

Self-reported 
emotions 
(energy, anxiety, 
tranquility, 
anger, fatigue, 
sadness), 
attention, 
cortisol levels 

Activity in natural 
environment 
(natural 
environment 
ranged between 
studies but had to 
be reasonably 
‘green’) versus 
synthetic 
environment (non-
green outdoor built 
environments or 
indoor 
environments). 

Effect size (Hedges’ g, 95% CI):  
Attention: 0.23 (-0.30, 0.76) 
Energy: 0.76 (0.30, 1.22) 
Anxiety: 0.52 (0.25, 0.79) 
Tranquility: 0.07 (-0.42, 0.55) 
Anger: 0.35 (0.07, 0.64) 
Fatigue: 0.76 (0.41, 1.11) 
Sadness: 0.66 (0.16, 1.16) 
Cortisol: 0.57 (-0.43, 1.57) 
 
 

Health-positive associations 
were found for energy, 
anxiety, anger, fatigue, and 
sadness. No significant 
effects were found for 
attention, tranquility, and 
cortisol.  

(Coventry 
et al., 
2021) 

Nature-based 
outdoor activities 
for mental and 
physical health: 
Systematic review 
and meta-analysis 

Depressive 
mood, reducing 
anxiety, 
improving 
positive affect, 
reducing 
negative affect  

Nature-based 
interventions 
(NBIs, e.g., 
gardening, green 
exercise, nature-
based therapy) 

Standardized mean difference (SMD) for 
NBIs: 
Depressive mood: 0.64 (95% CI: 1.05, 
0.23) 
Reducing anxiety: 0.94 (95% CI: 0.94, 
0.01) 
Improving positive affect: 0.95 (95% CI: 
0.59, 1.31) 
Reducing negative affect: 0.52 (95% CI: 
0.77, 0.26) 

This study found evidence of 
a positive impact of NBIs on 
mental health outcomes.   

(Georgiou 
et al., 
2021) 

Mechanisms of 
Impact of Blue 
Spaces on Human 
Health: A 
Systematic 
Literature Review 
and Meta-Analysis 

Restoration, 
social interaction 

Living closer to 
blue space and 
having larger 
amounts of blue 
space in a 
geographic area 

Cohen’s d (standardized effect size),  
Shorter distance to blue space: 
Restoration: 0.123  
(95% CI: –0.037, 0.284)  
Social interaction: –0.214  
(95% CI: -0.55, 0.122)  
Larger amounts of blue space within a 
geographical area  
Restoration: 0.339 (95% CI: 0.072, 0.606)  
Social interaction: 0.405  

Shorter distance to blue 
space was not associated 
with restoration or social 
interaction.  
Larger amounts of blue space 
within a geographical area, as 
well as being in more contact 
with blue space, were both 
significantly associated with  
higher levels of restoration.  
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(95% CI: –0.214, 1.024) 
Being in contact with blue space: 
Restoration: 0.191 (95% CI: 0.084, 0.298) 

(Z. Liu et 
al., 2023) 

Green space 
exposure on 
depression and 
anxiety outcomes: A 
meta-analysis 

Depression, 
anxiety 

Proportion of green 
space and NDVI 

Merged OR (95% CI) for 10% increase in 
the proportion of green space: 
Depression: 0.963 (0.948, 0.979)  
Anxiety: 0.938 (0.858, 1.025)  
 
Merged OR (95% CI) for 0.1 unit increase 
in NDVI:  
Depression: 0.931 (0.887, 0.977) 

Both increasing proportion of 
green space and increasing 
NDVI levels were found to 
be associated with lower risk 
of depression. Increasing 
proportion of green space 
was also found to be 
associated with lower 
anxiety, but results were not 
statistically significant.  

(McMahan 
& Estes, 
2015) 

The effect of contact 
with natural 
environments on 
positive and 
negative affect: A 
meta-analysis 

Positive and 
negative affect  

Exposure to natural 
environments 
(includes urban and 
rural green space) 
compared to 
control conditions  

Effect size (r):  
Positive affect: 0.31 (95% CI: 0.24, 0.37) 
Negative affect: –0.12 (95% CI: –0.17,  
–0.07) 

This study found a 
significant relationship 
between exposure to natural 
environments and both 
increases in positive affect 
(moderate) and decreases in 
negative affect (small) 
 

(Mygind et 
al., 2021) 

Effects of Public 
Green Space on 
Acute 
Psychophysiological 
Stress Response: A 
Systematic Review 
and Meta-Analysis 
of the Experimental 
and Quasi 
Experimental 
Evidence 

High frequency 
heart rate 
variability (HF 
HRV), cortisol 

Seated relaxation 
and walking in 
natural 
environments (only 
included studies 
considering public 
green 
space, excluding 
private gardens, 
indoor nature, 
views of nature, 
and virtual nature) 

Effect size (Hedges’ g):  
For seated relaxation 
HF HRV: 0.51 (95% CI: –0.01, 1.03) 
Salivary Cortisol: –0.72 (95% CI: –1.19,  
–0.25) 
 
For walking 
HF HRV: 0.31 (95% CI: 0.06, 0.55) 
Serum and Salivary Cortisol: –0.27 
(95% CI: –0.85, 0.30) 

Both seated relaxation and 
walking in natural 
environments enhanced heart 
rate variability (though 
technically not statistically 
significant for the former).  
For cortisol, levels of 
salivary cortisol were lower 
after seated relaxation in a 
natural environment versus 
control, but there was no 
effect found for walking in a 
natural environment. 

(Noordzij 
et al., 
2021) 

Green spaces, 
subjective health 
and depressed affect 
in middle-aged and 
older adults: a 
cross-country 

Depressed affect 
(self-reported 
Indicator based 
on whether a 
participant felt 

Distance to the 
nearest green space 
and amount of 
neighborhood 
green space  

Depressed affect:  
Pooled OR for:  
Distance to the nearest green space: 0.98 
(95% CI: 0.96, 1.00) 
Amount of green space within 800-m 
buffer: 1.00 (95% CI: 0.98, 1.03)  

This study found no evidence 
for a relationship between 
green space and depressed 
affect in older adults.   
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comparison of four 
European cohorts 

sad, 
downhearted or 
blue) 

 

(H. 
Roberts et 
al., 2019) 

The effect of short-
term exposure to the 
natural environment 
on depressive mood: 
A systematic review 
and meta-analysis 

Depressive 
mood (current 
emotional state)  

Natural 
environments 
(defined by a high 
level of greenery, 
and not been 
extensively 
modified by human 
activity) 

Summary effect from random-effect meta-
analysis:  
–0.30 (95% CI: –0.50, –0.10) 

This study found a small 
effect for reduction in 
depressive mood associated 
with exposure to the natural 
environment, but authors 
reported a high risk of bias 
and low quality of studies, 
with low confidence in the 
results.  
 

(N. Smith 
et al., 
2021) 

Urban blue spaces 
and human health: 
A systematic review 
and meta-analysis 
of quantitative 
studies 

Self-reported 
mental health 
and wellbeing 

Blue space Mental health and wellbeing:  
Pooled HR for presence of blue space 
within 500-m: 
Cohen’s d = –0.25 (95% CI: 0.44, –0.07), 
p < 0.001 

This study found that the 
presence of blue space within 
500m of peoples’ home 
address was associated with 
improved mental health and 
wellbeing.  

(Song et 
al., 2022) 

Restorative Effects 
from Green 
Exposure: A 
Systematic Review 
and Meta-Analysis 
of Randomized 
Control Trials 

Restorative 
effects – 
psychological 
and 
physiological, 
including 
fatigue, vitality, 
heart rate levels, 
among other 
metrics  

Green space 
settings vs. non 
green space 
settings  

Effect sizes (statistically significant only):   
Fatigue: –0.84 (95% CI: –1.15, –0.54)  
Tension: –0.89 (95% CI: –1.21, –0.58)  
Anger: –0.48 (95% CI: –0.70, –0.26)  
Confusion: –0.65 (95% CI:  –0.96,  
–0.33) 
Vitality/vigor: 0.85 (95% CI: 0.52, 1.18) 
Positive affect: 0.57 (95% CI: 0.27, 0.86) 
High-frequency heart rate variability 
(HF): 0.52 (95% CI: 0.30, 0.74) 
Natural logarithm of low-frequency/HF 
ratio (ln LF/HF): –0.55 (95% CI: –0.76, 
 –0.34) 
Heart rate levels:  
–0.60 (95% CI: –0.90, –0.31) 
  
 

Green space exposure was 
associated with less fatigue 
and tension, and increased 
vigor (large effect sizes), and 
less anger and confusion 
(moderate effect sizes). 
Evidence also indicates green 
space exposure can lower 
physiological indicators such 
as HF, ln LF/HF, and heart 
rate levels (moderate effect 
sizes). 
 

(Weeland 
et al., 
2019) 

A dose of nature: 
Two three-level 
meta-analyses of the 
beneficial effects of 

Self-regulation  Nature exposure – 
various, including 
residential 
greenness and 

Self-regulation: 
Effect size for correlational studies:  
Pearson’s r: 0.099; 95% CI: 0.056, 0.141; 
p < .001  

Small, but significant 
positive overall associations 
were found for nature with 
children’s self-regulation for 
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exposure to nature 
on children's self-
regulation 

nature-based 
interventions 

Effect size for quasi-experimental studies: 
Cohen’s d: 0.151; 95% CI: 0.079, 0.244; p 
< .01 

both correlational and quasi- 
experimental studies. 
Additionally, strength of the 
associations varied by 
instrument used to report 
green space; stronger effects 
were found for green space 
as quantified by parent-
reports rather than via an 
objective index such as 
NDVI. 

(Yao, 
Chen, et 
al., 2021) 

Impact of Exposure 
to Natural and Built 
Environments on 
Positive and 
Negative Affect: A 
Systematic Review 
and Meta-Analysis 

Positive and 
negative affect 

Natural 
environments 
(categorized into 
biodiverse areas, 
forests, urban 
parks, and 
university 
campuses) 
compared to the 
built/physical 
environment. 

Effect size (standardized mean difference) 
Main estimates for natural environments:  
Positive affect: 0.61 (95% CI: 0.41, 0.81) 
Negative affect: −0.47 (95% CI: −0.71, 
−0.24) 
Urban park stratification:  
Positive affect: 0.452 (95% CI: 0.147, 
0.758) 
Negative affect: −0.006 (95% CI: 0.170, 
0.158) 

Exposure to the natural 
environment was associated 
with increased positive affect 
and decreased negative 
affect.  
More significant impacts 
were found for older 
populations. 
While urban parks vs. other 
nature types demonstrated a 
similar impact for positive 
affect, for negative affect, 
there was no significant 
impact for urban parks, 
meaning wild natural 
environments may be better 
for alleviating negative 
emotions.  

(Yao, 
Zhang, et 
al., 2021) 

The effect of 
exposure to the 
natural environment 
on stress reduction: 
A meta-analysis 

Psychological 
and 
physiological 
stress indicators  

Natural 
environments 
compared to built 
environments 

Mean differences between natural 
environment and built environment 
(statistically significant only):   
Total mood disturbance:  –6.42 (95% CI: 
–12.20, –0.63) 
Negative affect: –0.65 (95% CI: –1.16,  
–0.15) 
State of anxiety: –12.48 (95% CI: –26.61, 
1.66) 
Self-reported stress: –0.33 (95% CI:  
–0.78, 0.13)  

This study found an 
improvement in several 
psychological and 
physiological stress 
indicators following 
exposure to a natural 
environment.  
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Systolic blood pressure (SBP): -3.82 
(95% CI: –6.77, –0.86)  
Natural logarithm of low-frequency/HF 
ratio (ln LF/HF): –0.29 (95% CI: –0.41,  
–0.18) of heart rate variability (HRV)  
Increased restorative outcomes: 4.82 
(95% CI: –1.87, 11.51) 

Notes: HR = hazard ratio; OR = odds ratio; NDVI = normalized difference vegetation index; LF = low-frequency; HF = high-frequency; HRV = heart rate 
variability;  SBP = systolic blood pressure; CI = confidence interval. 
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It is important to note that our analysis did not incorporate studies focused entirely on mental health 
impacts associated with rural green space indicators such as forest bathing, which does have a 
substantial evidence base in the literature (Antonelli et al., 2019; Oh et al., 2017; Wen et al., 2019), 
but was beyond the scope of this review. However, several of the reviews included in this analysis 
did incorporate rural environments as part of a larger “natural environment” exposure.  
 
There are different types of primary studies evaluating the mental health impacts of green and blue 
spaces, including short-term interventions or activities occurring in natural environments, as well 
as long-term exposures measured through residential conditions. While the former is important for 
understanding the capacity of natural environments to facilitate near-term improvements in mental 
health, studies evaluating the latter are vital for understanding implications for urban planning-
related decision-making (Gascon et al., 2015).  
 
Short-term Exposures 
 
For the purposes of this report, short-term exposures include exposure to natural environments 
through various pathways, comprising specific nature-based interventions such as gardening, 
walking, or seated relaxation, and pre- and post-intervention measurement of biological indicators 
and self-reported mood states.  
 
Eight studies evaluated the relationship between the natural environment and various 
psychological and physiological metrics associated with mental health outcomes, including 
depressive mood, positive and negative affect, and other indicators of stress (Bowler et al., 2010b; 
Coventry et al., 2021; McMahan & Estes, 2015; Mygind et al., 2021; H. Roberts et al., 2019; Song 
et al., 2022; Yao, Chen, et al., 2021; Yao, Zhang, et al., 2021). Cardiovascular outcomes are 
included here when listed as an indicator of a mental health condition, but blood pressure is 
explored in more depth in the Cardiovascular Health section. 
 
Two studies expressly focused on stress (Mygind et al., 2018; Yao, Zhang, et al., 2021), two 
broadly on mental and physical health (Bowler et al., 2010b; Coventry et al., 2021), two on positive 
and negative affect (McMahan & Estes, 2015; Yao, Chen, et al., 2021), one on depressive mood 
(H. Roberts et al., 2019), and one on restoration (Song et al., 2022). Despite different stated 
focuses, many of these studies overlapped in the indicators evaluated for these mental health 
outcomes. Exposures evaluated were mostly labeled as the “natural environment” as compared to 
various controls, typically spending time in a managed environment.  
 
Results from studies on positive and negative affect found exposure to the natural environment 
had the expected impact of increased positive affect and decreased negative affect (McMahan & 
Estes, 2015; Yao, Chen, et al., 2021), with more substantial impacts for positive affect and with 
larger effect sizes in the more recent study by Yao et al (2021). The two studies differed in a few 
ways; the more recent study included all empirical studies (Yao, Chen, et al., 2021), while the 
2015 study only included randomized controlled trials (McMahan & Estes, 2015). Additionally, 
the former also evaluated study quality, and reported low confidence in the pooled estimates due 
to between-study heterogeneity (Yao, Chen, et al., 2021). One additional insight resulting from a 
stratified environment-type analysis was that effects of managed green space, namely urban parks, 
as opposed to wild nature, were similar with respect to positive affect, whereas there was no 
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significant impact found for negative affect resulting from urban parks exposure impact (Yao, 
Chen, et al., 2021). This indicated that urban green spaces may be less effective at reducing 
negative emotions. These findings reflected a need for a stronger evidence base with better quality 
studies exploring mechanisms of impact (Yao, Chen, et al., 2021). The study on depressive mood, 
comparable to negative affect, had similar findings, reporting a small effect for reduction in 
depressive mood associated with exposure to the natural environment, but also citing poor quality 
and high risk of bias, resulting in low confidence in the estimates (H. Roberts et al., 2019).   
 
Coventry et al. (2021) also evaluated affect and depressive mood and anxiety within its larger 
review of other health outcomes, finding improved mental health outcomes resulting from nature-
based outdoor activities, such as gardening or green exercise (Coventry et al., 2021). Bowler et al. 
(2010) evaluated various self-reported emotions, finding health-protective associations of activity 
in green natural environments for outcomes of energy, anxiety, anger, fatigue, and sadness. No 
significant effects were found for attention, tranquility, and cortisol (Bowler et al., 2010b). A study 
focused on restorative effects of green space limited its analysis to randomized controlled trials 
(Song et al., 2022). The authors explored both psychological and physiological indicators and 
found that exposure was associated with less fatigue, tension, anger, and confusion, and increased 
vigor and positive affect (Song et al., 2022). Associations for depression and negative affect, while 
in the expected direction, were not statistically significant, which does not align with the previous 
studies discussed; this may be a function of the decision to only include randomized controlled 
trials, but requires further study. The authors also found evidence that green space exposure can 
lower heart rate-associated indicators, though no significant effects were found for blood pressure 
(Song et al., 2022).  
 
Finally, the two studies evaluating the relationship between green space and stress both identified 
a statistically significant relationship for several psychological and physiological indicators 
(Mygind et al., 2021; Yao, Zhang, et al., 2021), some of which were also evaluated in previously 
discussed studies not explicitly focused on stress. Mygind et al. (2021) found that seated relaxation 
and walking in natural environments enhanced heart rate variability (though the association was 
not statistically significant for the former, but on the borderline of significance). They also found 
mixed results for cortisol; levels of salivary cortisol were lower after seated relaxation in a natural 
environment versus a control environment, but there was no effect found for walking in a natural 
environment. Challenges in evaluating changes to cortisol levels were discussed in depth within 
the article, and the authors suggested that heterogeneity in cortisol measures merits further research 
(Mygind et al., 2021), citing conflicting results with another study by Twohig-Bennett & Jones 
(Mygind et al., 2021; Twohig-Bennett & Jones, 2018). Two other meta-analyses also found no 
significant impacts for cortisol (Bowler et al., 2010b; Yao, Zhang, et al., 2021), indicating that this 
merits further analysis, which was echoed by another systematic review focused entirely on 
cortisol (R. Jones et al., 2021). 
 
The reviewed studies present evidence of improved mental health outcomes associated with short-
term exposure to natural environments, including urban green space, especially improvements in 
mood and other psychological indicators, as well as heart rate variance. Most of these studies were 
not able to isolate the effects for solely urban environments, which is a limitation of this review 
and merits further investigation. Ultimately, as for the other health outcomes evaluated in this 
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report, the authors of the studies we reviewed cited challenges with low study quality and high 
levels of heterogeneity (Mygind et al., 2021; H. Roberts et al., 2019; Yao, Zhang, et al., 2021). 
 
Long-term Exposures 
 
For the purposes of this report, long-term exposures to green and blue spaces refer to exposures 
surrounding the residence, such as neighborhood NDVI or blue spaces within a specific buffer, 
rather than short-term interventions.  
 
One recent meta-analysis evaluated depression and anxiety outcomes associated with several green 
space indicators, including the proportion of available green space, and NDVI (Z. Liu et al., 2023). 
The authors found that both increasing proportion of green space (OR: 0.96, 95% CI: 0.95 to 0.98) 
and increasing NDVI levels (OR: 0.93, 95% CI: 0.89 to 0.98) were found to be associated with a 
lower risk of depression. Additionally, an increasing proportion of green space was also found to 
be associated with lower anxiety (OR: 0.94, 95% CI: 0.86 to 1.03), but the results were not 
statistically significant. There was an insufficient number of studies (n=2) to conduct a meta-
analysis for NDVI and anxiety (Z. Liu et al., 2023), but the two primary studies discussed within 
the review both found health-protective effects of NDVI on anxiety (N. Di et al., 2020; Maas et 
al., 2009).  
 
Though we only identified one meta-analysis evaluating long-term impacts of urban green space 
on depression and anxiety in the general population, additional reviews and primary literature 
provide additional insights. Liu’s findings are consistent with a previous review on urbanicity and 
depression (Sampson et al., 2020). Sampson et al. (2020) also reported that some existing evidence 
supported a relationship between green space and depression in urban areas, but not in rural areas 
(Sampson et al., 2020), based on the findings of two primary studies, one in children and one in 
adults (Bezold et al., 2018; Sarkar et al., 2018). Additionally, a recent primary analysis focused on 
the adult population provided further evidence on both depression and anxiety, finding surrounding 
greenness (NDVI) to be associated with reduced odds of taking benzodiazepines for anxiety, and 
access to large green spaces to be associated with self-reported history of depression (Gascon et 
al., 2018). Other primary studies provide evidential support for these health outcomes using 
different metrics, such as a recent study that found the view of green spaces from the residence 
was associated with lower risk of depression and anxiety (Braçe et al., 2020).  
 
Another recent study presented pooled estimates for depressed affect (feeling sad, downhearted, 
or blue) in older adults (Noordzij et al., 2021). The authors evaluated two exposure metrics: 
distance to the nearest green space, and the amount of green space within 800-m buffers. The 
results were not statistically significant, though the pooled OR for the distance metric bordered 
significance, with ORs of 0.98 (95% CI: 0.96 to 1.00) and 1.00 (95% CI: 0.98 to 1.03) for the two 
metrics, respectively (Noordzij et al., 2021). However, this study was not a traditional meta-
analysis in that it did not involve the synthesis of research results from multiple studies; rather, the 
authors pooled effects from multiple cohorts (Noordzij et al., 2021). This study also found no 
impacts of green space on subjective, self-rated health, and reported that further longitudinal 
studies are needed to characterize potential impacts in the older population, and determine whether 
other exposure metrics may have more significant impacts for this specific group (Noordzij et al., 
2021). 
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Another study was the first to pool estimates of nature’s effects on self-regulation in children, an 
outcome with important implications for the management of emotions and other cognitive 
processes (Weeland et al., 2019). The meta-analysis included both correlational and quasi-
experimental studies (of which several of the latter fall into the short-term exposures category; this 
meta-analysis is only described in this section for simplicity). The authors found small but 
statistically significant positive overall associations between nature exposures – including 
residential greenness and various nature-based interventions, among other metrics – and children’s 
self-regulation for both types of study designs. The authors did highlight several limitations, 
including methodological inconsistencies between studies, publication bias, and small samples 
sizes, as well as identified areas for future research, but also suggested that their findings have 
important implications for the development of nature-based intervention and prevention efforts for 
children (Weeland et al., 2019).  
 
Two recent meta-analyses focused on urban blue space exposures, one including evaluations of 
restoration and social interaction (Georgiou et al., 2021) and the other on mental health and 
wellbeing (N. Smith et al., 2021). Both meta-analyses reported results in the form of an effect size, 
so specific dose-response relationships were not reported in Table 3.5. Both studies found health-
protective impacts of blue space exposures. Georgiou et al. was focused on identifying the 
pathways through which blue spaces can affect health outcomes, and therefore evaluated physical 
activity, restoration, social interaction, and environmental factors. We limit this discussion to 
restoration and social interaction as mental health-associated outcomes. The authors found that 
larger quantities of blue space within a geographical area, as well as being in more contact with 
blue space, were both significantly associated with higher levels of restoration. However, living 
with a shorter distance to blue spaces was not associated with restoration or social interaction 
(Georgiou et al., 2021). While there was substantial evidence for restoration for two out of the 
three exposure metrics, this analysis found that the social interaction literature is mixed and 
requires further study (Georgiou et al., 2021). Smith et al. found that the presence of blue space 
within 500-m of peoples’ home address was associated with improved self-reported mental health 
and wellbeing (N. Smith et al., 2021), finding relatively small effect sizes. Though not specific to 
mental health, apart from other outcomes explored in other sections of this report, Smith et al. also 
reported a positive relationship between blue spaces and general health (N. Smith et al., 2021). 
Both of these studies add to a growing body of evidence characterizing a positive relationship 
between urban blue spaces and population health, though further studies on blue space are needed, 
considering the evidence base was primarily composed of cross-sectional studies with substantial 
limitations, and though studies were of good quality, there was significant heterogeneity (Georgiou 
et al., 2021; N. Smith et al., 2021).  
 
Overall, evidence from the meta-analyses builds upon the findings of a previous review on general 
mental health effects associated with long-term exposures to green and blue spaces which found 
limited evidence for surrounding greenness and mental health in adults (Gascon et al., 2015). They 
did not find sufficient evidence to draw conclusions for other greenness indicators (Gascon et al., 
2015), and the Liu meta-analysis also only evaluated surrounding greenness, so more research is 
needed to explore other exposure metrics and uncover mechanisms of impact. Additionally, while 
the previous review was inconclusive on blue space impacts, the two meta-analyses we evaluated 
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both provide more recent evidence of positive impacts of access to blue spaces on mental health 
(Georgiou et al., 2021; N. Smith et al., 2021). 

 
In terms of potential dose-response values to use in health impact analysis, with access to the 
appropriate baseline health datasets for depression, the ORs developed in the meta-analysis from 
Liu et al. could be applied to evaluate the impacts of potential changes in greenness on depression 
outcomes in the general population (Z. Liu et al., 2023).  
 
Cardiovascular Health 
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Table 5.6. Cardiovascular Health: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban Green or Blue 
Space Impacts 
Authors/ 
Year 

Publication Title Specific Health 
Outcomes 

Green or Blue 
Space Exposure(s)  

Quantitative Dose-
Response/Pooled Effect 
Estimate 

Main Findings 

(Bowler et 
al., 2010b) 

A systematic review 
of evidence for the 
added benefits to 
health of exposure 
to natural 
environments 

Blood pressure 
(BP) 

Activity in natural 
environment (ranged 
between studies, but 
had to be reasonably 
‘green’) versus 
synthetic environment 
(non-green outdoor 
built environments or 
indoor environments). 

Effect size (Hedges’ g):  
SBP: 0.02 (95% CI: 0.42, 0.38) 
DBP: 0.32 (95% CI: –0.18, 0.82) 

No effect was found on systolic 
or diastolic BP.  

(Chandrabose 
et al., 2019) 

Built environment 
and cardio-
metabolic health: 
systematic review 
and meta-analysis 
of longitudinal 
studies 

Obesity (only 
outcome pooled), 
type 2 diabetes, 
and hypertension 

Built environment 
attributes: recreational 
facilities (including 
green space/parks) 

Obesity: Weighted Z-value: 1.034 
(p = 0.301) 

Only obesity had sufficient 
longitudinal studies for a pooled 
analysis. While recreational 
facilities more broadly had a 
significant relationship with 
obesity outcomes in a health-
protective direction, the isolated 
effect of green spaces and parks 
was not statistically significant.  

(X.-X. Liu et 
al., 2022) 

Green space and 
cardiovascular 
disease: A 
systematic review 
with meta-analysis 

Stroke NDVI Pooled OR for 0.1 unit increase in 
NDVI:  
Stroke incidence/prevalence: 0.98 
(95% CI: 0.96, 0.99) 

This study found evidence of a 
protective effect of NDVI on 
stroke incidence (as well as 
cardiovascular mortality – see 
Mortality section). 

(N. Smith et 
al., 2021) 

Urban blue spaces 
and human health: 
A systematic review 
and meta-analysis 
of quantitative 
studies 

Obesity Blue space Pooled β coefficient for presence of 
blue space within 500-m: 
Obesity: –0.34. (95% CI: –0.19,  
–0.09), p < 0.001 

This study found that the 
presence of blue space within 
500m of peoples’ home address 
was associated with decreased 
levels of obesity.  

(Twohig-
Bennett & 
Jones, 2018) 

The health benefits 
of the great 
outdoors: A 
systematic review 
and meta-analysis 

Heart rate, diastolic 
and systolic blood 
pressure, HDL 
cholesterol, low 
frequency heart 

Multiple, including 
NDVI, land cover 
maps, tree canopy and 
street tree data, and 

Pooled mean difference for a 
comparison of high to low green 
space exposure (only significant, 
health protective results shown 
here): 

This study found statistically 
significant associations between 
high levels of green space 
exposure and improved heart 
rate, diastolic blood pressure, 
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of greenspace 
exposure and 
health outcomes 

rate variability 
(HRV), increased 
high frequency 
HRV, hemoglobin, 
blood glucose, total 
cholesterol, LDL 
cholesterol, 
triglycerides, type 
2 diabetes, 
hypertension, 
stroke, 
dyslipidaemia, and 
coronary heart 
disease 

subjective measures of 
greenness 

Heart rate: −2.57 (95% CI: −4.30, 
−0.83) 
Diastolic blood pressure: −1.97 
(95% CI: −3.45, −0.19)  
HDL cholesterol: −0.03 (95% CI: 
−0.05, <-0.01) 
LF HRV: 
−0.06 (95% CI: −0.08, −0.03)  
Increased HF HRV: 91.87 (95% 
CI: 50.92, 132.82) 
Pooled OR for a comparison of 
high to low green space exposure:  
Type 2 diabetes: 0.72 (95% CI: 
0.61, 0.85) 

HDL cholesterol, low frequency 
HRV, increased high frequency 
HRV, and type 2 diabetes.  
Incidence of stroke, 
hypertension, dyslipidaemia, 
and coronary heart disease were 
also reduced but did not have 
statistically significant 
associations. 

(Ye et al., 
2022) 

Greenspace and 
health outcomes in 
children and 
adolescents: A 
systematic review 

Obesity/overweight NDVI Pooled OR for a 0.1 unit increase in 
NDVI:  
Obesity/overweight: 0.91 (95% 
CI: 0.84, 0.98) 

This study found a statistically 
significant association between 
an increase in NDVI and 
reduced obesity/overweight 
outcomes.  

(Zhao et al., 
2022) 

Association 
between 
greenspace and 
blood pressure: A 
systematic review 
and meta-analysis 

Diastolic and 
systolic blood 
pressure, and 
hypertension 

NDVI and distance to 
the nearest green space 

Pooled coefficients for 0.1 unit 
increase in NDVI within 500m:  
SBP: −0.77 mmHg (95% CI: 
−1.23, −0.32)   
DBP: −0.32 mmHg (95% CI: 
−0.57, −0.07) 
Hypertension:  
NDVI in different buffers was 
significantly associated with lower 
odds (2–9%) of hypertension.  
Pooled ORs for:  
1% increase in proportion of green 
space: 0.99, 95% CI: 0.99, 1.00 
Per 500 m increase in residential 
distance to the nearest green 
spaces: 1.03, 95% CI: 0.96, 1.10 

This study found evidence of a 
relationship between increased 
NDVI and decreased blood 
pressure.  
For hypertension, NDVI in 
different buffers was 
significantly associated with 
lower odds (2-9%) of 
hypertension, as was an 
increased proportion of green 
space. However, no relationship 
was found for the distance to 
nearest green space.  
The authors reported low 
confidence in all the pooled 
estimates.  

Notes: OR = odds ratio; NDVI = normalized difference vegetation index; LF = low-frequency; HF = high-frequency; HRV = heart rate variability;  DBP = 
diastolic blood pressure; SBP = systolic blood pressure; CI = confidence interval. 
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We identified seven systematic reviews including meta-analysis that evaluated cardiovascular 
health-related outcomes, described in Table 5.6 (excluding mortality outcomes which are included 
in the Mortality section above, see Table 5.3). The most commonly evaluated outcomes were blood 
pressure (Bowler et al., 2010b; Twohig-Bennett & Jones, 2018; Zhao et al., 2022) and obesity 
(Chandrabose et al., 2019; N. Smith et al., 2021; Ye et al., 2022), which were each evaluated in 
three studies. One of the studies on obesity was solely focused on urban blue space access (N. 
Smith et al., 2021). One study evaluated various cardiovascular mortality outcomes (discussed 
previously) as well as stroke (X.-X. Liu et al., 2022). Stroke (X.-X. Liu et al., 2022; Twohig-
Bennett & Jones, 2018) and hypertension (Twohig-Bennett & Jones, 2018; Zhao et al., 2022) were 
also each included in two of the seven studies. We also note that some cardiovascular-related 
indicators such as blood pressure and heart rate are associated with mental health outcomes; 
articles focused on acute physiological responses of stress and similar outcomes are contained 
within the Mental Health section.   
 
Blood Pressure 
 
Of the three studies evaluating the relationship between green space access and blood pressure, 
two found a statistically significant impact. The Bowler et al. article was focused on short term 
exposures. The authors evaluated exposure to natural environments (also discussed in the Mental 
Health section) and investigated blood pressure, finding no effect on systolic or diastolic 
measurements (Bowler et al., 2010b). Also previously discussed, the review by Twohig-Bennett 
& Jones (2018), which was not limited to green interventions, found a statistically significant 
impact on diastolic blood pressure for a comparison of high to low green space exposures. Finally, 
a recent meta-analysis focused entirely on the effects of residential greenness (using NDVI) on 
blood pressure, characterizing changes in blood pressure measurements associated with various 
exposure metrics (Zhao et al., 2022). The authors found evidence of a relationship between 
increased residential NDVI (0.1 unit) and decreased systolic (pooled coefficient: −0.77 mmHg), 
95% CI: −1.23 to −0.32) and diastolic (pooled coefficient: −0.32 mmHg, 95% CI: −0.57 to −0.07) 
blood pressure (Zhao et al., 2022). They also found that NDVI in different buffers was significantly 
associated with lower odds (2-9%) of hypertension, as was an increased proportion of green space. 
However, no relationships were identified for the distance to nearest green space (Zhao et al., 
2022), which has been found in studies focused on other health outcomes as well (Connolly et al., 
2023).  
 
Zhao et al. explicitly compared their results to the Twohig-Bennett & Jones study, which also 
reported on blood pressure and hypertension. Zhao et al. (2022) identified a significant relationship 
between both systolic and diastolic blood pressure as well as hypertension, while Twohig-Bennett 
& Jones only found a significant relationship for diastolic blood pressure. The former expressed 
confidence in their own more recent estimates since their study design focused on specific green 
space exposures rather than pooling multiple types of exposures as Twohig-Bennett & Jones did 
in their analysis of 24 health outcomes (Twohig-Bennett & Jones, 2018). Regardless, the authors 
reported low confidence in the pooled estimates and called for further exploration of mediating 
factors as well as longitudinal studies, since most included in the meta-analysis were cross-
sectional and therefore presented challenges in evaluating causality (Zhao et al., 2022). 
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More research is needed, but recent pooled estimates provide preliminary evidence that living in 
greener areas is associated with improved blood pressure outcomes, with coefficients derived from 
meta-analysis that could be utilized in health impact assessment studies (Zhao et al., 2022). 
 
Obesity  
 
Three meta-analyses evaluated obesity outcomes (Chandrabose et al., 2019; N. Smith et al., 2021; 
Ye et al., 2022). The previously cited study from Smith et al. (2021) was focused on urban blue 
spaces, and found the presence of blue space within 500-m of peoples’ home address was 
associated with decreased levels of obesity (pooled β: -0.34, 95% CI: -0.19 to -0.09). 
 
The other two studies evaluated green spaces. Chandrabose et al. (2019) was focused more broadly 
on the built environment, did not consider greenness metrics such as NDVI, and only included (1) 
longitudinal studies to inform causal inference, and (2) studies considering a physical activity 
pathway (i.e., not considering potential impacts of air quality or stress on obesity outcomes) 
(Chandrabose et al., 2019). The authors found that while recreational facilities more broadly had 
a significant relationship with obesity outcomes in a health-protective direction, the isolated effect 
of green spaces and parks was not statistically significant. The authors cited this as consistent with 
what was found in (Lachowycz & A. P. Jones, 2011) which included cross-sectional studies in 
their systematic review.  
 
Finally, Ye et al. (2022) focused on residential greenness and obesity outcomes in children, 
supplementing a recent systematic review (Jia et al., 2021). The authors found a statistically 
significant association between an increase in NDVI and reduced obesity/overweight outcomes 
(for a 0.1 unit increase in NDVI, OR: 0.91, 95% CI: 0.84 to 0.98) for children and adolescents.  
The Jia et al. (2021) review was also focused on children and found evidence of a positive 
association between access to green space and physical activity, as well as negative associations 
for television use, body mass index (BMI) and weight status (Jia et al., 2021).  
 
There is growing evidence of a relationship between living in greener areas and obesity outcomes 
in children and adolescents, though findings are mixed for other green space outcomes. The 
evidence for children could be associated with outdoor play occurring more often in greener areas, 
but further analysis on mechanisms would be valuable. Additionally, there is limited positive 
evidence for impacts of living near blue spaces on obesity outcomes. Pooled estimates from the 
recent obesity meta-analysis (Ye et al., 2022) could be considered for health impact analyses of 
various greenness scenarios on obesity in children and adolescents, though again baseline small-
area health estimates for the population of interest would be needed for this analysis.  
 
Other Cardiovascular Outcomes  
 
Several other cardiovascular outcomes were evaluated as well. One meta-analysis evaluated stroke 
incidence (alongside other mortality outcomes; see the Mortality section), finding evidence of a 
protective effect of NDVI on stroke incidence (for 0.1 unit increase in NDVI, OR:  
0.98, 95% CI: 0.96 to 0.99), as well as various cardiovascular mortality outcomes (X.-X. Liu et 
al., 2022). 
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As described previously and referenced in other sections (see Mortality, Mental Health, and 
Respiratory Health), Twohig-Bennett & Jones (2018) studied multiple health outcomes, 
conducting 24 meta-analyses total (Twohig-Bennett & Jones, 2018). In terms of cardiovascular 
impacts (apart from what has been previously discussed), the authors found statistically significant 
health-protective associations between high levels of green space exposure and improved heart 
rate, high-density lipoprotein cholesterol, low frequency heart rate variance (HRV), increased high 
frequency HRV, and type 2 diabetes. Incidence of stroke, hypertension, dyslipidaemia, and 
coronary heart disease were also reduced but did not have statistically significant associations 
(Twohig-Bennett & Jones, 2018). Additionally, the previously mentioned study by Song et al. 
(2022) (see Mental Health and Table 5.5) focused on restoration and evaluated several of the same 
outcomes. Compared to Twohig-Bennett & Jones, Song et al. estimated a stronger impact for heart 
rate. The authors suggested several reasons for these discrepancies, including that while Twohig-
Bennett & Jones did include more studies in their meta-analyses, they did not limit to randomized 
controlled trials as Song et al. (2022) did (to minimize meta-analysis heterogeneity).   
 
Overall, while this evidence suggests protective effects for several cardiovascular outcomes, more 
focused analyses with improved study designs are needed on some of these less studied outcomes 
with inconsistent findings. While not discussed in this section, the existing literature does suggest 
a consistent association between urban green space and cardiovascular mortality across reviewed 
meta-analyses (see Mortality section).  
 
 
Physical Activity 
 
Due to a paucity of meta-analytic studies characterizing the dose-response relationship between 
urban green space and physical activity (Table 5.7), the discussion in this section incorporates 
findings from several relevant, U.S.-based systematic reviews as well.   
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Table 5.7. Physical Activity: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban Green or Blue Space 
Impacts 
Authors/ 
Year 

Publication Title Specific 
Health 
Outcomes 

Green or Blue 
Space 
Exposure(s)  

Quantitative Dose-
Response/Pooled Effect 
Estimate 

Main Findings 

(Barnett et 
al., 2017) 

Built environmental 
correlates of older adults' 
total physical activity and 
walking: a systematic 
review and meta-analysis 

Total 
physical 
activity 
(PA), 
walking 

Parks/public 
open space, 
greenery and 
aesthetically 
pleasing scenery  

N/A – results not presented 
in dose-response form 

This study found statistically significant evidence 
of positive associations between (1) total physical 
activity and (2) total walking with access to both 
parks/public open space and the presence of 
greenery and aesthetically pleasing scenery. 

(Cerin et 
al., 2017) 

The neighbourhood 
physical environment and 
active travel in older 
adults: a systematic 
review and meta-analysis 
 

Active 
travel 

Parks/public 
space/recreation, 
greenery and 
aesthetically 
pleasing scenery  

N/A – results not presented 
in dose-response form 

This study found no association between greenery 
and aesthetically pleasing scenery with any active 
travel outcomes. Positive associations were found 
between parks/public space/recreation with total 
and within-neighborhood walking, and all active 
travel, but not with walking/cycling or just 
cycling. Associations for parks/public 
space/recreation only hold for perceived 
environmental measures, not objective. 

(Georgiou 
et al., 
2021) 

Mechanisms of Impact of 
Blue Spaces on Human 
Health: A Systematic 
Literature Review and 
Meta-Analysis 

PA levels Living closer to 
blue space and 
having larger 
amounts of blue 
space in a 
geographic area 

Physical activity levels: 
For living closer to blue 
space: Cohen’s d 
(standardized effect size): 
0.122 (95% CI: 0.065, 
0.179) 
For having larger amounts 
of blue space in a region: 
Cohen’s d: 0.144 (95% CI: 
0.024, 0.264) 

This study found that (1) living closer to blue 
space and (2) having larger amounts of blue space 
within a geographical area are both associated 
with statistically significantly higher 
physical activity levels.  

(McGrath 
et al., 
2015) 

Associations of objectively 
measured built-
environment attributes 
with youth moderate-
vigorous physical activity: 
a systematic review and 
meta-analysis 

Moderate 
to vigorous 
PA levels 

Built 
environment 
features 
(including parks) 

N/A – results not presented 
in dose-response form 

Play facilities, parks, playgrounds and features 
that facilitate walking had negative effects on 
children’s activity but positive effects on 
adolescents’ activity. Effects of parks and green 
spaces were not isolated.  

(Van 
Cauwenbe
rg et al., 
2018) 

Relationships Between 
Neighbourhood Physical 
Environmental Attributes 
and Older Adults’ Leisure-

Leisure-
time 
walking 

Parks/public 
open space, 
greenery and 

N/A – results not presented 
in dose-response form 

This study found statistically significant evidence 
of positive associations between leisure-time 
walking with access to aesthetically pleasing 
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Time Physical Activity: A 
Systematic Review and 
Meta-Analysis 

aesthetically 
pleasing scenery  

scenery, as well as between overall leisure-time 
physical activity and parks/open space. 

Notes: PA = physical activity; CI = confidence interval. 
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Of the four meta-analyses included in Table 5.7, one was focused on blue space access (Georgiou 
et al., 2021), and the rest focused on neighborhood environment features (Barnett et al., 2017; 
McGrath et al., 2015; Van Cauwenberg et al., 2018). Of the latter, Barnett et al. (2017) and Van 
Cauwenberg et al. (2018) focused on older adults, and McGrath et al. (2015) focused on the youth 
population. Though all presented meta-analysis results, none of these studies presented a dose-
response relationship for a specific increase in urban green or blue spaces resulting in a change in 
physical activity. 
 
The three studies focused on the older adult population were conducted by the same research 
groups using the same methodologies, but focused on associations between the built/physical 
environment and three separate outcomes: active travel (Cerin et al., 2017), total physical activity 
and walking (Barnett et al., 2017), and leisure-time physical activity (Van Cauwenberg et al., 
2018). While parks/public open space and the presence of greenery and aesthetically pleasing 
scenery were found to be statistically significantly associated with more total physical activity and 
walking (Barnett et al., 2017), results for active travel were less consistent, with no association 
found for greenery and aesthetically pleasing scenery, and positive associations found for 
parks/public space/recreation with several active travel outcomes (Cerin et al., 2017). Van 
Cauwenberg et al. (2018) found evidence of a positive relationship between access to aesthetically 
pleasing scenery with leisure-time walking, and between parks/open space with overall leisure-
time physical activity, but not the inverse (Van Cauwenberg et al., 2018). While these studies 
provide mixed evidence of the relationship between access to green spaces and physical activity, 
they did not present quantitative dose-response values for the relationships and did not evaluate 
specific quantifiable and isolated green space exposures.  
 
The meta-analysis by McGrath et al. (2015) also evaluated built environment characteristics, but 
for youths rather than older adults (McGrath et al., 2015). The authors found that play facilities, 
parks, playgrounds and features that facilitate play and walking had negative effects on children’s 
moderate to vigorous activity but small positive effects on adolescents’ activity. The authors cited 
potential causes for this disparity, including parental intervention in young children’s activity for 
safety reasons (McGrath et al., 2015). Regardless, the effects of parks and green spaces were not 
isolated, so it is challenging to characterize the extent to which those features have significant 
impacts for the purposes of our analysis. The author’s systematic review of the literature also found 
that more outdoor activity was associated with physical environment features such as streets, 
parking lots, shopping centers, and hard surface play areas, rather than greenness (McGrath et al., 
2015).  
 
Finally, the study focused on access to blue spaces and mechanisms of potential salutogenic effects 
found that both living closer to blue space and having large amounts of blue space within a 
geographical area were both associated with statistically significantly higher physical activity 
levels (Georgiou et al., 2021). These positive findings align with a 2017 systematic review on 
outdoor blue space exposure and the levels of physical activity, though the authors assigned a 
classification of “limited” to the evidence, mainly based on study heterogeneity (Gascon et al., 
2017). There were multiple articles included in both syntheses (Karusisi et al., 2012; Perchoux et 
al., 2015; Wilson et al., 2011; Ying et al., 2015), though the study by Georgiou et al. (2021) 
incorporated several primary analyses published after the previous review. 
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An early systematic review evaluating obesity-related indicators found mixed evidence on green 
space and physical activity; though sixty-six percent of studies presented evidence of a positive 
association, many of the results were classified as ambiguous (Lachowycz & A. P. Jones, 2011). 
A 2015 review focused entirely on park access evaluated twenty years of studies in the U.S., again 
finding inconsistent evidence of the relationship between park density and proximity and 
objectively measured physical activity, citing variation in exposure measurement types as well as 
variation in the reporting of physical activity outcomes as important limitations (Bancroft et al., 
2015). Seventy-five percent (15 out of 20) primary studies included in this particular review 
reported no association or a mixed association (Bancroft et al., 2015). Another review focused on 
the built environment more broadly found evidence of a positive effect of the provision of quality 
parks and playgrounds on physical activity and active transport (M. Smith et al., 2017), though 
they did not evaluate greenness specifically, with the exception of considering the retrofit of 
existing green space into pocket parks (Cohen et al., 2014). The review suggested its findings 
support further built environment interventions for increasing physical activity (M. Smith et al., 
2017). Finally, a more recent systematic review on green space exposure and diabetes mellitus, 
physical activity, and obesity found evidence that the likelihood of physical activity increases with 
added exposure to neighborhood green space (De la Fuente et al., 2021). However, this assessment 
was based on only five studies with inconsistent exposure measurements, including nature 
experience, frequency of green space visits, and having a higher area of green space in the 
neighborhood. One of these primary studies did include an objective NDVI measurement, finding 
physical activity to be higher in adults who lived in an area with the highest quintile of greenness 
versus the lowest, and also higher for populations living closer to a park entrance (Klompmaker et 
al., 2018).  
 
Results are inconsistent for the relationship between urban green space and physical activity, with 
mixed findings and no quantifiable dose-response values available for use in health impact 
assessment. There are several known challenges associated with characterizing the relationship 
between urban green space and physical activity, the most commonly cited being methodological 
heterogeneity (Bancroft et al., 2015; De la Fuente et al., 2021; M. Smith et al., 2017). There is also 
a need for longitudinal and quasi-experimental analyses that could evaluate causality (Barnett et 
al., 2017). This is an area for future study; potential methodological improvements to reduce 
heterogeneity, including the measurement of objective measures of greenness such as NDVI, 
would facilitate the development of dose-response values that could be used to evaluate potential 
physical activity increases associated with built environment interventions. Currently, we do not 
recommend specific dose-response values to be used for health impact assessment, due to 
inconsistent evidence and a scarcity of well-established dose-response values associated with a 
quantitative change in greenness such as NDVI or tree canopy coverage.  
 
The existing evidence on blue spaces, though limited compared to the expanse of green space 
literature, supports the hypothesis that exposure to blue spaces is associated with increased 
physical activity. Previous reviews called for further longitudinal studies and a need for further 
multidisciplinary collaborations to improve upon challenges with methodological heterogeneities 
commonly seen in green and blue space analyses (Gascon et al., 2017; Georgiou et al., 2021). 
 
The scope of this report does not include the impacts of other health outcomes resulting from 
physical activity in green space as an intervention, though results from some studies were 
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incorporated in the extraction workbook (Shin et al., 2020). There is also recent meta-analytic 
evidence of increased positive impacts of physical activity in green and blue spaces on multiple 
health outcomes (H. Li et al., 2022; Yen et al., 2021), though evidence indicates differential 
impacts in “wild” versus urban settings (H. Li et al., 2022). 
 
Respiratory Health 
 
We identified seven systematic reviews including meta-analyses focused on access to urban green 
spaces and respiratory health, primarily in children and adolescents (Cao et al., 2023; Lambert et 
al., 2017; Parmes et al., 2020; Twohig-Bennett & Jones, 2018; X. Wang et al., 2022; Wu et al., 
2022; Ye et al., 2022). Though the literature search included manuscripts published as early as 
2010, all reviews including meta-analyses were published between 2017-2023. Asthma and 
allergic rhinitis were the most evaluated outcomes, with six out of the seven studies analyzing 
both. Table 5.8 provides an overview of the relevant studies. 
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Table 5.8. Respiratory Health: Summary of Review Studies Presenting a Quantitative Meta-Analysis of Urban Green or Blue Space 
Impacts 
Authors/ 
Year 

Publication Title Specific 
Health 
Outcomes 

Green or Blue 
Space 
Exposure(s)  

Quantitative Dose-Response/Pooled 
Effect Estimate 

Main Findings 

(Cao et 
al., 2023) 

The effect of greenness 
on allergic rhinitis 
outcomes in children 
and adolescents: A 
systematic review and 
meta-analysis 

Allergic 
rhinitis 

NDVI For a 10% increase in NDVI:  
Main pooled OR: 1.00 (95% CI: 0.99, 
1.00). 
 
500-m buffer pooled OR: 0.99 (95% CI: 
0.97, 1.01) 

This study did not find evidence of a 
relationship between greenness and 
allergic rhinitis in children and 
adolescents.  
 

(Lambert 
et al., 
2017) 

Residential greenness 
and allergic respiratory 
diseases in children 
and adolescents – A 
systematic review and 
meta-analysis 
 

Asthma, 
allergic 
rhinitis 

NDVI Pooled OR for 0.1 unit increase in NDVI:  
Asthma at a 100-m buffer: 1.01 (95% CI: 
0.93, 1.09)  
Allergic rhinitis at a 500-m buffer: 0.99 
(95% CI = 0.87, 1.12) 

This study did not find evidence of a 
relationship between greenness and 
asthma or allergic rhinitis in children 
and adolescents.  
 

(Parmes 
et al., 
2020) 

Influence of residential 
land cover on 
childhood allergic and 
respiratory symptoms 
and diseases: Evidence 
from 9 European 
cohorts 

Wheezing, 
asthma, 
allergic 
rhinitis, 
eczema 

Proportion of land 
covered by green 
space 

Pooled OR for 10% increase in green 
cover:  
Wheeze: 1.059 (95% CI: 1.008, 1.114) 
Asthma: 1.092 (95% CI: 1.011, 1.178) 
Allergic rhinitis: 1.081 (95% CI: 1.008, 
1.160)  
Eczema: 1.009 (95% CI: 0.957, 1.064) 

This study found that an increase in 
green space coverage resulted in 
greater odds of wheezing, asthma, 
and allergic rhinitis, but not eczema. 
Secondary analysis also found 
increased odds associated with living 
in areas with surrounding coniferous 
forests. 

(Twohig-
Bennett & 
Jones, 
2018) 

The health benefits of 
the great outdoors: A 
systematic review and 
meta-analysis of 
greenspace exposure 
and health outcomes 

Asthma Multiple, including 
NDVI, land cover 
maps, tree canopy 
and street tree data, 
and subjective 
measures of 
greenness 

Asthma:  
Comparison of lowest green space to 
highest green space exposure:  
OR: 0.93 (95% CI: 0.57, 1.52) 

This study did not find evidence of a 
statistically significant impact of 
greenness on asthma outcomes.  
 

(X. Wang 
et al., 
2022) 

Association between 
exposure to greenness 
and atopic march in 
children and adults-A 
systematic review and 
meta-analysis 

Asthma, 
allergic 
rhinitis 

NDVI Pooled ORs for exposure at birth and 
childhood outcomes, 0.1 unit NDVI 
increase:  
Allergic rhinitis:  0.83 (95% CI: 0.72, 
0.96) 
Asthma: 0.96 (95% CI: 0.94, 0.98) 

Increase in NDVI was associated 
with decreased odds of current 
asthma, but no significant association 
was found between residential 
greenness exposure and ever asthma, 
regardless of buffer distance.  
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Current exposure and outcome, IQR 
NDVI increase:  
Current asthma: 0.94 (95% CI: 0.88, 
1.00) 
Ever asthma: 1.00 (95% CI: 0.93,  
1.08) 
 
 

 
Results for exposure at birth suggest 
that living close to a greener 
environment at birth has a protective 
effect on the development of both 
childhood asthma and allergic 
rhinitis.  
 
 

(Wu et al., 
2022) 

Association of 
individual green space 
exposure with the 
incidence of asthma 
and allergic rhinitis: a 
systematic review and 
meta-analysis 

Asthma, 
allergic 
rhinitis 

NDVI For 0.1 unit increase in NDVI: 
Current asthma: Green exposure 
buffers in four groups (0 < radius ≤ 100 
m, 100 < radius ≤ 300 m, 300 < radius ≤ 
500 m, and 500 < radius ≤ 1000 m)  
Pooled OR (95% CI): 0.98 (0.90, 1.07), 
0.99 (0.91, 1.07), 1.00 (0.91, 
1.09), and 0.98 (0.90, 1.08), respectively 
Ever asthma: green exposure buffers in 
three groups (0 < radius ≤ 100 m, 100 < 
radius ≤ 300 m, and 300 < radius ≤ 500 
m).  
Pooled OR (95% CI): 1.04 (0.92, 1.16), 
1.00 (0.99, 1.02), and 1.04 (0.90, 1.22), 
respectively 
Allergic rhinitis: Pooled OR (95% CI): 
0.98 (0.95, 1.02) for NDVI-100 m, 0.99 
(0.94, 1.04) for NDVI-500 m, and 1.00 
(0.95, 1.05) for NDVI-1000 m 

This study did not find evidence of a 
significant relationship between 
greenness exposure and respiratory 
outcomes.  

(Ye et al., 
2022) 

Greenspace and health 
outcomes in children 
and adolescents: A 
systematic review 

Asthma, 
allergic 
rhinitis 

NDVI Pooled OR for 0.1 unit increase in NDVI: 
Asthma: 0.94 (95% CI: 0.84, 1.06) 
Allergic rhinitis: 0.95 (95% CI: 0.73, 
1.25) 

This study did not find evidence of a 
significant relationship between 
greenness exposure and respiratory 
outcomes. 

Notes: OR = odds ratio; NDVI = normalized difference vegetation index; IQR = interquartile range; CI = confidence interval. 
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Five out of the seven studies did not find evidence of a relationship between urban green space 
and any respiratory health outcome (Cao et al., 2023; Lambert et al., 2017; Twohig-Bennett & 
Jones, 2018; Wu et al., 2022; Ye et al., 2022). Two of these studies included meta-analyses for 
other health outcomes unrelated to respiratory health (Twohig-Bennett & Jones, 2018; Ye et al., 
2022). Twohig-Bennett & Jones conducted a meta-analysis for asthma using only two primary 
studies, and was part of a larger study evaluating more than fifteen health outcomes; the authors 
did not find a statistically significant relationship between exposure to high versus low levels of 
green space and asthma outcomes. This is unsurprising considering the two primary studies 
included in the meta-analysis (Andrusaityte et al., 2016; Škarková et al., 2015) both found 
statistically insignificant results, with associations in different directions. Ye et al. (2022) included 
obesity in their analysis alongside asthma and AR (Ye et al., 2022). The authors did not find 
evidence of a significant relationship between greenness exposure and respiratory outcomes in 
children and adolescents, citing largely inconsistent outcomes in the primary literature (Ye et al., 
2022), which was a theme amongst all of the studies we reviewed. 
 
Of the remaining three studies reporting no statistically significant findings (Cao et al., 2023; 
Lambert et al., 2017; Wu et al., 2022), the most recent was focused entirely on AR in children and 
adolescents (Cao et al., 2023). It included eleven studies in the meta-analysis, and found no 
significant relationships for the main pooled analysis or any of the buffer-specific analyses, 
including 500-m, which encompassed the largest number of primary studies. The studies by 
Lambert et al. (2017) and Wu et al. (2022) both included asthma and AR at various residential 
buffers. The latter study included both “current” and “ever” asthma (Wu et al., 2022).  
 
The two remaining studies presented conflicting results. Wang et al. included an evaluation of 
exposures at birth and found evidence of protective effects of greenness at birth on asthma and 
allergic rhinitis developed in childhood (X. Wang et al., 2022). The authors suggested their 
findings may be different from the Lambert et al. (2017) and Wu et al. (2022) studies due to 
methodological limitations, including a lack of primary studies included in the analysis (Lambert 
et al., 2017) and the combining of birth cohorts and cross-sectional studies into one pooled analysis 
(Wu et al., 2022). It is challenging to state with certainty the reasons for these inconsistent findings, 
but the findings from Wang et al. (2022) do suggest potential differential and beneficial impacts 
of early life exposures, which should be further explored. 
 
The final remaining study by Parmes et al. found the opposite of Wang et al. (2022): increased 
odds of both “lifetime” (synonymous with “ever”) and “current” asthma, wheeze, and allergic 
rhinitis (though not eczema) associated with a 10% increase in green space cover (Parmes et al., 
2020). The authors suggested their findings may be a function of allergies and other issues caused 
by emissions from vegetation, though the authors also noted several mechanisms through which 
green space can potentially be protective of health (Parmes et al., 2020). It is worth noting that this 
study is not a traditional meta-analysis, but includes nine cohorts (all from Europe), so we included 
it here for completeness. This study had several strengths, including the use of a standardized 
measure of European land cover for all of the cohorts included in the analysis; however, the use of 
this land cover metric means that it is challenging to compare these outcomes to those of other 
meta-analyses using NDVI. More research is needed to identify if these findings are widely 
applicable to other regions and populations. 
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As suggested by several of the studies we discussed here, these inconsistent results may be due to 
challenges in standardizing green space exposures, differences between populations studied and 
associated age groups, and confounding (Parmes et al., 2020). The study by Parmes et al. (2020), 
though not a traditional meta-analysis, was able to distinguish between forest types and found that 
living near coniferous forest was associated with greater odds of adverse respiratory outcomes 
(Parmes et al., 2020). Though future analyses are needed to further establish the specific 
relationship between the type of green space and respiratory impacts, this finding suggests that 
incorporating the type of green space in a given residential neighborhood into future analyses may 
be a key to characterizing the relationship between green spaces and respiratory health. The 
measure of NDVI was the most commonly used metric of green space in existing studies and can 
be standardized for summary analyses, but does not measure the vegetation type. Additionally, all 
of the meta-analyses (apart from the Parmes et al. cohort analysis) also included observational 
studies, and were potentially affected by confounding.  
 
To summarize, in terms of recommended dose-response values for health impact assessment 
purposes, the existing meta-analyses do not present consistent supporting evidence of an 
association between green space and respiratory outcomes that would merit inclusion of such 
outcomes in an urban green space health impact assessment.  
 
Implications 
 
Considering the expansive green space literature, and a substantial knowledge gap in the 
establishment of specific dose-response values to be used in health impact assessments to evaluate 
various future natural and working land management scenarios, this review focused solely on 
meta-analyses with pooled estimates for green space and health outcomes. With several recent 
studies evaluating on the same or similar health outcomes, this review serves to consolidate the 
existing, recent literature and discuss potential alignments or inconsistencies.  
 
This review illuminated common challenges in pooling exposures and outcomes for meta-
analyses. Many of the meta-analyses reviewed cited high heterogeneity impacting confidence in 
the estimates. Some authors aimed to reduce this effect by limiting meta-analyses to primary 
studies with specific study designs to support causal inference, such as longitudinal studies or 
randomized controlled trials. Additionally, as is a general limitation in studies evaluating green 
space access, the quality of green spaces was not incorporated into these pooled estimates and is 
an area for future study. Several of the studies evaluating short-term health effects from exposure 
to the natural environment did not distinguish between urban and rural green space exposures, 
including both types in the meta-analysis, which limits inference about the mechanisms of impact.  

 
Despite these challenges, the reviewed meta-analyses had several strengths. Some studies limited 
the inclusion of primary effect estimates to randomized controlled trials or longitudinal cohort 
studies, providing evidence of a causal relationship between urban green space and various health 
outcomes. Several studies also evaluated and improved upon previous meta-analyses, citing more 
comprehensive exposure metrics and statistical analyses, which strengthened confidence in their 
estimates.  
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This review itself has several limitations. Again, due to the nature of the growing body of literature 
on urban green spaces, we limited our review to six common categories of health effects, and did 
not incorporate all possible specific outcomes. We were also not able to include a general scoping 
overview of associations of all health outcomes, or all types of green space exposures, which was 
not the main focus of the review. 
 
Ultimately, this review enabled us to determine the strength of the evidence for various dose-
response relationships between access to urban green space and health outcomes. Due to 
limitations in available dose-response values and baseline health data, as well as baseline green 
space exposures, the NWL tool is currently limited to evaluating all-cause mortality, low birth 
weight, and life expectancy (the latter of which is not discussed in this review, but a California-
specific dose-response estimate developed by our research team has been applied in the tool to 
supplement mortality and birth outcomes (Connolly et al., 2023). Depending on data availability 
in the future, several other health outcomes could be added to this tool and/or used in quantitative 
health impact assessments.  

 
Conclusions 
 
This review found substantial evidence of an association between urban green (and blue) spaces 
with impacts falling within various broad categories of health effects. However, not all specific 
outcomes within each given category presented sufficient meta-analytic evidence of a dose-
response relationship. While there is growing evidence for impacts on various outcomes in the 
groupings of mortality, birth outcomes, mental health, and cardiovascular health, the evidence for 
physical activity and respiratory outcomes was more inconsistent. For all health effect categories, 
further longitudinal studies of good quality will be vital in the continued development of dose-
response values quantifying the relationship between long-term exposure to urban green and blue 
spaces and health. Such dose-response values can be used to evaluate the potential health effects 
of future urban planning scenarios considered by policy-makers.   
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VI. Scoping Review: Wildland Fires 
 
Introduction 
Wildfires have been increasing in the western United States and are associated with higher 
temperatures and earlier spring snow melt (Westerling et al., 2006). The frequency and severity of 
wildfires are projected to increase globally due to alterations of temperature and precipitation 
patterns related to climate change (Moritz et al., 2012). Convincing evidence links wildfires to 
increases in PM2.5 and, to a lesser extent, ozone (O3) exposures; other species of particles, toxic 
air contaminants, and other gases such as nitrogen dioxide (NO2) may also increase during wildfire 
events. While there has been a keen focus on the injuries caused by direct fire exposures, wildfire 
smoke exposures have the ability to negatively impact communities located at the urban wildland 
interface and beyond.   
 
Compared to PM2.5 from urban sources, wildfire-specific PM2.5 has been found to have a greater 
negative impact on human health as it is more prone to large spikes in concentrations, varying and, 
in some cases, more toxic chemical compositions, and smaller particle size (Aguilera, Corringham, 
Gershunov, & Benmarhnia, 2021a; Makkonen et al., 2010). Furthermore, co-exposures between 
wildfire-specific PM2.5 with other harmful environmental factors, particularly extreme heat, have 
been found to increase mortality (Shaposhnikov et al., 2014); an issue of increasing concern as 
temperatures are expected to rise further as a result of climate change and PM2.5 smoke from 
wildfires are expected to increase 190% in in the continuous United States by 2100 (Ford et al., 
2018). A recent study found short-term exposure to wildfire-specific PM2.5 was associated with 
65.6 million all-cause deaths globally, of which, approximately 8.6 million were within the United 
States (2000-2006) (G. Chen et al., 2021). Additional studies have attributed landscape fires to 
677,745 premature deaths annually (G. Roberts & Wooster, 2021).  
 
Substantial general evidence links elevated exposures of wildfire-specific pollution species, 
particularly PM2.5, to numerous adverse morbidity outcomes including respiratory exacerbation 
from asthma, and other respiratory disease symptoms such as chronic obstructive pulmonary 
disease (COPD) (Reid, Brauer, et al., 2016a). Recent research from California has identified a 
significant relationship between wildfire-specific PM2.5 and respiratory hospitalizations and 
emergency room (ER) visits (Reid, Jerrett, et al., 2016b). Acute exposures to wildfire-specific 
PM2.5 have been associated with over 40,000 respiratory and cardiovascular related 
hospitalizations across the contiguous United States between 2008-2012 (Fann et al., 2018).  
 
The current study aims to expand our knowledge on the mortality and morbidity impacts associated 
with wildfire exposure in California. There are few studies that have evaluated the short-term 
morbidity impacts or the statewide distribution of exposure to wildfire-specific PM2.5 over a long-
term period. The aim of the scoping review is two-fold: (1) to identify and summarize the peer-
reviewed literature examining the human health impacts associated with wildfire-specific smoke 
exposure, specifically PM and; (2) identify and extract primary empirical research that can be used 
to inform future modelled health impact research (see Figure 4.2b). These results will provide 
critical information for the State wildfire management planning and is especially relevant for 
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quantifying impacts from natural working land policies, programs, and activities that decrease the 
threats from current catastrophic wildfires. 
 
Methods 
We conducted a scoping review of the global peer-reviewed epidemiological literature using the 
PRISMA between June - September 2020 on the following databases: PubMed, Web of Science, 
APA PsycInfo, and Embase. We followed the Arksey and O’Malley’s framework for scoping 
reviews and the PRISMA-ScR which include the following five phase process: (1) identifying the 
research questions, (2) identifying relevant publications, (3) selecting the publications, (4) charting 
the data, and (5) collating, summarizing, and reporting the results (Arksey & O’Malley, 2005; 
Tricco et al., 2018). In collaboration with the University of California, Los Angeles’ data librarians 
and project partners at CARB, we developed search terms to form keywords for the scoping review 
that would be inclusive of all potential health outcomes from exposures to wildfire related events. 
A full list of search terms is included in the Table below.  
 
Table 6.1. Keyword search  
Concept Text Keywords 
Natural & 
working 
lands 

“Natural and Working Land*” OR “Natural Working Land*” OR NWL OR Chaparral* OR 
Settlement* OR “Woody Vegetation*” OR “Non-grass Vegetation*” OR “Woody Biomass” 
OR “Coastal Area*” OR Wilderness OR Forest* OR Pasture* OR Agroforestry OR Riparian 
OR Savanna* OR Meadow* OR Prairie* OR Steppe* OR Biomass OR Estuar* OR 
Connectivity OR Habitat OR Grassland* OR Woodland* OR Shrubland* OR Wetland* OR 
Rangeland* OR “Preservation Land*” OR Wildland* OR “State Park*” OR “Community 
Park*” OR “Recreational Park*” OR “National Park*” 
  

Burn/Fire Burn* OR Fire* 
Wildfires Wildfire* OR “Wild Fire*” OR "Controlled Burn*" OR "Prescribed Fire*" OR "Prescribed 

Burn*" OR "Experimental Fire*" OR "Experimental Burn*" OR “Burn Strategy” OR “Burning 
Strategy” OR “Wildland Fire*” OR “Peat Fire*” OR “Bush fire*” OR Bushfire* OR “Brush 
Fire*” OR Brushfire* OR “Landscape Fire*” OR “Biomass Burn*” OR “Forest Fire*” 

Health “Health Outcome*” OR “Health Impact*” OR “Rural Health” OR “Urban Health” OR “Mental 
Health” OR “Health Status” OR “Health Effect*” OR Adult* OR Child* OR Infant* OR Fetal 
OR Fetus* OR Human* OR Subject* OR Participant* OR Mortality OR Morbidity OR 
Exposure* 

Review Review OR Meta-Analy*  
 
Criteria included primary empirical human-health studies of all age groups (including prenatal), 
sexes and genders which evaluated the health impacts from wildfire-specific PM smoke exposures. 
Due to the rapidly changing landscape of wildfires over the past decade that include more intense 
and severe fire events and, thus, exposures, we limited our search to articles published between 
2010–2020. All health impacts including but not limited to respiratory, cardiovascular, mental 
health, maternal and child health, and cancers were included in the scoping review search. Since 
this study aims to quantify the human health impacts of the general population, occupational 
exposures, including those from wildland firefighters, were not included. We limited our search to 
studies published in a peer-reviewed journal written in English, French, or Spanish. One of the 
primary aims of the scoping review is to extract primary empirical research that can be used to 
inform future modelled health impact research; thus, we focused on wildfire-specific PM smoke 
as the primary exposure since particles are a commonly used wildfire exposure metric and provide 
several exposure modeling products (e.g. CMAQ, FINN, etc.) options for future modeled health 



A Scenario Tool for NWL in California 
 

 

53 
 

impact research. While we prioritize review and meta-analysis articles in our search terms, we 
extracted articles from the search that also included primary research. Ineligible studies included 
those using non-human subjects, exposures in a laboratory setting, or exposure studies that did not 
empirically examine the relationship between wildfire-specific PM to human health to provide a 
quantitative impact estimate. 
 
Table 6.2. Inclusion and exclusion criteria 
Inclusion Criteria Exclusion Criteria 
Primary peer-reviewed literature that was 
published between 2010–2020 in English, 
Spanish, or French language 

Non-peer reviewed literature (e.g. abstract 
only, conference proceedings, articles from 
the media, letters to the editor, reports, thesis, 
textbooks, etc.) published prior to 2010 and 
after 2020, and not in the English, Spanish, or 
French language 

Literature that explicitly describes wildfire-
specific exposures identified through 
measured and reported PM 

Literature that explicitly describes the 
inclusion of other or mixed fire sources 
including prescribed burns, agricultural 
burning, non-descript regional haze, etc. 

Primary or secondary health data used to 
examine relationships with wildfire-specific 
exposures 

Surveillance data lacking an assessment of 
impact 

Direct health impacts in non-occupational 
settings  

Occupational exposures (e.g., firefighters) or 
secondary impacts (e.g., stress from 
displacement) 

Empirical studies that estimate quantifiable 
impacts  

Non-empirical studies or studies that do not 
quantify exposure impacts  

Studies that explicitly investigate the 
relationship between human health outcomes 
and wildfire-specific exposures 

Literature that does not investigate the 
impacts of wildfire-specific exposures to 
human health  

 
 
After removing duplicates, we analyzed titles and abstracts for significance, then removed studies 
that did not fit the above criteria. We then conducted a reverse snowballing literature search by 
using the citations in the collected literature to identity additional relevant work to ensure all 
relevant articles were included within the review. Once the relevant literature was identified, we 
systematically extracted and organized the data for analysis into an Excel spreadsheet that included 
relevant information including: authors, publication year, publication title, journal, study location, 
exposure measurement, and health outcome examined.  
 
A short narrative summary of each major health outcome categories was developed, after which, 
the authors discussed the potential pathways between wildfire smoke and each health outcome 
category and how we may incorporate them into a health impact analysis. A second reviewer 
looked at all the listed articles and worked with the first reviewer to ensure data were extracted 
properly and accurately represented the data from the articles.  
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Results 
 

The scoping review yielded over 700 health endpoints. Most of these articles were from the United 
States, with the largest portion focused within California. While many of the health outcomes 
focused on respiratory and cardiovascular health end points, there were also articles that evaluated 
other impacts including birth outcomes and mental health outcomes. The strongest evidence that 
exists to date, of impact from wildfire emissions exposure, is for respiratory outcomes, particularly 
asthma hospital admissions or ER visits, more mixed or suggestive evidence for other respiratory 
health outcomes including pneumonia, as well as other outcomes like all-cause mortality. The 
results of this scoping review represent key findings and insights relevant to the impacts of wildfire 
smoke on human health and the state of the literature in terms of dose-response values. The articles 
were categorized into broad health outcome groups and summarized in more detail in the following 
section.  
 
Summary of Health Outcomes  
 
Birth Outcomes 
 
Birth weight is often used as a population-level indicator of general health and future outcomes. 
Low birth weight has been associated with increased risk for mortality and morbidity outcomes 
including risk of cancer, adverse respiratory health outcomes, cardiovascular disease, and other 
chronic health outcomes. Available evidence supports a plausible causal relationship between air 
pollutants and birth outcomes (Lamichhane et al., 2015; Nyadanu et al., 2022), and studies 
examining impacts from combustion-related impacts suggest a link to inflammation, oxidative 
stress, and endothelial dysregulation in the maternal-fetal unit (Basilio et al., 2022). Similar 
impacts are expected for wildfire smoke exposures; however, recent reviews have only found 
limited evidence for the association between wildfire exposures, low birth weight and preterm 
birth, and inconclusive associations between wildfire exposures and small for gestational age and 
infant mortality (Amjad et al., 2021).   
 
The current scoping review identified six peer-reviewed articles that examined the relationship 
between wildland fire exposures and various birth outcomes including, but not limited to, birth 
weight, preterm birth, and small for gestational age. The majority of these articles focused on birth 
weight, were based in the United States, and estimated exposures by distance to wildfire. Of the 
six peer-reviewed articles, five found an association with wildfire exposure and decreased birth 
weight, particularly when the exposure occurred later in the pregnancy (Abdo et al., 2019; Holstius 
et al., 2012; Mccoy & Zhao, 2021; O’Donnell & Behie, 2013, 2015; Prass et al., 2012).  
 
Three U.S.-based peer-reviewed articles found significant impacts between low birth weight and 
wildfire exposures when mothers were exposed to both wildfire PM2.5 and particulate matter with 
a diameter of 10 micrometers or less (PM10), although the strength and significance of the 
association varied over trimesters (Abdo et al., 2019; Holstius et al., 2012; Mccoy & Zhao, 2021). 
Holstius et al. (2012) identified a 9.7 g weight difference in babies born to mothers residing in 
California’s South Coast Air Basin (SoCAB) during a wildfire exposure timeframe that coincided 
with their second trimester compared to babies born to mothers outside that exposure window. 
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While similar results were found for exposure in the first trimester, they were not significant 
(Holstius et al., 2012). Abdo et al. (2019) found that exposure to wildfire PM2.5 smoke was 
significantly associated with 5.7 g reduction in birth weight during the first trimester, while the 
other trimesters varied in their direction of association or were found to be insignificant. In 
addition, researchers identified an increased risk to preterm birth, gestational diabetes, gestational 
hypertension, SGA, neonatal intensive care unit (NICU) admissions, and assisted ventilation from 
wildfire PM2.5 during the various trimesters; however, NICU admissions and assisted ventilation 
directionality was contrary to expectation (Abdo et al., 2019). 
 
The literature based outside the U.S. were similarly heterogenous in their outcomes (O’Donnell & 
Behie, 2013, 2015; Prass et al., 2012). Studies in Australia and Brazil suggested wildfire exposure 
impacted birth weight; however, the significance and direction of impact varied between studies. 
O’Donnell & Behie (2015) found that male infants born in severe wildfire-affected regions 
exhibited notably greater average birth weights compared to less exposed counterparts, suggesting 
that heightened maternal stress may impact male fetal growth patterns (O’Donnell & Behie, 2015). 
In a previous study conducted in 2013, the authors had found that mothers exposed to wildfires 
during the late second trimester or third trimester gave birth to infants with increased preterm birth 
and decreased birth weight (O’Donnell & Behie, 2013). 
 
Overall, the peer reviewed literature suggests an association between select birth outcomes with 
some noting profound outcomes that may have both wide-ranging and long-term public health 
implications; however, there is a lack of available evidence within the peer-reviewed literature to 
conclude an association (Adetona et al., 2016; Evans et al., 2022; Reid, Brauer, et al., 2016a). 
Additional epidemiological studies are needed to better understand the impacts of wildfire PM 
smoke exposures on birth outcomes (Amjad et al., 2021). 
 
Table 6.3. Relevant scoping review articles examining wildfire impacts on birth outcomes   

Author (Year) Title Health Outcomes 
Included 

Location 

Holstius et al. 
(2012) 

Birth weight following pregnancy 
during the 2003 Southern 
California wildfires. 

Birth weight California, 
USA 

Prass et al. (2012) Amazon forest fires between 2001 
and 2006 and birth weight in Porto 
Velho. 

Birth weight Brazil 

O’Donnell and 
Behie (2013) 

Effects of bushfire stress on birth 
outcomes: A cohort study of the 
2009 Victorian Black Saturday 
bushfires 

Birth weight, preterm birth, 
sex-ratios 

Australia, 
Victoria 

O’Donnell and 
Behie (2015) 

Effects of wildfire disaster exposure 
on male birth weight in an 
Australian population. 

Birth weight, gestational 
age 

Australia 
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Mccoy and Zhao, 
2021 (Early Access 

2020) 

 

Wildfire and infant health: a 
geospatial approach to estimating 
the health impacts of wildfire 
smoke exposure 

Birth weight, gestational 
age 

USA, 
Colorado 

Abdo et al. (2019) Impact of wildfire smoke on 
adverse pregnancy outcomes in 
Colorado, 2007-2015. 

Primary: Preterm birth, 
birth weight birth weight 
Secondary: Gestational 
hypertension, gestational 
diabetes, neonatal intensive 
care unit admissions, 
assisted ventilation, small 
for gestational age, low 
birth weight 

USA, 
Colorado 

 
Cancer Outcomes 
 
Polycyclic aromatic hydrocarbons (PAHs), metals, formaldehyde, and other wildfire pollutants are 
known human carcinogens, suggesting that wildfire exposure can increase risk of cancers in 
affected populations (Korsiak et al., 2022). Epidemiological studies examining the impacts of 
wildfire exposure on cancer risks can be challenging due to the long-term progression of the 
disease. Furthermore, the chemical composition of wildfire PM is difficult to characterize and can 
be affected by different ecosystems, limiting the ability to generalize constituents across 
geographies (J. C. Liu & Peng, 2019). A total of two peer-reviewed articles that examined the 
impacts of wildfire PM smoke and cancer risks and matched our inclusion criteria were identified 
in the current scoping review. These two articles spanned the range of Indonesia and the Western 
United States and focused on trace metals and hazardous air pollutants (HAPs) in wildfire smoke 
(Betha et al., 2013; O’Dell et al., 2020).   
 
Betha et al. (2013) estimated the deposition of carcinogenic trace metals in peat fire related PM in 
Southeast Asia and performed Excessive Lifetime Cancer Risk (ELCR) assessments using 
particle-bound trace metals with known toxicity values (Betha et al., 2013). Applying 
concentrations of the carcinogenic trace metals speciated from peat fire related PM (cadmium, 
chromium, nickel, and cobalt), researchers found that approximately 0.4–0.5% of individuals 
could have an increased risk of cancer after being exposed to PM emissions from the Indonesian 
peat fires. Looking at HAPs and PM in western U.S. wildfire smoke plumes, O’Dell et al. (2020) 
found that acrolein, benzene, formaldehyde, and hydrogen cyanide are the major contributors to 
HAP risk in smoke plumes, and these risks decrease as a function of smoke age (O’Dell et al., 
2020). Specifically, chronic exposure to 0.45 µg/m3 of PM1.0 smoke aged < one day or 0.77 µg/m3 
of PM1.0 smoke aged > 3 days is associated with one excess cancer risk per one-million population.  
 
While studies have investigated associations between biomass and non-specific haze events, there 
are few studies that have examined the impacts of wildfire-specific PM exposures on cancer risks 
(Ramakreshnan et al., 2018; Reid, Brauer, et al., 2016a); however, a recent longitudinal 
population-based observational cohort study on more than 2 million Canadian adults found a 5% 
higher lung cancer incidence and 10% higher brain tumor incidence compared to unexposed 
population (Korsiak et al., 2022). Future research should incorporate longitudinal studies and 
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detailed demographic data to evaluate the effects of chronic exposures to wildfire PM, especially 
within susceptible populations.  
 
Table 6.4. Relevant scoping review articles examining wildfire impacts on cancer outcomes 
 

Author 
(Year) 

Title Health Outcomes 
Included 

Location 

Betha et al. 
(2013)  

Chemical speciation of trace metals emitted 
from Indonesian peat fires for health risk 
assessment.  

All cancers Indonesia, 
Kalimantan 

O’Dell et 
al. (2020) 

Hazardous Air Pollutants in Fresh and Aged 
Western US Wildfire Smoke and Implications 
for Long-Term Exposure 

All cancers United States, 
Western US 

 
 
Cardiovascular Health Outcomes 

In a 2021 article, the researchers found 25 of the 38 epidemiological studies identified in the review 
process reported a positive associated between wildfire smoke exposure and increased healthcare 
needs for a range of cardiovascular, circulatory, and cerebrovascular diseases (H. Chen et al., 
2021). Specifically, wildfire smoke exposures were found to increase risk of cardiac arrest, 
cardiovascular illness, hypertension, and congestive health failure, among other cardiac, 
circulatory, and cerebrovascular related healthcare needs (Crabbe, 2012; Haikerwal et al., 2015; 
F. H. Johnston et al., 2014; Jones C.G. et al., 2020; T.-S. Lee et al., 2009; Parthum B. et al., 2017; 
Rappold et al., 2012; Tinling et al., 2016).  

Crabbe (2012) found a non-significant increased risk of cardiovascular admissions from same-day 
exposure to wildfire fine particulate matter in Darwin, Australia (Crabbe, 2012). Another study in 
Australia estimated increased risk of out-of-hospital cardiac arrests (percentage change in risk: 
6.98%, 95% CI: 1.03%–13.29%) and ischemic heart disease-related ED visits and hospital 
admissions with increased PM2.5 exposure at various lags (Haikerwal et al., 2015). F. H. Johnston 
et al. (2014) also found a significantly increased risk of ischemic heart disease ED visits at lag 2 
(OR: 1.07, 95% CI: 1.01–1.15) but observed an inverse association for arrhythmias at lag 2 in 
Sydney, Australia (F. H. Johnston et al., 2014).  

Based in the US, Rappold et al. (2012) found that on the day following exposure to wildfire smoke 
in North Carolina, ED visits for congestive heart failure increased 42% (95% CI: 5%–93%) 
(Rappold et al., 2012). Another study in North Carolina observed increased risk of hypertension 
and cardiac outcomes associated with increased PM2.5 within adults (Tinling et al., 2016).  

Despite these findings, additional articles failed to identify a positive association between related 
health outcomes and wildfire smoke exposures (Alman et al., 2016; DeFlorio-Barker et al., 2019; 
Delfino et al., 2009; H. Liu et al., 2017; Reid, Brauer, et al., 2016a; Reid, Jerrett, et al., 2016b). 

While there was no clear consensus on the impacts to cardiovascular health, several initiating 
biological pathways have been identified and an increasing pool of evidence exists between short-
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term exposures and key cardiovascular outcomes (Hadley et al., 2022); however, interpretation of 
the resulting heath estimates should account for these uncertainties.  

 

Table 6.5. Relevant scoping review articles examining wildfire impacts on cardiovascular 
outcomes 

Author (Year) Title Health Outcomes 
Included 

Location 

Alman et al. 
(2016) 

The association of wildfire smoke with 
respiratory and cardiovascular 
emergency department visits in 
Colorado in 2012: a case crossover 
study. 

Cardiovascular disease; 
Ischemic Heart Disease, 
Acute myocardial 
infarction, Dysrhythmia, 
Congestive heart failure, 
Ischemic Stroke, 
Peripheral vascular 
disease 

USA, 
Colorado  

Crabbe (2012) Risk of respiratory and cardiovascular 
hospitalisation with exposure to 
bushfire particulates: new evidence 
from Darwin, Australia. 

Cardiovascular conditions Australia, 
Darwin 

DeFlorio-Barker 
et al. (2019) 

Cardiopulmonary effects of fine 
particulate matter exposure among 
older adults, during wildfire and non-
wildfire periods, in the United States 
2008–2010. 

All-cause USA, 
statewide 

Dennekamp et al. 
(2015) 

Forest fire smoke exposures and out-
of-hospital cardiac arrests in 
Melbourne, Australia: a case-
crossover study. 

Cardiac arrest Australia, 
Melbourne 

Gan et al. (2017) Comparison of wildfire smoke 
estimation methods and associations 
with cardiopulmonary-related hospital 
admissions. 

Arrhythmia, myocardial 
infarction, ischemic heart 
disease, heart failure, 
cardiovascular disease 

USA, 
Washington 

Haikerwal et al. 
(2015) 

Impact of fine particulate matter 
(PM2.5) exposure during wildfires on 
cardiovascular health outcomes. 

Acute myocardial 
infarction, angina, 
ischemic heart disease, 
cardiac arrest 

Australia, 
Victoria 

Henderson et al. 
(2011) 

Three measures of forest fire smoke 
exposure and their associations with 
respiratory and cardiovascular health 
outcomes in a population-based 
cohort. 

Cardiovascular morbidity, 
hypertension 

Canada, 
British 
Columbia 

Hutchinson et al. 
(2018) 

The San Diego 2007 wildfires and 
Medi-Cal emergency department 
presentations, inpatient 
hospitalizations, and outpatient visits: 
An observational study of smoke 
exposure periods and a bidirectional 
case-crossover analysis. 

Cardiovascular morbidity, 
ischemic heart disease, 
dysrhythmia, congestive 
heart failure, diseases of 
peripheral circulation 

California, 
San Diego 
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Johnston et al. 
(2014) 

Air pollution events from forest fires 
and emergency department 
attendances in Sydney, Australia 1996-
2007: A case-crossover analysis. 

Ischemic heart disease, 
cardiac failure, 
cardiovascular diseases, 
arrhythmias, 

Australia, 
Sydney 

Kollanus et al. 
(2016) 

Effects of long-range transported air 
pollution from vegetation fires on daily 
mortality and hospital admissions in 
the Helsinki metropolitan area, 
Finland. 

Cardiovascular morbidity Finland 

Le et al. (2014) Canadian forest fires and effects of 
long-range transboundary air 
pollution on hospitalizations among 
the elderly. 

Cardiovascular morbidity, 
acute MI, heart failure, 
hypertension; ischemic 
heart disease; acute 
pulmonary heart disease; 
acute heart disease; heart 
rhythm disturbances; 
peripheral vascular 
disease 

USA, 
Northeastern 
& Mid-
Atlantic States 

Martin et al. 
(2013) 

Air pollution from bushfires and their 
association with hospital admissions in 
Sydney, Newcastle and Wollongong, 
Australia 1994-2007. 

Congestive heart failure, 
arrhythmia, 
cardiovascular morbidity, 
ischemic heart disease 

Sydney, 
Australia 

Morgon et al. 
(2010) 

Effects of bushfire smoke on daily 
mortality and hospital admissions in 
Sydney, Australia. 

Cardiac morbidity, 
ischemic heart disease, 
cardiovascular morbidity 

Sydney, 
Australia 

Rappold et al. 
(2012) 

Cardiorespiratory outcomes 
associated with exposure to wildfire 
smoke are modified by measures of 
community health. 

Cardiovascular heart 
failure 

USA, North 
Carolina  

Reid et al. (2016) Differential respiratory health effects 
from the 2008 northern California 
wildfires; a spatiotemporal approach. 

Cardiovascular disease, 
congestive heart failure, 
dysrhythmias, 
hypertension, ischemic 
heart disease 

USA, 
California  

Resnick et al. 
(2015) 

Health outcomes associated with 
smoke exposure in Albuquerque, New 
Mexico, during the 2011 Wallow fire. 

Cardiovascular morbidity; 
hypertensive disease; 
ischemic heart disease; 
diseases of pulmonary 
circulation; diseases of 
veins, lymphatics, and 
circulatory system 

USA, New 
Mexico 

Salimi et al. 
(2017) 

Ambient particulate matter, landscape 
fire smoke, and emergency ambulance 
dispatches in Sydney, Australia. 

Cardiovascular disease Sydney, 
Australia 

Stowell et al. 
(2019) 

Associations of wildfire smoke PM2.5 

exposure with cardiorespiratory events 
in Colorado 2011–2014.  

Ischemic heart disease; 
acute myocardial 
infarction; congestive 
heart failure; dysrhythmia; 
peripheral/cerebrovascular 
disease; cardiovascular 
disease 

USA, 
Colorado 
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Tinling et al. 
(2016) 

Repeating cardiopulmonary health 
effects in rural North Carolina 
population during a second large peat 
wildfire. 

Heart failure; 
hypertension, cardiac 
morbidity, cardiac 
dysrhythmia 

USA, North 
Carolina 

Wettstein et al. 
(2018) 

Cardiovascular and cerebrovascular 
emergency department visits 
associated with wildfire smoke 
exposure in California in 2015.  
 

Cardiovascular disease; 
hypertension; myocardial 
infarction, ischemic heart 
disease; pulmonary 
embolism; dysrhythmia 
and conduction disorder; 
heart failure; peripheral 
arterial disease 

USA, 
California 

Yao et al. (2016) Evaluation of a spatially resolved 
forest fire smoke model for population-
based epidemiologic exposure 
assessment.  

Cardiovascular morbidity Canada 

 
 
Cerebrovascular Outcomes 
 
Cerebrovascular disease encompasses a range of conditions that impact the blood vessels within 
the brain and includes such health outcomes as stroke, aneurysms, and vascular malformations. 
Over the last ten years, there have been few studies that have examined the association between 
wildfire related PM smoke and cerebrovascular health outcomes. The current scoping review 
identified a total of eight peer-reviewed articles that investigated the association between 
cerebrovascular disease and wildfire PM smoke that fit our inclusion criteria. Of these eight peer-
reviewed articles, six spanned across the Northeastern & Mid-Atlantic States, as well as the 
Western U.S. including California, Washington, and New Mexico; and two focused within the 
area of Sydney, Australia (Gan et al., 2017; Hutchinson et al., 2018; F. H. Johnston et al., 2014; 
Le et al., 2014; Morgan et al., 2010; Reid, Jerrett, et al., 2016b; Resnick et al., 2015; Wettstein et 
al., 2018).  
 
There was inconclusive evidence and mixed directions of association between wildfire PM smoke 
and increased risk for stroke (Le et al., 2014; Morgan et al., 2010; Wettstein et al., 2018). Similar 
results were found for cerebrovascular disease. Studies in New Mexico, Washington, and 
California identified increased risk for cerebrovascular disease with exposures to the 2011 Wallow 
Fire (RR: 1.69, 95% CI: 1.03–2.77), the 2012 Washington complex fire (OR: 1.046, 95% CI: 
1.004–1.090), and the 2015 California wildfire season (RR: 1.22,  95% CI: 1.00–1.48), 
respectively; however, between these three studies, there was heterogeneity between sex and age 
stratified sub-groups (Gan et al., 2017; Resnick et al., 2015; Wettstein et al., 2018). Martin et al. 
(2013) found no association between smoke events and cerebrovascular disease risk in three 
eastern Australian cities (Martin et al., 2013). Contrary to the other studies, Johnston et al. (2014), 
Reid et al. (2016), and Stowell et al. (2019) found a weak negative association between wildfires 
PM smoke exposures and cerebrovascular disease (F. H. Johnston et al., 2014; Reid, Jerrett, et al., 
2016b; Stowell et al., 2019). Hutchinson et al. (2018) found significant negative associations 
between wildfire PM2.5 smoke exposure and stroke risk in San Diego, California (Hutchinson et 
al., 2018). The overall evidence between cerebrovascular health outcomes and wildfire PM smoke 
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is inconclusive, and more research is needed to elucidate the full range of outcomes associated 
with cerebrovascular health (Cascio, 2018).  
 
Table 6.6. Relevant scoping review articles examining wildfire impacts on cerebrovascular 
outcomes 

Author (Year) Title Health Outcomes 
Included 

Location 

Morgan et al. 
(2010)  

Effects of bushfire smoke on daily 
mortality and hospital admissions in 
Sydney, Australia. 

Stroke  Sydney, 
Australia 

Martin et al. 
(2013) 

Air pollution from bushfires and their 
association with hospital admissions in 
Sydney, Newcastle and Wollongong, 
Australia 1994-2007. 

Cerebrovascular disease Sydney, 
Australia 

Johnston et al. 
(2014) 

Air pollution events from forest fires 
and emergency department 
attendances in Sydney, Australia 1996-
2007: A case-crossover analysis.  

Cerebrovascular disease Sydney, 
Australia 

Le et al. (2014) Canadian forest fires and effects of 
long-range transboundary air 
pollution on hospitalizations among 
the elderly. 

Stroke USA, 
Northeastern 
& Mid-
Atlantic States 

Resnick et al. 
(2015) 

Health outcomes associated with 
smoke exposure in Albuquerque, New 
Mexico, during the 2011 Wallow fire.  

Cerebrovascular disease  USA, New 
Mexico 

Reid et al. (2016) Differential respiratory health effects 
from the 2008 northern California 
wildfires; a spatiotemporal approach. 

Cerebrovascular disease USA, 
California 

Gan et al. (2017)  Comparison of wildfire smoke 
estimation methods and associations 
with cardiopulmonary-related hospital 
admissions.  

Cerebrovascular disease USA, 
Washington 

Hutchinson et al. 
(2018) 

The San Diego 2007 wildfires and 
Medi-Cal emergency department 
presentations, inpatient 
hospitalizations, and outpatient visits: 
An observational study of smoke 
exposure periods and a bidirectional 
case-crossover analysis. 

Cerebrovascular disease 
including stroke  

USA, San 
Diego 

Wettstein et al. 
(2018) 

Cardiovascular and cerebrovascular 
emergency department visits 
associated with wildfire smoke 
exposure in California in 2015.  

Cerebrovascular disease, 
ischemic stroke, 
intracerebral/ 
intraventricular 
hemorrhage, precerebral 
vascular occlusion 

USA, 
California 

Stowell et al. 
(2019) 

Associations of wildfire smoke PM2.5 

exposure with cardiorespiratory events 
in Colorado 2011–2014. 

Peripheral/cerebrovascular 
disease 

USA, 
Colorado 
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Mental Health Outcomes 
 
Over the past few decades, climate-induced environmental events have increased in both intensity 
and frequency across the globe. The devastation and displacement experienced from these events 
combined with the anticipation of future catastrophic exposures can have profound repercussions 
on the psychological well-being of individuals that persist for years after the event. The increasing 
distress produced by changes in our surrounding natural environment and the chronic fear of 
environmental cataclysm have prompted new terms like solastalgia and eco-anxiety to detail these 
emerging phenomena. Various review articles examining the impact of wildfires on human health 
and well-being have identified increased prevalence of conditions such as post-traumatic stress 
disorder (PTSD), depression, and anxiety during multiple stages of post-wildfire assessment in 
both adult and pediatric populations (To et al., 2021). Wildfire events have also been linked to 
increased substance abuse and exacerbation of physical and mental health symptoms (Woodland 
et al., 2023). While most research has focused on the impacts of exposure to the actual fire (e.g. 
flames), having property destroyed by fire, or events associated with escaping fires or 
displacement, there is evidence that wildfire smoke may also have impacts on mental health and 
well-being, particularly when the exposures are both chronic and persistent (Eisenman & Galway, 
2022).  
 
The current scoping review did not find any articles that examined the health impacts from wildfire 
smoke PM to mental health outcomes. While there were multiple empirical peer-reviewed articles 
that examined exposures in the population, most used self-reported smoke exposures as a proxy 
for exposure. Ho et al. (2014) examined the Asian haze crisis on psychological symptoms, and 
perceived dangerousness of pollution level using the Pollution Standard Index (PSI) to estimate 
wildfire exposures (Ho et al., 2014). Caamano-Isorna et al. (2011) examined the number of 
wildfires which had occurred in the Galician municipality of north-west Spain in August 2006 and 
assigned a high, medium, and low exposure to daily dose of anxiolytics-hypnotics (Caamano-
Isorna et al., 2011). Other qualitative peer-reviewed studies examining the impacts of wildfire 
smoke and mental health and well-being were assessed using self-reported exposure inputs and 
did not include air quality metrics specific to particles or particular matter (De Pretto et al., 2015; 
Dodd et al., 2018; Mottershead et al., 2020; Whitefish Lake First Nation 459 et al., 2019). Overall, 
few studies have investigated smoke exposure as a cause of mental health impacts, and as of this 
review, no studies have investigated the relationship between particulate matter exposure in 
wildfire-specific smoke and mental health outcomes. In the peer reviewed articles that were 
published between 2010–2020 that examined smoke, Reid et al. (2016) has identified them as 
having higher potential for bias (Caamano-Isorna et al., 2011; Ho et al., 2014). Overall, for broad 
qualitative smoke exposure studies, there is limited and inconsistent evidence of impact to mental 
health outcomes (Eisenman & Galway, 2022; Reid, Brauer, et al., 2016a). It is important that future 
research focuses on the application of more rigorous exposure methods including metric for 
particulate matter and other air pollutants, standardizing and differentiating between mental health 
outcomes through diagnostic criteria and instrumentation consensus, and identifying causal 
processes (Eisenman & Galway, 2022; Y. Zhang et al., 2022). 
 
Respiratory Health Outcomes 
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While there were no consistent definitions of all-cause respiratory outcomes (also referred to as 
combined respiratory outcomes or respiratory morbidity), there was a general consensus that 
increased exposures to wildfire-specific PM2.5 results in increased risk of ER visits or 
hospitalizations for broadly defined respiratory morbidity across California (Hutchinson et al., 
2018; Reid, Jerrett, et al., 2016b; Reid & Maestas, 2019). Overall, relationships between wildfire 
smoke and respiratory health outcomes were mostly positively associated for the broader 
population. ER visits were associated with a 4% increased risk per 10 µg/m3 increase in wildfire-
specific PM2.5 (Reid et al. 2019; Hutchinson et al. 2018). Furthermore, articles that investigated 
the Impacts of wildfire smoke PM on asthma outcomes for either ER visits or hospitalizations 
within California found similar results (Hutchinson et al., 2018; Reid, Jerrett, et al., 2016b; Reid 
& Maestas, 2019; Wettstein et al., 2018). Reid et al. (2016 & 2019) examined six specific regions 
of Northern and Central California and found an increased risk of asthma-related ER visits and 
hospitalizations from wildfire-specific PM2.5 exposures during the 2008 Northern California 
wildfire complex (Reid, Jerrett, et al., 2016b; Reid & Maestas, 2019). Similarly, Wettstein et 
al. (2018) found an increased risk of asthma-related ER visits during the 2015 wildfire season 
across multiple lags and smoke categories across Northern and Central California areas; however, 
individuals aged 18 years and younger were not included in the analysis (Wettstein et al., 2018). 
The impacts of larger complex fires, like those that burned nearly 1 million acres in San Diego 
County in October 2007, was associated with increased risks of both asthma-related ER visits and 
hospitalizations over a three and five-day lagged period, respectively, for all-age Medi-Cal 
beneficiaries (Hutchinson et al. 2018). For two and three-day lagged exposures, studies in Northern 
California during the 2008 and 2015 wildfire seasons identified an increased risk of 
hospitalizations and ER visits for chronic lung disease in adult populations exposed to wildfire 
related PM2.5 (Reid, Jerrett, et al. 2016b; Reid et al. 2019; Wettstein et al. 2018). Specifically, 
researchers found a significant 18% increased risk of ER visits from wildfire-specific PM2.5 
exposure among adults over 18 years of age; however, this risk increased to 29% in areas exposed 
to higher smoke densities (Wettstein et al. 2018). Similar results were found in Southern 
California, but researchers failed to find a significant difference among the dataset investigating 
the impacts of the 2007 San Diego County fires for either ER visits or hospitalizations (Hutchinson 
et al. 2018; Delfino et al. 2009).  

U.S.-based studies outside of California also found similar results. Rappold et al. (2012) and 
Tinling et al. (2016) both found evidence of a positive association between exposure to wildfire 
smoke and increased risk of several respiratory health outcomes in North Carolina, including 
asthma, respiratory symptoms, and upper respiratory infections (Rappold et al., 2012; Tinling et 
al., 2016).  Two studies based in Western states found a 7.2% increased risk (95% CI: 0.25%–
15%) of respiratory morbidity in elderly populations during high smoke PM2.5 days (Liu et al., 
2017) and higher FEV1 in older children two days after exposure to wildfire PM2.5 (Lipner et al., 
2019). However, Lipner et al. (2019) did not observe any associations for FEV1 and asthma control 
in younger children (Lipner et al., 2019). Alman et al. (2016) and Stowell et al. (2019) estimated 
increased risk of asthma, COPD, and respiratory disease associated with increases in wildfire 
PM2.5 in Colorado, with significant effects from Stowell et al. and near-significant effects from 
Alman et al. (Alman et al., 2016; Stowell et al., 2019). In other Western states, increased risk of 
asthma was associated with increased wildfire PM2.5 from the 2012 Washington wildfires (Gan et 
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al., 2017), the 2013 Oregon wildfire season (Gan et al., 2013), and the presence of wildfire smoke 
in Nevada from 2013-2018 (Kiser et al., 2020). A statewide analysis found similar increased risks 
of respiratory morbidity on both smoke PM2.5 and non-smoke PM2.5 days, but higher risk of asthma 
(percentage change in risk: 6.9%, 95% CI: 3.71%–10.11%) on smoke PM2.5 days among elderly 
populations (DeFlorio-Barker et al., 2019).  

Overall, there was a vast amount of literature examining the impacts from wildfire exposures and 
respiratory outcomes with many reporting positive associations.  

 

Table 6.8. Relevant scoping review articles examining wildfire impacts on respiratory outcomes 
Author 
(Year) 

Title Health Outcomes 
Included 

Location 

do Carmo et 
al. (2010) 

Association between particulate matter 
from biomass burning and respiratory 
diseases in the southern region of the 
Brazilian Amazon. 

Respiratory visits Brazil 

Ignotti et al. 
(2010) 

Impact on human health of particulate 
matter emitted from burnings in the 
Brazilian Amazon region. 

Respiratory 
morbidity 

Brazil, 
Amazon 

Morgan et al. 
(2010) 

Effects of bushfire smoke on daily 
mortality and hospital admissions in 
Sydney, Australia. 

Asthma, COPD, 
Pneumonia and 
Acute Bronchitis, 
Respiratory 
morbidity 

Sydney, 
Australia 

Schranz et al. 
(2010) 

The 2007 San Diego Wildfire impact on 
the Emergency Department of the 
University of California, San Diego 
Hospital System. 

Shortness of 
breath, cough, 
others 

USA, 
California 

Caamano-
Isorna et al. 

(2011) 

Respiratory and mental health effects of 
wildfires: An ecological study in Galician 
municipalities (north-west Spain). 

Medication Spain 

Henderson et 
al. (2011) 

Three measures of forest fire smoke 
exposure and their associations with 
respiratory and cardiovascular health 
outcomes in a population-based cohort. 

Acute upper 
respiratory 
infections, 
respiratory 
morbidity, Asthma 

Canada, 
British 
Columbia 

Rappold et al. 
(2011)  

Peat bog wildfire smoke exposure in rural 
North Carolina is associated with 
cardiopulmonary emergency department 
visits assessed through syndromic 
surveillance. 

Respiratory 
morbidity, asthma, 
COPD, pneumonia 
& acute bronchitis, 
upper respiratory 
infections 

USA, North 
Carolina 

Vora et al. 
(2011) 

2007 San Diego wildfires and asthmatics. Lung function, 
medication  

USA, San 
Diego 
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Wiwatanadate 
& 

Liwsrisakun 
(2011) 

Acute effects of air pollution on peak 
expiratory flow rates and symptoms 
among asthmatic patients in Chiang Mai, 
Thailand. 

Lung function, 
PEFR and asthma 
symptoms 

Thailand 

Crabbe 
(2012) 

Risk of respiratory and cardiovascular 
hospitalization with exposure to bushfire 
particulates: new evidence from Darwin, 
Australia. 

Respiratory 
morbidity 

Darwin, 
Australia 

Rappold et al. 
(2012)  

Cardiorespiratory outcomes associated 
with exposure to wildfire smoke are 
modified by measures of community 
health. 

Asthma USA, North 
Carolina 

Dohrenwend 
et al. (2013) 

The impact on emergency department 
visits for respiratory illness during the 
Southern California wildfires west. 

Asthma, cough, 
respiratory 
syndrome, 
dyspnea, 
bronchitis, COPD 

USA, 
California 

Elliott et al. 
(2013) 

 

Time series analysis of fine particulate 
matter and asthma reliever dispensations 
in populations affected by forest fires. 

Asthma 
medication 

Canada, 
British 
Columbia 

Martin et al. 
(2013) 

Air pollution from bushfires and their 
association with hospital admissions in 
Sydney, Newcastle and Wollongong, 
Australia 1994-2007. 

Asthma, COPD, 
non-trauma, 
pneumonia and 
acute bronchitis, 
respiratory 
morbidity 

Sydney, 
Australia 

Silva et al. 
(2013) 

Particulate matter originating from 
burnings and respiratory diseases. 

Respiratory 
diseases  

Brazil 

Thelen et al. 
(2013) 

Modeling acute respiratory illness during 
the 2007 San Diego wildland fires using a 
coupled emissions-transport system and 
generalized additive modeling. 

Respiratory 
morbidity 

USA, San 
Diego 

Yao et al. 
(2013) 

Evaluation of a wildfire smoke forecasting 
system as a tool for public health 
protection. 

Asthma visits, 
pharmaceutical 
dispensing counts 

Canada, 
British 
Columbia 

Johnston et 
al. (2014) 

Air pollution events from forest fires and 
emergency department attendances in 
Sydney, Australia 1996-2007: A case-
crossover analysis. 

Asthma, COPD, 
pneumonia and 
bronchitis, 
respiratory 
morbidity 

Australia, 
Sydney 

Le et al. 
(2014)  

Canadian forest fires and effects of long-
range transboundary air pollution on 
hospitalizations among the elderly. 

Asthma, COPD, 
respiratory 
morbidity, 
respiratory tract 
infection, acute 

USA, 
Northeastern 
& Mid-
Atlantic 
States 
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respiratory tract 
infections 

Trang et al. 
(2014) 

Spatial correlation analysis between 
particulate matter 10 (PM10) hazard and 
respiratory diseases in Chiang Mai 
Province, Thailand. 

Respiratory 
morbidity  

Thailand 

McLean et al. 
(2015) 

An evaluation of the British Columbia 
asthma monitoring system (BCAMS) and 
PM2.5 exposure metrics during the 2014 
forest fire season. 

Medicine counts Canada, 
British 
Columbia 

Resnick et al. 
(2015) 

Health outcomes associated with smoke 
exposure in Albuquerque, New Mexico, 
during the 2011 Wallow fire. 

Asthma, 
respiratory 
morbidity, other 
diseases of the 
respiratory system 

USA, New 
Mexico 

Tse et al. 
(2015) 

Effect of catastrophic wildfires on 
asthmatic outcomes in obese children: 
Breathing fire. 

Asthma, 
medication 

USA, 
California 

Alman et al. 
(2016)  

The association of wildfire smoke with 
respiratory and cardiovascular 
emergency department visits in Colorado 
in 2012: a case crossover study. 

Asthma/wheeze, 
COPD, Upper 
Respiratory 
Infections, 
Pneumonia, 
Bronchitis, 
Combined 
Respiratory 
Conditions 

USA, 
Colorado  

Haikerwal et 
al. (2016) 

Fine particulate matter (PM2.5) exposure 
during a prolonged wildfire period and 
emergency department visits for asthma. 

Asthma, COPD Victoria, 
Australia  

Kollanus et 
al. (2016)  

Effects of long-range transported air 
pollution from vegetation fires on daily 
mortality and hospital admissions in the 
Helsinki metropolitan area, Finland 

Asthma or COPD, 
Combined 
respiratory 
conditions 

Finland, 
Helsinki 

Morrison et 
al. (2016) 

A latent process model for forecasting 
multiple time series in environmental 
public health surveillance. 

Medication counts Canada 

Reid et al. 
(2016) 

Differential respiratory health effects 
from the 2008 northern California 
wildfires; a spatiotemporal approach. 

Asthma, COPD, 
pneumonia, 
respiratory 
morbidity 

USA, 
California  

Tinling et al. 
(2016) 

Repeating cardiopulmonary health effects 
in rural North Carolina population during 
a second large peat wildfire. 

Respiratory 
morbidity, upper 
Respiratory 
infections, 

USA, North 
Carolina 
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respiratory/other 
chest symptoms, 
asthma, COPD, 
acute respiratory 
infections 

Vicedo-
Cabrera et al. 

(2016) 

Health effects of the 2012 Valencia 
(Spain) wildfires on children in a cohort 
study. 

Asthma Spain, 
Valencia 

Yao et al. 
(2016) 

Evaluation of a spatially resolved forest 
fire smoke model for population-based 
epidemiologic exposure assessment.  

Asthma,  
medication, upper 
respiratory 
infection, lower 
respiratory 
infection, COPD 

Canada, 
British 
Columbia 

Yuchi et al. 
(2016) 

Blending forest fire smoke forecasts with 
observed data can improve their utility for 
public health applications. 

Respiratory visits, 
medication counts 

Canada, 
British 
Columbia 

Gan et al. 
(2017) 

Comparison of wildfire smoke estimation 
methods and associations with 
cardiopulmonary-related hospital 
admissions. 

Respiratory 
morbidity, asthma, 
COPD, 
pneumonia, acute 
bronchitis 

USA, 
Washington 

Kim et al. 
(2017) 

Long-run health consequences of air 
pollution: Evidence from Indonesia’s 
forest fires of 1997. 

Lung function Indonesia 

Liu et al. 
(2017) 

Wildfire-specific fine particulate matter 
and risk of hospital admissions in urban 
and rural counties. 

COPD & 
respiratory tract 
infections 

USA, 
Western 

Liu et al. 
(2017) 

Who among the elderly is most vulnerable 
to exposure and health risks of PM2.5 from 
wildfires smoke? 

COPD & 
respiratory tract 
infections 

USA, 
Western 

Salimi et al. 
(2017) 

Ambient particulate matter, landscape fire 
smoke, and emergency ambulance 
dispatches in Sydney, Australia. 

Breathing 
problems 

Sydney, 
Australia 

Sheldon et al. 
(2017) 

The Impact of Indonesian Forest Fires on 
Singaporean Pollution and Health. 

Respiratory 
infections 
combined 

Singapore 

Fann et al. 
(2018) 

The health impacts and economic value of 
wildland fire episodes in the U.S.: 2008–
2012. 

Respiratory 
morbidity 

USA, 
multiple 
states 

Hutchinson et 
al. (2018) 

The San Diego 2007 wildfires and Medi-
Cal emergency department presentations, 
inpatient hospitalizations, and outpatient 
visits: An observational study of smoke 
exposure periods and a bidirectional 
case-crossover analysis. 

Acute bronchitis, 
asthma, bronchitis, 
COPD, 
pneumonia, 
respiratory index, 
respiratory 

California, 
San Diego 
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symptoms, upper 
respiratory 
infections 

Wettstein et 
al. (2018) 

Cardiovascular and cerebrovascular 
emergency department visits associated 
with wildfire smoke exposure in 
California in 2015.  
 

Asthma, COPD, 
other non-cardiac 
chest pain or 
respiratory 
syndrome, 
pneumonia 

USA, 
California 

Arriagada et 
al. (2019) 

Association between fire smoke fine 
particulate matter and asthma-related 
outcomes: systematic review and meta-
analysis. 

Asthma USA and 
Australia  

DeFlorio-
Barker et al. 

(2019) 

Cardiopulmonary effects of fine 
particulate matter exposure among older 
adults, during wildfire and non-wildfire 
periods, in the United States 2008–2010. 

Asthma, 
bronchitis, and 
wheezing; 
Respiratory 
morbidity 

USA, 
statewide 

Kondo et al. 
(2019) 

Meta-Analysis of Heterogeneity in the 
Effects of Wildfire Smoke Exposure on 
Respiratory Health in North America 

Asthma, COPD, 
respiratory 
morbidity, 
pneumonia 

USA 

Lipner et al. 
(2019) 

The associations between clinical 
respiratory outcomes and ambient 
wildfire smoke exposure among pediatric 
asthma patients at National Jewish 
Health, 2012–2015. 

FEV1/FVC, 
ACT/CACT 

Western 
USA 

Reid et al. 
(2019) 

Associations between respiratory health 
and ozone and fine particulate matter 
during a wildfire event. 

Asthma, 
pneumonia, acute 
bronchitis, acute 
respiratory 
infections, COPD, 
respiratory 
morbidity 

USA, 
California 

Stowell et al. 
(2019) 

Associations of wildfire smoke PM2.5 
exposure with cardiorespiratory events in 
Colorado 2011–2014.  

Asthma, 
bronchitis, COPD, 
upper respiratory 
infection, 
combined 
respiratory disease 

USA, 
Colorado 

Gan et al. 
(2020) 

The association between wildfire smoke 
exposure and asthma-specific medical 
care utilization in Oregon during the 2013 
wildfire season. 

Asthma, 
medication  

USA, 
Oregon 
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Kiser et al. 
(2020) 

Particulate matter and emergency visits 
for asthma: a time-series study of their 
association in the presence and absence 
of wildfire smoke in Reno, Nevada, 2013–
2018. 

Asthma USA, 
Nevada 

Landguth et 
al. (2020) 

The delayed effect of wildfire season 
particulate matter on subsequent 
influenza season in a mountain west 
region of the USA. 

Influenza USA, 
Montana 

Leibel et al. 
(2020) 

Increase in pediatric respiratory visits 
associated with Santa Ana wind–driven 
wildfire smoke and PM2. 5 levels in San 
Diego County. 

Respiratory 
morbidity  

USA, 
California 

 

Mortality 
 
Several review papers have identified a strong association between wildfire smoke and mortality 
outcomes, with stronger evidence for all-cause mortality compared to respiratory or cardiovascular 
specific deaths (Cascio, 2018; J. C. Liu et al., 2015; Reid, Brauer, et al., 2016a; Youssouf et al., 
2014). A majority of peer-reviewed epidemiological studies examining the impacts from wildfire 
smoke exposures and cause-specific mortality reported non-statistically significant associations 
for cardiovascular in the United States (Doubleday et al., 2020; Xi et al., 2020; Zu et al., 2016) or 
abroad (Kollanus et al., 2016; Linares et al., 2015, 2018; Morgan et al., 2010); with only a few that 
identified statistically significant positive associations (Faustini A. et al., 2015; F. Johnston et al., 
2011; Nunes et al., 2013). Similar results were reported for respiratory-related mortality, with few 
articles reporting a positive and statistically significant association (Augusto et al., 2020; 
Doubleday et al., 2020).  

 

In an epidemiological study based in the state of Washington, Doubleday et al. (2020) found 1.3% 
increased odds (95% CI: 0.2 – 2.4%) for non-traumatic mortality wildfire smoke (Doubleday et 
al., 2020). A study on hemodialysis patients had an even higher risk of death after exposure with 
a 4% increase in daily mortality per 10 μg/m3 increase in wildfire PM2.5; the risk doubled if PM2.5 
was greater than 10 μg/m3 (Xi et al., 2020). The most evidence for the relationship between 
wildfires and all-cause mortality exists in Australia and Europe, where air quality is further 
impacted by Saharan dust. The majority of these article exampled PM10-specific wildfire smoke, 
finding positive associations with all-cause mortality, and a smaller number with statistically 
significant results (Augusto et al., 2020; Faustini A. et al., 2015; Kollanus et al., 2016; Linares et 
al., 2015, 2018). Linares et al. (2015) examined the impacts of biomass advection from 2004 – 
2009 on the Madrid population and found that on days with biomass advection, where the mean 
PM10 was 44.2 µg/m3, there was a 3.5% (95% CI: 1.1–- 6.0%) increased risk in all-cause mortality 
which doubled those over 75 years of age (Linares et al., 2015). In a later study, researchers 
examined impacts over broader regions in Spain over the same timeframe and found spatially 
varying effects with 8% (95% CI: 2.36–13.81%) increased risks for every 10 µg/m3 increase in 
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regions where wildfires were most frequent (Linares et al., 2018). Other studies found positive 
associations between wildfire exposures and all-cause mortality but lacked statistical significant 
(Augusto et al., 2020; Faustini A. et al., 2015; F. Johnston et al., 2011; Morgan et al., 2010).  
 
Short-term non-wildfire specific PM2.5 dose-response exposures have been estimated to be 
responsible for over 11,000 excess deaths within Malaysia, Singapore and Indonesia during the 
2015 Indonesian fires which were the largest emissions of carbon dioxide from Equatorial Asia 
since the El Niño fires of 1997 (Crippa et al., 2016). Using a longer-term dose-response function 
via methods applied by Driscoll et al. 2015 (Driscoll et al., 2015) for non-wildfire specific PM2.5, 
researchers estimated a much higher mortality total of over 100,000 deaths from the same region 
for a similar timeframe (Koplitz et al., 2016). 
 

Table 6.9. Relevant scoping review articles examining wildfire impacts on mortality   
Author (Year) Title Mortality Outcomes 

Included 
Location 

Morgan et al. 
(2010) 

Effects of bushfire smoke on daily 
mortality and hospital admissions in 
Sydney, Australia.  

Cardiovascular, 
respiratory, all-cause 

Australia, 
Sydney 

Johnston et al. 
(2011) 

Extreme air pollution events from 
bushfires and dust storms and their 
association with mortality in Sydney, 
Australia 

Cardiovascular, 
respiratory, all-cause, 
cardio-respiratory 
 

Australia, 
Sydney 

van Donkelaar et 
al. (2011) 

Satellite-based estimates of ground-
level fine particulate matter during 
extreme events: a case study of the 
Moscow fires in 2010. 

All-cause  
 

Russia 

Marlier et al. 
(2013) 

El Niño and health risks from 
landscape fire emissions in Southeast 
Asia 

Cardiovascular Southeast Asia 

Nunes (2013) Circulatory disease mortality rates in 
the elderly and exposure to PM2.5 
generated by biomass burning in the 
Brazilian amazon in 2005 

Cardiovascular, acute 
myocardial infarction, 
cerebrovascular  

Brazilian 
Amazon  

Linares et al. 
(2015) 

Influence of advections of particulate 
matter from biomass combustion on 
specific-cause mortality in Madrid in 
the period 2004-2009. 

All-cause, 
cardiovascular, 
respiratory   

Spain, Madrid 

Sahani et al. 
(2014) 

A case-crossover analysis of forest fire 
haze events and mortality in Malaysia. 

All-cause, respiratory Malaysia 

Shaposhnikov et 
al. (2014) 

Mortality related to air pollution with 
the Moscow heat wave and wildfire of 
2010. 

Non-accidental mortality Russia, 
Moscow 

Faustini et al. 
(2015) 

Short-term effects of particulate matter 
on mortality during forest fires in 
southern Europe: Results of the MED-
PARTICLES project 

Cardiovascular, 
respiratory, natural  

Spain, Italy, 
Greece 
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Crippa et al. 
(2016) 

Population exposure to hazardous air 
quality due to the 2015 fires in 
Equatorial Asia 

Mortality Singapore 

Kollanus et al. 
(2016)  

Effects of long-range transported air 
pollution from vegetation fires on daily 
mortality and hospital admissions in 
the Helsinki metropolitan area, 
Finland 

Non-accidental, 
respiratory, 
cardiovascular  

Finland, 
Helsinki 

Koplitz et al. 
(2016) 

Public health impacts of the severe 
haze in Equatorial Asia in September–
October 2015: demonstration of a new 
framework for informing fire 
management strategies to reduce 
downwind smoke exposure. 

Mortality Singapore, 
Malaysia, 
Indonesia 

Zu et al. (2016) Long-range fine particulate matter 
from the 2002 Quebec forest fires and 
daily mortality in Greater Boston and 
New York City 

All-cause, respiratory, 
cardiovascular 

USA, Boston 
and New York 

Fann et al. (2018) The health impacts and economic 
value of wildland fire episodes in the 
U.S.: 2008–2012. 

Mortality USA, Multiple 
states 

Linares et al. 
(2018) 

Impact on mortality of biomass 
combustion from wildfires in Spain: A 
regional analysis 

All-cause Spain 

Augusto et al. 
(2020) 

Population exposure to particulate-
matter and related mortality due to the 
Portuguese wildfires in October 2017 
driven by storm Ophelia 

Cardiorespiratory, 
natural causes 

Portugal 

Doubleday et al. 
(2020) 

Mortality associated with wildfire 
smoke exposure in Washington state, 
2006-2017: a case-crossover study 

Non-traumatic, 
respiratory, 
cardiovascular, ischemic 
heart disease, asthma, 
COPD, pneumonia, 
cerebrovascular 

USA, 
Washington 

Xi et al. (2020) Mortality in US Hemodialysis Patients 
Following Exposure to Wildfire Smoke 

Cardiac, vascular, 
infection, all-cause, 
other 

USA 

 
Discussion and Conclusion  
 
In general, the scoping review yielded few reviews or meta-analyses but did locate multiple 
primary epidemiological studies that examined the health impacts from wildfire PM smoke. Most 
of the studies identified examined impacts from single wildfire events and focused on acute 
exposures. Few studies examined long-term impacts and those that did, were limited in scope (Gao 
et al., 2023; Grant & Runkle, 2022). Several review papers have identified a strong association 
between wildfire smoke and mortality outcomes, with stronger evidence for all-cause mortality 
compared to respiratory or cardiovascular specific deaths (Cascio, 2018; J. C. Liu et al., 2015; 
Reid, Brauer, et al., 2016a; Youssouf et al., 2014), suggesting a growing trend. There was 
consistent evidence between wildfire smoke exposure and multiple respiratory outcomes including 
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asthma, chronic obstructive pulmonary disease, and general respiratory morbidity. In general, the 
strongest evidence of impact from wildfire emissions was found for respiratory outcomes, 
particularly asthma hospital admissions or ER visits.  

 
While the evidence for impacts on cardiovascular health is mixed, there is a growing trend for 
positive association; however, it is recommended that researchers conduct additional reviews to 
confirm prior to including estimates into the final tool. While the majority of the health outcomes 
found in our review focused on respiratory and cardiovascular health endpoints, there were also 
articles that evaluated other impacts (e.g. birth outcomes); however, these additional health did not 
have sufficient evidence to support inclusion into the final NWL Health Scenario Tool. 
Specifically, literature on mental health outcomes from wildfire related exposures often focuses 
on small cohorts, relies on qualitative dataset collected via self-reported questionnaires (sometimes 
conducted months after exposure), or lacks standardized exposure estimate methods and outcomes 
limiting our ability to estimate future outcomes (Duclos et al., 1990; Eshel, 2016; Felix & Afifi, 
2015; Ho et al., 2014; R. T. Jones et al., 1994; Kolbe & Gilchrist, 2009; Langley & Jones, 2005; 
Lewis et al., 2015; Marshall et al., 2007; McDermott et al., 2005; Papadatou et al., 2012; Pujadas 
Botey & Kulig, 2014). We provide additional (follow-up review) in Section IX to identify relevant 
coefficents for inclusion into the final model.  
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VII. Health Impact Assessment: Urban Green Space  
 
Introduction  
California has been a global leader in climate mitigation policies with the adoption of the world’s 
first legally binding limits on carbon dioxide emissions (Mazmanian et al., 2020). Due to 
California’s Mediterranean climate and additional pressures associated with resource 
management, however, the State also sits at the vanguard of those places experiencing some of the 
most severe health effects of climate change (Bedsworth et al., 2018). This presents numerous 
cross-sectoral challenges that can make integrative climate solutions difficult to identify and 
implement. One promising approach is through urban green space and related infrastructure. In 
California, many areas lack adequate access to green infrastructure (Connolly et al., 2023; Sister 
et al., 2010), which creates inequalities in climate hazard exposure and in the co-benefits that green 
space can afford to health (James et al., 2015; M. C. Kondo et al., 2018; Nieuwenhuijsen et al., 
2017).  
 
The expansion and better management of green spaces can help California address climate hazard 
exposures by storing carbon, adapting to the adverse consequences of climate-generated adverse 
exposures, and contributing substantial health co-benefits. Because green space is often 
undersupplied in socially-disadvantaged neighborhoods (Jennings et al., 2021), strategic 
investments for greening in disadvantaged neighborhoods can help address concerns about 
environmental injustices that affect health. Thus, urban greening offers the potential to enhance 
climate change mitigation and adaptation, while conferring health co-benefits to the general 
population, and particularly to socially disadvantaged groups (Connolly et al., 2023; Rigolon et 
al., 2021).  
 
We have organized the paper into the following sections: (1) a conceptualization of potential green 
space solutions to climate change in California; (2) a general framework for prioritizing the health 
effects of climate change in California; (3) a review of key climate change exposures that affect 
health in California and how green space solutions; and (4) an empirical study that estimates the 
health benefits of increased urban green space and tree canopy on mortality, life expectancy, and 
adverse birth outcomes in California. We conclude the paper with a synthesis of findings and 
suggestions for future research and effective policy action on green solutions to climate change 
and public health in California.    
 
Conceptualizing Green Space Solutions to Climate Change and Health 
No standard definition for urban green space exists in the literature, yet several sources define 
urban green spaces as land covered with some type of vegetation or having “natural” features 
(Taylor & Hochuli, 2017). For example, the U.S. EPA defines green space as all vegetated land, 
including agriculture, lawns, forests, wetlands, and gardens but excludes barren land and 
impervious surfaces (Pickard et al., 2015; Taylor & Hochuli, 2017). Comprehensive reviews have 
emphasized the need to orient the definition to specific research questions that include both 
quantitative (i.e., percent vegetative cover) and qualitative aspects (i.e., natural areas). For this 
paper, we adopt a similar definition to the U.S. EPA as all vegetated land, but we qualify this as 
urban and peri-urban areas with some aspects being natural, as for example, coastal beaches could 
be considered another form of green space even with relatively little vegetative cover because they 
are perceived as natural.  
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There are several pathways from green space to specific climate change exposures of importance 
in California and elsewhere (James et al., 2015; Nieuwenhuijsen et al., 2017; Pickard et al., 2015). 
Climate change creates and magnifies numerous direct and indirect risks to human health in 
California. Direct effects are confined to actual changes to the climate. In California, this includes 
extreme heat, which generates direct biophysical effects on humans; extreme weather that 
threatens health through wind and flooding events; and drought, although this exerts effects largely 
through indirect means such as increases in wildfire or dust air pollution or water supplies. We 
classify indirect risks as those that are proximal or distal in terms of their potential or realized 
impact on human health. Within the set of indirect risks, flooding endangers low-lying 
communities with loss of property, mental health (stress and anxiety), and heightened infectious 
disease risk (Paterson et al., 2018). Likewise, climate change can exacerbate wildfire risks 
(Abatzoglou & Williams, 2016; Turco et al., 2023), with many adverse effects on human health. 
Other indirect risks are more distal, such as reductions in food production, economic activity, or 
long-term sea level rise. These distal categories are beyond the scope of this review. 
 
Green space also stores and sequesters carbon, which contributes to the mitigation of worsening 
climate change with anticipated health benefits in the future (McPherson et al., 2013). For 
example, a study of carbon storage in Los Angeles and Sacramento estimated that urban forests 
accounted for 2% of total stored carbon and 12% annually sequestered in California (McPherson 
et al., 2013). When the authors also considered avoided emissions due to shading and reduced need 
for energy to power heating and cooling, urban forests accounted for about 20% of annual total 
reductions in carbon emissions.  
 
Importantly, from a health perspective, in California where 94.2% of the population lives in 
urbanized areas (Cox, 2023), urban green spaces can also generate numerous health co-benefits 
throughout the life course via numerous pathways, with varying levels of support in the literature 
(James et al., 2015; M. C. Kondo et al., 2018; Nieuwenhuijsen et al., 2017). These include several 
mechanisms with major population health burdens impacted, including: (a) mental and physical 
health benefits via stress reduction and attention restoration; (b) increased opportunity for social 
interaction with the ensuring possibility for greater support through heightened formation of social 
capital; (c) physical activity while in or near green space with many possible improvements to 
health including obesity reduction and diabetes prevention; (d) reductions in other potentially 
adverse environmental exposures such as noise or light pollution; andI) with the most limited 
evidence, changes to the gut microbiome with potential benefits for reducing inflammation and 
related health conditions or physiological signally affecting, for example, blood pressure and heart 
rate variability. Likely via some combination of these pathways, hundreds of studies have reported 
associations of green space metrics with birth and pregnancy outcomes (Akaraci et al., 2020; Hu 
et al., 2021; Zhan et al., 2020), early childhood development and wellbeing (Davis et al., 2021), 
general and mental health (Gianfredi et al., 2021), cardiovascular disease (Nguyen et al., 2021), 
respiratory outcomes (Nguyen et al., 2021), physical activity (Gianfredi et al., 2021), obesity (Luo 
et al., 2020), diabetes (De la Fuente et al., 2021), cognitive decline in older adults (Zagnoli et al., 
2022), premature mortality (Rojas-Rueda et al., 2019), and life expectancy (Connolly et al., 2023). 
Several systematic reviews of these outcomes noted overall associations, albeit with limitations 
such as cross-sectional study designs (M. C. Kondo et al., 2018), uncertain exposure metrics (Su 
et al., 2019), and heterogeneous measures of health outcomes ranging from self-reported to 
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objectively measured. Despite these limitations, it appears highly likely that green space influences 
several of these health outcomes, with variation in the certainty and size of the association.  
 
Green space can also elicit several potential unintended consequences. Enhanced green space can 
increase property values (Conway et al., 2010; Schinasi et al., 2021) with higher incomes being 
consistently associated with increased levels of green space in major cities in California and 
elsewhere (Jenerette et al., 2013). Higher property values and rents related to green space can drive 
out lower income populations and lead to an influx of wealthier people into “gentrifying” 
neighborhoods, with empirical evidence suggesting modest effects across major metropolitan 
areas of the U.S., with elevated but insignificant effects in major metropolitan areas of California 
(Schinasi et al., 2021). This potential has led prominent scholars to suggest the need to make cities 
just “green enough” to avoid this problem (Wolch et al., 2014). In addition, improperly maintained 
or located green spaces can increase vector-borne infectious disease risk (Dadvand & 
Nieuwenhuijsen, 2019); for example, standing water in a stormwater facility may increase habitat 
for mosquito breeding, which could increase risks of West Nile virus in California (Hartley et al., 
2012). Expanded green space may also increase pollen, depending on the species planted, although 
available evidence on associations between green space and asthma or allergy symptoms is 
inconclusive (Dadvand & Nieuwenhuijsen, 2019). Recent studies comparing long-term trends in 
PM2.5 in Los Angeles suggest that as much as 25% of PM2.5 mass on hot days may derive from 
organic aerosols with precursors originating from plants (Nussbaumer & Cohen, 2021). In contrast, 
other studies demonstrate that urban forests can result in minor reductions in air pollution in major 
American cities (Nowak et al., 2014), and another body of evidence identifies potential 
improvements in local air pollution due primarily to deposition and deflection off of leaf structures 
(Baldauf, 2017). The impact of urban trees and green spaces on air pollution appears to be highly 
dependent on the location of the trees and the species, with some species emitting much higher 
precursors of air pollution than others and some being more efficient at reducing pollution than 
others. Finally, some evidence shows that women in major U.S. cities, including Los Angeles, are 
less likely to use urban trails with substantial tree and shrub cover than areas that are more open, 
with the hypothesized reason being a perceived loss of safety in green areas (Reynolds et al., 2007).  
 
Avoiding these unintended consequences and maximizing the benefits of green space interventions 
on health necessitates an integrated approach that meshes green solutions effectively with other 
climate change mitigation and adaptation measures. In addition, when possible, green space 
interventions should account for the interactions between climate change exposures. Heat impacts 
in disadvantaged neighborhoods of Los Angeles, for example, can be worsened during drought 
periods when vegetation is desiccated more in poorer areas than in wealthier ones that have more 
irrigation (Dong et al., 2023). Heat can also amplify the health effects of wildfire smoke in 
California, and other studies have shown interactions between ozone and heat effects can vary 
spatially and depend on underlying social and demographic conditions in a neighborhood (Heaney 
et al., 2022; Schwarz et al., 2021).  
 
Variations in the response to exposures based on underlying social or demographic conditions 
suggests a need for additional equity analyses to understand the uneven burden that falls on these 
groups, who have historically borne the brunt of conventional environmental risks such as air 
pollution, noxious facilities, and pesticide exposures in California (L. Cushing et al., 2015; Su et 
al., 2012). In designing effective green space policies and others to address climate risks, it is 
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critical to focus measures that will affect those groups who are disproportionately impacted already 
and may lack the resources — economic or social — to adapt to worsening exposures in the future. 
Another key consideration in both the efficacy and equity dimensions of the response to climate 
change is the co-benefits that can accrue from measures aimed at mitigation or adaptation. For 
example, efforts to reduce heat by greening may also have some of the health co-benefits discussed 
above, which may benefit poorer neighborhoods more because they are underserved in green space 
(Connolly et al., 2023; Sister et al., 2010). 
 
Estimating the Health Co-Benefits of Green Space in California.  
Green space provides a wide array of possible health benefits across the life course. In this section 
of the paper, we conduct a quantitative health impact assessment of the benefits of expanding urban 
green space and tree canopy across California. We focus on three important beneficial health 
effects: (a) mortality, (b) life expectancy, and (c) birth outcomes. This health impact assessment 
(HIA) illustrates the magnitude of health benefits that can accrue from green space and tree canopy 
expansion and helps identify the groups who will benefit from increased green spaces. The 
empirical analysis also illustrates some of the complexities associated with conducting small-area 
health impact assessments for benefits associated with climate change mitigation and adaptation. 
 
Health Benefits of Green Space. Dozens of studies have investigated the links between green 
space exposure during pregnancy and adverse birth outcomes, with preterm birth and low birth 
weight being two common outcomes studied (Akaraci et al., 2020; Hu et al., 2021; Zhan et al., 
2020), including in California specifically (Y. Sun et al., 2020). Recent meta-analyses have 
suggested a positive but relatively small effect on adverse birth outcomes, although the certainty 
of these effects varies between the meta-analyses (Akaraci et al., 2020; Hu et al., 2021; Zhan et 
al., 2020) probably due to methodological differences in the selection of studies and exposure 
buffers. Adverse birth outcomes can affect the healthy development of the child and might have 
lifelong consequences on health, make these health outcomes particularly important (Linsell et al., 
2015).  
 
Mortality has also been studied extensively, with the overall finding that higher exposure to green 
space lowers premature mortality. Most studies employed satellite retrievals to estimate the NDVI 
around the residence as the primary exposure assessment metric, although some have used tree 
canopy. Pooled meta-analyses indicate moderately large effects on the order of a 4% reduction per 
a 0.1 unit increase in NDVI (Rojas-Rueda et al., 2019). Premature mortality is also a critical 
population health indicator that often has large associated social and economic costs.  
 
Life expectancy has received relatively less attention in small-area studies, probably due to the 
difficulty of estimating this outcome. Life expectancy is a critical indicator of human development. 
It is a core component of the United Nations Human Development Index and is often used to 
compare overall population health across places, times, and nations. To date only three studies 
have investigated the links between life expectancy and green space in smaller areas that vary 
within cities (Connolly et al., 2023; de Keijzer et al., 2017; Jonker et al., 2014). One from the 
Netherlands reported modest increases in life expectancy associated with green space exposure 
(Jonker et al., 2014). Another study from Spain showed a relationship but only in socially 
disadvantaged groups (de Keijzer et al., 2017). A recent study from Los Angeles reported 
associations between life expectancy and green space or tree canopy (Connolly et al., 2023).  Effect 
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sizes showed individual gains on the order of 2-3 months. Summed across the population, however, 
large benefits were observed with Black and Latinx communities benefitting the most. 
 
Materials and Methods 
We used dose-response functions from primary studies and meta-analyses to estimate changes in 
mortality, life expectancy, and low birth weight incidence from various green space exposure 
scenarios within the urban areas of California (Table 7.1). We used statewide annual mortality data 
from the California Department of Public Health (Aragón, 2022), census data for life expectancy 
population impact analyses (US Census Bureau, n.d., 2019a), geocoded live births at the census 
tract level (Goldberg et al., 2008; Texas A&M Geoservices, n.d.), and CalEnviroScreen percent 
low birth weight infant data (Office of Environmental Health Hazard Assessment, 2021a). Remote 
sensing datasets were used to develop baseline greenness estimates of NDVI and tree canopy 
(Dewitz, 2019)  
 
Table 7.1. Dose-response functions used in the HIA. 
Health 
Outcome 

Green 
Space 
Metric 

Dose-
Response 

Estimate Type Exposure 
Unit 

Source 

Mortality NDVI 0.96 (0.94 – 
0.97)  
Hazard 
Ratio 

Meta-analysis 0.1 
Increment* 

Rojas-Rueda 
et al. 2019 
(Rojas-Rueda 
et al., 2019b) 

Life 
Expectancy 
(Years) 

NDVI 0.61 (0.26 – 
0.97) 
Median 
(Credible 
Interval) 

Individual 
Estimate 

0.1 
Increment* 

Connolly et al. 
2023 
(Connolly et 
al., 2023b) 

Life 
Expectancy 
(Years) 

Tree 
Canopy 

0.027 
(0.006 – 
0.047) 
Median 
(Credible 
Interval) 

Individual 
Estimate 

1% 
Increment 

Connolly et al. 
2023 
(Connolly et 
al., 2023b) 

Low Birth 
Weight 

NDVI 300-meter 
buffer: 0.79 
(0.65 – 
0.96) 
500-meter 
buffer: 0.90 
(0–83 - 
0.99) 
Odds Ratio 

Meta-analysis 0.1 
Increment* 

Hu et al. 2021 
(Hu et al., 
2021b)  

* Scale of -1 to 1 
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Materials. 

Mortality Data Source and Compilation. Statewide annual mortality data (total number of 
deaths) by zip code and age for 2016 are managed by the California Department of Public Health 
(CDPH) and publicly available on the California Health and Human Services Open Data Portal 
website (California Department of Public Health, 2022). For several zip code and age categories, 
the count of deaths is suppressed for confidentiality reasons (i.e., counts < 11). Therefore, we 
implemented substitution procedures to fill in the missing deaths. First, since we only apply the 
dose-response values to ages 25+ (due to the nature of the epidemiological analysis from which 
the dose-response values were derived), we calculated the percentage of deaths in people over 25 
for the entire state for each year, which is approximately 98%. For the zip codes where the total 
number of deaths is available, but the total number of deaths by age group were suppressed due to 
low counts in each group, we multiplied that percentage (98%) by the total number of deaths to 
estimate the number of deaths for the applicable age group. For zip codes where even the total 
number of deaths are suppressed, we conservatively assume the zip code contains ½ of the 
suppression threshold and applied the percentage to that estimated value. We compared our final 
death count to the reported deaths in the state as a metric of quality assurance, and the total 
estimates varied by less than 0.35%.  
 
Census Population and Urban Areas Data. For the life expectancy analyses (see Eqn. 3), we 
applied the American Community Survey (ACS) 2019 5-year estimates for the total population as 
well as the race- and ethnicity-specific populations for each tract (US Census Bureau, 2019b). 
Additionally, we used the U.S. Census Bureau’s urban area classification (US Census Bureau, 
n.d.) to extract the urban areas for our analysis. 
 
Birth Outcome Data. We extracted the percent of low birthweight infants (less than 2,500 grams) 
at the census tract level from CalEnviroScreen 4.0 (Office of Environmental Health Hazard 
Assessment, 2021b). Additionally, we were provided with the number of live births geocoded and 
assigned to the census tract level to use for the analysis (Goldberg et al., 2008; Texas A&M 
Geoservices, n.d.). 
 
Green Space.  
Normalized Vegetation Index. We used NDVI, an established measure of neighborhood vegetation 
greenness, which represents differences in land type reflectance and is calculated using red and 
near-infrared multispectral imagery bands (Rhew et al., 2011). We used publicly available 
National Agriculture Imagery Program (NAIP) satellite imagery data for the year 2016 at the 0.6-
meter scale to derive NDVI estimates (U.S. Department of Agriculture Farm Service Agency, 
2016b). We used GEE for all analyses. We masked water bodies from the NAIP raster and 
extracted the average NDVI value for each census tract and ZIP code, using raster calculations. 
We also estimated the mean value of NDVI for urban areas over the entire state (aggregated at the 
1-meter scale rather than 0.6-meter due to computational limitations) to use for the development 
of green space scenarios applied in the analysis.  
 
Tree Canopy. We used United States Geological Survey (USGS) National Land Cover Database 
(NLCD) percent tree cover at the 30-meter scale (Dewitz, 2019) to derive mean percent tree canopy 
estimates for each census tract and ZIP code using GEE. We also estimated the mean value of 
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percent tree canopy for urban areas over the entire state to use for the development of green space 
scenarios used in the analysis. 

Estimation Methods. 

Mortality. To estimate mortality impacts throughout urban areas of the state resulting from various 
scenarios (Table S7.2) in which green space (NDVI) levels are increased, we used Eqn. 1:  

where, β represents the one-unit dose-response coefficient for NDVI and mortality from a recent 
meta-analysis of cohort studies (Rojas-Rueda et al., 2019b), ∆Ej represents the change in NDVI 
exposure for each ZIP code j within an urban area, Dj represents the total number of deaths in 
adults for each ZIP code j, and Σ∆y represents the change in the health outcome (mortality) for 
each scenario for the urban areas of California for 2016. We used ZIP codes for all mortality 
analyses since that is the most spatially resolved areal unit with the total number of deaths publicly 
available. 

We also estimated the associated economic valuation attributable to decreased mortality from 
added green space exposure using Eqn. 2 below:  

  Economic valuation =  ΣΔy ∗  V      (2) 

where, Σ∆y is the result of Eqn. 1 (mortality change for added green space), and V is the EPA’s 
Value of a Statistical Life (VSL), which is $8.7 million in 2015 dollars (inflation year). We 
accounted for income growth to the year 2015 using publicly available income growth factors used 
in the U.S. EPA’s BenMAP-CE tool (US EPA, 2021), since changes in income can impact 
willingness to pay for reduced risk of mortality. 

Life Expectancy. To estimate the potential years of life saved resulting from varying green space 
(both NDVI and tree canopy) exposures throughout urban areas of the state, we used Eqn. 3:   

ΣYLE = β x ΔGSj x Poptotal,j          (3)

where, β represents the one-unit dose-response coefficient for green space and life expectancy 
extracted from a recent study (Connolly et al., 2023), ΔGSj represents the change in green space 
exposure for each census tract j within an urban area (NDVI or tree canopy, dependent on 
scenario), Poptotal,j represents the population of interest in census tract j, and ΣYLE represents the 
total years of life saved throughout the urban areas of California. We also multiplied YLE for each 
census tract by the percent of the non-white population in the tract to determine the total benefits 
that would be distributed to communities of color within the urban areas of the state.  
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Low Birth Weight.  To estimate the potential changes to low birth weight outcomes resulting from 
varying green space exposures throughout urban areas of the state, we used Eqn. 4 (Malley et al., 
2017):  

where, y0j represents the baseline frequency of low birth weight in each census tract j within an 
urban area, β represents the one-unit dose-response coefficient for green space and low birth 
weight extracted from a recent meta-analysis (Hu et al., 2021b), ∆Ej represents the change in NDVI 
exposure for each census tract j in an urban area, Bj represents the total number of live births for 
each census tract j, and Σ∆y represents the change in the total cases of low birth weight throughout 
the urban areas of California for 2016.  

The meta-analysis from which the low birth weight dose-response value is extracted is the most 
recent (Hu et al., 2021) of several available systematic review studies (Akaraci et al., 2020; Zhan 
et al., 2020). Some inconsistency exists in the literature with respect to the relationship between 
greenness and low birth weight; of two previous meta-analyses, one found a significant 
relationship between NDVI and low birth weight, but with a very small effect estimate (Zhan et 
al., 2020), and the second did not find a statistically significant relationship between NDVI and 
low birth weight (Akaraci et al., 2020), although this study only used 300-meter buffers. The study 
we used here from Hu et al. explicitly aimed to improve upon the methods of these two pre-existing 
meta-analyses, so we applied the dose-response functions from this study.  

Results and Discussion 
We conducted a quantitative health impact assessment of health co-benefits from urban green 
space and tree canopy expansion on premature mortality, life expectancy, and low birth weight 
(see Materials and Methods below for datasets and methodology; see Appendix A for a review of 
why these health outcomes are important indicators of population health as shown in previous 
studies). 

We focused on several scenarios for expanding green space across urban areas of California. These 
scenarios involve either overall increases in green space of 0.1 units of NDVI (U.S. Department 
of Agriculture Farm Service Agency, 2016a) or bringing all areas up to the statewide mean of 
NDVI in urban areas for both mortality and low birth weight outcomes. With life expectancy, we 
used the same NDVI estimates, but we were also able to estimate potential benefits from tree 
canopy (Dewitz, 2019). Here we used an increase of 10% in statewide tree canopy and another 
estimate that involved bringing the tree canopy up to the statewide mean in all urban areas of 
California.  

As shown in Table 7.2, benefits for increasing NDVI by 0.1 units could lead to a decrease of -
7,378 (95% CI: -5,476 to -11,301) deaths per year. Deaths prevented from bringing all areas up to 
the mean statewide NDVI for urban areas (Figure 7.1) were smaller with -2,456 avoided (95% CI: 
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-1,819 to -3,782). For context, in 2016 California recorded some 261,867 deaths (State of 
California, Department of Public Health, 2023), so the lives saved would amount to about 2.8% of 
total deaths in California. This estimate is well aligned with a large HIA of mortality impacts from 
expanding green space in Europe to meet the World Health Organization (WHO) minimum 
recommendations of 0.5 hectares of green space within 300 meters of a residence, which reported 
a 2.3% reduction in all-cause mortality for the hypothesized intervention (Barboza et al., 2021). 
The economic analysis of deaths avoided suggests monetary benefits of approximately $74 billion 
(2015 dollars, 95% CI: $55 - $114 billion) for increasing NDVI by 0.1 and almost $25 billion 
(95% CI: $18 - $38 billion) for increasing NDVI to the statewide mean for urban areas. 
 
Table 7.2. Health Impact Assessment for urban green space scenarios for statewide urban areas. 
Perfect of effect in communities of color is estimated for life expectancy only. 

Health 
Outcome Description 

Estimated Effect Percent of Effect 
in Communities 

of Color Value (95% CI) Unit 

M
or

ta
lit

y 
 

Deaths Prevented from 0.1 unit 
increase in NDVI (2016) 

-7,378  
(-5,476 to -
11,302) 

Deaths 
(avoided) 

N/A 

Deaths Prevented from Increase in 
NDVI to Urban Areas Mean (2016) 

-2,456  
(-1,819 to -3,782) 

Deaths 
(avoided) 

N/A 

L
ife

 E
xp

ec
ta

nc
y 

Life Expectancy Population Impa–
ts - Years of Life Added from 
Universal 10% Increase in Tree 
Cover (e.g., 10% --> 20% tree 
cover) 

9,029,130 
(1,961,245 –  
15,985,999)  

Years added 
(across the 
population) 

65% 

Life Expectancy Population Impa–
ts - Years of Life Added from 
Increase in Tree Cover to Urban 
Areas Mean 

 2,632,154 
(571,738 – 
4,660,204)  

Years added 
(across the 
population) 

72% 

Life Expectancy Population Impa–
ts - Years of Life Added from 0.1 
unit increase in NDVI 

20,649,279 
(8,831,538 –  
32,530,559) 

Years added 
(across the 
population) 

65% 

Life Expectancy Population Impa–
ts - Years of Life Added from 
Increase in NDVI to Urban Areas 
Mean 

8,533,201 
(3,649,585 –  
13,443,075)  

Years added 
(across the 
population) 

64% 

L
ow

 B
ir

th
 

W
ei

gh
t 

Reduced Cases of Low Birth 
Weight from 0.1 unit increase in 
NDVI (2016) 

300-meter NDVI 
buffer: -5,385 
(-854 to -10,748) 
500-meter NDVI 
buffer: -2,270  
(-208 to -4,163) 

Reduced 
cases of 
LBW 

N/A 
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Reduced Cases of Low Birth 
Weight from Increase in NDVI to 
Urban Areas Mean (2016) 

300-meter NDVI 
buffer: -2,589  
(-386 to -5,533) 
500-meter NDVI 
buffer: -1,046  
(-93 to -1,969) 

Reduced 
cases of 
LBW 

N/A 
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Figure 7.1. Predicted changes in health impacts from a scenario where NDVI is increased to the 
mean of urban areas throughout California (effects for the Los Angeles County region shown 
here), resulting in decreased mortality (top) and increased life expectancy (bottom). 
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In terms of life expectancy, we estimate 9,029,130 (95% Credible Interval (CrI): 1.96 – 15.99 
million) extra years of life expectancy could be gained for increasing tree cover by 10%, while 
increasing tree canopy to match the average urban level across the state would be associated with 
2,632,153 extra years of life expectancy (95% CrI: 571,738 – 4,660,204). Larger gains could be 
realized by increasing NDVI by 0.1 across the urban areas of California, with more than 20 million 
years of life gained (95% CrI: 8–83 - 32.5 million). Additionally, bringing the NDVI to the 
statewide mean would be associated with 8,533,201 (95% CrI: 3,649,585 – 13,443,075) years of 
increased life expectancy (Figure 7.1). We also used census data to estimate the population life 
expectancy impacts for communities of color (Table 7.2). Here we observe that in all scenarios, 
communities of color experience the majority of the benefits, ranging from 64-72% of the total 
benefits in years of life gained. 
 
For low birth weight, using a dose-response value for a 300-meter buffer (typically around the 
maternal residence), we estimate reductions of -5,385 (95% CI: -854 to -10,748) associated with 
increasing NDVI by 0.1 and -2,589 (95% CI: -386 to -5,533) for increasing NDVI to the statewide 
mean of urban areas (Table 7.2). For a dose-response value applying to a larger 500-meter buffer 
reported in the same meta-analysis, estimated reductions are slightly less than half of the smaller 
buffer size, with an estimated reduction of -2,589 (95% CI: -208 to –4,163) and -1,046 (95% CI: -
93 to -1,969) for an increase in 0.1-unit NDVI and an increase to the statewide mean, respectively. 
Different buffer sizes can reflect different exposure pathways (Hu et al., 2021; Yin, 2019). These 
findings indicate that though still statistically significant, the relationship between greenness and 
low birth weight is less strong for changing greenness in a larger radius around the residence.  
 
The large effects on mortality, life expectancy, and low birth weight outcomes underscore the 
importance of conducting empirical studies to estimate the magnitude of potential benefits from 
increasing green space specifically and undertaking other climate change mitigation and adaptation 
strategies more broadly. Importantly, such estimates give policymakers and others some useful 
information on the likely population health gains that might accrue from different interventions.     
 
Our empirical analysis has several limitations worth noting. First, we did not identify specific 
mechanisms associated with the health gains. It is possible that these resulted from some 
combination of direct exposure reductions such as the cooling effects of green space and the health 
co-benefits pathways. Recent European studies have shown that thousands of lives could be saved 
with increases in green cover and ensuring reductions in the urban heat island (Lungman et al., 
2023). Such assessments are useful for benchmarking the relative size of health benefits, which 
could be pursued in California. Relatedly, knowing the specific pathways would help direct policy 
interventions to where they would likely have the most benefit. Second, many of the studies used 
to assess associations between green space and health outcomes are cross-sectional, which 
precludes causal determinations and leaves open the possibility of reverse causation. As noted, 
several studies have shown a positive association between either income or property values and 
green space. It is therefore possible that wealthier people who can afford to live in greener areas, 
have healthier lifestyles and relatively few health conditions would move into these areas, although 
a study reporting on a randomized trial intervention on greening vacant lots observed significant 
improvements in mental health compared to people living in areas that did not receive this 
intervention (Jerrett & Van Den Bosch, 2018). Limitations of this kind have led some to suggest 
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that emphasis should be placed on experimental, quasi-experiments, and longitudinal studies for 
understanding the health benefits from green space (M. C. Kondo et al., 2018). 
 
Our analysis also has several strengths. First, for two of our health effects (mortality and birth 
outcomes), we relied on meta-analyses that pooled numerous studies from different locations and 
populations. Moreover, most of the mortality studies used longitudinal designs that examined 
survival in relation to long-term exposure. Thus, the chance that all of these studies suffered from 
the reverse causality problem noted above is reduced. Second, we used high-resolution exposure 
and health data capable of estimating effects at small-areas across the urbanized areas of 
California. Third, we developed scenarios that are achievable. For example, earlier assessments of 
the million-tree initiative in Los Angeles concluded that a million trees could be accommodated 
by expanding the treed area of the city by 12% (McPherson et al., 2011). Hence, our 10% estimate 
is likely achievable in most urban areas across California, although achieving such ambitious goals 
requires confronting many challenges in implementation because of the complex public-private 
partnerships that are needed and the issues of maintenance (Pincetl, 2010). The 0.1 increase in 
NDVI amounts to an approximate increase of vegetation of about 10%, although recent studies 
have modeled how this percentage could be higher or lower depending on levels of initial 
vegetation (Martinez & Labib, 2023; Pincetl, 2010). The type of vegetation also influences what a 
0.1 unit increase would mean on the ground. These heterogeneities necessitate interventions 
amenable to local conditions.   
 
Conclusions and Synthesis 
In this paper, we focused on extreme heat and precipitation, wildfires, and some infectious diseases 
likely to be affected now or in the future by climate change. To structure our review on the leading 
climate-health threats in California, we considered several factors, including: (1) direct and 
indirect proximal climate-related health threats, (2) the leading causes of disability and death in 
California which will have a higher disease burden than more rare diseases, and (3) climate 
exposure pathways where urban green space is, or could become, an adaptation or mitigation 
measure. We also reviewed how urban green space can generate solutions to climate change in the 
form of carbon storage, reduced direct and indirect exposures from climate change, and health co-
benefits.  
 
Several key findings result from our review and empirical analysis. First, of the major climate risks 
we reviewed in detail, the attribution certainty ranges from highly certain for extreme heat to low 
or moderate for Valley fever. Other things being equal, priority in the mitigation and adaptation 
response should be given to those effects with higher certainty. Future research needs to investigate 
attribution certainty in more detail. Second, high-quality impact assessments estimating the health 
burden from various climate risks are generally lacking for California. While often necessitated by 
data availability or other research constraints, this makes comparisons of health burdens across 
different climate hazards problematic because mitigation and adaptation measures could have huge 
variations in the potential health benefits. Our empirical study underscores this issue with large 
population gains on mortality, life expectancy, adverse birth outcomes. Detailed information of 
this kind will be critical for making informed policy interventions that maximize health benefits 
from greening and other policy measures. Third and relatedly, we found inconsistencies in methods 
to report health benefits. Efforts to standardize climate health reporting will benefit from other 
comprehensive assessments such as the upcoming Fifth California Climate Assessment. Fourth, 
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populations in California can be exposed to overlapping or sequential climate hazards 
(AghaKouchak et al., 2020; Rosenthal et al., 2022; Schwarz et al., 2021). Our review did not 
consider exposure to cumulative impacts and possible interactions as the evidence for tracking 
exposures and health outcomes research is currently more limited (Dong et al., 2023; Schwarz et 
al., 2021).  
 
Green solutions to climate change appear likely to yield substantial population health benefits, 
particularly for socially disadvantaged groups. Our empirical analysis indicates that a majority of 
the health benefits for life expectancy would go to non-white populations. Other studies showed 
that greening strategies to mitigate heat would benefit socially disadvantaged areas the most (Dong 
et al., 2023). Additional research is required to understand the unintended consequences of green 
space solutions and interactions with future climate change. For example, depending on specific 
plant characteristics, vegetation may worsen ambient air pollution by emitting ozone precursors 
(Wolf et al., 2020), or possibly offer improvements through dispersion or deposition effects.  
 
Californians face numerous serious threats to their health and wellbeing from climate change. 
Ongoing initiatives in local communities to the state level are leveraging the co-benefits of green 
space to improve population health, and these strategies can also play a role in reducing climate-
related exposures and generating health co-benefits. 
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VIII. Health Impact Assessment: Wildland Fire Mortality and CMAQ 
Validation 

 
Abstract 
In California, wildfire risk and severity have grown substantially in the last several decades. 
Research has characterized extensive adverse health impacts from exposure to wildfire-attributable 
PM2.5.  Few studies have quantified long-term health impacts from wildfires, and none have used 
a wildfire-specific chronic dose-response coefficient for mortality. We quantified the total 
mortality burden for exposure to PM2.5 due to wildland fires in California from 2008 – 2018 using 
CMAQ modeling system wildland fire PM2.5 estimates. We used a concentration response function 
for PM2.5, applying ZIP code level mortality data and an estimated wildfire-specific chronic dose-
response coefficient accounting for the likely toxicity of wildfire smoke. We find that modeled 
wildland fire PM2.5 accounts for approximately half of all PM2.5 in high fire years in California. 
We estimate between 52,600 to 56,140 premature deaths are attributable to wildland fire PM2.5 
over the eleven-year period. The mortality burden for 2008-2018 equates to an estimated economic 
impact of $432 to $460 billion. These findings extend evidence on climate-related health impacts, 
suggesting that wildfires account for a substantial mortality and economic burden. To our 
knowledge, this is the first health impact analysis applying chemical transport model estimates of 
wildland fire PM2.5 to estimate mortality impacts using high-resolution health data.  
 
Introduction 
Wildfire risk and severity have grown in the last several decades across the western U.S.. Climate 
change (Hurteau et al., 2014; Westerling et al., 2006; Williams et al., 2019), an expansion of the 
wildland-urban interface (WUI) (Burke et al., 2021; Radeloff et al., 2018), and questionable 
wildfire management practices emphasizing fire suppression have all contributed to this increased 
risk (Jerrett et al., 2022). In California, the traditional wildfire season has lengthened, causing peak 
impacts to occur in earlier months (S. Li & Banerjee, 2021). California’s recent wildfire seasons 
have caused extensive environmental, health, and economic damages within and outside of the 
state (Jerrett et al., 2022; D. Wang et al., 2021).  
 
Wildfire smoke contributes to PM2.5, with recent studies finding smoke can account for one-quarter 
to one-half of PM2.5 throughout the U.S., and particularly high levels in western regions (Burke et 
al., 2021; Childs et al., 2022). PM2.5 levels have generally improved throughout the country over 
the last several decades except for in fire-prone regions in the northwest U.S. (McClure & Jaffe, 
2018), and the western U.S. more broadly, which have experienced increases in summer smoke 
PM2.5 (O’Dell et al., 2019). 
 
Scholars use various methods for estimating air quality during wildfires, including chemical 
transport models (CTMs), machine learning algorithms, in-situ monitoring data and satellite data, 
and combinations of these tools and datasets (Aguilera et al., 2023; Burke et al., 2021; Childs et 
al., 2022; O’Dell et al., 2019; O’Neill et al., 2021; Reid et al., 2015, 2021; D. Wang et al., 2021; 
Wilkins et al., 2020, 2022). Several of these methods have the ability to distinguish wildfire smoke 
from undifferentiated PM2.5, with various strengths and limitations associated with each approach. 
In situ air quality monitoring is often sparse in fire-affected areas, and even with dense coverage, 
monitoring alone cannot isolate smoke PM2.5 concentrations from total PM2.5 from all sources. 
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Consequently, analyses modeling wildland fire air quality remain vital for characterizing the 
spatial distribution, magnitude, and temporal trends of wildfires, as well as understanding 
population exposures to smoke PM2.5, which adversely impact public health (Black et al., 2017; 
Cascio, 2018; D’Evelyn et al., 2022; J. C. Liu et al., 2015; Reid, Brauer, et al., 2016a).  
 
Exposure to PM2.5 in urban air is associated with a multitude of health risks, including premature 
mortality and respiratory and cardiovascular morbidity outcomes (Pope & Dockery, 2006). In 
terms of wildfire-associated PM2.5 specifically, there is relatively well-established evidence for the 
impact of wildfire smoke exposure on morbidity, such as respiratory illness and hospitalizations 
(Aguilera, Corringham, Gershunov, & Benmarhnia, 2021a; Cascio, 2018; J. C. Liu et al., 2015; 
Reid, Brauer, et al., 2016a). Evidence for mortality resulting from PM2.5 exposure during wildfire 
events is more mixed (Black et al., 2017; Cascio, 2018; Casey et al., 2020; Reid, Brauer, et al., 
2016a), though recent studies have quantified the relationship between short-term exposure to 
wildfire smoke and mortality (Doubleday et al., 2020; Magzamen et al., 2021) and estimated health 
impacts during wildfire events, applying both wildfire-specific PM2.5  dose-response coefficients 
as well as urban PM2.5 dose-response coefficients to concentration changes to calculate premature 
deaths (Y. Liu et al., 2021; Matz et al., 2020).  
 
Such studies have largely found that exposure to PM2.5 due to wildfires has substantial impacts on 
mortality and resulting economic burdens, with adverse effects reported in North America more 
broadly, the western U.S., as well as California specifically, which is the study area for this 
analysis. One long-term analysis in Canada found that the estimated economic impact for chronic 
health effects over a five-year period was between four and nineteen billion dollars annually, 
associated with 570 to 2,500 annual attributable premature deaths across the population of more 
than 35 million individuals (Matz et al., 2020). An analysis across the U.S., with a population of 
approximately 300 million, estimated wildfire impacts from a five-year period to result in tens of 
thousands of deaths annually and a total of hundreds of billions of dollars for chronic impacts over 
the entire period (Fann et al., 2018). Another recent study analyzed mortality impacts from April 
– October in 2012, 2013, and 2014, and found 4,000 annual deaths attributable to wildfires, 
alongside an economic valuation of $36 billion, with significant air quality impacts and mortality 
burden in the western states (Pan et al., 2023). In a western U.S.-focused study, a short-term 
analysis examining a specific wildfire event in the fall of 2020 in Washington state found that for 
the population of around 7.7 million, a 13-day period of increased PM2.5 exposure from smoke was 
associated with more than 1,000 premature deaths from the marginal contribution of wildfire 
smoke to chronic exposures, and approximately 90 deaths from short-term exposures (Y. Liu et 
al., 2021). Finally, a recent study focused on 2018 California wildfires found more than 3,600 
deaths to be associated with the fires, and more than $148 billion in total damages from health 
costs and capital and other indirect losses (D. Wang et al., 2021).  
 
While the California population of nearly 40 million is at a heightened risk of wildfire exposure, 
no long-term epidemiological studies have directly assessed the mortality impacts resulting from 
years of increasing wildfire exposures within the state. Existing studies are also limited by the use 
of county-level health data. Further, no studies apply a chronic dose-response coefficient 
developed specifically for wildfire exposures; for long-term evaluations beyond a specific fire 
event, existing research solely utilizes undifferentiated PM2.5 concentration-response coefficients, 
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which do not capture differences in PM2.5 smoke composition that could impact the dose-response 
effect (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021a; B. A. Jones et al., 2016). 
 
To bridge these knowledge gaps, we use modeled wildland fire-associated PM2.5 concentrations, 
high-resolution CDPH mortality data, and a calculated chronic dose-response coefficient for 
wildfire PM2.5 exposures and mortality to estimate premature deaths due to wildland fires over an 
eleven-year period from 2008-2018. The importance of wildfire management will only grow in 
the coming decades as aridification intensifies and more regions are susceptible to fires. Growing 
the evidence on health impacts from wildfires and potential health savings from wildfire 
management will be critical in ensuring the mitigation of wildfire impacts throughout the state and 
other regions.   
 
Methods   
Data 
Modeled Wildland Fire PM2.5 Concentrations 
We used daily modeled PM2.5 concentrations for 2008-2018 for the state of California at a 12-km 
grid spatial resolution, estimated using the U.S. EPA’s CMAQ, v. 5.0.1- 5.3 – see Table B6.9) 
modeling system.  
These wildland fire emissions estimates (which include wildfires and prescribed burns [but 
exclude agricultural burns], hereafter referred to as simply “fire”) incorporate multiple sources of 
fire activity (see Table B8.9 for a full list of all data sources and specifications). SMARTFIRE2 
(Sullivan et al., 2008) was used to reconcile the sources of fire activity data. Fuel consumption 
was calculated using the U.S. Forest Service’s CONSUME ver. 3.0 fuel consumption model and 
the Fuel Characteristic Classification System (FCCS) fuel-loading database in the BlueSky 
Framework (Ottmar et al., 2007). Emission factors were taken from the Fire Emission Production 
Simulator (FEPS) model. Non-fire emissions sources are from the National Emissions Inventory 
(NEI). The model was run with all emissions (fire and non-fire sources) and again without fires. 
The calculated difference between these simulations (‘all sources PM2.5’ and ‘non-fire PM2.5’) 
isolates the fire contribution, or ‘fire-only PM2.5’. The model simulations for 2008-2012 are the 
same as those used by Rappold 2017 (Rappold et al., 2017) and Fann 2018 (Fann et al., 2018). 
 
The first five years of data from 2008-2012 have been published by Wilkins et al. (Wilkins et al., 
2018) and compared to other models in the literature (Burke et al., 2021); the remaining six years 
of data for 2013-2018 have not yet been reported in published studies. Therefore, we present a 
summary of all eleven years of data alongside the mortality and valuation analysis in this study. 
We compiled descriptive statistics for all eleven years of data, comparing all sources, fire-only, 
and non-fire PM2.5 concentrations throughout the state and estimating the contribution of fires to 
total PM2.5. We also investigate the impacts on air quality from fires within the context of days 
exceeding the NAAQS of daily PM2.5 >35 μg/m3 and years exceeding the annual NAAQS of 12 
μg/m3 (Wilkins et al., 2018).  
 
Additionally, a supplemental validation analysis comparing monthly average modeled 
concentrations to observed concentrations from ground station data is included in Appendix B 
(Model Validation for PM2.5 Estimates).  
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Mortality Data  
Statewide annual mortality data (total number of deaths) by ZIP code and age for all 11 years are 
managed by the CDPH and are publicly available on the California Health and Human Services 
Open Data Portal website (California Department of Public Health, 2022). For several ZIP code 
and age categories, the count of deaths is suppressed for confidentiality reasons (i.e., counts < 11). 
Therefore, we implemented substitution procedures to fill in the missing deaths. First, since we 
only apply the dose-response values to ages 25+ (due to the nature of the epidemiological analysis 
from which the dose-response values were derived), we calculated the percentage of deaths in 
people over 25 for the entire state for each year, which is approximately 98%. For the ZIP codes 
where the total number of deaths was available, but the total number of deaths by age group were 
suppressed due to low counts in each group, we multiplied that percentage (98%) by the total 
number of deaths in the ZIP code to estimate the number of deaths for the applicable age group. 
For ZIP codes where even the total number of deaths are suppressed, we conservatively assume 
the ZIP code contains ½ of the suppression threshold and applied the percentage (98%) to that 
estimated value. We compared our final death count to the total reported deaths in the state (from 
the same CDPH data source) as a metric of quality assurance, and the total estimates varied by less 
than 0.35%.  
 
Mortality and Associated Economic Valuation Calculations  
We quantified the total mortality burden for exposure to PM2.5 due to wildfires in California at the 
zip code level, using eleven years of CMAQ data (2008-2018). Based on the evaluation of the 
modeled data shown in Appendix B, we found that the highest modeled fire-only PM2.5 values 
skew the correlations between the modeled and observed concentrations; thus, there is more 
uncertainty associated with those high concentrations. Therefore, we conducted two mortality 
analyses: (1) Base case, with no outliers removed, to characterize the potential impact of extremely 
high wildfire concentrations on mortality and (2) Mod cap, capping fire-only PM2.5 concentrations 
falling outside of the 99.9th percentile of modeled values (at 143 μg/m3–- see Table B8.9), 
considering the model is expected to perform less reliably far outside of the dataset.  
 
We averaged the daily fire-only PM2.5 values to develop estimates for each year and grid cell, and 
assigned exposures in each year to each ZIP code in California by identifying the nearest grid cell 
to each ZIP code centroid and assigning the associated PM2.5 concentration to each ZIP code.  If a 
given ZIP code contains one or more grid cells, the modeled PM2.5 estimates were averaged for 
that ZIP code.  
 
Then, we developed a wildfire-specific chronic1 dose-response coefficient (Eq. 1).  As mentioned 
previously, while there is substantial evidence regarding the impacts of exposure to wildfire-
specific PM2.5 on morbidity, such as respiratory outcomes (Delfino et al., 2009; Reid, Brauer, et 
al., 2016a), long-term mortality impacts from exposure to PM2.5 from wildfire smoke – including 
how these impacts differ from exposure to ambient urban PM2.5  – are not established and identified 
as a substantial knowledge gap in the literature (Black et al., 2017; B. A. Jones et al., 2016; Reid, 

 
1 Also referred to as “long-term” by some studies in the literature (e.g. Fann et al. 2018) (Fann et al., 2018). 
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Brauer, et al., 2016a). To our knowledge, no existing studies have attempted to characterize the 
dose-response between chronic wildfire PM2.5 exposure and mortality. A limited number of studies 
focus on characterizing the short-term (or acute) wildfire-PM2.5 mortality relationship (G. Chen et 
al., 2021; Doubleday et al., 2020), with one study focused on the west coast of the U.S. evaluating 
short-term impacts from days with heavy ground-level smoke from wildfire events in Washington 
state (Doubleday et al., 2020), and another global study, which presents a U.S.-specific dose-
response estimate along with the main global estimate (G. Chen et al., 2021). Additionally, while 
there are no studies quantifying the relationship between chronic wildfire smoke exposure and 
mortality, several well-established dose-response values for the mortality impact of both chronic 
and short-term PM2.5 exposures from undifferentiated (all sources) ambient PM2.5 have been 
estimated. Existing short-term wildfire PM2.5 dose-response values (G. Chen et al., 2021; 
Doubleday et al., 2020) demonstrate a more substantial impact on mortality than short-term 
undifferentiated dose-response values (Orellano et al., 2020), providing evidence of potential 
increased toxicity of wildfire smoke. Additionally, recent evidence from California has found 
differential increased impacts of wildfire PM2.5 on health outcomes as compared to ambient PM2.5 
(Aguilera, Corringham, Gershunov, & Benmarhnia, 2021a). 

Therefore, the application of an undifferentiated dose-response value to wildland fire-specific 
PM2.5 exposures would likely underestimate mortality impacts. To address this concern, we 
calculated a novel chronic dose-response value using Eq. 1 below, which accounts for potential 
added toxicity of wildfire smoke as is suggested in several California-specific analyses: (Aguilera, 
Corringham, Gershunov, & Benmarhnia, 2021a; Wegesser et al., 2009)   

𝛽𝛽WL = 𝛽𝛽𝑤𝑤𝑤𝑤
𝛽𝛽𝑤𝑤

× 𝛽𝛽L (1) 

where, βWS is the variance-weighted average of the two short-term wildfire PM2.5 dose-response 
values (Washington and U.S.),(G. Chen et al., 2021; Doubleday et al., 2020), βS is a short-term 
undifferentiated PM2.5 dose-response value from a recent meta-analysis (Orellano et al., 2020), βL
is a chronic (annual) undifferentiated PM2.5 dose-response value from a recent country-wide cohort 
study (Pope et al., 2019), and βWL is the result: a chronic wildfire-specific PM2.5 dose-response 
value (see Table B8.10 for a list of the dose-response values used in our analysis). We used a 
Monte Carlo distribution to estimate the final dose-response value used. We calculated a 95% CI 
for the estimated dose-response value. 

Then, we calculated the mortality burden from exposure to PM2.5 due to wildland fire smoke in the 
state of California using Eq. 2 below (US EPA, 2021):  

where, βWL is the result of Eq. 1 (dose-response value), ΔPM2.5ij represents the change in PM2.5 
concentration from wildland fire smoke in yIar i and ZIP code j, dij represents the total deaths in 
adults ages 25 and up, and Δmij represents the total mortality burden from wildland fires. 
We also replicated the mortality calculations in Eq. 2 using solely the chronic undifferentiated 
PM2.5 dose-response value from the U.S. national study conducted by Pope et al. (Pope et al., 2019) 
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to characterize the differences when the dose-response value is not adjusted for the potential added 
toxicity of wildfire smoke (as we did in Eq. 1).  

Finally, we apply the EPA’s VSL to these mortality impacts to estimate the total valuation of the 
health burden, using Eq. 3 below: 

 Economic valuation =  σΔmij ∗  V (3) 

where, Δmij is the result of Eq. 2 (mortality burden from wildland fires), and V is the EPA’s VSL, 
which is $8.7 million in 2015 dollars (inflation year). We accounted for income growth to the year 
2015 using publicly available income growth factors used in the U.S. EPA’s BenMAP-CE tool 
(US EPA, 2021), since changes in income can impact willingness to pay for reduced risk of 
mortality. Finally, we applied a 3% discount rate over the eleven-year period to estimate the net 
present value of our economic estimates (US EPA, 2014a).  

We also conducted two supplemental mortality analyses to further contextualize our primary 
results. First, we developed mortality estimates associated with all sources PM2.5 exposure, using 
βL, the same chronic undifferentiated PM2.5 dose-response value used in our primary analysis (Pope 
et al., 2019). Second, we estimated βWL using an alternative short-term wildfire PM2.5 dose-
response value developed in a recent global study (G. Chen et al., 2021), and used that to conduct 
a sensitivity analysis for the mortality estimates. 

Results  
Overview of Modeled Wildland Fire PM2.5 Data 
Here, we present a summary of the temporal, spatial, and overall distribution of the CMAQ 
modeled PM2.5 concentrations at the 12-kilometer (km) grid scale. ‘All sources PM2.5’ refers to 
total PM2.5 concentrations, ‘non-fire PM2.5’ refers to concentrations excluding wildland fires, and 
‘fire-only PM2.5’ describes the difference between those two simulations, the latter of which is the 
focus of our analysis. A supplemental model validation analysis at the monthly scale using several 
established model evaluation metrics is included in Appendix B (Appendix B, Model Validation 
for PM2.5 Estimates).   

Table 8.1 presents a summary of the modeled PM2.5 estimates developed using the 12-km grid 
scale estimates, which includes concentrations from the entire state, including in rural areas with 
minimal background pollution. As shown in Table 8.1, Fire PM2.5 contributes between 6.9% and 
49% of PM2.5 from all sources, depending on the severity of the fires in each particular year. In 
2008, 2017, and 2018, years where California fires burned between 1.5 mill–on - 2 million acres 
(California Department of Forestry and Fire Protection (CAL FIRE), 2023), wildland fire PM2.5 
was responsible for almost half of all PM2.5. The total PM2.5 concentrations (all sources, including 
fires) were considerably higher in those years as well.  

Expanded summary statistics for the independent grid cells (minimum, mean, and maximum 
annual concentrations by grid cell) for all eleven years are provided in Table B8.1 in Appendix B 
(Appendix B, Supplemental Tables). Substantial elevated maximum fire-only concentrations exist 
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for several years due to extreme wildland fire events, and there are also low minimum annual 
concentrations from grid cells with little to no fire activity.  
 
Table 8.1. Summary of Averaged Modeled PM2.5 (μg/m3) Values and Acres Burned by Year 
(2008-2018) Statewide in California 

Year 
All Sources PM2.5 

(SD, μg/m3)* 
Fire-Only PM2.5 

(SD, μg/m3) 
Non-Fire PM2.5 

(SD, μg/m3) 

Percent of PM2.5 

Attributable to 
Fire 

Total Acres 
Burned 

2008 8.83 (5.49) 4.33 (5.04) 4.51 (3.34) 49.0% 1,593,690 
2009 4.78 (3.03) 0.60 (0.39) 4.18 (3.00) 12.6% 451,969 
2010 4.61 (3.21) 0.32 (0.29) 4.30 (3.21) 6.9% 134,462 
2011 3.91 (2.23) 0.49 (0.34) 3.42 (2.25) 12.6% 228,599 
2012 3.83 (2.10) 0.69 (0.74) 3.14 (2.14) 18.1% 829,224 
2013 3.88 (2.36) 1.17 (1.26) 2.70 (2.17) 30.3% 601,635 
2014 4.74 (3.95) 1.24 (3.73) 3.49 (2.06) 26.2% 625,540 
2015 5.32 (4.85) 1.95 (4.75) 3.37 (1.93) 36.7% 880,899 
2016 4.11 (2.37) 1.00 (1.46) 3.10 (1.76) 24.4% 669,534 
2017 6.76 (5.50) 3.04 (5.28) 3.72 (1.85) 44.9% 1,548,429 
2018 7.65 (4.68) 3.47 (4.42) 4.18 (1.78) 45.3% 1,975,086 

All Years 5.31 (4.16) 1.66 (3.47) 3.65 (2.44) 31.3% N/A 

Notes: All sources = including fire and non-fire sources; fire-only = wildland fire sources only; non-fire = non-fire sources only. 
Acres burned were extracted from CAL FIRE Redbooks for each year (https://www.fire.ca.gov). National Interagency Fire 
Center (NIFC) estimates vary slightly (https://www.predictiveservices.nifc.gov/intelligence/intelligence.htm).   
*Includes total land area with rural locations with lower PM2.5; see Table S2 for a breakdown by metropolitan statistical area 
(MSA).  
 
To visually review model outputs, we examine fire-only concentrations for the entire time period 
(Figure 8.1), as well as compare (1) all sources, (2) non-fire, and (3) fire-only concentrations at 
the grid-cell level for mean PM2.5 across the 11-year period (Figure B8.1). We also visualize 
locations with daily PM2.5 concentrations greater than the U.S. EPA 24-hour (daily) National 
Ambient Air Quality Standards (NAAQS) of 35 μg/m3 and annual NAAQS of 12 μg/m3 over the 
entire eleven-year period (Figure B8.2a-b), and daily PM2.5 concentrations greater than 35 μg/m3 
for each individual year (Figure B8.3). These figures demonstrate spatial and temporal trends in 
elevated PM2.5 concentrations, but do not represent formal exceedances of the NAAQS standards 
or indicate nonattainment.  
 
Figure 8.1 shows fire-only concentrations by year for all eleven years of data, with significant 
regional variation in fire impacts over the long-term period (see Figure B8.4 for the locations of 
fires greater than 300 acres in each year). Average annual fire-only concentrations exceed 15 μg/m3 
in several locations throughout the state in the high fire years. In contrast, during the least impacted 
year, 2010, the fire-only concentrations were less than 0.5 μg/m3 throughout most of the state. The 
spatial distribution of all sources, non-fire, and fire-only concentrations (Figure B8.1) significantly 
vary, as anticipated due to differing pollution sources in different regions. Generally, wildfire 
smoke appears to expand the geographic areas affected by higher PM2.5. The non-fire modeled 

https://www.fire.ca.gov/
https://www.predictiveservices.nifc.gov/intelligence/intelligence.htm
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values demonstrate significant pollution throughout two regions also prone to temperature 
inversions: Los Angeles County, a region known for significant traffic and industrial pollution, 
and the San Joaquin Valley, with two large highways running north-south and considerable 
agricultural pollution. The fire-only concentrations impact more rural, forested areas throughout 
the state on average, though there are significant regional variations not captured by these annual 
averages (Figure 8.1).  
Most modeled concentrations higher than the 35 μg/m3 NAAQS threshold over the eleven-year 
period are due to wildland fire PM2.5 (Figure B8.2a). The most fire-impacted regions in the state, 
mostly in the vicinity of national forests in northwest California and east of the San Joaquin Valley, 
have grid cells with close to or more than 100 days with modeled concentrations higher than the 
24-hour NAAQS threshold over the eleven-year period. The high-fire years contribute a significant 
portion of these elevated values over much of the state, with more than 25 days greater than the 
daily NAAQS threshold within a given year (Figure B8.3). With respect to the annual averages of 
the modeled values, concentrations greater than the annual NAAQS in the more populated, urban 
regions of the state (such as Los Angeles) are due primarily to non-fire sources, with fire-only 
sources accounting for values higher than the NAAQS thresholds in the more rural regions in the 
northern part of the state (Figure B8.2b). These fire-only sources are responsible for average 
concentrations greater than the annual thresholds in several regions and for multiple years during 
the eleven-year period, which demonstrates the magnitude of air pollution impacts during fire 
events. 
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Figure 8.1. CMAQ average daily fire-only PM2.5 concentrations (μg/m3) at 12-km resolution for 
2008–2018 and the average value for all years, computed as the average over all days in each 
grid cell in each time period. 
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Mortality and Economic Valuation Impacts of Wildland Fires 
The total mortality burden for exposure to PM2.5 due to wildfires in California, estimated for two 
exposure scenarios using a calculated chronic wildfire-specific dose-response value (βWL), is 
presented in Figure 8.2 (Table B8.3), along with 95% CIs. In the base case scenario, no outliers 
are removed, to characterize the potential impact of extremely high wildfire concentrations on 
mortality. In the modified cap (mod cap) scenario, fire-only PM2.5 concentrations falling outside 
of the 99.9th percentile of modeled values are capped to account for potentially skewed 
concentrations. The wildfire-specific dose-response value applied here, βWL, was calculated to 
account for the potential increased toxicity of wildfire smoke using preexisting dose-response 
values from primary literature (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021a; 
Wegesser et al., 2009). We also include results using a preexisting chronic undifferentiated PM2.5 
dose-response value (βL) (Pope et al., 2019) as a point of comparison. For base case, including all 
of the original modeled fire-only values for all eleven years and applying βWL, annual mortality 
impacts due to fire-only PM2.5 exposure range from a low of approximately 1,300 deaths (95% CI: 
130 – 2,490) in 2010 to a high of 12,880 (95% CI: 1,150 – 23,760) in 2018 (Figure 8.2), the latter 
of which is the year with the highest number of wildfire acres burned during our analysis period. 
This equates to a total of approximately 56,140 (95% CI: 5,–40 - 104,060) for base case over the 
eleven-year period, and 52,600 (95% CI: 4,–30 - 98,590) for mod cap (see Table B8.4 for a by-
county breakdown of base case mortality results alongside total valuation).   
 
As previously mentioned, we also present estimated mortality impacts using an undifferentiated 
chronic PM2.5 dose-response value not specific to wildfire smoke exposures, βL (Pope et al., 2019), 
to compare to our estimates using the calculated chronic wildfire-specific dose-response value 
(Figure 8.2). When using βL, the total estimated mortality attributable to wildland fire PM2.5 is 
approximately 36,470 (95% CI: 24,–90 - 44,700) for base case, and 33,960 (95% CI: 23,180 – 
41,740) for mod cap. These estimates are approximately 35% less than projected mortality impacts 
when using the βWL dose-response value accounting for wildfire-specific impacts, demonstrating 
that regardless of the added wildfire toxicity assumption (see Methods section), mortality impacts 
from wildfire smoke are substantial.  
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Figure 8.2. Summary of long-term mortality impacts across California due to fire-only PM2.5 for 
ages 25+, using wildfire-specific (left panel) and undifferentiated (right panel) chronic dose-
response values, 2008-2018 (total deaths attributable to fire-only PM2.5). 
Base case = no modeled PM2.5 concentrations capped; mod cap = modeled PM2.5 concentrations 
capped at the 99.9th percentile value of all fire-only concentrations.  
 
Figure 8.3 depicts base case mortality impacts across California for the year with the lowest 
number of deaths attributable to wildland fire (2010), highest number (2018), and the average over 
the eleven-year period (see Figure B8.5 for the full by-year breakdown for all years, and Figure 
B8.6 for the spatial distribution of total mortality impacts over the eleven-year period). In 2010, a 
low-fire year with the least number of attributable deaths, approximately 90% of all ZIP codes 
were estimated to experience between 0-2 deaths. In contrast, in 2018, the highest fire year with 
the largest number of deaths attributable to wildland fire PM2.5, almost 10% of ZIP codes 
experienced more than 15 deaths. 
 
The elevated number of fires in 2008, 2017, and 2018 – along with significantly increased 
mortality impacts, represented by dark blue on the maps – are particularly striking, and there are 
clearly visible temporal and spatial trends (Figure B8.5). In 2008, the largest fires were clustered 
in northern California, with more statewide spread of fires throughout 2017 and 2018. Though 
fires throughout 2008 contributed a higher percent of total PM2.5 than in 2017 and 2018 (Table 
8.1), the attributable deaths were higher for the later years since the fires in those years expanded 
to more to high population areas. 
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Figure 8.3. Total deaths attributable to fire-only PM2.5 (base case) in the year with the fewest 
deaths attributable to wildland fire (2010), most deaths attributable to wildland fire (2018), and 
the annual average over the eleven-year period (2008-2018). Darker colors indicate more 
deaths occurred in a given ZIP code, and white areas are outside of ZIP code designations. 
 

Though the fires are in more rural, forested regions (Figure B8.4, Figure 8.1), the mortality impacts 
are more widespread throughout population centers such as Los Angeles County in southern 
California, the San Joaquin Valley in central California, and the Bay Area in northern California, 
as smoke can be transported to these areas, and there are fewer individuals living in forested 
regions and therefore fewer premature deaths proportionally. For example, the Rough Fire of 2015 
burned more than 150,000 acres in a more rural area of Fresno County, but most mortality impacts 
(represented by dark blue on the map) are west of the fire in a more populated area of the county, 
and throughout the San Joaquin Valley more broadly.  
 
These mortality impacts can be considered in the context of two supplemental analyses. First, the 
mortality attributable to all sources PM2.5 is presented in Table B8.5. Premature deaths attributable 
to all sources PM2.5 are five times larger than the mortality impacts from solely wildland fire 
impacts, with a total of 296,300 deaths attributable to undifferentiated PM2.5 from all sources over 
the eleven-year period of the analysis. Such results demonstrate that while other sources of PM2.5 
may dominate in urban population centers, and therefore result in disproportionately higher 
attributable mortality as compared to the overall contribution of wildland fire smoke to all sources 
PM2.5 (Table 8.1), wildland fires are still responsible for nearly 19% of PM2.5-associated deaths 
overall, and up to 41% in high fire years.  
 
Second, the mortality attributable to wildland fire PM2.5 estimated using a different short-term dose 
response value to estimate βWL (a global estimate (G. Chen et al., 2021) as opposed to the average 
of the U.S. estimate from the same global study and the Washington wildfires study (Doubleday 
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et al., 2020), see Table B8.6) is approximately twice as high as the results presented in Figure 8.2, 
with total estimate of 104,610 for all eleven years, versus 56,140 for our primary results. This is 
reflective of a significantly higher short-term dose-response value for wildfire impacts for the 
global estimate as compared to the two U.S.-specific values used in the primary analysis.  
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Figure 8.4. Economic valuation of mortality impacts from wildland fires and 95% CIs for the 
base case and mod cap scenarios, using the wildfire-specific dose-response value (βWL; 2015 
dollars, 3% discount rate, 2015 income year) 
 

The valuation estimates for base case and mod cap (and CIs), using only the primary wildfire-
specific dose-response value, are presented in Figure 8.4 and Table B8.7. The net present value of 
the estimates for all years is approximately 460 billion dollars (95% CI: $43.2 – $853 billion) for 
base case, and 432 billion dollars (95% CI: $40.0 - $810 billion) for mod cap. 
  
Discussion  
Here, we report on modeled wildland fire PM2.5 estimates at the 12-km grid scale for 2008-2018, 
estimate associated premature mortality using a novel chronic dose-response value for wildfire 
exposure and calculate the associated economic valuation. We find the modeled wildland fire 
PM2.5 estimates follow anticipated spatial and temporal trends with respect to the patterns of fire 
activity in the state. An estimated 52,600 to 56,140 premature deaths are attributable to fire-only 
PM2.5 in California from 2008-2018, with an associated economic valuation of $432-$460 billion 
dollars (2015$). These deaths account for nearly 19% of total deaths attributable to all sources 
PM2.5 in the state during this eleven-year period. To our knowledge, this is the first analysis to 
characterize mortality impacts in the state over a long eleven-year period, to apply a chronic dose-
response value for wildfire-specific PM2.5 exposure, and to use highly resolved health data in 
concert with a CTM (CMAQ) capable of isolating wildfire-related fine particle concentrations. 
These findings add to a growing body of literature on California-specific wildfire health effects 
(Delfino et al., 2009; Reid, Jerrett, et al., 2016b; Wettstein et al., 2018), and more broadly to 
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evidence on past and projected wildfire and other climate-related health impacts occurring in 
California, the U.S., and globally (Deschênes & Greenstone, 2011; Ebi, Capon, Berry, Broderick, 
de Dear, et al., 2021; Ganesh & Smith, 2018; Neumann et al., 2021; Shonkoff et al., 2011; U.S. 
Global Change Research Program [USGCRP], 2018).  
 
Modeled Fire-only PM2.5 Estimates 
The spatial distribution of fire-only PM2.5 from our CMAQ model outputs aligns with general 
trends observed in analyses of historical fire records (S. Li & Banerjee, 2021; Williams et al., 
2019) and other environmental health-focused studies using modeled data (Koman et al., 2019), 
though the model can overpredict concentrations in the high-fire years (other studies have reported 
similar CMAQ tendencies toward overprediction during wildfire events, due to challenges in 
modeling the distribution of fire emissions (Baker et al., 2016; Wilkins et al., 2018, 2022). As 
anticipated, the high fire years of 2008, 2017, and 2018 demonstrated elevated PM2.5 
concentrations, with many daily and annual values greater than the associated NAAQS thresholds 
(Table 8.1, Figure B8.2a-b, Figure B8.3). A recent wildland fire modeling analysis by Koman et 
al. used CMAQ to evaluate modeled exposure to wildland fire smoke from 2007-2013 in California 
and estimated all sources and fire-only PM2.5 concentrations consistent with the results we present 
in Table 8.1 for the years overlapping with our analysis (Koman et al., 2019). This was expected 
considering the data inputs were similar, including the use of the BlueSky framework and 
SMARTFIRE2 to develop emissions to use within CMAQ. Additionally, studies incorporating 
machine learning algorithms in estimating wildfire PM2.5 are becoming more common as an 
alternative to CTMs (Aguilera et al., 2023; Childs et al., 2022; Reid et al., 2015); two recent studies 
have used machine learning techniques to parse out wildfire smoke PM2.5 across the contiguous 
U.S. Childs et al. found that smoke PM2.5 can contribute approximately half of annual all sources 
PM2.5 in certain high-fire locations in the Western U.S. (equating to an increase in annual PM2.5 of 
5 μg/m3 in certain regions). This aligns with our modeled results for the high fire years of 2008, 
2017, and 2018 (Table 8.1) (Childs et al., 2022).  
 
Mortality Impacts of Exposure to Wildland Fire PM2.5 
We present a range of potential mortality impacts from two exposure scenarios (one with no 
modeled values altered [base case] and one with modeled values capped [mod cap]) to account for 
uncertainties in the modeled PM2.5 estimates. Our use of a wildfire-specific chronic dose-response 
value (as opposed to an undifferentiated dose-response, which we also present as a form of 
sensitivity analysis) results in an increase in the magnitude of our findings, as is shown in the 
comparison to the premature mortality estimated using a chronic undifferentiated PM2.5 dose-
response value from Pope et al. (Figure 8.2) (Pope et al., 2019). We selected the Pope et al. study 
since it is a recent, representative U.S. sample.   

Several studies quantify health impacts from exposure to PM2.5 during wildfires, but few examine 
mortality in California specifically. A recent study by Wang et al. evaluating the economic 
footprint of the 2018 California wildfires conducted a health impact assessment for one portion of 
the analysis (D. Wang et al., 2021). They estimated 3,652 premature deaths associated with 
wildfire PM2.5 exposure (D. Wang et al., 2021), which is significantly lower than our estimates of 
12,160 – 12,880 for 2018. While the discrepancy is likely partially due to varying modeled PM2.5 
exposure used in the two studies, it is primarily due to the use of differing dose-response values. 
Wang et al. estimated mortality using a combination of a 2013 California specific dose-response 
estimate (Jerrett et al., 2013), and a well-established U.S. dose-response value from 2009 (Krewski 
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et al., 2009) commonly used in U.S. health impact analyses. Their analysis used BenMAP-CE, 
which utilizes county level health estimates. Our study builds on this California-specific analysis 
by (1) using more highly resolved health data, which can reduce potential misclassification of 
exposures associated with using spatially coarse health data; (2) extending the temporal period of 
the health analysis; and (3) applying a chronic wildfire-specific dose-response value. 

Fann et al. quantified long-term mortality and morbidity impacts throughout the entire country for 
2008-2012, using the same commonly used U.S. dose-response value mentioned previously, and 
the same CMAQ simulation we apply in this study (Fann et al., 2018; Krewski et al., 2009).  
Though results for California are not explicitly presented, the authors reported that California is 
one of several states in the country with the most significant mortality and respiratory morbidity 
impacts over the five-year period (Fann et al., 2018). They estimated 14,000 premature deaths in 
the U.S. for the high fire year of 2008 as compared to our estimates of approximately 10,000 (for 
both scenarios) in California alone. Again, our use of the wildfire-specific dose-response 
coefficient has also increased the magnitude of our results. Additionally, similar to the California 
economic footprint study discussed previously, the U.S. study was limited by the use of county-
level health data, which is again less spatially resolved than the ZIP code-level data used here. 

Implications of Using Modeled Air Quality Estimates for Health Impact Assessment 
The scenario-specific analysis has several implications as well. We find that capping fire-only 
concentrations at the 99.9th percentile (exceeding 143 μg/m3 – see Table B8.8) of values results in 
several hundreds to thousands of fewer wildfire PM2.5 attributed deaths per year, but the overall 
magnitude of impacts is still substantial with the peak concentrations capped. The results vary little 
between the base case and mod cap scenarios in the lower fire years (especially 2009-2014), which 
indicates that these higher concentrations are occurring primarily in the high fire years and likely 
driven by severe fire events. As it is certainly possible for concentrations to reach and exceed 143 
μg/m3 (the 99.9th percentile value) during fire events, capping these values would lead to an 
underestimate for mod cap. Additionally, the observed CMAQ model overprediction during fire 
events would lead to an overestimate for base case. This is an uncertainty in using modeled data 
for health impact assessment, particularly for analyses in which the results can be affected by high 
concentration averages applied in dose-response analysis. 
 
This variation in results between base case and mod cap and the differing magnitude of our 
findings with the wildfire-specific versus undifferentiated dose-response value (Figure 8.2) 
highlights several considerations and challenges associated with using modeled data for health 
studies. The implications and sensitivity associated with the choice of wildfire smoke exposure 
data and potential misclassification in relation to quantifying health impacts has been discussed in 
recent studies (Cleland et al., 2021; Gan et al., 2017; Lassman et al., 2017; J. C. Liu et al., 2015). 
One study found differing odds ratios for morbidity outcomes using three different methods of 
wildfire smoke estimation (WRF-Chem, kriging, and geographically weighted ridge regression) 
(Gan et al., 2017). Another analysis that was focused on acute health impacts during the 2017 
California wildfires used varying dose-response values and exposure surfaces to test the sensitivity 
of results (Cleland et al., 2021). The authors found that there were no statistically significant 
differences in results for the variation in either input, but the differing magnitude in outcomes 
resulting from the use of a range of dose-response values supported the use of context-specific 
dose-response values, as we have applied in this study (Cleland et al., 2021).  
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Novelty, Strengths, and Limitations 
This study has several strengths and presents a unique contribution to the literature. The use of 
eleven years of CMAQ data enabled us to report on a long-term period of wildfire impacts in 
California, with several high fire years with substantial impacts. The use of fire-only PM2.5 
estimates from the CMAQ model is a distinct strength of this study. Though recent machine 
learning analyses have parsed out wildfire-specific PM2.5 at slightly more spatially resolved levels 
than our 12-km grid (10-km (Childs et al., 2022) and ZIP code (Aguilera et al., 2023)), there is 
uncertainty in these estimates due to a series of assumptions in the methodology. Both studies 
intersect the Hazard Mapping System Fire and Smoke Product (HMS Smoke) hand-drawn smoke 
plumes from satellite imagery with the various grids as a primary method of identifying smoke 
days. The HMS Smoke product, however, characterizes the density of smoke plumes in the 
atmospheric column, and accordingly is not precisely aligned with ground-level PM2.5 
concentrations (Fadadu et al., 2020). Further, the studies characterize the fire-only concentrations 
using undifferentiated PM2.5 concentrations (from all sources) and the binary smoke day 
classification, which again requires several assumptions to extract fire-only PM2.5 using 
counterfactual non-smoke concentrations (Aguilera et al., 2023; Childs et al., 2022). The CMAQ 
modeled estimates applied in this study are subject to typical limitations associated with use of a 
CTM, but these values are based on actual all sources and non-smoke modeled PM2.5 and do not 
involve the use of imputation. The use of highly-resolved health data at the ZIP code level is 
another key novel aspect. Less spatially resolved county-level mortality rates are used in BenMAP-
CE (US EPA, 2021) and many existing health impact assessments, which can result in potential 
exposure misclassification, as mentioned previously. We also apply a fire-specific dose-response 
coefficient accounting for increased toxicity of wildfire smoke, which gives a first estimate of 
chronic wildfire-specific mortality impacts. Additionally, the inclusion of two exposure scenarios 
enables us to evaluate the sensitivity of the magnitude of health impacts to high PM2.5 
concentrations from severe wildfire events.  
 
Several limitations deserve mention. The CMAQ model is affected by typical challenges 
associated with the use of data inputs and procedures for modeling wildfire smoke using CTMs 
(Fann et al., 2018; Jaffe et al., 2020; Koplitz et al., 2018). We address model overprediction 
concerns by including mod cap, in which we remove modeled data outside of the 99.9th percentile 
of all values and develop a second set of mortality and valuation estimates to consider and discuss. 
Additionally, the CMAQ model runs do not isolate wildfire emissions from prescribed burns.  
Therefore, the results presented here include mortality associated with all wildland fires (not 
including agricultural burns, which are not incorporated in the isolated fire-only fraction), and do 
not solely represent wildfires. However, prescribed burns in California account for a very small 
proportion of the total acres burned (CAL FIRE, 2022), though this may change in the future with 
ambitious targets for increased land management practices (California Wildfire & Forest 
Resilience Task Force, 2022). For this study period, we do not anticipate a significant portion of 
the mortality impacts to be attributable to prescribed burning.  
 
Additionally, we estimated a wildfire dose-response value, which enables us to account for the 
potentially increased toxicity of wildfire smoke. There is some uncertainty in this approach, since 
this dose-response value was not developed through primary research, but instead was calculated 
using existing dose-response values. With respect to the short-term wildfire-specific dose-response 
function used to estimate the final coefficient, we chose to use the variance-weighted average of 
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two dose-response values for the short-term wildfire-specific dose-response coefficient, one from 
a Washington wildfires study (representative of wildfire conditions, PM2.5 composition, and 
population in the western U.S.). We drew the second from a global study that estimated short-term 
mortality risk attributable to wildfire smoke exposures in 749 cities, and provided a supplemental 
estimate for solely U.S. cities (G. Chen et al., 2021). The main dose-response value presented in 
the global study, however, found mortality risk estimates of a higher magnitude than the 
Washington study and its own U.S.-based estimate; results using this dose-response value are 
included as a sensitivity analysis (Table B8.6) and demonstrate approximately twice the mortality 
impact, with more than 100,000 deaths attributable to fire-PM2.5 over the eleven-year period (G. 
Chen et al., 2021). While the application of two U.S. dose-response values – as we have done here 
– is the most appropriate approach for this analysis, the inconsistencies between global and U.S. 
estimates highlight the need for further analysis to characterize the relationship between wildfire 
PM2.5 exposure and both acute and chronic mortality impacts.  
 
Key Areas for Future Study 
Further study on these topics will be crucial as the state continues to make efforts to reduce the 
widespread impacts of climate change on the environment and human health. Future work on air 
pollution modeling to parse out wildfire concentrations will enable more precision in health impact 
assessments. While a growing number of machine learning analyses discuss total PM2.5 results in 
the context of wildfire smoke (Q. Di et al., 2019; L. Li et al., 2020; Reid et al., 2021), only recently 
have models isolating fire-specific PM2.5 been built (Aguilera et al., 2023; Childs et al., 2022). 
This is an area for research and development, including further comparison against typical CTMs 
to determine the best approaches to develop exposure surfaces for health analyses.  Finally, 
evaluating the equity dimensions of exposure and health outcomes is an area for future study. 
Another key implication of the substantial health and associated economic impacts from wildfires 
presented in this study is the importance of cultivating community resilience (D’Evelyn et al., 
2022; McWethy et al., 2019) and protecting vulnerable populations throughout California who 
have less access to wildfire mitigation resources and reduced adaptive capacity (Davies et al., 
2018; D’Evelyn et al., 2022). While many wildfire-prone regions are home to communities with 
lower social vulnerability (Wigtil et al., 2016), the intersection of wildfire health effects and equity 
will continue to grow in importance in the coming years as wildfires increase in severity and 
populations become more vulnerable to subsequent impacts. Considering the magnitude of the 
mortality impacts estimated here and the diverse population living in California, including many 
communities with pre-existing vulnerability, this presents an opportunity for future research and 
evidence-based policy action to protect public health and promote equity. 
 
In conclusion, this analysis characterizes the harmful impacts of PM2.5 from wildland fire smoke 
on the health of the California population during the eleven-year period of 2008-2018. To our 
knowledge, this is the first health impact analysis applying CTM estimates of wildland fire PM2.5 
to estimate mortality outcomes using high-resolution health data. This analysis is also novel with 
respect to the long-term nature of the evaluation over an eleven-year period, and estimation and 
application of a chronic dose-response value for wildfire-specific PM2.5 exposure. We estimate 
between 52,600 to 56,140 premature deaths are attributable to fire PM2.5 exposures, with an 
associated economic valuation of $432 to $460 billion. These findings have direct implications for 
California, a state at the forefront of climate policy development with many fire-prone regions and 
a diverse population to protect. Growing the evidence base on health impacts from wildfires and 
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other climate-related exposures is critical in motivating future investments to mitigate the impacts 
of climate change and protect vulnerable populations.  
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IX. Health Impact Assessment: Wildfire Fire Morbidity 
 
Introduction 
The prevalence of wildfires in the western United States has surged in recent decades, driven, in 
part, by elevated temperatures, change in participation patterns, and expanding wildfire seasons. 
Several of largest wildfires in California’s history have occurred within the past decade, and 
changes to wildfire patterns are only expected to continue climate change continues to create dry, 
fuel rich landscapes. Wildfire events have been explicitly linked to a rise in PM2.5, and recent 
evidence suggests that wildfire PM can be more harmful than PM from other sources, likely due 
to its broad concentration variations, chemical compositions, and finer particle sizes (Aguilera et 
al. 2021). Additionally, co-exposure of wildfire-specific PM2.5 with other environmental factors 
can lead to additional negative health outcomes. A recent study found short-term exposure to 
wildfire-specific PM2.5 was associated with 65.6 million all-cause deaths globally, of which, ~8.6 
million were within the United States (Chen et al. 2021). Growing evidence within the peer-
reviewed literature has also identified a relationship between wildfire-specific PM2.5 emissions 
with multiple adverse morbidity outcomes including exacerbated respiratory symptoms, asthma, 
and COPD.  
  
Overall, there is a lack of available epidemiological peer-reviewed literature examining the full 
impacts of wildfire exposures on health; however, as wildfire risks increase globally, the pace of 
newly published literature is rapidly expanding. There is a critical need to better understand the 
human health impacts from wildfire emissions, from both historic wildfire events and future 
predicted wildfires. A tool capable of quantifying impacts of wildfire exposures is needed, 
however, it is critical that it is flexible as to account for developing inputs. Therefore, using the 
U.S. EPA’s BenMAP-CE program (https://www.epa.gov/benmap) with environmental and human 
inputs, we have developed the NWL Health Scenario Tool that is capable of estimating health 
impacts from wildfire exposures within the western US. This tool is flexible and can be updated 
to account for improved coefficients of exposure and emissions estimates. BenMAP-CE is an 
opensource program that relates air quality changes to human health benefits and estimates the 
number and economic value from health impacts resulting from changes in air pollution 
concentrations. In this work, we detail the process of estimating California-specific health impacts 
using coefficients available in the peer-reviewed literature and wildfire emission estimates from 
the 12km CMAQ model.  
  
To examine state-specific health estimates, we conducted a review of the current epidemiological 
literature examining the various human health impacts from wildfire smoke episodes. From this 
comprehensive review, we identified relevant studies that assessed the relationship between health 
outcomes and wildfire-specific PM2.5 concentrations. In the absence of a meta-analysis specific to 
wildfire PM2.5 emissions in the western US, we extracted the most appropriate dose-response 
metrics (coefficients) of exposure from the primary literature. We used the U.S. EPA’s BenMAP-
CE program to estimate health impacts from wildfire-specific PM2.5 using daily concentrations 
from the 12km CMAQ model. Resulting health impact estimates from wildfire exposures were 
presented from multiple studies to examine the variations over various dose-response metrics 
exposure. Finally, we included these results in the interactive, publicly available NWL Health 
Scenario Tool which allows users to visualize the results of various scenarios, as detailed in the 
later chapters.  

https://www.epa.gov/benmap
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Methods 
  
Updated Literature Review 
To understand the current state of the literature, and expanding on the previous scoping review 
detailed in earlier chapters, we first conducted a non-structured review to identify relevant review 
articles that have been published in the last few years. We used the identified literature to state, 
with confidence, the direction and strength of associations between wildfire specific PM2.5 
exposures and respiratory, cardiovascular, and mortality outcomes. With this information, we then 
conducted a more focused, outcome-specific structured literature review to identify and extract 
region-specific dose-response values that can be incorporated and modeled to estimate health 
impacts of exposure.  
  
Expanding the timeframe of the previous scoping review, we focused the literature review on 
health outcome categories identified as having strong evidence of association with wildfire PM2.5 
emissions. We conducted searches on the PubMed and Web of Science databases in July 2023 and 
included all articles published from 2021 through the search date. Further, we developed an 
inclusion and exclusion criteria to limit the identified literature to the most appropriate studies of 
interest. Criteria included primary empirical human-health studies of all age groups, sexes and 
genders which evaluated human health impacts from wildfire-specific exposures in the western 
United States including Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, New 
Mexico, Nevada, Oregon, Utah, Washington, and Wyoming. We focused on studies that explicitly 
identified or measured health outcomes as a direct impact from wildfire-specific exposure and 
included studies with a quantifiable dose-response value detailed in the literature. We focused on 
wildfire-specific PM2.5 as the primary exposure for two reasons: (1) particles, specifically particles 
with an aerodynamic size ≤ 2.5µm, are among the most commonly utilized wildfire-specific metric 
of exposure within the peer-reviewed literature; thus potentially providing a larger pool of relevant 
studies that can be used to develop health estimates and; (2) several wildfire products including 
the CMAQ provide PM2.5 estimates that can be utilized to assess health burdens from their 
modelled emissions or concentrations. To develop the health estimates of exposure, and in absence 
of available medical data, we were limited to studies with International Classification of Diseases 
(ICD) codes that could be matched with health outcomes provided in the BenMAP-CE database.  
  
For the review, ineligible studies included those using non-human subjects, exposures in a 
laboratory setting, or exposure studies that did not empirically examine the relationship between 
wildfire-specific PM2.5 to human health to provide a qualitative impact estimate. Since the ultimate 
goal is to examine impacts statewide, occupational exposures, including those from wildland 
firefighters were excluded. We further limited our search to studies published in a peer-reviewed 
journal written in English, French, or Spanish. The full list of inclusion and exclusion criteria are 
provided in Table 9.1 below.  
  
  
Table 9.1. Inclusion and exclusion criteria applied to compressive peer review literature search  
Inclusion Criteria Exclusion Criteria 
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Peer-reviewed literature that was published 
since the previous scoping review (2020 – 
2023) in English, Spanish, or French language 

Non-peer reviewed literature (e.g. abstract 
only, conference proceedings, articles from 
the media, letters to the editor, reports, thesis, 
textbooks, etc.) published prior to 2020 and 
not in the English, Spanish, or French 
language 

Peer-reviewed research studies that collect 
non-occupational wildfire exposure data to 
examine the relationship to human health 
outcomes as identified by an ICD code 

Studies that report on occupational exposures, 
or exposures from health outcomes that 
cannot be classified by an ICD code  

Health outcomes are examined as a direct 
impact from wildfire exposures with a 
quantifiable dose-response value detailed in 
the literature 

Health outcomes that are examined as a 
secondary impact from wildfire exposures 
(e.g. loss of livelihood and resulting stress) or 
does not provide a quantifiable dose-response 
value 

Literature that examines populations impacted 
in Western United States including Alaska, 
Arizona, California, Colorado, Hawaii, Idaho, 
Montana, New Mexico, Nevada, Oregon, 
Utah, Washington, and Wyoming 

Literature that does not look at populations 
within the Western United States.  

Literature that explicitly investigate wildfire 
exposures that are identified or measured by 
wildfire-specific PM2.5 smoke  

Literature that does not explicitly examine 
wildfire-specific PM smoke exposures (e.g. 
residential fires, prescribed burns, agricultural 
fires, anthropogenic biomass fires, vehicular 
emissions, etc.) 

  
  
After removing duplicates, we analyzed titles and abstracts for significance, then remove studies 
that did not fit the detailed inclusion and exclusion criteria. We applied the same criteria to articles 
identified in the previous scoping review and conducted a reverse snowballing literature search by 
using citations in the collected literature to identity additional relevant work. We conducted a full 
article review on the resulting literature to determine inclusion in subsequent crosswalk.  
  
Estimates of Health Impacts  
BenMAP-CE Crosswalk. Once the target literature was identified, we systematically extracted and 
organized the data for analysis into an Excel spreadsheet that included relevant information 
including: authors, publication year, publication title, journal, study location, exposure 
measurement, and health outcome examined, and ICD-9 code(s). We evaluated each health 
outcome for inclusion based on the availability of existing prevalence data currently available 
within BenMAP-CE. We created a crosswalk of coefficients from the identified literature of high 
and medium certainty and compared them to the extensive health outcome prevalence data sets 
available in the BenMAP-CE program. We restricted our inclusion to only those with matching 
ICD codes and medical delivery method (e.g., hospitalizations, emergency department [ED] or ER 
visit, etc.) as the most defensible comparison and broaden the scope based on consultation with 
medical professionals. If more than one coefficient was identified for model inclusion, we 
prioritized dose-response values derived from studies that examined health outcomes within 
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California, prioritizing studies that examined impacts over larger geographic regions, included 
emissions from multiple wildfire events into exposure estimates, and examined more recent 
wildfire events.  
 
Import Health Coefficient Database. Peer-reviewed literature on wildfire-specific PM2.5 is 
expanding rapidly; thus, it is important to utilize a platform that can adapt to emerging findings, 
coefficients, and health outcomes. The health coefficients selected for the current project aim to 
characterize statewide exposures, specific to the project objectives; but the provided tool is flexible 
and can adapt to individual research needs. We extracted all relevant peer-reviewed literature (as 
detailed in Section VI and IX) and included dose response coefficients in the resulting extraction 
worksheet (Figure 9.1) for all eligible exposures within the western US. Depending on individual 
project needs, these coefficients included in the extraction worksheet can be evaluated for model 
inclusion and used for additional analyses, where appropriate.    
 
Figure 9.1. Extraction worksheet of additional coefficients for additional analyses in western 
U.S.  

 
 
 
Health Coefficient of Exposure. We utilize the BenMAP-CE platform to populate the Health 
Impact Functions per the guidance from BenMAP-CE staff (See Figure 9.1). Selected coefficients 
were formatted for comma separated value datasheets using daily 24-hour metric (D24HourMean), 
annual and seasonal metrics remained undefined, and assigned an appropriate distribution.  
 
 
Figure 9.2. Selected coefficients formatted for BenMAP-CE Health Impact Function import.   
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Selected coefficients were formatted for custom Health Impact Function import into the BenMAP-
CE platform using the Database Import function in the Tools dropdown menu (Figure 9.3) and by 
selecting the appropriate file (Figure 9.4).   
 
Figure 9.3. Option for importing custom coefficients into BenMAP-CE.    

 
 
Figure 9.4. File import of selected coefficients for analyses.   

 
 
 
Custom Health Impact Functions can be viewed in the Modify Datasets section and further updated 
as needed (Figure 9.5). Coefficients selected for the current study and the final extraction 
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worksheet will be formatted and provided as a comma-separated values (CSV) file and provided 
as part of the final tool package.  
 
 
Figure 9.5. Health Impact Functions can be modified using the Modify Datasets function.  

 
 
 
Pooling Function. For health outcomes with multiple coefficients with similar methodologies, we 
conducted pooling to aggregate the incidence results and place an economic value on the combined 
health estimates. The methods used to pool each of the health endpoints varies depending on the 
identified studies. The weighting scheme used for the dose-response coefficients are based on the 
U.S. EPA built-in pooling functions; to reference the weights applied to each dose-response 
coefficient in the current study, view the provided Forest Plots. 
 
The random effects model was used to pool health estimates derived from individual study 
coefficients that sampled from two different populations. The random effects model assumes both 
within and between-study vulnerabilities; thus, the model accounts for and assigns weight based 
on these two factors.  
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Figure 9.6. Example pooling weights for all-cause respiratory hospital emissions in BenMAP-
CE using dose-response functions from the peer reviewed literature. 

  
  
 
PM2.5 Exposure Estimates. We used daily wildfire-specific PM2.5 concentrations (µg/m3) from 
2008-2019 at a spatial resolution of 12 km developed from the CMAQ model using SMARTFIRE 
(Sullivan et al. 2008) emissions to simulate changes in air pollution concentrations with and 
without fires across the contiguous United States (Wilkins et al. 2018). Fuel consumption was 
calculated using the U.S. Forest Service’s CONSUME version 3.0 fuel consumption model and 
the FCCS fuel-loading database in the BlueSky Framework (Ottmar et al. 2007). Wildland fire 
emissions estimates (which include wildfires, agricultural burns, and prescribed fires) incorporate 
multiple sources of fire activity, including Earth observations as well as federal, state, local, and 
tribal databases. Emission factors are taken from the FEPS model. Non-fire emissions sources are 
from NEI. CMAQ wildfire estimates have been reviewed and validated within the current report 
(see additional chapters).  
  
Per consultation with BenMAP-CE personnel, we formatted the daily CMAQ inputs into comma 
separated files with columns identifying a daily 24-hour mean metric (D24HourMean), and none-
specified annual statistic or seasonal metric for both all emissions (fire and non-fire sources) and 
without fire datasets. Once uploaded, the model is run with all emissions (baseline) and again 
without fires (control); the difference between the two simulations isolates the wildfire-specific 
PM2.5 contribution. Wildfire-specific PM2.5 CMAQ concentrations are shown as inputs into the 
BenMAP-CE program in Figure 9.2 (below).  
  
  
Figure 9.7. BenMAP-CE display with uploaded wildfire-specific PM2.5 CMAQ concentrations for 
2018 across the county.  



A Scenario Tool for NWL in California 
 

 

113 
 

 

 
  
Population Data. In BenMAP-CE, population data is used to estimate population exposure and 
can be adjusted by race, ethnicity, gender, and age. When the spatial scale was not available in the 
BenMAP-CE platform, the population dataset was created using the PopGrid software application 
(www.epa.gov/benmap/benmap-community-edition), which aggregates block-level population 
data into a custom grid definition. For 2008 – 2012 estimates, we used PopGrid to forecast 
population at the specific 12-km grid definition. For years 2013 – 2018, we forecast population 
based on the existing 12-km national CMAQ grid pre-loaded in the BenMAP-CE software. 
Population for all years were estimated using the 2010 U.S. Census defined at the appropriate grid 
definition. 
  
Health Data. BenMAP-CE uses 2012-2014 county-level mortality data from the Centers for 
Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research 
(WONDER) database and use the data to generated age-, cause-, and county-specific mortality 
rates. Mortality rates in years 2015 through 2060, are calculated using annual adjustment factors, 
based on a series of Census Bureau projected national mortality rates. Hospitalization and ED 
visits, also referred to as ER visits, are calculated using data from the Healthcare Cost and 
Utilization Project (HCUP). Short-term morbidity and mortality outcomes are calculated by an 
existing BenMAP-CE equation (see below) but can be updated based on the needs of each unique 
coefficient.  
  

Y= M × (1-(1/e^( × E))) × P 
  
Economic Data. We also estimated economic impacts from hospital admission and ER visits for 
each morbidity and mortality outcomes. Existing economic indices within BenMAP-CE are 
adjusted based on the 2015 currency year and scaled to the year of interest. Morbidity endpoints 
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are based on willing to pay (WTP) and cost of illness (COI) measures and mortality endpoints are 
based on the VSL. Within the U.S. set-up, the valuation function has a dollar year of 2015 with 
inflation factors based on the All Goods, Medical Costs, and Wage Indices. For each health 
estimate, we used the pre-loaded U.S. EPA Standard Valuation Functions selected based on the 
information in the table below. 
  
Table 9.2. U.S. EPA Standard Valuation Function preloaded in BenMAP-CE and used for 
economic estimates of health impacts 

Health Outcomes Dataset Name Details $ (114pprox..) 
ER, Asthma EPA Standard Valuation 

Functions (2021) 
COI: Standford et al. (1999); mean 
medical cost 2015 

$450 

ER, Respiratory EPA Standard Valuation 
Functions (2021) 

Nationwide Emergency 
Department Sample (NEDS). 
Healthcare Cost and Utilization 
Project (HCUP). 2016 

$900 

HA, Chronic Lung 
Disease (less asthma) 

Additional Valuation 
Functions 

Mean hospital charge in 2015 $2,500 

HA, Asthma Additional Valuation 
Functions 

Mean hospital charge in 2015 $18,600 

HA, Respiratory Additional Valuation 
Functions 

Mean hospital charge in 2015 $32,600 

Mortality EPA Standard Valuation 
Functions (2021) 

VSL, based on 26 value of life 
studies, with Cessation Lag 3% 
d.r. 

$8,700,00 

  
  
Results 
A cursory, non-structured review of the direction and strength of association between wildfire 
exposure and health impacts in the peer-reviewed literature confirmed our initial scoping review 
results in terms of both respiratory and mortality impacts. We noted mixed and variable results for 
the association between wildfire exposures and cardiovascular outcomes as a result of the previous 
scoping review. While there was no clear consensus on the impacts to cardiovascular health, 
several initiating biological pathways have been identified and an increasing pool of evidence 
exists between short-term exposures and key cardiovascular outcomes (Hadley et al. 2022). The 
non-structured review of the literature failed to provide additional evidence for association; thus, 
due to the high level of uncertainty, and the lack of representative studies, we did not include 
cardiovascular outcomes in any further analyses.  
 
Search keywords were tailored towards respiratory and mortality outcomes to identify additional 
articles with coefficients of interest. Applying the keyword to the PubMed and Web of Science 
databases resulted in 398 and 489 articles for respiratory and mortality outcomes, respectively 
(Table 9.3).  
  
Table 9.3. Outcome specific literature search  

Search Specific Health Outcome: Respiratory  
Database  Developed Search: Specific for Respiratory Outcomes Date: Articles 

Identified  
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PubMed 
  

((wildfire[Title/Abstract]) OR (“wild fire”[Title/Abstract]) OR 
(“controlled burn”[Title/Abstract]) OR (“prescribed fire”[Title/Abstract]) 
OR (“prescribed burn”[Title/Abstract]) OR (“experimental 
fire”[Title/Abstract]) OR (“experimental burn”[Title/Abstract]) OR 
(“wildland fire”[Title/Abstract]) OR (“peat fire”[Title/Abstract]) OR 
(“bush fire”[Title/Abstract]) OR (bushfire[Title/Abstract]) OR (“brush 
fire”[Title/Abstract]) OR (brushfire[Title/Abstract]) OR (“landscape 
fire”[Title/Abstract]) OR (“forest fire”[Title/Abstract]) OR 
(wildfires[MeSH Terms])) AND ((respiratory[Title/Abstract]) OR 
(lung[Title/Abstract]) OR (asthma[Title/Abstract]) OR 
(pneumonia[Title/Abstract]) OR (“respiratory tract diseases”[MeSH 
Terms])) 
  
Filtered by: Published in either French, English, or Spanish, 2021-2023 

07/07/2023: 176 

Web of 
Science  
  

(TI=(wildfire*) OR TI=(“wild fire*”) OR TI=(“controlled burn*”) OR 
TI=(“prescribed fire*”) OR TI=(“prescribed burn*”) OR 
TI=(“experimental fire*”) OR TI=(“experimental burn*”) OR 
TI=(“wildland fire*”) OR TI=(“peat fire*”) OR TI=(“bush fire*”) OR 
TI=(bushfire*) OR TI=(“brush fire*”) OR TI=(brushfire*) OR 
TI=(“landscape fire*”) OR TI=(“forest fire*”)) AND (TI=(respiratory) 
OR TI=(lung) OR TI=(asthma) OR TI=(pneumonia)) 
  
Filtered by: Published in either French, English, or Spanish; 2021-01-01 
– 2023-07-07; “Article”, “Review Article” 

07/07/2023: 33 

Web of 
Science  
  

(AB=(wildfire*) OR AB=(“wild fire*”) OR AB=(“controlled burn*”) 
OR AB=(“prescribed fire*”) OR AB=(“prescribed burn*”) OR 
AB=(“experimental fire*”) OR AB=(“experimental burn*”) OR 
AB=(“wildland fire*”) OR AB=(“peat fire*”) OR AB=(“bush fire*”) OR 
AB=(bushfire*) OR AB=(“brush fire*”) OR AB=(brushfire*) OR 
AB=(“landscape fire*”) OR AB=(“forest fire*”)) AND 
(AB=(respiratory) OR AB=(lung) OR AB=(asthma) OR 
AB=(pneumonia)) 
  
Filtered by: Published in either French, English, or Spanish; 2021-01-01 
– 2023-07-07; “Article”, “Review Article” 

07/07/2023: 189 

Search Specific Health Outcome: Mortality  
Database  Developed Search: Specific for Mortality  Date: Articles 

Identified  
PubMed ((wildfire*[Title/Abstract]) OR (“wild fire*”[Title/Abstract]) OR 

(“controlled burn*”[Title/Abstract]) OR (“prescribed 
fire*”[Title/Abstract]) OR (“prescribed burn*”[Title/Abstract]) OR 
(“experimental fire*”[Title/Abstract]) OR (“experimental 
burn*”[Title/Abstract]) OR (“wildland fire*”[Title/Abstract]) OR (“peat 
fire*”[Title/Abstract]) OR (“bush fire*”[Title/Abstract]) OR 
(bushfire*[Title/Abstract]) OR (“brush fire*”[Title/Abstract]) OR 
(brushfire*[Title/Abstract]) OR (“landscape fire*”[Title/Abstract]) OR 
(“forest fire*”[Title/Abstract]) OR (wildfires[MeSH Terms])) AND 
((mortality[Title/Abstract]) OR (mortality[MeSH Terms])) 
  
Filtered by: Published in either French, English, or Spanish, 2021-2023 

07/14/2023: 143 

Web of 
Science 

(TI=(wildfire*) OR TI=(“wild fire*”) OR TI=(“controlled burn*”) OR 
TI=(“prescribed fire*”) OR TI=(“prescribed burn*”) OR 
TI=(“experimental fire*”) OR TI=(“experimental burn*”) OR 
TI=(“wildland fire*”) OR TI=(“peat fire*”) OR TI=(“bush fire*”) OR 

07/14/2023: 32 
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TI=(bushfire*) OR TI=(“brush fire*”) OR TI=(brushfire*) OR 
TI=(“landscape fire*”) OR TI=(“forest fire*”)) AND TI=mortality 
  
Filtered by: Published in English (was no French/Spanish), 2021-01-01 – 
2023-07-14; “Article” 

Web of 
Science 

(AB=(wildfire*) OR AB=(“wild fire*”) OR AB=(“controlled burn*”) 
OR AB=(“prescribed fire*”) OR AB=(“prescribed burn*”) OR 
AB=(“experimental fire*”) OR AB=(“experimental burn*”) OR 
AB=(“wildland fire*”) OR AB=(“peat fire*”) OR AB=(“bush fire*”) OR 
AB=(bushfire*) OR AB=(“brush fire*”) OR AB=(brushfire*) OR 
AB=(“landscape fire*”) OR AB=(“forest fire*”)) AND AB=mortality 
  
Filtered by: Published in either French, English, or Spanish, 2021-01-01 
– 2023-07-14; “Article” “Review Article” 

07/14/2023: 314 

  
Each article was scanned for duplicates and reviewed according to the inclusion and exclusion 
criteria detailed in Table 9.1. After a full-text review, we identified a total of 19 peer-reviewed 
journal articles that were inclusive to our developed criteria. We extracted the author, publication 
title, respiratory or mortality ICD codes, area or region of study, wildfire timeline of interest, and 
main findings (Table 9.4). All relevant coefficients were formatted for inclusion into the BenMAP-
CE platform for future Western U.S. specific wildfire analyses and provided in the supplementary 
material as a CSV document. It is important to note that all provided coefficients should be 
evaluated prior to inclusion into any future analyses to ensure they are appropriate for specific 
study aims. To demonstrate health estimates, we applied relevant dose-response values from Table 
9.4 to the BenMAP-CE program to develop health and economic estimates from California- from 
wildfire emissions.  
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Table 9.4. Respiratory and mortality health outcome articles evaluated for BenMAPs crosswalk. 

Author 
(Year) 

Publication Title Respiratory-specific 
ICD codes included 

State/ Region Wildfire Period/ 
Timeline 

Exposure Method Included in 
Analysis? 

Delfino et al. 
(2009) 

The relationship of respiratory 
and cardiovascular hospital 
admissions to the southern 
California wildfires of 2003 

466; 493; 277, 460-466, 
480-487, 490-496, 506, 
508, 786; 460-465; 480-
487; 491, 492, 496 

Southern 
California  

October 21 - 30, 
2003 fire period 

Spatial interpolation of 
PM2.5 in fire polygons 

Yes 

Resnick et al. 
(2015) 

Health outcomes associated with 
smoke exposure in Albuquerque, 
New Mexico, during the 2011 
Wallow fire. 

493; 460–519; 510-519 New Mexico; 
Albuquerque 

June 1-13, 2011 fire 
period 

Comparisons of PM2.5 
concentrations pre, 
during, and post 
wildfire event 

No 

Alman et al. 
(2016) 

The association of wildfire smoke 
with respiratory and 
cardiovascular emergency 
department visits in Colorado in 
2012: a case crossover study. 

460 - 466, 490 - 786.07 Colorado  June 5 - July 6, 
2012 fire period 

PM2.5 estimates from 
WRF-Chem modeling 
using FINN emissions  

No 

Reid et al. 
(2016) 

Differential respiratory health 
effects from the 2008 northern 
California wildfires; a 
spatiotemporal approach. 

480 – 486, 491 - 493, 496 Northern 
California  

May 6 - September 
15, 2008 wildfire 
period 

PM2.5 derived using 
blended modeling 

No; same dataset 
from Reid 2019 

Gan et al. 
(2017) 

Comparison of wildfire smoke 
estimation methods and 
associations with 
cardiopulmonary-related hospital 
admissions.  

466; 493; 460-519; 480-
486; 490-492, 494, 496 

Washington  July 1 - October 31, 
2012 wildfire period 

PM2.5 derived using 
WRF-Chem, kriging, 
and mixed methods 

Yes 

Hutchinson et 
al. (2018) 

The San Diego 2007 wildfires and 
Medi-Cal emergency department 
presentations, inpatient 
hospitalizations, and outpatient 
visits: An observational study of 
smoke exposure periods and a 
bidirectional case-crossover 
analysis. 

277, 460-464, 466, 480-
487, 490 – 495, 496, 506, 
508, 786 

California; San 
Diego 

October 2007 fire 
period 

PM2.5 HYSPLIT 
concentrations 
estimates 

No, does not 
review impacts 
within general 

population 

Wettstein et 
al. (2018) 

Cardiovascular and 
cerebrovascular emergency 
department visits associated with 
wildfire smoke exposure in 
California in 2015.  

480–486, 491– 493, 496, 
786 

California; 
Northern and 
Central CA Air 
Basins 

May 1 - September 
30, 2015 fire season 

NOAA GOES smoke 
product grouped by 
light, medium, and 
dense smoke categories 
accompanied by 

No; PM 
concentration in 

dense smoke 
categories not 
clearly defined 
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modeled PM2.5 
estimates 

Reid et al. 
(2019) 

Associations between respiratory 
health and ozone and fine 
particulate matter during a 
wildfire event. 

460 - 466, 480 - 486, 491 
- 493, 496 

California; 
Northern and 
Central Air 
Basins 

June 20–July 31, 
2008 fire period 

PM2.5 estimates from 
spatiotemporal 
exposure models 

Yes 

Stowell et al. 
(2019) 

Associations of wildfire smoke 
PM2.5 exposure with 
cardiorespiratory events in 
Colorado 2011–2014.  

466; 493; 460 – 465; 460 
- 466, 480 - 486, 491 - 
493, 496; 480-486; 496, 
491 - 492  

Colorado Wildfire events 
from 2011 - 2014 

PM2.5 estimates from 
CMAQ with AOD 
model for smoke mask 

No 

Doubleday et 
al. (2020) 

Mortality associated with wildfire 
smoke exposure in Washington 
state, 2006-2017: a case-
crossover study 

ICD-10: A01-V99, J01-
J99, I05-I52, I60–67, 
A01-V99, J01-J99, I05-
I52, I60–67 

Washington 
state 

Peak wildfire season 
June – September 
2006 - 2017 

Air Indicator Report for 
Public Awareness and 
Community Tracking 
(AIRPACT-4) modeled 
PM2.5 using inputs from 
monitored daily PM2.5 
concentrations  

Yes 

Gan et al. 
(2020) 

The association between wildfire 
smoke exposure and asthma-
specific medical care utilization in 
Oregon during the 2013 wildfire 
season. 

493 Oregon July – August 2013 PM2.5 estimates from 
kriged surface 
monitors, AOD, and 
WRF-Chem  

No 

Kiser et al. 
(2020) 

Particulate matter and emergency 
visits for asthma: a time-series 
study of their association in the 
presence and absence of wildfire 
smoke in Reno, Nevada, 2013–
2018.  

493.00–493.92 Nevada; Reno Wildfire events 
2013 - 2018 

Qualifying 24-h 
average PM2.5 from four 
air quality monitors 

No 

Aguilera et al. 
(2021) 

Wildfire smoke impacts 
respiratory health more than fine 
particles from other sources: 
observational evidence from 
Southern California. 

460 - 519 California; 
Southern 

Wildfire season 
between 1999-2012 

PM2.5 estimated via 
three approaches: 
imputation approach, 
interaction model, 
seasonal interpolation 

Yes 

Casey et al. 
(2021) 

Wildfire particulate matter in 
Shasta County, California and 
respiratory and circulatory 
disease-related emergency 
department visits and mortality, 
2013-2018 

460 - 519 California; 
Shasta County 

51 major wildfires 
from 2013 - 2018 in 
Shasta County & 
Carr Fire (2018) 

Spatiotemporal multiple 
imputation approach 

No, weekly 
averages may 

not be 
appropriate for 

pooling 
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Hahn et al. 
(2021) 

Wildfire Smoke Is Associated With 
an Increased Risk of 
Cardiorespiratory Emergency 
Department Visits in Alaska 

466, 480-486, 490-494, 
496; 493; 466; 490-492, 
494, 496; 480-486 

Alaska, 
Anchorage, 
Fairbanks, and 
the Matanuska-
Susitna Valley 

2015–2019 wildfire 
seasons 

PM2.5 concentrations 
from wildfire days 
determined via 
established criteria 
using both PM and 
smoke plume data  

No 

Magzamen et 
al. (2021) 

Differential Cardiopulmonary 
Health Impacts of Local and 
Long-Range Transport of Wildfire 
Smoke 

460–519; 493; 490–492, 
494, 496; 480–486; 466 

Colorado; Front 
Range 

May – October 
wildfire season from 
2010-2015 

Daily kriged PM2.5 
based on ground 
stations with satellite-
based smoke plumes to 
identify smoke days 

No 

Malig et al. 
(2021) 

Examining fine particulate matter 
and cause-specific morbidity 
during the 2017 North San 
Francisco Bay wildfires 

ICD10: J00-J06; J45, 
R06.2; J40-J44, J47; J12-
J18; J00-J99 J00-J06; 
J45, R06.2; J40-J44, J47; 
J12-J18; J00-J99 

California; nine 
Northern 
counties 

October 2017 North 
San Francisco Bay 
wildfires 

38 PM monitors 
assigned population-
weighted concentration 
at block group level 

Yes 

Heaney et al. 
(2022) 

Impacts of Fine Particulate Matter 
From Wildfire Smoke on 
Respiratory and Cardiovascular 
Health in California 

493; 460–466; 490–492; 
460–519 

California; 
statewide 

May 1-October 31 
fire season for years 
2004-2009 
 

PM2.5 derived from 
Global Fire Emissions 
Database via GEOS-
Chem modeling   

Yes 

Doubleday et 
al. (2023) 

Wildfire smoke exposure and 
emergency department visits in 
Washington State 

ICD10: A01-R99; J01-
J99; J45 

Washington June-September 
from 2017-2020 

Air Indicator Report for 
Public Awareness and 
Community Tracking 
(AIRPACT-4) used to 
model PM2.5 on binary 
indicator of wildfire 
smoke-impacted day 

No 
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BenMAP-CE Crosswalk 
 
The crosswalk between the identified and relevant dose-response values within the western U.S. 
region and BenMAP-CE health datasets resulted in the selection and inclusion of a total of six 
studies to develop our state-specific health estimates from wildfire exposure (noted in Table 9.4). 
The results of the crosswalk are provided in Table 9.5 below with corresponding coefficients and 
detailed in the following sections for each specific health outcome.  
 
Each article in Table 9.4 was reviewed in detailed and evaluated for inclusion in the BenMAP-CE 
crosswalk analysis as detailed in the methods section. Through the developed crosswalk, we 
identified the following health outcomes for tool inclusion: ER visits for all respiratory and asthma 
outcomes; hospitalizations for all respiratory, asthma, chronic lung disease (less asthma) and all-
cause mortality. The outcome of this crosswalk with details on ICD value differences are included 
in Table 9.4.  
 
 
 
Table 9.5. Dose-response values selected from the BenMAP-CE crosswalk for California-
specific health estimates for respiratory and mortality outcomes.  

Health 
Outcome 

BenMAP-CE 
ICD-9 Code 

Select Studies in 
Western US 

Study-specific ICD 
Code 

% Risk per 1 
µg/m3 [95% 

CI] 
HA: 
Asthma 

493 Southern California: 
Delfino et al (2009) 

493 0.47 [0.21, 0.73] 

Northern California: 
Reid et al (2019) 

493 1.31 [0.79, 1.83] 

Northern California: 
Malig et al (2021) 

ICD10: J45, R06.2 0.56 [-0.26, 1.41] 

  Washington: Gan et al. 
(2017) 

493 0.73 [0.19, 1.28] 

  Statewide: Heaney et 
al. (2022) 

493 0.23 [0.05, 0.41] 

HA: 
Chronic 
lung 
disease 
(less 
asthma) 

490-492, 494, 
496 

Southern California: 
Delfino et al (2009) 

491, 492, 496 0.37 [0.04, 0.72] 

Northern California: 
Reid et al (2019) 

491, 492, 496 0.41 [0.02, 0.81] 
 

  Northern California: 
Malig et al (2021) 

ICD10: J40-44, 47 0.78 [0.13, 1.44] 

  Washington: Gan et al. 
(2017) 

490-492, 494, 496 0.81 [0.26, 1.35] 

HA: All 
Respiratory 

460-519 Southern California: 
Delfino et al (2009) 

277, 460-466, 480-487, 
490-496, 506, 508, 786  

0.28 [0.14, 0.40] 

Southern California: 
Aguilera et al (2021)  

460-519 0.13 [0.04, 0.22] 
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Northern California: 
Reid et al (2019) 

460 - 466, 480 - 486, 
491 - 493, 496 

0.38 [0.17, 0.59] 
 

Northern California: 
Malig et al (2021) 
 

 J00-J99 
 

1.13 [0.30, 1.91] 
 

Statewide: Heaney et 
al. (2022) 

460 - 519 0.08 [0.01, 0.14] 
 

  Washington: Gan et al. 
(2017) 

460-519 0.51 [0.25, 0.77] 

ER visits: 
Asthma 

493 Northern California: 
Reid et al (2019) 

493 1.09 [0.86, 1.31] 

Northern California: 
Malig et al (2021) 

ICD10: J45, R06.2 1.76 [1.35, 2.14] 

ER visits: 
All 
Respiratory 

460- 466, 477.0-
477.9, 480-486, 
491-493, 496, 
786.07, 786.09 

Northern California: 
Reid et al (2019) 

460 - 466, 480 - 486, 
491 - 493, 496 

0.34 [0.24, 0.44] 

Northern California: 
Malig et al (2021) 

J00-J99 0.85 [0.56, 1.12] 
 

   
Mortality: 
All-cause 

All Washington: 
Doubleday et al (2020)  

A01-V99  
(ICD-10) 

0.09 [0, 0.22] 

 
 
Coefficients were scaled based on the PM changes per unit increase in risk and the resulting beta 
was added as a BenMAP-CE coefficient. The program was run with the inputs detailed in the 
methods section and the results are summarized in the table below.  
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Table 9.6a. Health outcomes for all identified dose-response coefficients from 2008-2018 for emergency room visit morbidity and 
mortality.  

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

ER visits, Asthma                 

Reid (2019) 4,039 1,012  556 692 742 1,505 903 1,415 1,751 4,309 4,964 

Malig (2021) 6,039 1,585 
 

868 
 

1,108 
 

1,187 
 

2,373 
 

1,426 
 

2,206 2,709 
 

6,425 
 

7,536 

Pooled Estimates 4,995 (3,287 
- 6,821) 

 

1,283 (808 
- 1,821) 

 

704 (444 - 
995) 

 

888 (547 - 
1,284) 

 

952 (588 - 
1,374) 

 

1,916 
(1,198 - 
2,733) 

 

1,150 
(719-1,643) 

1,791  
(1,132-
2,531) 

2,205 
(1,406 - 
3,100) 

 

5,320 
(3,516 - 
7,257) 

 

6,190 
(4,014-
8,556) 

Value Estimates 
(USD $)  

1,817,540 
 

481,822 
 

273,267 
 

355,220 
 

394,844 
 

814,008 
 

500,492 
 

799,509 1,022,095 
 

2,527,272 
 

2,998,882 

Arriagada (2019) 2,659 643 353  433  465 952 571 903 1,125 2,855 3,230 

               
ER visits, 
Respiratory 
Morbidity 

                

Reid et al (2019) 8,535 1,994  1,107 1,325 
 

 1,448 2,931 1,787 2,842 3,639 9,105 10,292 

Malig (2021) 19,455 
 

4,788 
 

2,657 
 

3,247 
 

3,538 
 

7,069 
 

4,289 
 

6,756 8,523 
 

20,490 
 

23,755 

Pooled Estimates 13,698 
(6,066 - 
23,442) 

 

3,305 
(1,400 -
5,872) 

 

1,834 (777 - 
3,258) 

 

2,224 (926 - 
4,011) 

 

2,426 
(1,012 - 
4,368) 

 

4,872 
(2,056 - 
8,685) 

 

2,960  
(1,257-
5,266) 

4,680  
(2,001-
8,264) 

5,936 
(2,580 - 
10,390) 

 

14,486 
(6,526 - 
24,668) 

 

16,641  
(7,309-
28,779) 

Value Estimates 
(USD $)  

9,762,488 
 

2,430,388 
 

1,394,953 
 

1,742,625 
 

1,970,608 
 

4,054,387 
 

2,522,630 
 

4,093,172 5,387,934 
 

13,479,317 
 

15,790,252 

Gould (2023) 8,906 
 

2,085 
 

1,157 
 

1,386 
 

1,515 
 

3,065 
 

1,868 
 

1,558 3,800 
 

9,493 
 

10,292 

                 
Mortality                 

Doubleday et al 
(2020) 

8,787 2,023 1,083 1,373 1,560 2,890 1,856 2,946 3,804 11,266 10,958 

Value Estimates in 
millions (USD $)  

62,978 14,440 7,858 10,280 11,922 22,403 14,622 23,236 30,379 91,899 91,569 
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Table 9.7a. Health outcomes for all identified dose-response coefficients from 2008-2018 for hospitalizations.  
 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Hospitalizations, 
Asthma 

           

Delfino (2009) 316 81  45 52 56 117 69 109 153 372 414 

Reid (2019)  796 216  119 144  153 317 187 289 400 921 1,059 

Malig (2021) 373 96 
 

53 
 

62 
 

66 
 

139 
 

82 
 

129 181 
 

437 
 

489 

Heaney (2022) 161 40 
 

22 
 

26 
 

27 
 

58 
 

34 
 

54 77 
 

192 
 

210 

Gan (2017) 477 124 
 

69 
 

81 
 

87 
 

181 
 

107 
 

167 234 
 

556 
 

627 

Pooled Estimates 410 (47 - 
950) 

 

106 (9 - 
261) 

 

59 (5 - 144) 
 

69 (6 - 177) 
 

73 (7 - 188) 
 

154 (15 - 
387) 

 

92 
(15-228) 

143 
(516-351) 

203 (34 - 
483) 

 

487 (86 - 
1,096) 

 

548 
(92-1,268) 

Value Estimates 
(USD $)  

6,437,654 
 

1,718,047 
 

985,257 
 

1,188,445 
 

1,311,058 
 

2,823,411 
 

1,730,010 
 

2,754,658 4,052,127 
 

9,949,505 
 

11,408,116 

Arriagada (2019) 387 100 55  65  69 145 86 134 188 453 508 

             
Hospitalizations, 
Respiratory 
Morbidity 

           

Delfino et al (2009) 1,688 405  223  263  297 604 371 589 800 1,985 2,286 

Gan (2017) 2,977 
 

733 
 

403 
 

481 
 

542 
 

1,096 
 

670 
 

1,060 1,430 3,465 4,037 

Reid et al (2019) 2,295 557   307  364  411 832 509 808 1,094 3,324 3,107 

Malig et al (2021) 2,855 701  386 460  518 1,048 
 

641 
 

1,015 1,369 2,589 3,870 

Aguilera et al (2021)  800  188 104 122  137 280 173 275 378 960 1,089 

Heaney (2022) 484 113 
 

62 
 

73 
 

82 
 

168 
 

104 
 

166 229 590 662 

Pooled Estimates 1,643 (225 - 
3,903) 

 

391 (52 - 
978) 

 

215 (29 - 
539) 

 

253 (34 - 
647) 

 

286 (38 - 
729) 

 

583  
(78-1,466) 

358 (49 - 
894) 

 

570 (77 - 
1,411) 

 

775  
(108-1,896) 

1,900  
(470-3,800) 

2,222  
(311-5,311) 

Value Estimates  
(USD $)  

45,008,940 
 

11,053,758 
 

6,286,195 
 

7,623,072 
 

8,917,660 
 

18,616,262 
 

11,707,391 
 

19,113,438 26,967,120 68,142,144 80,862,208 

 Gould (2023) 1,536 367 202 238 286 548 336 534 727 1,810 2,080 
            
Hospitalizations, 
COPD 

           

Delfino et al (2009) 373  89  48  59  68 135 85 134 178 436 516 

Gan (2017) 750 188 102 127 145 287 179 281 370 874 1,048 
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Reid et al (2019)  409  98  53  65  74 149 93 148 195 477 565 

Malig (2021) 727 
 

182 
 

99 
 

122 
 

140 
 

277 
 

173 
 

272 358 
 

848 
 

1,016 

Pooled Estimates 502 (25 - 
1,056) 

 

 120 (6 - 
275) 

 

65 (3 - 150) 
 

79 (4 - 188) 
 

91 (4 - 215) 
 

182 (8 - 
421) 

 

114 
(5 - 262) 

180 
(9-409) 

239 (12 - 
536) 

 

584 (31 - 
1,237) 

 

681 
(35-1,493) 

Value Estimates 
(USD $)  

10,537,459 
 

2,587,259 
 

1,455,160 
 

1,820,971 
 

2,166,411 
 

4,445,558 
 

2,849,159 
 

4,630,381 6,352,915 
 

15,956,077 
 

18,963,560 
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Conclusion 
The methods outlined here provide a flexible approach to estimate health outcomes from wildfire 
specific exposures in the absence of region-specific meta-analyses. It was important incorporate 
flexibility into the final tool to allow researchers to updates coefficients of exposure as new and 
relevant epidemiological studies emerge and/or the direction or the strength of association between 
exposure and health impacts shift. During or initial and follow-up review of the literature, both 
structured and unstructured, we identified a single meta-analysis in the peer-reviewed literature 
that would have allowed for an impact evaluation within the BenMAP-CE environment. In this 
work, authors evaluated multiple asthma presentations in hospital admissions and ER visits 
(Arriagada et al., 2019) and included global coefficients from non-Western U.S. regions including 
Canada, Australia, and the East Coast for pooling. While this meta-analysis was not appropriate 
for our specific aims, we did use the coefficient from Arriagada et al. 2019 and Gould et al. 2023 
to compare outcomes to our own. For the two health outcomes that overlapped, we compared and 
noted our own pooled estimates to be higher than those estimated from the meta-analysis which 
may be due to the California-specific studies utilized in our work.  
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X. Scenario Development: STILT and FINN Validation 
 
Abstract 
Wildfire pollution in California has been growing as fires have become larger and more severe. 
Fine particulate matter (PM2.5) pollution from fires poses an important health risk to exposed 
populations, and it is increasingly important to understand and mitigate health impacts. The 
Stochastic Time-Inverted Lagrangian Transport Model (STILT) is a receptor-oriented, 
atmospheric transport model, which is a powerful tool to quantify the influence of different 
emissions sources and to efficiently model the impact of multiple emissions scenarios on 
downwind air quality. In this study, we coupled STILT with high resolution fire emissions 
estimates from the Fire Inventory from NCAR (FINNv2.5) in 2018. The 16 selected STILT 
receptors are co-located with station monitors from government-regulated station networks and 
represent 14 of the 15 California Air Basins with two additional stations highly influenced by the 
2018 fires. We compared the STILT-FINNv2.5 simulated PM2.5 concentrations to observed PM2.5 
values at the station monitors. Modeled concentrations from STILT-FINNv2.5 were significantly 
correlated with station observations at 8 of the 16 receptors and the strength of these significant 
correlations varied (0.38 ≤ r ≤ 0.86). Because we did account for other emissions sources, receptors 
more influenced by fires typically had stronger, more significant correlations between modeled 
and observed PM2.5 concentrations. This validation work supports the NWL Health Scenario Tool, 
which models the impact of the 2018 wildfires on PM2.5 concentrations at California’s 58 
population-weighted county centroids. The uncertainties around this STILT-FINNv2.5 model 
framework, especially for areas with lower fire influence, where other emissions sources dominate, 
should be considered when using the NWL Health Scenario Tool. 
 
Introduction 
Wildfire burned area in California has increased dramatically in recent decades, with an eightfold 
increase in the summer season since the 1970s (Williams et al., 2019) with a corresponding 
increase in annual area burned at high severity (Parks & Abatzoglou, 2020). This growth in fire 
activity can be attributed to several interacting factors, including anthropogenic climate change 
(Parks & Abatzoglou, 2020; Williams et al., 2019), a history of fire exclusion policies that have 
promoted fuel build-up in forests (Stephens et al., 2009), and the expansion of the wildland-urban 
interface (Radeloff et al., 2018). As climate change accelerates, wildfire burned area in California 
will likely continue to increase and large wildfires will occur more frequently (Westerling, 2018). 
These fires emit harmful air pollutants, including PM2.5 and hundreds of gaseous compounds (Jaffe 
et al., 2020). Depending on the severity of future climate change coupled with various development 
scenarios, wildfire emissions in California could increase 19-101% above the 1961-1990 baseline 
by 2100 (Hurteau et al., 2014). Population exposure to fire pollution, especially PM2.5, poses 
important health consequences— resulting in an increased risk for respiratory-related 
hospitalization and ED visits (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021a; Delfino 
et al., 2009; Hutchinson et al., 2018; Reid, Jerrett, et al., 2016b), adverse cardiovascular events (H. 
Chen et al., 2021), and mortality (Cascio, 2018). It is increasingly important to understand the 
impacts of fires on historical PM2.5 population exposure and to predict and mitigate future wildfire 
pollution impacts under different fire management scenarios.   
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Numerous studies have estimated the impact of fires on ambient PM2.5 levels and population 
exposure through several methods, including atmospheric and chemical transport models, machine 
learning statistical algorithms, other approaches utilizing satellite-based estimates of smoke 
transport and ground monitor data, and combinations of these approaches (Burke et al., 2021; 
Childs et al., 2022; Neumann et al., 2021; O’Dell et al., 2019). Each approach has strengths and 
weaknesses (Cohan & Napelenok, 2011; J. C. Liu et al., 2015; Reid, Brauer, et al., 2016a). Among 
the atmospheric transport modeling approaches, backward, receptor-oriented atmospheric models 
like STILT are useful tools to quantify the influence of various emissions sources and simulate 
multiple emissions scenarios. As a Lagrangian particle dispersion model, STILT also offers some 
advantages over gridded atmospheric modeling tools, like GEOS-Chem and CMAQ, because it 
can capture small-scale differences in the distribution of surface fluxes that are not captured by 
gridded transport models (Lin et al., 2003). It also offers a computationally efficient method for 
modeling the impact of multiple emissions scenarios on downwind air quality. Previous studies 
have successfully utilized STILT in conjunction with historical data from fire emissions 
inventories to estimate fire-derived pollutant concentrations and validated their estimates against 
station data (Cusworth et al., 2018; Mallia et al., 2015; Wilmot et al., 2022). With a receptor-
oriented model like STILT, researchers can identify potential source regions contributing to the 
observed pollutant concentrations and determine how much a particular source, such as a fire, is 
contributing to pollution at the receptor site. In the context of  NWL in California, STILT can 
evaluate how different potential land management scenarios— and their expected changes in fire 
emissions— could impact downwind pollutant concentrations. California is considering the trade-
offs of local, short-term prescribed burning, which can potentially be utilized to fuel load and 
future fire emissions, against infrequent, large, and intense wildfires (B. A. Jones et al., 2022; 
Wiedinmyer & Hurteau, 2010; Williamson et al., 2016). 
 
We currently lack information examining trade-offs between wildland fire management strategies 
on downwind air pollution, but STILT, as a receptor-oriented model, can be used to rapidly 
evaluate different emissions scenarios and their impact on downwind air pollution concentrations  
(Cohan & Napelenok, 2011). In this study, we evaluated the modeled concentrations produced by 
STILT, coupled with a highly spatially-resolved fire emissions inventory, FINNv2.5. Using 
government-regulated station monitors as STILT receptors, we compare the modeled, fire-specific 
PM2.5 concentrations to the measured total PM2.5 at the station monitors. This validation work 
supports the NWL Health Scenario Tool, which models the impact of the 2018 fires on PM2.5 
concentrations at California’s 58 population-weighted county centroids. Furthermore, our tool 
leverages STILT’s computational advantages to model hypothetical scenarios of increased 
prescribed burning and decreased wildfire emissions across the state.  
  
Materials and Methods 
 
2.1 Fire Emissions Inventory 
 
We utilized emissions from FINNv2.5, which provides daily, finely spatially-resolved (1-km2) 
global emissions estimates. FINN is a widely used fire emissions inventory that has been employed 
to determine the effects of fire activity on air quality and public health (Crippa et al., 2016; Nawaz 
& Henze, 2020). While previous iterations of FINN, such as FINNv1 and FINNv1.5, 
underestimated biomass burning emissions in California and the western U.S. (Koplitz et al., 2018; 
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Pfister et al., 2011), FINN is a ‘bottom-up’ inventory that estimates fire emissions based on satellite 
active fire detections, combined with fuel loads from land cover maps, biomass combustion 
estimates, and emissions factors for individual species (Wiedinmyer et al., 2011). In addition to 
the 1-km resolution Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 
(MCD14DL) detections from version 1, FINNv2.5 incorporates 375-m resolution Visible Infrared 
Imaging Radiometer Suite (VIIRS) fire detections, which allows the inventory to account for 
smaller fires missed by MODIS (Wiedinmyer et al., 2023). FINNv2.5 uses an updated algorithm 
to calculate burned area based on fire detection points and their resolutions (375-m2 rectangles for 
VIIRS and 1-km2 rectangles for MODIS) with adjustments for fire aggregation and land cover 
type. Fire detections in proximity to one another are aggregated when satellite detection rectangles 
overlap and an extended fire polygon is generated to estimate burned area, which improves 
estimates for larger fires and utilizes multiple satellite products simultaneously without double-
counting fires.  

 
2.2 Atmospheric Model Simulations 
 
2.2.1 STILT 
To model the impact of fires on PM2.5 concentrations at our receptors, we coupled an atmospheric 
model, STILT, with FINNv2.5 emissions. STILT is a receptor-oriented, Lagrangian particle 
dispersion model, meaning it tracks an ensemble of individual air parcels backward in time from 
a chosen receptor location to their respective source locations. The backward dispersion model is 
the heart of STILT, and it is responsible for calculating the trajectory of air parcels by simulating 
the complex interactions of winds, turbulence, and atmospheric stability. Meteorological data is 
the second key component of STILT, and it includes information on wind speed and direction, 
temperature, humidity, and atmospheric stability. With the modeling framework and the 
meteorological data simulating air parcel back trajectories, STILT generates a gridded ‘footprint’ 
quantifying the influence of upwind grid cells on the receptor at a given point in time (Lin et al., 
2003). STILT footprints can be convolved with emission inventory data, which provides 
information on the spatial and temporal distribution of pollutant sources. Emissions fluxes are 
coupled with STILT footprints to estimate the concentrations of air pollutants provided by the 
inventory (i.e., PM2.5) at the receptor site (Fasoli et al., 2018; T. Liu et al., 2020; Mallia et al., 
2015; Nehrkorn et al., 2010).  
 
In this study, STILT was driven by meteorological data from the High-Resolution Rapid Refresh 
(HRRR) model at 3km-resolution (Benjamin et al., 2016). The model was run on 99 selected days 
in the 2018 fire season at 6-hour intervals for each of the 16 receptors (Figure 10.1). The footprints 
generated at 6-hour intervals: morning (6 am), noon (12 pm), evening (6 pm), and night (12 am), 
were averaged to generate a daily mean footprint raster. The daily mean footprint was coupled 
with the daily FINNv2.5 emissions, which were aggregated up from 1km2 to 3km2 to match the 
model spatial resolution, to estimate the mean PM2.5 concentrations at each receptor site for each 
day. The modeling days were chosen based on the overlap between station availability at our 
receptor sites and high-emissions fire days (classified as days in the 75th percentile or above for 
PM2.5 emissions from a California-specific emissions inventory: the Wildfire Burn Severity and 
Emissions inventory) (Xu et al., 2022) (Figure 10.1). 

 
2.2.2 Receptor Site Selection  
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To directly validate modeled fire PM2.5 concentrations against observed data, we chose model 
receptors in California from station monitors within the EPA’s Air Quality System (AQS) and 
Interagency Monitoring of Protected Visual Environments (IMPROVE) networks (Improve – 
Interagency Monitoring of Protected Visual Environments, 2022; US EPA, 2014b) (Figure 10.2). 
We prioritized the inclusion of stations with maximum data availability during the 2018 fire season 
(defined as June 1st to November 30th) from each of California’s Air Basins to capture variation in 
the state’s geography, meteorology, and ecology and any additional stations that were highly 
impacted by the 2018 fires (Figure 10.2). Within the air basins, we also prioritized receptor sites 
to include communities with significant population exposure and smaller communities with 
extreme fire pollution exposure. For each air basin, we chose one station with the greatest zip code 
population according to ACS data and any stations in the 90th percentile or greater for annual mean 
fire-derived PM2.5 according to CMAQ modeling (US Census Bureau, 2019a). It is important to 
note that annual mean CMAQ fire-derived PM2.5 concentrations are for all of 2018, not just the 
selected STILT dates, and that CMAQ is an imperfect representation of fire influence at a coarser 
12 km resolution than STILT-FINNv2.5 model. 
 

 
2.3 Validation with Station Monitor Data  

We evaluated the model outputs for fire-derived PM2.5 concentrations against EPA and IMPROVE 
observed PM2.5. As we selected high fire days for STILT modeling, we expect that fire PM2.5 will 
often be the dominant source of PM2.5 and will explain much of the variability in our PM2.5 
concentrations during fire season. Some receptor sites, however, are located far from fire locations 
during the 2018 fire season, and other sources of pollution will dominate. For each receptor site in 
the 2018 fire season, we calculated Pearson Correlation Coefficients between modeled 
concentrations from STILT and FINNv2.5 and observed PM2.5 concentrations. The modeled 
concentrations represent wildland fire-specific PM2.5 concentrations, but the observed 
concentrations represent all sources of PM2.5 contributing to pollution. Moreover, not all receptors 
will be affected by fires on each day of modeling. As a result, the modeled data will not perfectly 
match the observations, as discussed in other STILT modeling studies (Wilmot et al., 2022), 
especially for receptors impacted more strongly by other anthropogenic sources of pollution. The 
modeled concentrations should be less than or equal to the observed concentrations, depending on 
the relative strength of the contribution from non-fire pollution emissions compared to wildfire 
sources. To account for the differential impact of fires on our receptors, we ranked the receptors 
based on the 2018 annual mean fire-derived PM2.5 concentrations from CMAQ; receptors with 
greater fire influence should have better correlations between the modeled and observed PM2.5 
concentrations. To account for receptor-specific systematic bias, we also grouped results from all 
receptors and examined the correlation between all STILT-FINNv2.5 estimates and observations.   

 
Results 
3.1 Model Validation 
 
3.1.1 Time Series Evaluation  
The STILT-FINNv2.5 modeling framework varied in its ability to replicate observed station PM2.5 
concentrations on high fire days and the level of agreement was highly dependent on the receptor 
and day. The station receptors also varied in their data availability and for most stations, we did 
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not have station observations to match each day of modeling (minimum number of sample days = 
27, maximum =99). For the time series in Figure 10.5, the receptors are shown in descending order 
for CMAQ-estimated fire influence. The station monitor concentrations were generally greater 
than the STILT-FINNv2.5 concentrations, especially for the receptors with less fire influence (as 
estimated by CMAQ) (Figure 10.5). In some instances, the STILT-FINNv2.5 model failed to 
simulate extreme PM2.5 concentrations during the fire season, such as on 11/16/18 at Chico-East 
Avenue when the observed concentration was 411 µg/m3 but the modeled concentration was only 
28.7 µg/m3 (Figure 10.5). The STILT-FINNv2.5 model, however, sometimes overestimated the 
observed concentrations at the receptors with greater fire influence, simulating extremely high 
PM2.5 levels. For instance, at the Cortina Indian Rancheria receptor on 8/3/18, STILT-FINNv2.5 
estimated that the daily mean fire-derived PM2.5 concentration was 356 µg/m3 while the station 
reported the daily mean PM2.5 concentration as 62.5 µg/m3 and on 7/31/18 at the Trinity National 
Forest receptor, the STILT-FINNv2.5 concentration was 611 µg/m3 while the station observation 
was 43.4 µg/m3 (Figure 10.5).  
 
3.1.2 Correlations between Modeled PM2.5 and Observations 

The correlations between STILT-FINNv2.5 modeled concentrations and the observed 
concentrations varied by receptor (Figure 10.6). For 8 of the 16 receptors, there was a statistically 
significant correlation between the modeled and observed concentrations that had the expect sign 
(p < 0.05) (Table 10.1), but the strength of the correlations varied (0.38 ≤ r ≤ 0.86). When 
combining the data from all receptors, there was also a relatively weak but significant correlation 
between modeled and observed concentrations (r = 0.28, p < 0.01) due partly to the large sample 
size (n=1102) (Figure 10.7). For the correlation plots and corresponding table (Figure 10.6, Table 
10.1), the receptors are shown in descending order by the CMAQ annual mean fire-derived PM2.5 
concentrations. The receptors with greater CMAQ fire-derived PM2.5 were often more likely to 
have significant correlations (Figure 10.6, Table 10.1). Of the first eight receptors with the greatest 
CMAQ fire-derived PM2.5 concentrations, seven had significant correlations between modeled and 
observed values (Table 10.1). The relationship between fire influence and correlation coefficient 
was not always consistent. When plotting the receptor’s CMAQ fire PM2.5 against their correlation 
coefficients, there was a positive but statistically insignificant relationship (Figure C10.8) (r = 
0.32, p = 0.22). The regression was affected by a few outliers, such as Lake Tahoe Community 
College, where the CMAQ annual mean fire PM2.5 was on the lower end at 2.28 µg/m3 but 
correlation coefficient was very high (r = 0.82), and White Mountain Research Center, where 
CMAQ estimated the annual mean fire PM2.5 was only 1.32 µg/m3 but the correlation coefficient 
was 0.86— the highest for any receptor (Table 10.1).  
 
Discussion 
For the 2018 fire season in California, we used STILT to simulate how fire emissions from 
FINNv2.5 affected downwind PM2.5 concentrations. With 16 stations from the EPA AQS and 
IMPROVE networks representing our receptors, we evaluated the modeled daily PM2.5 
concentrations against station observations. While we had 99 days of modeled concentrations in 
the 2018 fire season (representing high fire days between June 5th to November 21st), the station 
data availability was more limited and varied by receptor. We did not expect consistently-high 
correlations between modeled and observed values because we were only considering one 
emissions source, but to validate our modeling, we compared the modeled and observed 
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concentrations as a time series, plotted the regression lines, and calculated the correlations 
coefficients. Half of the receptors had a significant correlation between modeled and observed 
concentrations, while receptors with greater fire influence, estimated by CMAQ, were more likely 
to have significant correlations. Anomalies, however, existed in the relationship between estimated 
fire influence and the correlation coefficient. Moreover, for some receptors with high fire 
influence, there were a few days when the STILT-FINNv2.5 greatly overestimated the observed 
PM2.5 concentrations.  
  
Our results generally fit our expectations regarding the relationships between receptor modeled 
and observed concentrations. We expected the STILT-FINNv2.5 modeled PM2.5 concentrations, 
based on fire emissions alone, to be lower than the observed concentrations. This was generally 
true, but there were some exceptions, especially at receptors with very high estimated fire 
influence. These discrepancies between modeled and observed PM2.5 could be at least partially 
attributed to vertical wildfire plume transport. While STILT assumes that all emissions are emitted 
at the surface and transported in the boundary layer of the atmosphere, the heat from wildfires can 
add buoyancy to the air and increases the vertical transport of wildfire plumes (Mallia et al., 2018). 
Underestimating the wildfire plume height can result in an overestimate of local air pollution (i.e., 
for these receptors closer to fires). In these cases where the fire was a greater source of air pollution, 
stations with higher estimated fire influence had stronger, more significant correlations between 
modeled concentrations and observations. Given our prioritization of statewide geographic 
coverage, station availability, and population size in our receptor selection, we have more 
receptors, especially in Southern California, with little fire influence and poor correlations. Still, 
the CMAQ-estimated fire influence did not always predict the strength and significance of the 
correlation coefficients, because CMAQ is an imperfect model run at a coarser resolution (12km2 
compared to 3km2 for STILT). In addition to fire influence, the impact of anthropogenic pollution 
on these receptors can also impact the correlations. 
 
This study utilizes a powerful receptor-oriented, dispersion model with a finely resolved emissions 
inventory and meteorological grid, which better captures small spatial differences in surface fluxes 
and fine-scale transport. Moreover, the receptors are located at EPA AQS and IMPROVE station 
monitors, so the modeled and observed concentrations are spatially coincident. We sought 
maximum data availability and chose receptors geographically distributed across California to 
match the spatial distribution of our 58 county centroids in the NWL Health Scenario Tool. Our 
study nevertheless also had several limitations. Our STILT-FINNv2.5 model only accounts for fire 
emissions, not other sources contributing to the observed concentrations. Since we prioritized 
station data availability and geographic coverage when choosing receptors, several receptor 
locations had low fire influence— some likely had greater anthropogenic pollution contributions— 
and that resulted in poor correlations. Additionally, the STILT model did not account for wildfire 
plume rise, likely resulting in overestimates of local air pollution surrounding fires. It is important 
to note that STILT only considers primary fire emissions, not secondary aerosol formation 
contributing to PM2.5 mass (Hodshire et al., 2019; Lin et al., 2003), which could contribute to 
underestimates in modeled PM2.5 concentrations. Due to computational limitations, our backward 
simulations in STILT lasted 24 hours and did not capture the effect of more distant fires on air 
quality at our receptors, since aerosols can be transported over much larger distances (>1000 km) 
downwind of a fire (Sapkota et al., 2005).  
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Conclusions 
In this study, we evaluated the STILT-FINNv2.5 model simulations for fire-derived PM2.5 
concentrations against EPA AQS and IMPROVE station monitor data. This study supports the 
NWL Health Scenario Tool, which models the impact of the 2018 fires on PM2.5 concentrations at 
California’s 58 population-weighted county centroids and the influence of potential management 
scenarios. We chose 16 receptors representing station monitors across California’s air basins with 
high data availability in the 2018 fire season and higher population exposure or high fire impact. 
The stations with greater fire influence were more likely to have significant, stronger correlations 
between modeled and observed concentrations, because the modeled values only reflected fire 
PM2.5 while the station observations represent all sources of PM2.5. However, the estimated fire 
impact from CMAQ did not always predict the strength and significance of the correlation 
coefficient— likely because CMAQ has its own limitations and the degree of anthropogenic 
pollution at each receptor will also affect the correlation. It is important to keep in mind that STILT 
did not always simulate the extreme PM2.5 concentrations observed at the stations during the fire 
season or overestimated the PM2.5 levels. These uncertainties will affect the concentrations and 
health impacts in the NWL Health Scenario Tool.  
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Tables & Figures  
Figure 10.1. Daily California statewide emissions in the 2018 fire season (June 1st to November 
30th) and the selected STILT days above the 75th percentile for annual PM2.5 wildfire emissions. 
The emissions estimates from the WBSE (the Wildfire Burn Severity and Emissions) inventory, a 
California-specific data source.   
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Figure 10.2. Conceptual diagram of the selection process for selecting STILT receptor sites.  
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Figure 10.3. Station monitor receptor locations are shown in blue, the boundaries and 
abbreviations for California Air Basins are in black, and the annual summed FINNv2.5 PM2.5 
emissions (kg) range from white (0 kg) to dark red (6.6 x 106 kg).   
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Table 10.1. Air basin abbreviations shown in Figure 9.1 with the corresponding air basin name 
and the numbered station monitors shown in Figure 9.1 with their AQS or IMPROVE names. 
The station monitors are ranked according to annual mean fire-derived PM2.5 concentrations 
from CMAQ, with 1 as the higher fire concentration. For each receptor, the Pearson’s 
Correlation Coefficients (r value) and its significance (p value) was calculated between modeled 
data and the corresponding station observations.  
Site Name  Air Basin 

Abbreviation  
Air Basin 
Name  

CMAQ 2018 
Annual Mean 
Fire-Derived 
PM2.5 (µg/m3)  

r value  p value  

Cortina Indian Rancheria  SV  Sacramento 
Valley  

15.95  0.55  1.0E-08  

Chico-East Avenue  SV  Sacramento 
Valley  

9.46  0.42  3.5E-05  

Trinity National Forest  NC  North Coast  8.17  0.45  0.0018  
Yuba City  SV  Sacramento 

Valley  
7.12  0.43  5.4E-05  

Lava Beds  NEP  Northeast 
Plateau  

4.62  0.44  0.0019  

San Jose - Jackson  SF  San Francisco 
Bay Area  

3.02  0.28  0.11  

Quincy-N Church Street  MC  Mountain 
Counties  

2.87  0.38  1.1E-04  

Lake Tahoe Community 
College  

LT  Lake Tahoe  2.28  0.81  1.4E-08  

Pinnacles  NCC  North Central 
Coast  

2.14  0.03  0.88  

Bakersfield-California  SJV  San Joaquin 
Valley  

2.01  0.07  0.53  

Indio  SS  Salton Sea  1.72  0.28  0.13  
Long Beach-Route 710 
Near Road  

SC  South Coast  1.66  0.19  0.075  

Goleta  SCC  South Central 
Coast  

1.63  0.15  0.14  
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Lancaster-Division Street  MD  Mojave Desert  1.47  0.15  0.15  

White Mountain Research 
Center - Owens Valley Lab  

GBV  Great Basin 
Valleys  

1.32  0.86  5.5E-30  

El Cajon - Lexington 
Elementary School  

SD  San Diego  1.17  -0.04  0.69  
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Figure 10.4. Mean STILT Atmospheric Footprint for Cortina Indian Rancheria for 90 STILT 
modeling days between 6/5/18 and 11/21/18. The sensitivity is in units of ppm kg-1 m2 s. The 
locations with higher sensitivity values (darker red shades) have a greater contribution to 
pollution at the receptor site.  
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Figure 10.5. Time series of the simulated fire PM2.5 concentrations from STILT-FINNv2.5 at the 
receptor sites and the observed total PM2.5 concentrations in the 2018 fire season.  
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Figure 10.6. The relationships between the STILT-FINNv2.5 simulated fire PM2.5 concentrations 
and the observed PM2.5 concentrations at each receptor.   
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Figure 10.7.  The relationship between the STILT-FINNv2.5 simulated fire PM2.5 concentrations 
and the observed PM2.5 concentrations for all receptors.   
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Figure 10.8. The relationship between CMAQ annual mean fire PM2.5 concentrations at each 
receptor and the correlation coefficient between the STILT-FINNv2.5 fired-derived PM2.5 
concentrations and the observed concentrations.   
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XI. STILT Scenario: Prescribed Burning

Introduction 
Wildfire activity in California and around the world is worsening due to climate change, increased 
development at the wildland urban interface, and too much fire suppression. Prescribed burning is 
a method to reduce the fuel load in forests by setting controlled fires at strategic locations to reduce 
the future possibility of larger uncontrolled wildfires igniting or spreading. The State of California 
and the Federal Government recently signed an agreement to dramatically increase fuel treatments, 
including mechanical thinning and prescribed burning, to 1 million acres per year. This would 
increase over current levels of prescribed burning by approximately 7-fold by 2025, based on 
levels that we estimated in 2018, which were about 71,166 acres per year in total. Little is known 
about the health effects of prescribed burning compared to those of wildfires. Our objective is to 
estimate the excess mortality due to prescribed burning in California for 2018. 

Methods 
We fit the STILT particle dispersion receptor-based model for fire and non-fire days in 2018 (79 
days in total) to reflect various meteorological conditions. The model timeframe included three 
periods: pre-fire season (February 18-28), typical fire season (June 20-30, July 13-August 18), and 
late fire season (November 6-25). These were used to develop atmospheric sensitivity “footprints” 
that provide a flexible means of assessing various scenarios based on changes in the emissions 
from prescribed burns. Please see Chapter X. Scenario Development: STILT and FINN Validation 
for detailed information on STILT. We assembled data from CAL FIRE on the locations of 
prescribed burns throughout the state in 2018. Prescribed burns were identified from CAL FIRE’s 
prescribed fire and fuel treatment GIS dataset, which provides burn areas in the form of polygons, 
based on reports from county, state, and federal agencies, including CAL FIRE’s units and from 
cooperating agencies (Bureau of Land Management (BLM), California State Parks (CSP), 
National Park Service (NPS), United States Forest Service (USFS), United States Fish and Wildlife 
(USFW) (Prescribed Fire Burns - California [Ds397] GIS Dataset, n.d.). We selected the 
prescribed burning treatment types within the fuel treatment dataset. These burned area polygons 
were spatially joined with the FINNv2.5 database of fire emissions at the 3 km scale to isolate 
emissions associated with prescribed burning. These emissions were then applied to the STILT 
footprints to estimate PM2.5 concentrations associated with prescribed burns in each county in 
California. This methodology enabled us to predict emission changes at receptor locations and to 
calculate county-wide mortality estimates. We quantified the health impacts attributable to 
prescribed burning using the following equation: 

where Mij is mortality in the ith county for the jth year; ßwL is the long-term effect of wildfire 
smoke based on the ratio of short-term wildfire effects over the short-term total PM2.5 effects times 
the chronic estimate from Pope et al. (2019); PM2.5 is the exposure change due to fires; and dij is 
the deaths occurring in the ith zip code for the jth year (as detailed in Section VIII). 
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Preliminary Results 
Wildfires burned an area of 6,430 km2, while prescribed burns accounted for 288 km2. 
 
Figure 11.1 shows the results of the average STILT footprints in Los Angeles, San Francisco, and 
Sacramento during the typical fire season.  
 
Figure 11.1. Average STILT footprints during typical fire season in three California regions. 
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Lighter shades (yellow) indicate where emissions will have a greater influence on downwind pollution.  
 
Prescribed burning contributed minimally to ambient levels of PM2.5, with concentrations 
increasing maximally by about 0.5 µg/m3, with most areas experiencing little or no impacts from 
prescribed burnings. Figure 11.2 compares the spatial distribution of PM2.5 contribution from 
wildfires to prescribed burns across California counties. Using ZIP-code level mortality data, and 
dose-response coefficient accounting for the increased toxicity of wildfire smoke, our preliminary† 
analyses estimated 25 excess deaths from prescribed burning in 2018. For the same year, we 
estimated about 1,684 excess deaths from wildfire-generated PM2.5. Figure 11.3 displays the 
spatial distribution of mortality in 2018 attributable to wildfire smoke compared to smoke from 
prescribed burns across California counties.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
† data is still preliminary due to on-going quality assurance and quality control measures.  
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Figure 11.2. Wildfire vs. prescribed burns PM2.5 contributions 
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Figure 11.3. Wildfire vs. prescribed burns 2018 mortality 

 
 
 
Conclusion 
Our preliminary results demonstrate relatively small effects from prescribed burning in 2018 
compared the deaths attributable to wildfire smoke. It is still uncertain how much wildfire activity 
can be prevented by prescribed burning, but even a 5% reduction would result in 84 deaths avoided, 
so net benefits would be more than 3 times greater than the deaths attributed to prescribed burns. 
Future research is needed to better understand this relationship. It is also critical to investigate 
what the 10-fold increase in prescribed burning will mean for health burdens going into the future. 
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XII. Final Tool Product Paper: A Decision-Support Tool to Evaluate 
Health Benefits of Natural and Working Lands Scenarios 

  
Abstract 
 
The purpose of this chapter is to describe the development of the Natural Working Lands Health 
Scenario Tool. The Health Scenario tool evaluates the potential health benefits associated with 
different NWL management scenarios. The tool has been divided into two separate online 
interfaces for urban green space and wildfire areas, respectively, both of which are available 
through GEE. In the sections that follow, we provide a technical description of the input datasets 
and methodology, along with a step-by step guide to select different scenarios, visualize output, 
and download datasets for further analysis. 
 
Introduction  
 
California’s NWL encompass diverse landscape types, including grasslands, shrublands, and 
forests in both urban and rural settings. In addition to the role of California’s NWL in storing 
carbon and therefore mitigating future climate-related exposures, these areas also provide direct 
and indirect health and economic benefits.  
 
Urban green space provides direct health benefits and indirect benefits through mitigation of 
climate-related hazards. Among a myriad of health outcomes impacted through various pathways 
(Nieuwenhuijsen et al., 2017), there is substantial evidence for a dose-response relationship 
between access to urban green spaces and decreased mortality, as well as improved birth outcomes, 
both established in recent meta-analyses (Rojas-Rueda et al., 2019, Hu et al, 2021). Additionally, 
our research team has recently evaluated the relationship between green spaces and small-area life 
expectancy, finding that increased access to residential greenness and parks can substantially 
increase population longevity (Connolly et al., 2023). Our research and other studies suggest that 
increasing urban green space area could provide direct and indirect benefits for populations in 
California, particularly in disadvantaged communities. In the tool, we explore the health benefits 
associated with feasible increases in urban green space in California, based on past or ongoing 
efforts at the local to regional level.  
 
Wildland fires can influence public health outcomes through contributions to fine particulate 
matter (hereafter referred to as “smoke PM2.5”). Recent evidence suggests that smoke PM2.5 may 
be more toxic than other sources of PM2.5 pollution (Aguilera et al., 2023). This has consequences 
for respiratory outcomes, particularly asthma hospital admissions or ED visits, with growing 
evidence for all-cause mortality and cardiovascular effects (Chen et al., 2020; Reid, Brauer, et al., 
2016a). Land management strategies to reduce the risk of future extreme wildfire events include 
prescribed burning, mechanical thinning, and other fuel reduction strategies. Despite potential 
benefits for reducing fuel loads and subsequent wildfire emissions (Wiedinmyer & Hurteau, 2010), 
prescribed burn use was stable or declined in most of the western U.S. over the past twenty years 
(except in lands managed by the Bureau for Indian Affairs) (Kolden, 2019). Widespread adoption 
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of low-level prescribed burning has been proposed to reduce the future frequency and severity of 
uncontrolled wildfires. As reviewed by Hunter and Robles (2020), prior research has generally 
found that prescribed burning results in a lower extent and intensity of future wildfires. However, 
there are multiple uncertainties associated with assessing prescribed burning scenarios. This 
includes the wide range of spatial and temporal scales involved and challenges with simulating the 
future incidence of wildfire activity with and without prescribed burning (Hunter & Robles 2020). 
Quantifying public health trade-offs from smoke exposure to short-term, local pollution from 
prescribed burns versus longer time-scale, broad population exposure to smoke from wildfire 
events is also highly uncertain (Williamson et al. 2016). In the wildfire component of the NWL 
tool, we explore hypothetical future land management scenarios that could reduce wildfire 
emissions, as well as the consequences for smoke PM2.5 exposures and health outcomes. 
 
The NWL Health Scenario Tool provides quantitative estimates of the potential health benefits 
associated with multiple NWL management scenarios. In the sections that follow, we describe the 
online tool interfaces for two types of NWL, urban green space and wildfire areas. In the green 
space tool, users can quantitatively assess the potential human health impacts and economic 
benefits associated with management activities in California’s urban green space areas at the ZIP 
code and census tract level. In the wildfire tool, users can evaluate the influence of wildfires on 
PM2.5 and health outcomes with two complementary types of atmospheric modeling simulations: 
(1) ZIP code-level health burdens and economic costs associated with historical fire emissions 
based on 2008-2018 wildfire-specific PM2.5 concentrations from CMAQ; (2) County-level health 
and economic benefits associated with potential wildfire management scenarios using the STILT 
model. In the remainder of this chapter, we describe the methods to quantify connections between 
NWL (focusing on urban green space and wildfires), health, and economic outcomes, and provide 
a step-by-step guide for how to visualize results and run additional scenarios in the online tools. 
 
Methods 
3.1 Urban Green Space  
We examined three health outcomes associated with urban green spaces: mortality, life 
expectancy, and low birth weight. Current urban green space is measured with satellite metrics of 
NDVI from NAIP for 2016 at 0.6m resolution and tree canopy from the USGS NLCD percent tree 
cover at 30-m scale (Dewitz, 2019; U.S. Department of Agriculture Farm Service Agency, 2016). 
Baseline health status were from ZIP-code scale annual mortality data for 2016 from the CDPH 
(California Department of Public Health, 2022), life expectancy for 2019 from the ACS (US 
Census Bureau, 2019b), and the percent of low birthweight infants from CalEnviroScreen 4.0 
(Office of Environmental Health Hazard Assessment, 2021b). Dose-response functions were 
identified through a scoping review of the peer reviewed literature. Please see Chapter VII. Health 
Impact Assessment: Urban Green Space for detailed methodology. 
 
We developed eight scenarios, involving varying exposures to greenness in California’s urban 
areas as measured by NDVI and tree canopy, summarized below. The scenarios are based on 
realistic increases in urban green space area. The Million Trees Initiative in Los Angeles, for 
example, could expand urban forest area by 12%, though under this type of scenario there would 
be local variations in green space changes (McPherson et al., 2011), which would influence the 
magnitude of health outcomes throughout the region. 
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1. Deaths Prevented from 0.1 unit increase in NDVI (2016) 
2. Deaths Prevented from Increase in NDVI to Urban Areas Mean (2016) 
3. Life Expectancy Population Impacts - Years of Life Added from Universal 10% Increase 

in Tree Cover (e.g., 10% --> 20% tree cover) 
4. Life Expectancy Population Impacts - Years of Life Added from Increase in Tree Cover to 

Urban Areas Mean 
5. Life Expectancy Population Impacts - Years of Life Added from 0.1 unit increase in NDVI 
6. Life Expectancy Population Impacts - Years of Life Added from Increase in NDVI to 

Urban Areas Mean 
7. Reduced Cases of Low Birth Weight from 0.1 unit increase in NDVI (2016) 
8. Reduced Cases of Low Birth Weight from Increase in NDVI to Urban Areas Mean (2016) 

 
3.2 Wildfires 
3.2.1 ZIP Code Level Historical Analysis (CMAQ Model) 
 
We quantified the total mortality burden for exposure to PM2.5 due to wildland fires in California 
from 2008 – 2018 using CMAQ modeling system wildland fire PM2.5 estimates. We used a 
concentration response function for PM2.5, applying ZIP code level mortality data and an estimated 
wildfire-specific chronic dose-response coefficient accounting for the likely toxicity of wildfire 
smoke. The CMAQ estimates do not explore future management scenarios, but provide a 
retrospective analysis of smoke-specific health and economic impacts at the ZIP-code level. Please 
see Chapter VIII. Health Impact Assessment: Wildland Fire Mortality and CMAQ Validation for 
detailed methodology. 
 
3.2.2 County Level Scenario Analysis (Receptor Model) 
 
To model the impact of wildfires on PM2.5 concentrations at our receptors, we coupled an 
atmospheric model, STILT, with FINNv2.5 emissions. STILT is a receptor-oriented, Lagrangian 
particle dispersion model, which means it tracks an ensemble of individual air parcels backward 
in time from a chosen receptor location to their respective source locations. The atmospheric 
transport model is the heart of STILT, and it is responsible for calculating the trajectory of air 
parcels by simulating the complex interactions of winds, turbulence, and atmospheric stability. 
Meteorological data is the second key component of STILT and it includes information on wind 
speed and direction, temperature, humidity, and atmospheric stability. With the modeling 
framework and the meteorological data simulating air parcel back trajectories, STILT generates a 
gridded ‘footprint’ quantifying the influence of upwind grid cells on the receptor at a given point 
in time (Lin et al., 2003). STILT footprints can be convolved with emission inventory data, which 
provides information on the spatial and temporal distribution of pollutant sources. Emissions 
fluxes are coupled with STILT footprints to estimate the concentrations of air pollutants provided 
by the inventory (i.e. PM) the receptor site (Mallia et al., 2015); (Wilmot et al., 2022). Please see 
Chapter X. Scenario Development: STILT and FINN Validation for detailed methodology. 
 
Several illustrative, hypothetical management scenarios are available in the tool to compare against 
modeled historical emissions for 2018: 5%, 10%, and 15% across-the-board reductions in 
emissions state-wide, exclusion of all emissions from outside of California (may be relevant for 
northern counties near Oregon fires), exclusion of all emissions from outside of the selected 
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county, and 100% and 10% reduction in emissions from the Sierra Nevada ecoregion. In addition, 
the tool can also consider just emissions from just 2018 prescribed burns, as well as +25%, +50%, 
and +100% increases to those emissions (preliminary results provided). 
 
Wiedinmyer and Hurteau (2010) evaluated emissions changes from widespread prescribed burning 
in the western U.S. They simulated prescribed burning in specific forest types where prescribed 
burning would be appropriate by reducing fuel consumption to surface fuels only, but did not alter 
the seasonality or timing of future fire activity. They estimated an 18-25% reduction in carbon 
dioxide (CO2) fire emissions under this prescribed burning scenario, with an average decline of 
19% in California. After accounting for climate and prior fires on fuel availability and flammability 
in the Sierra Nevada Mountains (instead of climate alone), Hurteau et al. (2019) found that burned 
area is reduced by 14% and greenhouse gas and particulate matter emissions by a similar amount. 
Although not focused on prescribed burning specifically, this study points to dynamic climate and 
land use relationships. We can assess the air quality and public health implications of prescribed 
burning with the NWL tool through two broad strategies. In the first, we can assess a specified 
reduction in emissions through prescribed burning, without considering changes in seasonality or 
fire frequency (Wiedinmyer & Hurteau 2010). Users of the tool could explore how different 
proportional emissions reductions in different locations would influence population-level pollution 
exposure. 
 
Results  
Please see Chapter VII. Health Impact Assessment: Urban Green Space, Chapter VIII. Health 
Impact Assessment: Wildland Fire Mortality and CMAQ Validation, and Chapter X. Scenario 
Development: STILT and FINN Validation for detailed results on the urban green space and 
wildfire analyses, which we incorporated into the development of the tools.  
 
The sections to follow guide the user through the two online interfaces for the Urban Green 
Space and Wildfire NWL tools and various options available. 
 
4.1 Urban Green Space (link) 
 
Green Space Tool when launched: 

https://carb19rd015-extension-project.projects.earthengine.app/view/greenspace
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The user selects a health outcome of interest and a scenario for analysis: 

 
 
In response, the tool generates maps of how the selected health outcome changes for the selected 
scenario: 
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Change in mortality for universal 0.1 unit increase in NDVI (left) and NDVI increase to urban 
area mean (right). 
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Changes in life expectancy for universal 10% increase in tree cover (upper left), increase in tree 
cover to urban area mean (upper right), universal 0.1 increase to NDVI (lower left), increase in 
NDVI to urban area mean (lower right). 
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Changes in low birth weight adverse outcomes for NDVI increase to urban area mean (left) and 
universal 0.1 increase to NDVI (right). 
 
The tool also generates a results panel showing the total change in the outcome of interest for the 
scenario as well as highlighting the ZIP Codes most and least affected: 
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Results panel for mortality estimates for universal 0.1 unit increase in NDVI (left) and NDVI 
increase to urban area mean (right) 
 
The user can also explore individual census tracts (life expectancy and birth outcomes) or ZIP 
Codes (mortality) by clicking them on the map: 
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4.2 Wildfires (link) 
 
The NWL Health Scenario Tool interface allows users to select from two models and multiple 
outcomes. The first step is for users to determine the model selection of interest: (1) ZIP-code 
retrospective health and economic analysis based on the CMAQ model for 2008-2018 “Annual 
Impact Estimates”, or (2) county-level management scenario analysis based on the STILT receptor 
model for the 2018 meteorological year “Hypothetical Management Scenarios for 2018”.  
 

 
 

 
 
4.2.1 Annual Impact Estimates 
 
Users who select “Annual Impact Estimates” will be able to select various health outcomes of 
interest at the ZIP-code scale and a year of interest from 2008 to 2018 using the CMAQ model. 
Results are available across the state of California, but after running the analysis, users can select 
a ZIP code of interest for more detailed information. 
 

https://ee-dgonzales98.projects.earthengine.app/view/wildfires


A Scenario Tool for NWL in California 
 

 

163 
 
 

 
 
 
Here we provide examples of the results provided in the tool with the above example selections, 
although this will vary depending on the user’s selections at each step. First, a statewide map shows 
ZIP-code level annual fire-specific PM2.5 concentrations and estimated mortality, with fire 
perimeters overlaid in red. Users can toggle between the concentrations and mortality using the 
“Layers” feature in GEE. 
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By selecting specific ZIP Codes on the map, more detailed information is provided on health and 
economic outcomes. 
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We also show here examples of aggregate economic impacts and ZIP-code rankings of the 
highest smoke PM2.5 concentrations and mortality. 



A Scenario Tool for NWL in California 
 

 

166 
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4.2.2 Hypothetical Management Scenarios for 2018 
 
The second model option in the wildfire tool uses a receptor-oriented model (STILT) to allow 
users to rapidly examine the influence of potential NWL management scenarios on downwind 
PM2.5 concentrations and health outcomes. By selecting the second model type in Step 1 
(“Hypothetical Management Scenarios for 2018”), users are then directed to select a county of 
interest.  
 

 
 
At present, the tool only provides estimates for impacts on mortality, but could be augmented 
with other health outcomes, such as: 
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The user then selects a hypothetical management scenario: 

 
 
Finally, the user clicks the “Run Analysis” button 
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Once the user has made these selections, the tool displays county-specific average annual wildfire 
PM2.5 emissions, number of health outcomes (e.g. deaths for all-cause mortality), and economic 
impact for both the chosen scenario and the modeled “historical” scenario for 2018. 

 
Example result for Fresno County comparing model result for historical (as it happened, left), and 
hypothetical 10% reduction of emissions from the Sierra Nevada ecoregion (right). 
 
Discussion 
 
The purpose of the NWL Health Scenario tool is to provide quantitative assessments of the 
potential health and economic benefits associated with urban green space and wildfires. The online 
interface in GEE allows users to select from multiple management scenarios, immediately quantify 
the potential health and economic outcomes, and download results for future analysis. 
 
Our findings indicate that achievable increases in urban green space could result in substantial 
health benefits, including approximately 7,378 avoided deaths and 20,649,279 years of life 
expectancy gained, with the majority of the benefits accruing to non-white populations. We also 
estimate up to 5,385 low birth weight deliveries avoided. Please see Chapter VII. Health Impact 
Assessment: Urban Green Space for a detailed overview of strengths and limitations of this 
empirical analysis. Future work should continue to explore differential impacts between 
populations in California and the U.S. more broadly, as this has distinct implications for urban 
planning and environmental justice policy.  
 
The ZIP-code level annual health impact analysis with the CMAQ model simulations found that 
wildland fire emissions contribute approximately half of total PM2.5 in high fire years. We estimate 
52,600 - 56,140 premature deaths associated with smoke PM2.5 exposure from 2008-2018. The 
STILT model provides estimates of specific scenarios for specific counties, for example that 
reducing emissions from the Sierra Nevada ecoregion by 10% would have decreased 2018 average 
PM2.5 in Fresno County from 4.68 to 4.22 μg/m3, reducing modeled mortality from 597 to 540 
deaths and associated economic impact from $5.2 to $4.7 billion. There are several limitations of 
this analysis. For the ZIP-code level estimates of the health and economic outcomes associated 
with smoke PM2.5 exposure, the CMAQ model simulations include the influence of all wildfires, 
but cannot differentiate between the contributions of individual fire types or locations. The 
relatively coarse model grid cells (12-km) results in spatially averaging exposure estimates to link 
with population health data available at the ZIP-code scale. The county-level analysis based on 
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STILT simulations also has several limitations. Given computational constraints, we simulated 
atmospheric sensitivity footprints for a sample of 80 days in 2018 and for the population centroid 
of all 58 counties in California. We do not consider variation in exposures within counties or with 
different meteorological years, although future work could incorporate these additional analyses. 
 
The NWL Health Scenario Tool provides users with the ability to quantitatively estimate the 
potential health and economic costs and benefits associated with historical and future NWL 
management scenarios in urban green space and wildfire areas across California. The tool 
framework has the built-in flexibility to accommodate the inclusion of additional scenarios if they 
were to become available at a future date.  
 

CARB Future Scenarios (in progress)   
We will develop future fire emissions based on the 2022 Scoping Plan NWL land management 
scenarios in a format that can be directly used as input to drive GEOS-Chem, a chemical transport 
model that provides wall-to-wall emissions outputs based on National Aeronautics and Space 
Administration (NASA) global modeling inputs.  The impacts of future fire emissions on air 
quality and human exposure concentration of PM2.5 are distinguished from climate factors by 
running GEOS-Chem with future fire emissions but present-day meteorology over selected future 
years. GEOS-Chem driven by present-day meteorological datasets, such as NASA Global 
Modeling and Assimilation Office’s (GMAO) GEOS-FP ("forward-processing") meteorological 
data product (Lucchesi, 2018), supports global simulations as well as flexible nested grid 
definitions to study regional changes in air pollutants at down to a spatial resolution of 0.25° x 
0.3125°. To investigate the instant and accumulated impacts of fire changes, we used cycled 
present-day meteorology in GEOS-Chem to simulate continuous wildfire smoke changes induced 
by future fire emissions throughout the mid-21st century. We will create spatially and temporally 
explicit maps of CARB’s wildfire emissions scenarios that are available at the ecounit scale. In 
our ongoing research with CARB, we are developing unique scaling factors from past to future 
scenarios of wildfire factors for combinations of ecounits, land cover types, and land ownership. 
These scaling factors are applied to the average distribution of past wildfires from the Fire 
Inventory from NCAR version 2.5 (Wiedinmyer et al., 2023). We will adapt this approach to 
identify new locations for future wildfire emissions for each of scenarios provided by CARB 
through a spatial and temporal disaggregation process (Neumann et al., 2021; Yue et al., 2013). 
We will allocate future emissions across the landscape and month by randomly distributing 70% 
of emissions to 10% of grid cells and evenly distributing the remaining 30% to 90% of grid cells 
as in Neumann et al. This will produce a realistic emission distribution across the landscape by 
estimating a plausible distribution of individual wildfire events. We will keep observed historic 
seasonal patterns to estimate sub-annual emissions distribution for use in GEOS-Chem. 
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Glossary of Terms, Abbreviations, and Symbols 
 
ACS American Community Survey 

An annual demographics survey on population and housing information, 
administered by the U.S. Census Bureau. 

AMET Atmospheric Model Evaluation Tool 
A software that is used to compare meteorological and air quality model 
predictions with observed data from monitor networks to assess model 
performance.  

APA American Psychological Association 
A U.S. scientific and professional organization of psychologists.  

AQS Air Quality System 
A repository from the EPA that contains ambient air pollution monitoring 
data collected by the EPA and state, local, and tribal air quality agencies. 

AR Atmospheric river 
Concentrated bands of water vapor in the atmosphere that can lead to 
heavy precipitation events.  

BenMAP-CE Environmental Benefits Mapping and Analysis Program Community 
Edition 
An open-source program of the EPA that relates air quality changes to 
human health benefits and estimates the number and economic value from 
health impacts resulting from changes in air pollution concentrations. 

CAL FIRE California Department of Forestry and Fire Protection 
The fire department of the California Natural Resources Agency that 
promotes fire protection of the state’s wildlands and also provides 
emergency services.  

CASTNET Clean Air Status and Trends Network 
An air quality monitoring network that evaluates the impacts of air 
pollution emissions changes on the environment, such as pollutant 
concentrations and ecological effects.  

CDC Center for Disease Control and Prevention 
A U.S. federal public health agency that works to protect people from 
health threats and promote health security in the nation.  

CDPH California Department of Public Health 
A department of the state of California that oversees public health affairs 
in the state. 

CI Confidence interval 
Range of estimates for a parameter to fall in with a specific level of 
confidence in frequentist statistics.  

CMAQ Community Multiscale Air Quality model 
An open-source computational tool of the EPA that models air pollutants, 
such as ozone, particulates and more, and is used for air quality 
management.  

CO2 Carbon dioxide 
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A greenhouse gas that is emitted into the atmosphere through human 
activities, such as fossil fuel burning, and contributes to increased global 
warming.  

COI Cost of illness 
A method of quantifying and measuring costs associated with a disease.  

COPD Chronic obstructive pulmonary disease 
A group of chronic lung diseases that prevent airflow, making breathing 
difficult.  

CrI Credible interval 
A range of estimates for a parameter to fall in with a specific probability in 
Bayesian statistics. Incorporates information from previous distribution to 
inform estimate.   

C-Solutions Center for Healthy Climate Solutions 
A center at UCLA that provides expertise on public health affairs and 
works with communities to implement solutions that protect people from 
the effects of climate change and generate several health, economic, and 
environmental co-benefits.  

CSV Comma-separated values 
A text file format that saves tabular data in plain text and separates data 
entries with commas.  

CTM Chemical transport model 
A computer numerical model that simulates dispersions, transformations, 
and chemical reactions of air pollutants to predict air pollution 
concentrations.  

DALY Disability adjusted life year 
A measure of the burden of disease, represented as the number of years of 
life lost due to mortality or other adverse health outcomes.  

ED Emergency department 
Similar to emergency room. Hospital area that provides treatment to people 
with immediate or acute illnesses. 

ELCR Excessive Lifetime Cancer Risk 
An estimate of an increased risk of cancer that can be acquired after 
exposure to carcinogenic substances.  

EPA Environmental Protection Agency 
A U.S. federal government independent agency that is responsible for 
environmental protection affairs. 

ER Emergency room 
Similar to emergency department. Hospital area that provides treatment to 
people with immediate or acute illnesses.   

FCCS Fuel Characteristic Classification System 
A fuel-loading database that stores wildland fuel characteristics in fuelbeds 
and estimates potential hazards and fire from environmental variables.  

FEPS Fire Emission Production Simulator model 
A software program that manages data on fuel consumption, emissions 
generation, and smoke plumes and can be used to simulate fire events.  
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FINN Fire INventory from NCAR 
A highly spatially-resolved fire emissions inventory from NCAR that is 
used to determine the effects of fire activity on air quality and public 
health. 

GEE Google Earth Engine 
A planetary-scale platform comprised of catalogs of satellite imagery and 
geospatial datasets for Earth science data and analysis. 

GEOS-Chem Goddard Earth Observing System chemical transport model 
A chemical transport model that provides wall-to-wall emissions outputs 
based on NASA global modeling inputs. 

GHG Greenhouse gas 
Gases in the atmosphere that trap heat and contribute to warming effects. 

GPS Global positioning system 
A navigation system consisting of a network of satellites that transmit 
signals to Earth to provide global location data.  

GSI Green stormwater infrastructure 
An infrastructure system that employs vegetation and other nature-based 
systems to improve stormwater management and address water quality 
issues. 

HAP Hazardous air pollutant  
Toxic air pollutants that can cause major adverse health effects.  

HCUP Healthcare Cost and Utilization Project 
A collection of national hospital care databases, such as inpatient stays, 
emergency department visits and more, online tools, and reports.  

HIA Health impact assessment 
A tool that evaluates the potential human health impacts of a project or 
policy on populations.  

HMS Smoke Hazard Mapping System Fire and Smoke Product 
A product that maps smoke plumes that could indicate locations of fires, 
digitized from satellites across the U.S.  

HR Hazard ratio 
Ratio of the hazard rates. Explains the effect of an intervention or exposure 
variable on the hazard of an event in survival analysis. 

HRRR High-Resolution Rapid Refresh model 
A real-time, high-resolution, 3-kilometer, hourly-updating, convection-
allowing atmospheric model by National Oceanic & Atmospheric 
Administration (NOAA).  

HRV Heart rate variance 
A measure of the time difference between heartbeats. 

ICD International Classification of Diseases 
A medical classification system, managed by WHO, that is used globally 
to code diseases, injuries, and mortality.  

IHD Ischemic heart disease 
Heart problems caused by damage to coronary arteries, which restricts 
blood flow and oxygen to the heart.  
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IHME Institute for Health Metrics and Evaluation 
A global health research institute at the University of Washington that 
provides publicly-available measurements for several global health issues.  

IMPROVE Interagency Monitoring of Protected Visual Environments 
A network created by the EPA to monitor air pollution visibility and 
address visibility issues in areas such as national parks, wilderness areas, 
and more across the U.S. 

IPCC Intergovernmental Panel on Climate Change 
An intergovernmental body of the United Nations that focuses on assessing 
the state of scientific knowledge on climate change and its effects.  

LBW Low birth weight 
Infants less than 2,500 grams at birth.  

MODIS Moderate Resolution Imaging Spectroradiometer 
A satellite sensor on NASA satellites that monitors and collects data on 
Earth’s lands, oceans, and atmosphere.   

NAAQS National Ambient Air Quality Standards 
Ambient air quality standards set by the EPA for six criteria air pollutants 
that can cause health and environmental harms.  

NAIP National Agriculture Imagery Program 
A program of the United States Department of Agriculture that collects 
aerial imagery of the nation during agricultural growing seasons.  

NASA National Aeronautics and Space Administration 
A U.S. federal government independent agency that leads the civil space 
program and research on aeronautics and space.  

NASA GMAO’s 
GEOS-FP 

NASA Global Modeling and Assimilation Office’s GEOS-“forward 
processing” meteorological data product 
A present-day meteorological dataset generated by the NASA Global 
Modeling and Assimilation Office in near-real time or reanalysis modes. 

NCAR  National Center for Atmospheric Research 
A U.S. center specialized in research in Earth system science, established 
by the National Science Foundation.  

NDVI Normalized difference vegetation index 
An indicator that quantifies vegetation health and density using near-
infrared and red light. 

NEI National Emissions Inventory 
A comprehensive estimate of air emissions of criteria air pollutants and 
precursors and HAPs, with data supplied from state, local, and tribal air 
agencies and the EPA. 

NICU Neonatal intensive care unit 
An intensive care nursery that provides medical care to newborn infants 
who are sick or preterm.  

NLCD National Land Cover Database 
A geospatial dataset from the USGS that provides mapping information on 
U.S. land cover and land cover change.  

NO2 Nitrogen dioxide 



A Scenario Tool for NWL in California 
 

 

248 
 
 

A highly reactive gas that is emitted into the atmosphere through fuel 
burning, such as emissions from vehicles and power plants. Part of the 
nitrogen oxides group.  

NWL Natural Working Lands 
Includes a biologically diverse landscape of grasslands, shrublands, and 
forests.  

O3 Ozone 
A highly reactive gas composed of three oxygen atoms in the Earth’s 
atmosphere. Can either be beneficial or adverse, depending on where in the 
atmosphere the gas is found. 

OEHHA California Office of Environmental Health Hazard Assessment 
A department of the California EPA that evaluates health risks from 
environmental contaminants.  

OR Odds ratio 
Ratio of the odds of exposure among people with a disease to the odds of 
exposure among people without a disease.  

PAH Polycyclic aromatic hydrocarbon 
A class of chemicals that can be released through fuel burning, such as 
coal, oil, and more, and can bind to or produce small airborne particles. 

PM10 Particulate matter with a diameter of 10 micrometers or less 
A type of air pollutant of inhalable particles that have diameters of 10 
micrometers or less. PM2.5 is a subset of PM10. 

PM2.5 Fine particulate matter with a diameter of 2.5 micrometers or less 
A type of air pollutant of fine inhalable particles that have diameters of 2.5 
micrometers or less. 

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
An evidence-based checklist of 27 items to ensure transparent reporting for 
systematic reviews and meta-analyses. 

PRISMA-ScR Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
extension for Scoping Reviews 
An extension of PRISMA specifically for scoping reviews, containing 20 
necessary items and two optional items.  

PSI Pollution Standard Index 
A scale developed by the EPA that measures air pollution levels of six 
major air pollutants to determine air quality in specific regions.  

PTSD Post-traumatic stress disorder 
A mental health disorder that can arise after experiencing a traumatic and 
dangerous event.  

RCP Representative Concentration Pathway 
A set of greenhouse gas concentration scenarios used by the IPCC that 
attempt to model future climate trends, based on different human activities 
and emissions generation.  

RR Relative risk 
Ratio of the risks for an event in the exposed group to the risks for the 
event in the non-exposed group. 
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SGA Small for gestational age 
Infants with a birthweight less than the 10th percentile of gestational age. 

SLR Sea level rise 
A rise in global average sea levels due to thermal expansion of seawater 
and melting of ice from increased global warming.  

SoCAB California’s South Coast Air Basin 
An air basin area in California, identified by the state to be responsible for 
air quality management and air pollution control in the region.  

STILT Stochastic Time-Inverted Lagrangian Transport model 
A receptor-oriented, atmospheric transport model used to quantify the 
influence of different emission sources and model the impact of multiple 
emissions scenarios on downwind air quality. 

U.S. United States of America 
Country in North America. 

USGCRP U.S. Global Change Research Program 
A U.S. federal program leading federal research on global environmental 
and Earth system changes and their effects on people.  

USGS United States Geological Survey 
A U.S. governmental agency that collects, analyzes, and provides 
information on Earth, water, and biological science and mapping.  

VIIRS Visible Infrared Imaging Radiometer Suite 
An instrument on board a NASA-National Oceanic & Atmospheric 
Administration (NOAA) satellite that collects visible and infrared images 
of the Earth’s lands, oceans, atmosphere and cryosphere.  

VSL Value of a Statistical Life 
An economic measure of additional costs people are willing to incur for 
small reductions in risk of mortality, often used in cost-benefits analyses. 

WHO World Health Organization 
A specialized health agency of the United Nations that works to promote 
global health and is involved in international public health affairs.  

WONDER CDC Wide-ranging Online Data for Epidemiologic Research database 
A directory of online and searchable public health datasets.  

WTP Willing to pay 
The maximum amount that a person would be willing to pay for a good.  

WUI Wildland-urban interface 
A transitionary zone between undeveloped wildland (natural environment) 
and land developed by humans (built environment), where risk of wildfires 
is increased.   
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APPENDIX A 
 
Supplementary Information for Chapter VII. Health Impact Assessment: Urban Green Space 
 
Review of Key Climate-Health Threats in California and Possible Green Space Solutions 
 
Here we review climate change and important health risks specific to California through the lens 
of green space solutions. This complements existing climate change assessments already available 
for California (Bedsworth et al., 2018; Intergovernmental Panel On Climate Change (IPCC), 
2023b; U.S. Global Change Research Program (USGCRP), 2016). We focus on the direct and 
proximal indirect health effects of key climate threats in California, including extreme heat, severe 
precipitation events, wildfire smoke, and infectious disease. We consider exposures that can affect 
highly ranked causes of disability and death will often have a higher burden of disease because of 
the larger populations affected (see Appendix A). To structure the review, we established a series 
of evaluative criteria for each selected climate risk (Table A7.1). This includes the attribution of 
exposure to climate change, the projected timing of the effects, the likely burden of disease related 
to the risk, vulnerable populations, available adaptation measures, and the possible co-benefits that 
can result from urban green space solutions. This review prioritizes California-specific studies (to 
the extent the literature is available) but also considers studies from other locations that describe 
biological mechanisms for climate-health pathways or potential adaptation solutions. We consider 
health effects in the general population, as occupational health risks are beyond the scope of this 
review. 
 
Extreme Heat  
Climate change is increasing the frequency and intensity of extreme heat events, and many factors 
influence the magnitude and nature of extreme heat health impacts (Ebi, Capon, Berry, Broderick, 
De Dear, et al., 2021). Although no standard definition of an extreme heat event exists, the 
consensus suggests that increasing heat from climate change is a major public health problem. 
 
Attribution Certainty. Human influence has unequivocally impacted and warmed the 
atmosphere, oceans, and lands. Over the last twenty years, more than 150,000 deaths from heat 
waves have been recorded across the globe (Clarke et al., 2022; Intergovernmental Panel On 
Climate Change, 2023b). Within California, various models have attributed anthropogenic 
emissions to increased likelihood of extreme weather in Los Angeles and the Central Valley 
(Clarke et al., 2022; Mazdiyasni et al., 2019).  
 
Timing of Effects. Annual temperatures within California have increased by 1°F to more than 2°F 
since the first half of the 20th century (Bedsworth et al., 2018). Statewide annual average maximum 
temperatures could increase by 4.4°F to 5.5°F compared to the 1961-1990 baseline by mid-century, 
under Representative Concentration Pathway [RCP] 4.5 and 8.5, respectively (Geospatial 
Innovation Facility, 2023), and by > 8°F by the end of the century (Bedsworth et al., 2018). The 
frequency and intensity of heat waves are also predicted to increase across California with some 
Central Valley heat waves lasting 4-9 days longer by mid-century (Vahmani et al., 2019). Extreme 
heat events are predicted to increase in inland areas already prone to heat waves, but also in coastal 
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areas less accustom to extreme heat (Gershunov & Guirguis, 2012; Vahmani et al., 2019), which 
may result in a larger health burden in these less adapted areas (Cheng et al., 2019). 
 
Likely Population Health Burden. Extreme heat is the leading weather-related cause of mortality 
in the U.S. and the burden of extreme heat on human health in California is already substantial and 
expected to increase rapidly along with rising climate change. Extreme heat can raise body 
temperature and result in increased breathing rates, elevated heart rates, and changes in blood 
coagulation and arterial pressures. These disruptions in key circulatory mechanisms can lead to 
negative cardiac outcomes because of the added demand induced by extreme heat exposures. 
Considerable evidence shows that extreme heat can exacerbate chronic conditions, increase the 
risk of heat-related illnesses, lead to multiple morbidities including cardiovascular, respiratory, 
renal, and in severe cases, death (Basu & Ostro, 2008; Cheng et al., 2019; Fletcher et al., 2012; 
Knowlton et al., 2009; Z. Sun et al., 2018). Extreme heat has also been associated with negative 
impacts on pregnancy, mental health outcomes, and an increased risk for hospitalizations and ED 
visits, especially in vulnerable populations (Anderson et al., 2013; Chersich et al., 2020; Nori-
Sarma et al., 2022; S. Sun et al., 2021; Thompson et al., 2018).  
 
Limited information exists on the overall health burden from extreme heat within California; 
however, a study found that each additional extreme heat day is associated with 0.07 additional 
deaths per 100,000 adults within the contiguous U.S. (Khatana et al., 2022). With California’s 
roughly 30 million adult residents, this would correspond to 21 deaths across the state’s adult 
population for each extreme heat day. Historic heat waves provide additional evidence to this 
potential health burden in California. For example, the July 2006 heat wave, characterized by two-
weeks of elevated temperatures and humidity, resulted in an estimated 232 deaths across nine 
counties and increased all-cause mortality risks by 9% per 10°F increase (Ostro et al., 2009). In 
the absence of adaptation measures, the impact of extreme heat is expected to rise by the end of 
the century with models predicting approximately 400 deaths per one-million persons every year 
(values extracted from figure) throughout the state from extreme heat exposures (Shindell et al., 
2020). When we consider morbidity impacts, the population burden rises even further. During the 
same 2006 heat wave, a total of 16,166 excess ED visits and 1,182 excess hospitalizations were 
estimated statewide (Knowlton et al., 2009). 
 
Vulnerable Populations. High-risk populations include children and the elderly; pregnant, 
undocumented, economically disadvantaged, and unhoused individuals; individuals with 
preexisting conditions; and outdoor workers (Jung et al., 2021; Knowlton et al., 2009; Peters & 
Schneider, 2021; Qu et al., 2021). Children, the elderly, and those with pre-existing conditions are 
less likely to self-thermoregulate and can suffer from impaired thirst sensation or experience 
impaired glomerular filtration rates. During the 2006 California heat wave, Knowlton et al. (2008) 
found children (0-4 years) and elderly (≥ 65 years of age) at a higher risk of ED visits compared 
to other groups (Knowlton et al., 2009). Additional studies examining the impacts of extreme heat 
on mortality found that the Black racial/ethnic group had a higher risk of non-accidental mortality 
with 10°F increases in temperature compared with Whites (Basu & Ostro, 2008). In addition, 
extreme heat exacerbates existing inequities across the state by impacting low-income 
communities and communities of color who are disproportionately housed within some of the 
hottest census-tracts in the state (Gabbe & Pierce, 2020). These communities have a more difficult 
time adapting to extreme heat due to barriers around access to and use of air conditioning (O’Neill, 
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2005). Further, vegetation in vulnerable neighborhoods is often more sensitive to drought 
conditions, and thus, these areas are less likely to benefit from urban green space cooling effects 
likely due, in part, to barriers to water access and usage (Dong et al., 2023).   
 
Adaptation Measures. Urban green space, specifically tree canopies, have been widely 
recognized for their role in reducing urban heat islands via evapotranspiration and shading from 
solar radiation (Bowler et al., 2010a; Rahman et al., 2020; Winbourne et al., 2020; Yan et al., 
2020). Within Los Angeles, estimating the impacts of moderate tree cover and albedo mitigation 
scenarios (RCP 4.5) could delay climate-induced warming by 69 years; in effect, experiencing a 
climate in the year 2089 that was like the climate in the year 2020 (Kalkstein et al., 2022). 
Aggressive action to increase both tree canopy and urban reflectivity within urban Los Angeles 
can save one in four lives during extreme heat events; however, it is important to consider native 
vegetation to increase resiliency to local drought impacts and inequities in water related access 
and usage (Allen et al., 2021; Dong et al., 2023; Kalkstein et al., 2022). Cool and green roofs can 
also reduce urban temperatures with impacts highest in areas with more building density and, thus, 
roof surface area (Krayenhoff et al., 2018). Cool roofs, which are roofs designed to reflect more 
sunlight and absorb less heat relative to standard roofs, have been predicted to reduce future 
exposure to heat waves across the 29 most populous counties in California by up to 56% (Vahmani 
et al., 2019). The combination of cool and green roofs with street trees can decrease both projected 
regional and summer temperatures, with the highest impacts in the southwest U.S. (Krayenhoff et 
al., 2018).   
 
Additional adaptive measures include well-communicated heat action plans at the local level, 
robust surveillance and monitoring programs, cooled spaces, and interventions aimed at the most 
vulnerable populations. Targeting adaptive actions within areas with limited access to either 
private or public cooled spaces could reduce heat-related health risks (Fraser et al., 2017). For 
example, shared-wall, multi-family dwelling units can reduce peak energy demand by up to 50% 
(Burillo et al., 2019). Furthermore, California-based tools like the California Health Places Index: 
Extreme Heat Edition (https://heat.healthyplacesindex.org/) and the Center for Healthy Climate 
Solutions (C-Solutions) Heat Maps (https://uclaheatmaps.org), provides a platform that can be 
used to visualize and understand the distribution of heat-related illness across the state, identify 
adaptation resources, and to prioritize the delivery of resources and programs (Public Health 
Alliance of Southern California, n.d.; UCLA Center for Healthy Climate Solutions & UCLA 
Center for Public Health & Disasters, n.d.).  
 
Green Space Health Co-benefits. Studies have found that extreme heat can have multiplicative 
effects with air pollution and have varying impacts on specific geographies and groups of people, 
especially among vulnerable populations (Grigorieva & Lukyanets, 2021; Xu et al., 2014). 
Strategically placed vegetation within urban environments can mitigate urban heat islands and may 
improve local air quality by removing air pollutants via deposition; in some cases, urban green 
space deposition can account for street-level reductions of air pollutants up to 60% (Pugh et al., 
2012), although uncertainty exists because of the possible precursors to particle formation emitted 
by plants. Additional co-benefits of adaptive measures include indirect health benefits associated 
with reducing climate forcing CO2 emissions from measures like reflective roofs and urban 
vegetation (Z.-H. Wang, 2021). Compared to a single management action, combining heat related 
mitigation and adaptive measures has been shown to further reduce urban temperatures 

https://uclaheatmaps.org/
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(Santamouris et al., 2020) and providing the potential to further limit impacts on morbidity and 
mortality. The long-term mitigation strategies that address rising temperature and air pollution can 
be implemented via policies that reduce energy consumption in transportation, industry, and 
households and improve the built environment (Harlan & Ruddell, 2011). 
 
Extreme Precipitation 
Climate change alters the timing and severity of extreme precipitation events. Here we review 
health risks associated with wet precipitation extremes. The health burden associated with dry 
precipitation extremes (drought) is explored through the contribution to wildfires and Valley fever 
in subsequent sections.  
 
Attribution Certainty. The connection between climate change and increased precipitation 
extremes is more certain than changes in annual precipitation totals (Berg & Hall, 2015). Most 
heavy precipitation events in California are linked to atmospheric river (AR) events (Gershunov 
et al., 2019), which are concentrated bands of water vapor (Ralph et al., 2018). AR events, such as 
the heavy precipitation that caused the Oroville Dam crisis in 2017, are enhanced to varying 
degrees by climate change (Michaelis et al., 2022). In addition to higher precipitation totals during 
individual events, as the climate warms, more precipitation will fall as rain rather than snow 
(Huang et al., 2020). Subsequent connections to flood risk depend on multiple factors, including 
the intensity of extreme precipitation events, soil moisture, and snowmelt (Sharma et al., 2018).  
 
Timing. California currently experiences more compressed and severe rainy seasons than in the 
historical record (Luković et al., 2021). AR events are expected to intensify in the future, and there 
is strong model agreement that extreme precipitation events will increase in this century (Polade 
et al., 2017). The risk of megafloods associated with extreme storm sequences, runoff, and 
hydrologic outcomes has already doubled (Huang & Swain, 2022) and the extreme flood event is 
more likely than not in the next few decades (Huang & Swain, 2022; Swain et al., 2018). Some 
1.39 million properties in California are currently at risk of flooding, which could increase to 1.54 
million in the next 30 years; cities in the Central Valley are most vulnerable (Bates et al., 2021; 
First Street Foundation, n.d.).  
 
Population Health Burden. Extreme precipitation events impact health through multiple 
pathways: trauma or drowning, displacement, water quality, vector borne diseases, or mental 
health impacts (Paterson et al., 2018). Simulations of a potential severe winter storm scenario that 
would be of a comparable magnitude to the historic 1861-1862 events in California would result 
in widespread flooding, extreme winds, and landslides. Given the location of development and 
residential areas, this would cause hundreds of billions of dollars in property damage, the 
evacuation of approximately 1.5 million residents, and disruption to critical infrastructure, 
particularly among Central Valley and coastal communities (Porter et al., 2011). Water 
management planning will also be challenged by the shifting nature of precipitation events (Siirila-
Woodburn et al., 2021).  
 
Stormwater runoff also accumulates pollutants that can negatively impact water quality. AR 
events, for example, are linked to three-quarters of fecal pollution spikes in California’s coastal 
waters, including densely populated areas in Southern California (Aguilera et al., 2019). Drier 
summers could possibly reduce coastal water contamination through reduced runoff amounts, but 
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increased population density in coastal areas and increased variability in precipitation could 
challenge surveillance that are used to mitigate health risks (Semenza et al., 2012). Precipitation 
extremes could also amplify the effects of climate-related sea level rise (SLR). This includes 
potential consequences such as coastal flooding, erosion, salinization of water sources, and storm 
surge (Rahimi et al., 2020). In coastal California, hazardous sites are vulnerable to flooding, which 
can release toxic chemicals into the environment. The risk, especially in socially marginalized 
communities, is expected to increase by the end of the century (L. J. Cushing et al., 2023). In 
general, however, while ample evidence of potential impacts on health of extreme precipitation, 
there is currently a dearth of literature that estimates the past, current, or future burden of morbidity 
and mortality from these extreme events.   
 
Vulnerable populations. Vulnerable populations to extreme precipitation include communities 
that are lower income, have inequities in access to information systems to prepare for extreme 
events, or have increased incidence of chronic illnesses or other impairments that can reduce 
evacuation ability. Los Angeles County is one of the top ten counties in the U.S. for the population 
size at flood risk (Qiang, 2019). In addition, a recent study in Los Angeles found that 
approximately 425,000 people are at high risk of flooding, with disadvantaged and Black 
communities being disproportionately impacted (Sanders et al., 2023). Communities with limited 
English proficiency, including some in the Central Valley, are at risk for timely evacuation and 
access flood alerts (Qiang, 2019). 
 
Adaptation Measures. Impervious surfaces increase the risk of flooding associated with climate 
change in California (KC et al., 2021). Retreating from flood-prone areas or prohibiting 
development in flood zones can limit future populations at risk of flooding. In addition, prediction 
of extreme events, including monitoring, flood alerts, and evacuation plans, can protect public 
health. Tree canopies or other green infrastructure can reduce the volume and intensity of 
stormwater runoff in urban areas (Berland et al., 2017; Kuehler et al., 2017). Other considerations 
include the intersection of extreme precipitation with additional climate hazards, such as flooding 
or landslides following wildfire events (AghaKouchak et al., 2020).  
 
Green Space Health Co-Benefits. Urban greening could mitigate flood risk and bring additional 
health co-benefits. Urban green infrastructure, such as wetlands, re/afforestation, riparian buffers, 
and other green spaces could provide multiple benefits related to population health, including 
water supply, water purification, and extreme event moderation (Bertule et al., 2014). The 
literature on health effects directly associated with green stormwater infrastructure (GSI) is more 
limited than the economic (property values) or ecological benefits (Suppakittpaisarn et al., 2017; 
Venkataramanan et al., 2019). Stormwater harvesting can benefit health through non-potable water 
use and restoration of ecosystems, such as wetlands flood retention capacity and stormwater 
treatment (Jiang et al., 2015). Urban green stormwater infrastructure was associated with improved 
safety outcomes in Philadelphia (M. Kondo et al., 2016). A case study for siting vegetated areas 
to manage stormwater in Los Angeles found that social and public health and water quality benefits 
would be greatest if built in heavily developed areas and those with high density commercial and 
industrial uses (Jessup et al., 2021). 
 
Wildfires 
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In California, climate change has affected the length of the fire season, annual burned areas, and 
the severity of wildland fires. Wildfires contribute to air pollution, including PM2.5, ozone, nitrogen 
dioxide, and other trace gasses. Wildfires have also become an increasingly important source of 
carbon emissions (Jerrett et al., 2022). In this section, we review the health implications of wildfire 
smoke pollution. 
 
Attribution Certainty. Climate change influences wildfire smoke pollution through increased fire 
activity and the enhancement of pollution formation in the atmosphere. In the western U.S., earlier 
snowmelt and rising temperatures associated with climate change have dried fuels and extended 
the wildfire season (Westerling, 2016). From 1984 to 2015, half of the forest wildfire burned area 
in the western U.S. was attributed to anthropogenic climate change (Abatzoglou & Williams, 
2016). In California, Turco et al. (2023) found that anthropogenic climate change, not natural 
variability, was responsible for dramatic increases in summer burned area from 1971 to 2021 
(Turco et al., 2023). By simulating different scenarios for climate change, population growth, and 
development in California, Hurteau et al. (2014) reported that climate change was the largest 
driving force behind projected increases in wildfire PM2.5 emissions. The greatest increases in 
wildfire emissions are expected to occur in parts of northern California under federal management 
and unavailable for development (Hurteau et al., 2014).  
 
Timing of Effects. Climate change is already contributing to increased wildfire activity, and it is 
expected to accelerate in the future. Annual area burned in California increased fivefold from 
1972-2018 (Williams et al., 2019), at increasingly high severity (Parks & Abatzoglou, 
2020). Under a high climate change emissions scenario (RCP 8.5), mean wildfire burned area in 
California is expected to increase 77% by the end of the century (compared to 1961-1990 baseline) 
and large wildfires would occur 50% more frequently (Westerling, 2018). Wildfire emissions in 
California are projected to increase 19 -101% above the baseline period by 2100 depending on 
climate change and land development scenarios (Hurteau et al., 2014). Other studies of the western 
U.S. project that the trend in increasing wildfire PM2.5 emissions will continue, especially increases 
in maximum wildfire-specific PM2.5 levels (J. C. Liu et al., 2016; Yue et al., 2013). 
 
Population Health Burden. Exposure to wildfire smoke PM contributes to oxidative stress, 
inflammation, and cell toxicity (Reid & Maestas, 2019). Recent studies have found that wildfire 
smoke PM is more toxic than ambient urban PM due to greater oxidative potential (Verma et al., 
2009; Wegesser et al., 2009). Wildfire smoke also increases concentrations of PM2.5 indoors in 
California (Liang et al., 2021), which is another contributing factor to health effects given that 
people spend the majority of their time indoors. Wildfire smoke exposure is consistently associated 
with increased respiratory morbidity and all-cause mortality (Cascio, 2018). In California, 
researchers found positive associations between smoke exposure and ER visits and hospitalizations 
for respiratory symptoms among the general population and especially asthmatics (Delfino et al., 
2009; Dohrenwend et al., 2013; Heaney et al., 2022; Hutchinson et al., 2018; Reid, Jerrett, et al., 
2016b). Recent evidence from southern California wildfires also suggests that wildfire smoke 
pollution may be more harmful to respiratory health than other pollution sources (Aguilera, 
Corringham, Gershunov, & Benmarhnia, 2021a). The effect of wildfire smoke exposure on 
cardiovascular effects is less conclusive. Some studies, including those from California, did not 
find an association between cardiovascular events or cardiovascular-related mortality (J. C. Liu, 
Wilson, Mickley, Dominici, et al., 2017a; Reid, Jerrett, et al., 2016b). Growing evidence, however, 
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shows that wildfire PM exposure is a risk factor for cardiovascular morbidity and mortality (H. 
Chen et al., 2021). In their review, Chen et al. (2021) found that 25 out of 38 epidemiological 
studies on cardiovascular morbidity found a positive association between wildfire smoke exposure 
and cardiovascular disease impacts. There is also emerging evidence that wildfire exposure is 
linked to adverse birth outcomes, such as preterm births, via smoke or psychosocial stress but this 
requires further study (Amjad et al., 2021; Heft-Neal et al., 2022). 
 
A recent study, which addressed the impact of the severe 2018 California wildfires, found that 
smoke pollution contributed to over 3,600 state-wide deaths that year. The total wildfire damages 
amounted to $148 billion in health costs, capital, and other indirect losses (D. Wang et al., 2021). 
For future smoke exposure mortality, limited information exists on the burden for California 
specifically. Focusing on future western U.S. wildfire activity, Neumann et al. (2021) project that 
wildfire PM2.5-related mortality could increase by 3.7 times to 4.2 times by end of century under 
moderate (RCP4.5) and high (RCP8.5) emissions scenarios respectively (Neumann et al., 2021). 
Climate change accounts for 40% (for RCP4.5) to 60% (for RCP8.5) of the projected increases in 
wildfire mortality (Neumann et al., 2021).  
 
Vulnerable Populations. The sensitive groups for wildfire smoke PM2.5 exposure include children 
younger than 18 (particularly young children), older adults, people with chronic health conditions 
such as asthma, people with lower socioeconomic status, and potentially women and racial 
minorities. Most of the literature focuses on differential impacts by age group, where they found 
that children, especially under 5 years of age, were more susceptible to the respiratory health 
effects of wildfire smoke pollution, including ED visits for respiratory symptoms, asthma 
diagnoses, and asthma hospital admissions (Heaney et al., 2022; Hutchinson et al., 2018). Aguilera 
et al. (2021) also found that wildfire-specific PM2.5 was 10 times more harmful to children’s 
respiratory health compared to other PM2.5 sources for emergency and urgent care respiratory care 
from 2011-2017 in San Diego (Aguilera, Corringham, Gershunov, Leibel, et al., 2021b). Older 
populations over age 65 are often more susceptible to respiratory and potentially cardiovascular 
impacts from smoke pollution exposure (Delfino et al., 2009; Heaney et al., 2022). People living 
in low-income communities are also more susceptible to smoke exposure health effects, such as 
for asthma, COPD, pneumonia, and all-cause respiratory-related ED visits (J. C. Liu, Wilson, 
Mickley, Dominici, et al., 2017a; Reid, Jerrett, et al., 2016b). Some evidence suggests that women 
and racial minorities, particularly Black populations, are more likely to experience health effects 
from wildfire smoke exposure (J. C. Liu, Wilson, Mickley, Ebisu, et al., 2017b). Recent research 
in California has reported that higher smoking prevalence rates modifies the effect of wildfire 
smoke on ER visits for asthma and pneumonia, with greater admissions in areas with higher 
smoking rates (Reid et al., 2023).  
 
Adaptation Measures. In events of severe wildfire pollution, clear and consistent messages must 
be conveyed across several modes of communication, with special focus on vulnerable groups, to 
mitigate exposure (Fish et al., 2017). Providing clean air shelters and portable air cleaners may 
also reduce individual exposure (Barn et al., 2016).  
 
Wildland management strategies, such as mechanical thinning, prescribed burns, and other fuel 
treatments, may reduce the scale and severity of future fires (Hunter & Robles, 2020). Westerling 
(2018) simulated large-scale fuels treatments and found that they substantially offset the increased 
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burned area modeled under future climate change (Westerling, 2018). In the WUI, green space 
management in agricultural areas, parks, recreation areas, or other managed open spaces can create 
buffers around communities (in addition to providing primary health benefits) (Moritz et al., 2022). 
Moritz et al. (2022) emphasize how such landscape measures need to be coordinated with 
complimentary interventions in the built environment (e.g., fire-resistant construction) and across 
the community scale (e.g., community outreach to create social capital that increases mitigation 
efforts) (Moritz et al., 2022). Increasing defensible space reduces available fuel in proximity to 
homes and can reduce the risk of a home igniting (Syphard et al., 2014). The relationship between 
vegetation and wildfire risk (as measured through structure loss), however, is complex and varies 
from local to landscape scales (Syphard et al., 2021).  
 
Green Space Health Co-benefits. Fuel management strategies, such as prescribed burning, can 
potentially reduce carbon emissions and mitigate climate change with long-term health benefits. 
Such measures can also reduce emissions of air pollutants that adversely affect human health. If 
widespread prescribed burning were to be implemented and replaced wildfire activity in the 
western U.S., biomass burning carbon emissions could be reduced by up to 25% (Wiedinmyer & 
Hurteau, 2010). Simulations of land management policy scenarios in California have studied the 
net impacts of land conservation, ecosystem restoration, forest fuel reduction (i.e., prescribed 
burning and mechanical thinning), and agricultural carbon sequestration on carbon dioxide and 
methane emissions (Simmonds et al., 2021). They found that although emissions from prescribed 
burning initially outweighed emissions reductions from other strategies, cumulative net emissions 
were reduced by mid-century and more significantly by the end of the 21st century. The 
quantifiable net impacts of prescribed burns on carbon and particulate emissions, however, remain 
uncertain, because research has yet to ascertain accurately the extent to which low level prescribed 
burns will prevent future emissions from extreme wildfires (B. A. Jones et al., 2022).  
 
Infectious Disease: Dust Pollution and Valley Fever 
Many paths exist from climate change to infectious disease, including changes in habit and range 
of vectors and human migration that can increase contact with vectors. In California, several 
infectious diseases are predicted to worsen due to climate change, including two of the more 
serious ones: West Nile Virus (Flaviviridae) (Morin & Comrie, 2013) and coccidioidomycosis or 
Valley fever (Weaver & Kolivras, 2018). Valley fever affects more people than West Nile Virus 
in terms of annual incidence (8,030 versus 149 new cases in 2021) (Aragón, 2022). Moreover, the 
California Office of Environmental Health Hazard Assessment (OEHHA) has tracked the 
incidence of West Nile Virus since 2001, after the virus became prevalent in California (Office of 
Environmental Health Hazard Assessment, 2018). Given this potentially larger and growing 
problem with evidence of no clear time trends from OEHHA, we focus on Valley fever as the most 
likely important climate-affected infectious disease risk in California. 
 
Valley fever is a growing concern associated with dust mobilization in the southwestern U.S. 
Valley fever is caused by the inhalation of dust-carried fungus Coccidioides immitis (C. immitis) 
or Coccidioides posadasii (C. posadasii) (Kollath et al., 2019). It is endemic to California’s Central 
Valley. In this subsection, we consider the link between climate change and health risks associated 
with both dust pollution and Valley fever. We also emphasize how greening solutions can limit 
dust exposure. 
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Attribution Certainty. The arid and semi-arid region of the southwestern U.S. is characterized 
by large concentrations of soil-derived dust particles in the lower atmosphere, especially in spring. 
Trend analysis indicates an increase in springtime dust concentration and an earlier onset of the 
dust season over past decades (Hand et al., 2016). Climate models predict with high confidence a 
warmer and drier environment in the southwestern U.S. through the 21st century 
(Intergovernmental Panel On Climate Change (IPCC), 2023b). This would bring more frequent 
and severe drought (Prein et al., 2016; Seager & Vecchi, 2010; Williams et al., 2020). Such 
conditions can modify vegetative cover and influence dust mobilization.  
 
Coccidioides reproduce rapidly during the winter with moderate rainfall and mild temperature and 
then disperse easily during hot and dry summer conditions (del Rocío Reyes-Montes et al., 2016). 
When the soil is dry, spores of Coccidiodes can be picked up by wind and carried by dust particles, 
allowing them to be inhaled by humans (Matlock et al., 2019). The size of dust particles typically 
spans from less than 1 μm to 400 μm in diameter, with particles larger than 100 μm mostly settling 
down near the source of formation. PM10 can reach deep into human lung systems and 
bloodstreams, among which fine dust particles (e.g., PM2.5) pose the greatest risk to health, thus 
having been mostly studied. Coccidiodes spores are about 2 μm to 5 μm in length, falling within 
both fine and coarse dust particle sizes (Akram & Koirala, 2023). Coccidiodes fungus can out 
survive other organisms and become dormant under drought conditions; the fungus can then be 
reactivated when ideal conditions (e.g., precipitation) return; this life cycle is followed by the 
release of infection fragments when the environment is dry and hot again and the contaminated 
soil is disturbed (Coates & Fox, 2018; Fisher et al., 2000; Gorris et al., 2018). Head et al. (2022) 
also found that Valley fever incidence in arid counties is more sensitive to precipitation 
fluctuations as drought years followed by wet winters increase Valley fever incidence in 
California, while the incidence in cool and wet counties, such as coastal regions, is more sensitive 
to temperature changes (Head et al., 2022). These regional differences create a heterogeneous 
spread across California. 
 
Timing of Effects. Achakulwisut et al. (2018) identified the Standardized Precipitation-
Evapotranspiration Index as a useful indicator of present-day dust variability, and predicted 
increases of 26 - 46% in fine dust concentrations over the southwestern U.S. in spring by 2100 
(Achakulwisut et al., 2018). In contrast, Pu and Ginoux (2017) found that the frequency of extreme 
dust days decreases slightly in spring within this region due to reduced extent of bare land under 
21st century climate change, highlighting the complex relationships between climate change and 
land use (Pu & Ginoux, 2017). Valley fever became more prevalent in recent decades and is 
projected to further expand north into the dry western U.S. (135, 136). Pearson et al. (2019) 
analyzed the threat of Valley fever to the general population in California due to climate change, 
land use, and population movement. California is expected to face increasingly dry conditions, 
which could allow the dominant Coccidioides species (C. immitis) to outnumber its microbial 
competitors (Pearson et al., 2019). 
 
Likely Population Health Burden. Valley fever can infect the lung system, cause respiratory 
symptoms such as cough, fever, shortness of breath, and chest pain, and may spread to other parts 
of the body and be potentially fatal (CDC, 2021). In California, the number of reported valley fever 
cases has greatly increased from 719 since 1998 to 9,004 in 2019 (CDC, 2021). Originally, high 
Valley fever incidence in California was reported in the San Joaquin Valley, but the largest case 
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increases in recent decades have occurred in the Northern San Joaquin Valley, the Central Coast, 
and South Coast regions (Cooksey et al., 2020). Correlated changes in Valley fever incidence with 
drought and temperature in California demonstrate that climate conditions are driving factors that 
control valley fever outbreak, leading to the expansion of valley fever cases to regions that 
experience prolonged dryness and drought in recent years and under future climate (Gorris et al., 
2019; Head et al., 2022; Shriber et al., 2017).  
 
Vulnerable Populations. Most cases have been contracted occupationally in construction, 
agricultural, military, archeological, and correctional institutional settings, possibly due to 
heightened exposure to dust. People over 60 years of age, pregnant women, those with depressed 
immune systems, women, and Black and Filipino populations are at higher risk of contracting 
coccidioidomycosis (Guevara et al., 2015; Niehaus et al., 2023; Rosenstein et al., 2001).  
 
Adaptation Measures. Green space expansion in California could mitigate dust mobilization and 
its health consequences. Wind speed and vegetation cover are two key factors that determine soil 
erodibility and dust emissions (Zender et al., 2003). In addition, vegetation constrains dust 
emissions by preserving soil moisture through plant shade and root systems (Hillel, 1982). Under 
future climate scenarios, regions with higher temperature, reduced soil moisture, which is 
characteristic of drought, and enhanced anthropogenic land use practices could experience 
strengthened dust mobilization (Y. Li et al., 2021), as the loss of vegetative cover during drought 
increases soil erosion (Archer & Predick, 2008; Bestelmeyer et al., 2018). Additionally, 
developing early dust warning advisory and assessment systems, reducing personal exposure by 
reducing time spent outdoors and outdoor physical activities, and using devices such as wearable 
global positioning system (GPS) and activity sensors could reduce adverse health outcomes 
(Eleftheriou et al., 2023).   
 
Green Space Health Co-Benefits. Dust particles, particularly PM2.5, have a wide array of negative 
effects on human health across the life course (Tong et al., 2023). Green space can effectively hold 
soil, prevent dust mobilization, and intercept and filter suspended dust particles in the air. Distinct 
dust constituents such as crystalline silica and endotoxins have long been studied and are found to 
be highly associated with adverse respiratory outcomes, including a decline in lung function, 
pulmonary diseases, lung cancer, and silicosis (Baron et al., 2002; Nieuwenhuijsen et al., 1999). 
Dust may also transport harmful neurotoxic pesticides that can come into contact with sensitive 
human receptors such as children, with possible impacts on neurological development (Gunier et 
al., 2011). Exposure of farmers to endotoxin, a type of bioaerosol, as well as crystalline silica, has 
also been associated with allergy, respiratory, and lung diseases in California (Schenker et al., 
2005, 2009; Seidel et al., 2023). 
 
-- 
 
Leading Causes of Death and Disability in California. Understanding public health risks to 
Californians also requires knowledge of the leading causes of disability and death. The top three 
causes of death and disability in California primarily result from chronic disease conditions, 
including ischemic heart disease, stroke, and chronic obstructive pulmonary disease (Figure A7.1). 
Lower respiratory tract infections, ranked seventh, are the only infectious diseases included in the 
top ten causes of death (Global Burden of Disease Collaborative Network & Institute for Health 
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Metrics and Evaluation (IHME), 2020). In terms of disability adjusted life years (DALYs, a 
combined measure of death and disability), infectious diseases do not rank in the top 10 causes, 
with ischemic heart disease (IHD), low back pain, and drug use disorders occupying the top three 
positions.   
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Figure A7.1. Leading Causes of Death and Disability for California in 2019 with error bars 
representing 95% CIs for each cause (Global Burden of Disease Collaborative Network & 
Institute for Health Metrics and Evaluation (IHME), 2020). 
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Table A7.1. Evaluation criteria to assess the direct and proximal indirect health effects of 
climate change in California. 
Climate 
Pathway 

Attributio
n 

Timing Population 
Health Burden 

Vulnerabil
ity 

Adaptatio
n  

Green Space 
Solutions 

  How 
clearly 
linked is 
the 
exposure to 
climate 
change? 

What is 
the trend 
in 
exposure
? 

What is the 
projected health 
burden in 
California? 

Are certain 
populations 
more 
vulnerable 
to health 
effects? 

What 
adaptation 
measures 
are 
available? 

What are the 
health co-benefits 
or unintended 
consequences of 
green space? 

Extreme 
heat 

Highly 
certain 

Warming Respiratory, 
renal, and 
cardiovascular 
morbidity, heat-
related illness, 
negative 
pregnancy and 
mental health 
outcomes, 
mortality 

Children, 
elderly, 
pregnant 
women, 
preexisting 
conditions, 
low SES, 
outdoor 
workers 

Urban 
green 
space, heat 
action 
plans, AC 
access, 
cool roofs, 
building 
design, 
albedo 
increases 

Reduced air 
pollution and 
carbon emissions 

Extreme 
precipitat
ion 

Medium-
high 
certainty 

Increasin
g 

Trauma, 
drowning, 
displacement, 
mental health, 
water quality 
>1 million CA 
properties at risk 
of flooding 

Low SES, 
Black 
populations
, inequities 
in 
information 
access or 
ability to 
evacuate 

Flood 
alerts and 
evacuation 
plans, 
green 
stormwater 
infrastructu
re 

Increased water 
supply, improved 
water quality, 
public safety 

Wildfires Medium-
high 
certainty 

Increasin
g 

Respiratory and 
potential 
cardiovascular 
morbidity and 
mortality; 
potential birth 
outcomes and 
mental health 
>3,600 deaths in 
2018 
 

Children, 
elderly, 
pregnant 
women, 
preexisting 
conditions, 
low SES, 
potentially 
Black 
populations 
and women 

Air quality 
alerts, 
clean air 
shelters, 
wildland 
fuel 
manageme
nt, 
defensive 
areas 
including 
green space 
such as 
parks, golf 

Reduced carbon 
emissions, reduced 
exposure to other 
air pollution 
sources 
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courses, 
and 
agricultural 
land at the 
WUI 

Valley 
Fever 

Low-
medium 
certainty 

Increasin
g 

Respiratory 
morbidity and 
mortality, fever 
9,000 cases in 
2019 

Elderly, 
pregnant 
women, 
preexisting 
conditions, 
underrepres
ented 
groups 
such as 
Black or 
Filipino 

Early dust 
warning 
advisory 
and 
assessment
s, personal 
dust 
exposure 
tracking, 
vegetation 
cover to 
mitigate 
dust 
pollution 

Reduced dust 
mobilization and 
PM exposure that 
affects many other 
health outcomes 
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APPENDIX B 
 
Supplementary Information for Chapter VIII. Health Impact Assessment: Wildland Fire 
Mortality and CMAQ Validation 
 
Supplemental Tables 
 
Table B8.1. Summary Statistics of Annual Modeled PM2.5 Estimates (California) by Grid Cell 
(mean, minimum, and maximum of all grid cell annual averages) 

Year 
All Sources PM2.5 Non-Fire PM2.5 Fire-only PM2.5 

Mean Min Max Mean Min Max Mean Min Max 

2008 8.83 2.89 51.4 4.51 1.56 34.2 4.33 0.35 49.7 

2009 4.78 1.80 32.7 4.18 1.46 32.4 0.60 0.16 4.30 
2010 4.61 1.75 36.6 4.30 1.55 36.4 0.32 -0.20 4.90 
2011 3.91 1.82 18.3 3.42 1.38 17.9 0.49 0.13 8.30 
2012 3.83 1.50 17.7 3.14 1.33 17.4 0.69 0.13 9.90 
2013 3.88 1.26 18.0 2.70 0.89 17.2 1.17 0.29 15.2 
2014 4.74 1.61 87.8 3.49 1.20 13.7 1.24 0.09 86.4 
2015 5.32 2.27 94.0 3.37 1.57 14.9 1.95 0.15 91.9 
2016 4.11 1.85 46.8 3.10 1.48 13.9 1.0 0.11 44.0 
2017 6.76 2.59 102 3.72 1.93 14.3 3.04 0.48 97.5 
2018 7.65 3.28 110 4.18 2.29 14.5 3.47 0.50 107 
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Table B8.2. Summary of Annual Averaged Modeled PM2.5 (μg/m3) Values by Metropolitan 
Statistical Area (MSA) in California 

MSA 
All Sources PM2.5 

(SD, μg/m3) 
Fire-Only PM2.5 

(SD, μg/m3) 

Percent of PM2.5 

Attributable to 
Fire 

Anaheim-Santa Ana-Irvine 11.46 (3.38) 0.74 (0.70) 6.5% 
Bakersfield 5.20 (1.86) 1.02 (0.86) 19.7% 
Chico 7.06 (4.72) 3.03 (4.09) 42.9% 
El Centro 3.97 (1.28) 0.35 (0.21) 8.9% 
Fresno 6.29 (5.36) 1.96 (4.77) 31.2% 
Hanford-Corcoran 7.60 (2.32) 1.22 (0.99) 16.1% 
Los Angeles-Long Beach-Glendale 8.24 (4.76) 0.79 (0.77) 9.5% 
Madera 6.35 (3.30) 1.98 (2.04) 31.2% 
Merced 7.83 (2.44) 1.51 (1.31) 19.2% 
Modesto 7.55 (2.91) 1.55 (1.40) 20.5% 
Napa 6.56 (5.03) 2.85 (4.77) 43.4% 
Oakland-Hayward-Berkeley 9.46 (3.50) 1.32 (1.39) 14.0% 
Oxnard-Thousand Oaks-Ventura 5.18 (2.61) 0.96 (1.56) 18.6% 
Redding 5.56 (4.97) 3.12 (4.53) 56.1% 
Riverside-San Bernardino-Ontario 3.99 (2.04) 0.49 (0.42) 12.3% 
Sacramento--Roseville--Arden-Arcade 7.54 (4.41) 2.45 (3.01) 32.6% 
Salinas 4.61 (2.97) 1.37 (2.73) 29.7% 
San Diego-Carlsbad 5.80 (2.82) 0.48 (0.31) 8.3% 
San Francisco-Redwood City-South San 
Francisco 

6.37 (2.15) 1.05 (1.05) 16.5% 

San Jose-Sunnyvale-Santa Clara 5.76 (2.59) 1.09 (1.01) 19.0% 
San Luis Obispo-Paso Robles-Arroyo 
Grande 

4.71 (1.16) 0.92 (0.81) 19.6% 

San Rafael 5.41 (2.19) 1.38 (1.92) 25.6% 
Santa Cruz-Watsonville 6.55 (2.14) 1.30 (1.24) 19.9% 
Santa Maria-Santa Barbara 4.16 (1.24) 0.84 (0.84) 20.2% 
Santa Rosa 6.84 (7.51) 3.05 (7.30) 44.6% 
Stockton-Lodi 9.67 (2.71) 1.59 (1.48) 16.4% 
Vallejo-Fairfield 8.43 (2.92) 1.91 (2.15) 22.7% 
Visalia-Porterville 6.35 (4.41) 1.95 (3.33) 30.8% 
Yuba City 8.48 (3.54) 2.42 (2.27) 28.6% 
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Table B8.3. Summary of long-term mortality impacts across California due to fire-only PM2.5 for ages 25+, using wildfire-specific 
and undifferentiated chronic dose-response values, 2008-2018 (total deaths attributable to fire-only PM2.5) 

Year 

Base Case Scenario Deaths (No modeled values capped) Mod Cap Scenario Deaths (Modeled values capped) 

Wildfire-specific dose-response  
(βWL) (95% CI) 

Undifferentiated PM2.5 dose-
response (βL) (95% CI)  

Wildfire-specific dose-response  
(βWL) (95% CI) 

Undifferentiated PM2.5 

dose-response (βL) (95% 
CI) 

2008 10,150 (1,060 - 18,720) 6,590 (4,520 – 8,080) 9,750 (1,010 - 18,070) 6,330 (4,330 – 7,760) 

2009 2,260 (230 - 4,300) 1,450 (990 – 1,790) 2,240 (230 - 4,270) 1,440 (980 – 1,770) 

2010 1,300 (130 - 2,490) 840 (570 – 1,030) 1,300 (130 - 2,480) 830 (570 – 1,030) 

2011 1,530 (140 - 2,910) 980 (660 – 1,210) 1,520 (140 - 2,910) 980 (660 – 1,200) 

2012 1,730 (150 - 3,290) 1,110 (750 – 1,360) 1,720 (150 - 3,280) 1,110 (750 – 1,360) 

2013 3,430 (300 - 6,500) 2,200 (1,500 – 2,710) 3,420 (300 - 6,480) 2,200 (1,500 – 2,710) 

2014 2,150 (190 - 4,060) 1,380 (940 – 1,700) 2,050 (180 - 3,900) 1,320 (900 – 1,620) 

2015 3,590 (310 - 6,760) 2,310 (1,580 – 2,850) 3,460 (300 - 6,560) 2,230 (1,520 – 2,740) 

2016 4,490 (390 - 8,430) 2,900 (1,980 – 3,560) 4,140 (360 - 7,850) 2,660 (1,810 – 3,280) 

2017 12,650 (1,180 - 22,860) 8,330 (5,760 – 10,150) 10,810 (950 - 20,190) 6,990 (4,780 – 8,590) 

2018 12,880 (1,150 - 23,760) 8,380 (5,740 – 10,260) 12,160 (1,080 - 22,590) 7,880 (5,380 – 9,660) 

All Years 56,140 (5,240 - 104,060) 36,470 (24,990 - 44,700) 52,600 (4,830 - 98,590) 33,960 (23,180 – 41,740) 

 
Notes: Base case = no modeled PM2.5 concentrations capped; mod cap = modeled PM2.5 concentrations capped at the 99.9th percentile value of all fire-only concentrations; βWL = 
chronic wildfire-specific dose-response value; βL= chronic undifferentiated dose-response value. Values rounded to the nearest ten.  
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Table B8.4. Mortality and Valuation Impacts from Wildland Fire in California by County, 2008-2018 (Base case scenario - no 
modeled values capped) 

County Deaths 
- 2008 

Deaths 
- 2009 

Deaths 
- 2010 

Deaths 
- 2011 

Deaths 
- 2012 

Deaths 
- 2013 

Deaths 
- 2014 

Deaths 
- 2015 

Deaths 
- 2016 

Deaths 
- 2017 

Deaths 
- 2018 

Deaths - 
All Years 

Total Valuation 
(2015 $, 

Hundreds of 
Millions) 

Alameda  405 63.0 35.8 58.8 52.1 143 67.8 119 53.0 640 468 2,106 172 

Alpine  2.5 0.5 0.7 0.4 0.5 3.6 0.5 1.2 0.5 1.8 6.5 18.7 1.5 

Amador  36.2 12.6 3.6 6.1 5.8 17.8 7.8 16.6 8.2 23.6 38.3 177 14.8 

Butte  418 40.0 18.8 30.3 67.0 56.5 43.0 74.3 40.2 139 477 1,404 118 

Calaveras  34.4 10.8 4.3 6.1 5.5 23.9 6.8 27.7 9.3 30.2 53.3 212 17.5 

Colusa  17.6 2.2 0.9 2.2 3.0 3.4 2.4 6.5 2.1 9.3 23.2 72.8 6.0 

Contra Costa  393 62.5 33.5 56.5 56.8 129 65.6 119 47.5 648 476 2,088 170 

Del Norte  29.9 3.5 1.6 2.7 6.0 9.5 11.3 72.4 2.1 167 96.8 403 31.4 

El Dorado  118 36.7 12.3 23.0 23.3 60.0 77.7 51.0 26.0 73.3 116 618 51.7 

Fresno  478 66.8 60.6 56.9 52.2 140 95.8 248 153 368 491 2,211 183 

Glenn  30.6 3.3 1.3 3.0 4.9 6.3 5.0 9.6 4.0 14.0 36.1 118 9.8 

Humboldt  125 12.0 5.7 9.9 12.6 33.2 32.5 73.5 12.9 111 76.3 505 42.1 

Imperial  6.1 5.0 3.0 3.8 4.3 8.0 3.3 3.9 7.0 13.2 13.9 71.5 5.9 

Inyo  2.5 0.7 0.8 1.3 0.4 1.1 0.6 2.2 1.7 3.0 2.3 16.7 1.4 

Kern  226 41.2 35.3 44.1 29.9 64.0 51.1 66.9 140 222 214 1,135 93.9 

Kings  44.9 9.2 4.2 6.3 6.3 15.2 10.0 12.7 19.9 43.0 41.9 213 17.7 

Lake  112 7.4 4.1 7.8 19.1 19.9 19.9 37.8 8.0 58.5 175 468 38.4 
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Lassen  23.3 3.5 1.3 1.9 10.3 3.6 7.8 5.5 2.9 10.0 19.8 89.9 7.6 

Los Angeles  1,287 612 317 246 286 557 284 362 1,265 1,788 2,094 9,098 744 

Madera  66.6 10.7 9.4 11.5 9.1 32.5 16.9 34.1 24.7 63.2 87.9 367 30.1 

Marin  106.7 12.5 9.1 14.1 14.2 29.1 16.0 31.5 8.7 193 109 543 44.3 

Mariposa  16.0 2.8 2.5 3.2 3.4 11.4 4.5 7.7 6.3 24.3 42.1 124 10.0 

Mendocino  117.6 6.7 3.6 5.8 13.2 18.4 28.7 25.9 5.8 51.7 53.6 331 28.3 

Merced  93.2 17.5 11.0 17.1 14.4 31.9 19.8 35.5 38.5 95.2 114 488 40.1 

Modoc  5.5 1.3 0.5 1.2 3.4 1.8 2.8 3.0 1.5 7.0 7.6 35.6 2.9 

Mono  5.1 1.1 1.0 0.9 0.9 4.6 1.4 5.6 2.1 3.0 8.8 34.5 2.8 

Monterey  93.0 18.8 8.9 11.5 9.6 31.8 12.4 28.1 401 105 80.5 801 64.3 

Napa  119 11.8 5.8 11.7 16.8 23.2 18.5 40.1 18.5 266 110 641 51.8 

Nevada  140 15.3 8.7 12.3 13.3 49.9 45.4 28.0 19.6 86.3 75.5 494 41.8 

Orange  319 98.0 88.9 69.9 87.3 160 95.6 132 323 498 630 2,502 203 

Placer  277 53.0 22.1 41.5 45.1 91.0 75.2 94.6 63.1 182 282 1,226 102 

Plumas  25.1 3.0 1.9 2.2 7.7 5.2 8.2 6.3 3.7 12.8 12.4 88.6 7.6 

Riverside  187 101 87.5 67.9 77.0 174 64.8 165 198 326 580 2,026 164 

Sacramento  958 200 69.4 134 147 218 173 294 163 766 1,009 4,131 343 

San Benito  11.9 2.7 1.1 1.8 1.7 3.9 2.1 3.6 21.7 14.4 13.6 78.5 6.4 

San Bernardino  
192 95.0 59.1 50.5 59.4 113 46.3 116 208 275 343 1,556 127 

San Diego  288 85.0 76.9 60.4 83.5 143 91.7 117 226 381 426 1,978 162 



A Scenario Tool for NWL in California 
 

 

269 
 
 

San Francisco  162 33.6 29.5 36.6 27.2 77.7 32.4 70.2 27.3 414 247 1,157 93.3 

San Joaquin  334 60.9 22.4 46.0 47.9 94.0 61.6 110 58.5 312 374 1,521 126 

San Luis Obispo  
61.8 15.1 7.8 11.3 11.3 20.8 12.2 24.4 68.3 79.1 74.4 387 31.5 

San Mateo  168 26.1 23.5 27.4 22.4 69.6 26.6 57.6 21.3 264 205 912 74.5 

Santa Barbara  78.2 25.4 9.1 10.8 12.8 25.8 13.1 22.3 73.1 164 93.6 528 42.8 

Santa Clara  493 64.6 40.8 59.2 52.0 130 76.3 118 166 492 510 2,200 181 

Santa Cruz  86.3 24.5 5.7 12.3 8.5 20.3 12.5 20.4 76.5 87.6 75.8 430 35.5 

Shasta  318 25.6 12.9 22.7 57.3 53.9 50.1 92.5 25.7 128 500 1,288 106 

Sierra  4.6 0.6 0.4 0.4 0.7 1.6 1.1 1.1 0.5 1.5 2.1 14.6 1.3 

Siskiyou  53.9 9.3 4.3 6.5 12.7 15.6 56.3 26.6 12.9 59.1 61.8 319 26.2 

Solano  197 25.7 16.5 25.4 29.9 50.6 34.8 60.3 28.1 361 243 1,072 87.0 

Sonoma  341 33.8 17.7 34.4 37.1 71.4 51.4 88.1 29.6 1,522 262 2,489 197 

Stanislaus  250 42.9 24.0 40.6 33.9 78.3 46.3 99.6 58.3 271 276 1,220 101 

Sutter  73.5 13.3 5.1 11.3 13.3 16.1 15.4 25.1 16.1 50.8 92.5 332 27.5 

Tehama  136 8.9 3.9 8.9 18.2 20.7 14.5 36.8 10.4 44.2 110 412 34.8 

Trinity  49.1 2.0 0.7 2.3 3.1 6.3 5.4 40.5 2.0 12.5 20.8 145 12.3 

Tulare  183 39.3 26.3 32.0 23.0 53.4 47.2 90.4 131 235 207 1,068 87.3 

Tuolumne  45.9 11.7 10.4 8.9 8.4 88.5 14.7 34.8 12.8 45.1 57.2 339 28.1 

Ventura  118 40.5 17.7 21.4 23.3 53.8 24.0 38.3 106 243 371 1,058 84.0 

Yolo  124 15.8 6.9 13.5 20.6 25.6 22.5 37.9 19.7 105 131 522 43.2 
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Yuba  60.5 10.3 4.7 8.4 9.2 17.3 11.6 17.0 11.6 45.8 65.4 262 21.7 
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Table B8.5. Summary of long-term mortality impacts across California due to all sources PM2.5 
for ages 25+, using undifferentiated chronic dose-response values, 2008-2018 (total deaths 
attributable to all sources PM2.5) 

Year 

Undifferentiated PM2.5 dose-response (βL) 
 

Base Case Scenario Deaths (No 
modeled values capped) (95% CI) 

Mod Cap Scenario Deaths (Modeled 
values capped) (95% CI) 

2008 37,250 (26,130 – 44,880) 36,950 (25,910 – 44,530) 

2009 29,060 (20,250 – 35,170) 29,030 (20,230 – 35,150) 

2010 30,610 (21,370 – 37,010) 30,580 (21,340 – 36,980) 

2011 23,390 (16,200 – 28,450) 23,390 (16,200 – 28,450) 

2012 23,080 (15,980 – 28,070) 23,080 (15,980 – 28,070) 

2013 22,040 (15,230 – 26,830) 22,030 (15,230 – 26,820) 

2014 21,670 (14,970 – 26,400) 21,610 (14,920 – 26,320) 

2015 24,050 (16,630 – 29,280) 23,970 (16,570 – 29,180) 

2016 23,250 (16,070 – 28,310) 23,020 (15,910 – 28,040) 

2017 30,440 (21,160 – 36,910) 29,140 (20,190 – 35,420) 

2018 31,430 (21,820 – 38,150) 30,940 (21,470 – 37,570) 

All Years 296,300 (205,800 – 359,477) 293,700 (204,000 – 356,500) 

Table B8.6. Sensitivity analysis: Summary of long-term mortality impacts across California due 
to fire-only PM2.5 for ages 25+, using alternative short-term wildfire-specific dose-response 
value (Chen et al., 2021 global estimate) to calculate βWL 

Year 

Wildfire-specific dose-response (βWL)  

Base Case Scenario Deaths (No 
modeled values capped) (95% CI) 

Mod Cap Scenario Deaths (Modeled 
values capped) (95% CI) 

2008 18,810 (10,520 – 26,550) 18,160 (10,110 – 25,720) 

2009 4,320 (2,340 – 6,280) 4,290 (2330 – 6,240) 

2010 2,500 (1,350 – 3,640) 2,500 (1350 – 3,640) 

2011 2,920 (1,580 – 4,250) 2,920 (1580 – 4,250) 

2012 3,310 (1,790 – 4,800) 3,300 (1790 – 4,800) 

2013 6,530 (3,560 – 9,450) 6,520 (3,550 – 9,440) 

2014 4,080 (2,230 – 5,900) 3,920 (2,130 – 5,690) 

2015 6,800 (3,720 – 9,790) 6,590 (3,600 – 9,520) 

2016 8,480 (4,660 – 12,170) 7,900 (4,300 – 11,430) 

2017 22,970 (13,090 – 32,110) 20,300 (11,220 – 28,960) 

2018 23,880 (13,360 – 33,720) 22,710 (12,610 – 32,270) 

All Years 104,610 (58,210 – 148,670) 99,130 (54,570 – 141,960) 



A Scenario Tool for NWL in California 
 

 

272 
 
 

Table B8.7. Economic valuation of mortality impacts from wildland fires, using the wildfire-
specific dose-response value (βWL; 2015 dollars, 3% discount rate, 2015 income year) 

Year 
Valuation Estimate in Billions (95% CI) 

 
Base Case Mod Cap 

2008 $99.3 (10.4 - 183.2) $95.5 (9.9 - 176.8) 

2009 $21.5 (2.2 - 40.8) $21.3 (2.2 - 40.6) 

2010 $12 (1.2 - 22.9) $12 (1.2 - 22.9) 

2011 $13.7 (1.3 - 26) $13.7 (1.3 - 26) 

2012 $15 (1.3 - 28.6) $15 (1.3 - 28.5) 

2013 $28.9 (2.5 - 54.9) $28.9 (2.5 - 54.7) 

2014 $17.6 (1.5 - 33.3) $16.8 (1.5 - 32) 

2015 $28.6 (2.5 - 53.8) $27.6 (2.4 - 52.2) 

2016 $34.7 (3 - 65.1) $32 (2.8 - 60.7) 

2017 $94.9 (8.9 - 171.5) $81.1 (7.2 - 151.5) 

2018 $93.8 (8.4 - 173) $88.5 (7.8 - 164.5) 

All Years (Total) $460 (43.2 - 853.1) $432.4 (40.1 - 810.4) 

 
Table B8.8. Quantiles of All Daily Modeled Fire-Only Values for CA, 2008-2018 

Quantile 
Fire-only PM2.5 

(µg/m3) 

Approximate 
Count of 

Observations 
25% 0.006 2.9 million 
50% 0.075 5.9 million 
75% 0.48 8.8 million 
95% 5.0 11.2 million 
98% 14 11.5 million 
99% 27 11.6 million 
99.9% 143 11.7 million 
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Table B8.9. CMAQ Model Specifications  

Year NEI year 
CMAQ 
version 

BEIS 
version 

EGU 
CEM 
data 

Gas phase 
chemistry 

PM 
chemistry 

Boundary inflow 
WRF 

version 

2008 2008 NEI v5.0.1 3.14 2008 CB05 AERO6 GEOS-CHEM v3.4 
2009 2008 NEI v5.0.1 3.14 2009 CB05 AERO6 GEOS-CHEM v3.4 
2010 2008 NEI v5.0.1 3.14 2010 CB05 AERO6 GEOS-CHEM v3.4 
2011 2011 NEI v5.0.1 3.14 2011 CB05 AERO6 GEOS-CHEM v3.4 
2012 2011 NEI v5.0.2 3.14 2012 CB05 AERO6 GEOS-CHEM v3.4 
2013 2011NEIv2 v5.2 3.6.1 2013 CB6r3 AERO6 GEOS-CHEM v3.8 
2014 2014NEIv1 v5.2 3.6.1 2014 CB6r3 AERO6 GEOS-CHEM v3.8.1 
2015 2014NEIv2 v5.2.1 3.6.1 2015 CB6r3 AERO6 Hemispheric CMAQ v3.8.1 
2016 2014NEIv2 v5.2.1 3.6.1 2016 CB6r3 AERO7 Hemispheric CMAQ v3.8.1 
2017 2014NEIv2 v5.2.1 3.6.1 2017 CB6r3 AERO7 Hemispheric CMAQ v3.8.1 
2018 2014NEIv2 v5.3 3.6.1 2018 CB6r3 AERO7 Hemispheric CMAQ v3.8.1 

NEI = National Emissions Inventory, BEIS = Biogenic Emission Inventory System, EGU CEM = Energy Generating Unit 
Continuous Emission Monitoring, WRF = Weather Research and Forecasting 
 
Table B8.10. PM2.5 Dose-Response Estimates for All-Cause Mortality  

Sources Timeframe 
Risk 

Value 
Value 
Type 

Confidence 
Interval 

Pollutant 
Increment 

Standardized 
Beta 

(1 µg/m3 

increment) 

Authors/Year 

Wildfire 
(Washington state) 

Short-
term/Acute 

1.02 Odds Ratio (1.00–1.05) 21.7 µg/m3 0.00091 Doubleday et al. 
2020 

Wildfire (U.S.) Short-
term/Acute 

1.010 Relative 
Risk 

(1.001–1.020) 10 µg/m3 0.000995 Chen et al. 2021 

Wildfire (global) Short-
term/Acute 

1.019 Relative 
Risk 

(1.016–1.022) 10 µg/m3 0.0019 Chen et al. 2021 

Undifferentiated/All 
Sources 

Short-
term/Acute 

1.0065 Relative 
Risk  

(1.0044–1.0086) 10 µg/m3 0.00065 Orellano et al. 
2020 

Undifferentiated/All 
Sources 

Chronic/Long 
term 

1.12 Relative 
Risk 

(1.08–1.15) 10 µg/m3 0.011 Pope et al. 2019 
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Supplemental Figures 
 

   
Figure B8.1. Community Multiscale Air Quality (CMAQ) average daily PM2.5 concentrations (μg/m3) at 12-km resolution for 2008–
2018 all sources (left), non-fire sources (middle), and fire-only sources (right). Values were computed as the average over all days in 
each grid cell in each time period. Note the differing scale for the fire-only map and differing maximum values for each panel.  
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Figure B8.2a. Community Multiscale Air Quality (CMAQ) simulations at 12-km resolution showing the number of days with PM2.5 
>35 μg/m3 (higher than the 24-hour NAAQS threshold) during the eleven-year period of 2008–2018 for all sources (left), non-fire 
sources (middle), and fire-only sources (right).  
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Figure B8.2b. Community Multiscale Air Quality (CMAQ) simulations at 12-km resolution showing the number of years with average 
PM2.5 >12 μg/m3 (higher than the annual NAAQS threshold) during the eleven-year period of 2008–2018 for all sources (left), non-
fire sources (middle), and fire-only sources (right). 
 
 
 



A Scenario Tool for NWL in California 
 

 

277 
 
 

 
Figure B8.3. Community Multiscale Air Quality (CMAQ)-simulated days with a wildland fire contribution (fire-only concentrations) 
to ambient PM2.5 >35 μg/m3 (higher than the 24-hour NAAQS threshold), by year. 
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Figure B8.4. California wildfire perimeters > 300 acres burned, by year. 
Source for fire perimeters: CAL FIRE (https://frap.fire.ca.gov/frap-projects/fire-perimeters/)(CAL FIRE, 2022) 
 

https://frap.fire.ca.gov/frap-projects/fire-perimeters/
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Figure B8.5. Total deaths attributable to fire-only PM2.5 (Base case), by year. 
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Figure B8.6. Total deaths attributable to fire-only PM2.5 over the eleven-year period of 2008 – 2018 (Base case). 
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Model Validation for PM2.5 Estimates  
 
Methods 
Monthly and daily modeled estimates were paired with monthly averaged observed values from 
ground stations from the EPA’s AQS (https://aqs.epa.gov/aqsweb/airdata/download_files.html) 
network, IMPROVE (http://vista.cira.colostate.edu/improve/) network, and Clean Air Status and 
Trends Network (CASTNET; https://www.epa.gov/castnet). These observed values were 
compiled using the Atmospheric Model Evaluation Tool (AMET) software (Appel et al., 2011) 
and were provided to the research team by the U.S. EPA. A small number of negative observed 
daily values were removed from the dataset prior to monthly averaging and analysis (<0.4% of 
observations). A limited number of observed daily measurements with values of zero (<0.3% of 
the observations) were kept in the dataset after preliminary analysis demonstrated that results were 
not impacted by the inclusion or exclusion of zeroes. The paired modeled and observed monthly 
values were compared through the calculation of previously established metrics for evaluating 
atmospheric model performance (Koman et al., 2019; Wilkins et al., 2018) and results are 
presented in a series of tables and figures.  
  
Results 
Results for the daily validation analysis are described here. The validation statistics for the paired 
observations for each year’s fire season (June – October) are presented in Table B8.11, and the 
location of the monitoring stations included in the observed dataset are in Figure B8.7 alongside 
average fire-only concentrations. Notably, there are more paired observations in the more recent 
years, as air monitoring has expanded throughout the state. A very small number of the fire-only 
daily modeled concentrations (n = 25) were significantly higher than the maximum observed value 
in the paired dataset for the entire timeframe, which was 557 μg/m3. Inclusion of these values 
significantly impacted the correlations; to analyze the data without those exceptional cases 
(representing extreme fire events), we reassigned all higher estimates to the maximum observed 
concentration of 557 μg/m3 prior to comparing the two datasets. 
 
Overall, the correlation of the all sources model for the entire dataset (all years combined) is higher 
than the non-fire sources model (r of .44 vs. 0.33). While the root-mean-square error (RMSE) is 
higher for the all sources model, likely skewed by high concentrations predicted for extreme fire 
events, the mean bias (MB) is considerably lower for the all sources model and reflects a slight 
under-prediction of the model as compared to the observed measurement.   
 
In the high fire years of 2008, 2017 and 2018, the modeled means are higher than the observed 
means by approximately 1 - 4 μg/m3). For most of the lower fire years, the observed values are 
similar to or slightly higher than the modeled estimates. The correlation between observed and 
modeled data ranges from 0.24 – 0.69 for each individual fire season. The all sources correlations 
are consistently higher than the non-fire correlations in the high fire years, but trends are less 
consistent in low-fire years.  
 
The RMSE values range widely from year to year and do not reflect consistent patterns between 
all sources and non-fire sources concentrations. The RMSE values are considerably higher for the 
high fire years, again likely a result of high modeled concentrations from extreme fire events 
during those years skewing the RMSE calculation. The mean bias, which is less sensitive to 
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outliers, improves considerably for the all sources simulation for nine out of the eleven years of 
the analysis.  
 
Figure B8.8 depicts a time series of monthly averages of observed (AQS) and CMAQ modeled 
PM2.5 (both all sources and non-fire sources) across the state from 2008-2018. Peaks for the fire 
seasons in several of the years, particularly those previously identified high fire years, are 
substantial, and the all sources and AQS monthly averages both visibly increase in concert during 
those periods. In the early analysis years as well as the final two years of the analysis, the CMAQ 
model predicts well on average, but largely underpredicts for the middle years. This is reflected in 
both Figure B8.8 and Table B8.11.  Some seasonal trends are apparent, including peaks in the fire 
season for the observed data and all sources concentrations.   
 
We conducted a supplemental analysis including only the IMPROVE stations in the analysis, since 
these monitors are sited in National Parks and wilderness areas and can be considered a more direct 
measure of model performance for estimating wildland fire PM2.5 concentrations in rural, fire-
prone areas (see Table B8.14 for fire season statistics and Figure B8.9 for a monthly analysis) 
(Koman et al., 2019). 
 
The IMPROVE monitors have consistently higher correlations for both all sources and non-fire 
values (Table B8.14) than the combination of all stations (Table B8.11). With the exception of 
several years in the middle of the analysis period, the all sources values are more highly correlated 
with observed data than the non-fire concentrations as expected. However, the eleven years of all 
sources values have a correlation range of 0.39 – 0.84, and Figure B8.9 demonstrates that the all 
sources modeled concentrations rise and fall consistently with observed IMPROVE concentrations 
in peak wildland fire smoke conditions as expected. Additionally, for the all sources simulation, 
the RMSE for pairs with IMPROVE monitors as compared to the entire dataset (Table B8.11) is 
lower in eight out of the eleven years of the analysis, and the MB is lower in eight of the years.   
 
For further details on the model results and a detailed model evaluation for the contiguous United 
States for the first five years of the CMAQ analysis, see Wilkins et al., 2018 (Wilkins et al., 2018).  
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Table B8.11. Fire season (June – October) statistics summary of paired daily averaged observations and all sources and non-fire 
sources modeled concentrations for 2008-2018  

Year 
Observed 
Mean  

Fire Severity 
(1: most acres 
burned, 11: least 
acres burned; see 
Table 3.1) 

Modeled Mean 
(μg/m3)  Count of 

pairs 

Correlation 
RMSE 
(μg/m3) 

MB 
(μg/m3) 

All 
Sources 

Non-Fire 
All 
Sources 

Non-
Fire 

All 
Sources 

Non-
Fire 

All 
Sources 

Non-
Fire 

2008 14.9 2 18.6 11.5 10,353 0.69 0.15 14.2 15.3 3.69 -3.42 
2009 10.9 9 10.7 9.72 12,722 0.50 0.45 7.65 7.62 -0.15 -1.16 
2010 10.4 11 11.0 10.6 15,491 0.40 0.39 8.52 8.49 0.63 0.21 
2011 11.5 10 7.53 6.89 16,818 0.54 0.53 7.49 7.84 -3.92 -4.57 
2012 9.78 5 7.23 6.38 18,659 0.50 0.41 6.27 6.91 -2.55 -3.40 
2013 9.73 8 6.68 5.25 19,738 0.44 0.41 7.26 7.43 -3.05 -4.48 
2014 9.59 7 7.62 6.26 18,486 0.29 0.48 11.3 6.31 -1.98 -3.33 
2015 9.39 4 7.78 6.13 20,328 0.50 0.35 8.35 7.09 -1.61 -3.27 
2016 9.45 6 8.06 5.88 21,201 0.24 0.43 12.0 6.31 -1.39 -3.57 
2017 11.4 3 13.1 7.25 21,238 0.42 0.25 21.9 10.9 1.71 -4.16 
2018 11.8 1 12.8 7.17 21,982 0.40 0.26 14.5 11.4 1.00 -4.66 
All 
Years 

10.6 N/A 9.77 7.22 197,016 0.44 0.33 12.0 8.81 -0.85 -3.40 

Note: modeled values capped at highest observed value: 557 μg/m3 
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Table B8.12. Fire season (June – October) statistics summary of paired monthly averaged observations and all sources and non-fire 
sources monthly modeled concentrations for 2008-2018  

Year Observed 
Mean  

Modeled Mean 
(μg/m3)  

Count of 
pairs 

Correlation RMSE 
(μg/m3) 

MB 
(μg/m3) 

All 
Sources 

Non-Fire All 
Sources 

Non-
Fire 

All 
Sources 

Non-
Fire 

All 
Sources 

Non-
Fire 

2008 13.0 16.9 9.32 583 0.76 0.18 9.2 10.3 3.9 -3.7 
2009 9.13 8.80 7.86 633 0.56 0.51 4.7 4.9 -0.33 -1.3 
2010 8.90 9.20 8.75 662 0.50 0.49 5.6 5.7 0.29 -0.16 
2011 9.77 6.43 5.77 679 0.58 0.57 5.3 5.8 -3.3 -4.0 
2012 8.64 6.39 5.39 723 0.54 0.46 4.4 5.1 -2.3 -3.3 
2013 8.73 6.16 4.49 714 0.45 0.47 4.8 5.6 -2.6 -4.2 
2014 8.80 7.39 5.77 679 0.47 0.57 5.4 4.7 -1.4 -3.0 
2015 8.66 7.36 5.57 728 0.60 0.40 4.0 4.9 -1.3 -3.1 
2016 8.80 7.43 5.32 748 0.47 0.50 4.4 4.8 -1.4 -3.5 
2017 10.8 12.4 6.70 754 0.51 0.37 8.8 6.4 1.6 -4.1 
2018 11.5 12.6 6.67 765 0.54 0.21 7.9 8.8 1.1 -4.8 

All Years 9.67 9.10 6.43 7,668 0.59 0.38 6.1 6.3 -0.57 -3.24 

Note: modeled values capped at highest observed value: 557 μg/m3 
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Table B8.13. Annual (not limited to fire season) statistics summary of paired monthly averaged observations and all sources and non-
fire sources monthly modeled concentrations for 2008-2018  

Year Observed 
Mean  

Modeled Mean 
(μg/m3)  

Count of 
pairs 

Correlation RMSE 
(μg/m3) 

MB 
(μg/m3) 

All 
Sources 

Non-Fire All 
Sources 

Non-
Fire 

All 
Sources 

Non-
Fire 

All 
Sources 

Non-
Fire 

2008 11.3 13.7 10.3 1,398 0.71 0.38 7.5 8.0 2.3 -1.1 
2009 9.37 9.54 8.91 1,367 0.60 0.58 5.2 5.3 0.16 -0.47 
2010 8.65 10.0 9.71 1,585 0.53 0.52 5.8 5.8 1.4 1.1 
2011 9.73 7.27 6.81 1,624 0.61 0.60 5.6 5.9 -2.5 -2.9 
2012 8.78 6.84 6.29 1,741 0.56 0.53 4.8 5.2 -1.9 -2.5 
2013 9.58 6.67 5.67 1,714 0.61 0.61 5.9 6.3 -2.9 -3.9 
2014 9.12 6.60 5.80 1,694 0.55 0.64 6.1 6.0 -2.5 -3.3 
2015 8.94 7.18 6.14 1,753 0.68 0.66 4.5 5.0 -1.8 -2.8 
2016 8.37 6.69 5.65 1,777 0.62 0.64 4.1 4.4 -1.7 -2.7 
2017 9.50 9.15 6.22 1,793 0.57 0.59 6.9 6.1 -0.35 -3.3 
2018 10.7 9.78 6.54 1,840 0.60 0.49 7.3 8.3 -0.87 -4.1 

All Years 9.43 8.38 6.97 18,286 0.59 0.51 5.9 6.1 -1.1 -2.5 

Note: modeled values capped at highest observed value: 557 μg/m3 
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Figure B8.7. Location of PM2.5 monitoring stations (including AQS, IMPROVE and CASTNET 
networks) alongside fire-only sources PM2.5 estimates. 
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Figure B8.8. Time series of California PM2.5 from 2008 – 2018 with modeled all sources, non-fire, and observed data pairs. Monthly 
mean PM2.5 concentrations across California for 2008-2018 for AQS observations (blue solid line, square symbol), Community 
Multiscale Air Quality (CMAQ) all sources (dark red line, circle symbol) and CMAQ non-fire sources (light red line, triangle symbol).   
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Table B8.14. Fire season (June – October) statistics summary of paired daily averaged IMPROVE station observations and all 
sources and non-fire modeled concentrations for 2008-2018   

Year 
Observed 
Mean 

Modeled Mean 
(μg/m3) Count of 

pairs 

Correlation 
RMSE 
(μg/m3) 

MB 
(μg/m3) 

All Sources Non-Fire All Sources Non-Fire All Sources 
Non-
Fire  

All Sources Non-Fire 

2008 11.6 13.9 8.43 1,182 0.75 0.48 11.6 11.5 2.35 -3.14 
2009 9.29 8.70 7.63 1,290 0.84 0.78 4.74 5.49 -0.60 -1.67 
2010 9.00 9.81 9.30 1,271 0.82 0.83 5.68 5.54 0.81 0.30 
2011 10.8 7.66 6.92 1,375 0.84 0.85 6.85 7.1 -3.15 -3.89 
2012 9.27 7.22 6.25 1,818 0.76 0.70 5.17 5.99 -2.04 -3.01 
2013 9.69 6.84 4.76 1,827 0.48 0.68 8.78 7.71 -2.86 -4.93 
2014 9.14 8.04 6.46 1,728 0.49 0.71 9.33 5.34 -1.09 -2.67 
2015 9.11 7.85 5.48 1,958 0.52 0.51 8.53 6.91 -1.25 -3.63 
2016 9.21 7.23 5.36 1,967 0.54 0.62 6.69 6.79 -1.99 -3.86 
2017 10.6 11.7 6.24 1,847 0.53 0.38 14.6 10.1 1.05 -4.37 
2018 11.7 12.4 6.16 1,841 0.39 0.23 19.1 16.2 0.74 -5.51 
All Years 9.91 9.07 6.43 18,104 0.55 0.54 10.3 8.74 -0.84 -3.47 

Note: One outlier capped at the maximum observed concentration for the entire dataset of paired observations (557 μg/m3).  
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Table B8.15. Fire season (June – October) statistics summary of paired monthly averaged IMPROVE station observations and all 
sources and non-fire monthly modeled concentrations for 2008-2018   

Year Observed Mean 
Modeled Mean 

(μg/m3) Count of pairs 
Correlation 

RMSE 
(μg/m3) 

MB 
(μg/m3) 

All Sources Non-Fire All Sources Non-Fire All Sources Non-Fire  All Sources Non-Fire 
2008 9.07 11.3 3.96 95 0.94 0.29 7.3 9.3 2.2 -5.1 
2009 5.94 4.66 3.55 95 0.85 0.75 2.3 3.4 -1.3 -2.4 
2010 5.12 4.49 3.91 95 0.88 0.86 2.1 2.5 -0.63 -1.2 
2011 5.61 3.81 2.95 97 0.87 0.86 2.8 3.4 -1.8 -2.7 
2012 5.75 4.24 2.86 105 0.71 0.65 3.3 4.0 -1.5 -2.9 
2013 5.95 5.34 2.37 99 0.48 0.70 5.5 4.4 -0.61 -3.6 
2014 6.13 6.02 4.07 105 0.47 0.72 5.3 3.2 -0.11 -2.1 
2015 6.57 6.12 3.38 102 0.68 0.48 4.4 4.7 -0.45 -3.2 
2016 6.43 4.89 3.25 100 0.68 0.64 3.2 4.3 -1.5 -3.2 
2017 8.67 10.3 4.57 105 0.48 0.37 11.0 6.9 1.6 -4.1 
2018 9.97 11.3 4.55 105 0.56 0.27 11.6 11.3 1.3 -5.4 

All Years 6.86 6.61 3.59 1,103 0.67 0.47 6.3 5.9 -0.24 -3.3 
Note: One outlier capped at the maximum observed concentration for the entire dataset of paired observations (557 μg/m3) 
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Figure B8.9. Time series of 11-year PM2.5 with observed, all sources, and non-fire concentrations for IMPROVE stations only. 
Monthly mean PM2.5 concentrations across California for 2008-2018 for AQS observations (blue solid line, square symbol), 
Community Multiscale Air Quality (CMAQ) all sources (dark red line, circle symbol) and CMAQ non-fire sources (light red line, 
triangle symbol). 
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Table B8.16. Fire season (June – October) statistics summary of paired observations and with-fire and no-fire modeled 
concentrations for 2008-2018, no values capped 

Year Observed Mean Modeled Mean 
(μg/m3) 

Count of pairs Correlation RMSE 
(μg/m3) 

MB 
(μg/m3) 

With-Fire No-Fire With-Fire No-Fire With-Fire No-Fire With-Fire No-Fire 

2008 14.9 18.6 11.5 10,349 0.69 0.15 14.2 15.3 3.69 -3.42 
2009 11.0 10.8 9.74 12,568 0.50 0.45 7.63 7.61 -0.25 -1.27 
2010 10.5 11.0 10.6 15,308 0.40 0.39 8.48 8.46 0.52 0.10 
2011 11.5 7.53 6.89 16,816 0.54 0.53 7.48 7.84 -3.92 -4.57 
2012 9.78 7.23 6.38 18,654 0.50 0.41 6.27 6.91 -2.55 -3.40 
2013 9.73 6.68 5.25 19,738 0.44 0.41 7.26 7.43 -3.05 -4.48 
2014 9.59 7.72 6.26 18,486 0.20 0.48 17.5 6.31 -1.87 -3.33 
2015 9.39 7.84 6.13 20,328 0.35 0.35 13.2 7.09 -1.56 -3.27 
2016 9.45 8.21 5.88 21,201 0.13 0.43 23.8 6.31 -1.24 -3.57 
2017 11.4 13.9 7.25 21,238 0.20 0.25 64.0 10.9 2.50 -4.16 
2018 11.8 13.0 7.17 21,982 0.29 0.26 21.0 11.4 1.11 -4.66 
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Table B8.17. Fire season (June – October) statistics summary of paired IMPROVE station organic and elemental carbon PM2.5 
observations and fire-only modeled concentrations for 2008-2018 

Year EC/OC Observed 
Mean 

Fire-Only Modeled 
Mean 
(μg/m3) 

Count of 
pairs 

Correlation RMSE 
(μg/m3) 

MB 
(μg/m3) 

2008 3.46 6.57 996 0.74 14.8 3.11 
2009 2.28 1.16 1,026 0.39 4.85 -1.12 
2010 1.59 0.59 979 0.20 2.93 -1.00 
2011 1.73 0.84 1,003 0.13 4.29 -0.89 
2012 1.73 1.28 1,145 0.65 3.71 -0.45 
2013 1.95 2.83 1,019 0.62 9.22 0.88 
2014 1.72 1.95 1,114 0.48 10.5 0.24 
2015 2.10 2.71 1,079 0.48 9.42 0.61 
2016 1.93 1.75 1,020 0.19 4.96 -0.18 
2017 3.46 5.92 1,065 0.53 16.8 2.46 
2018 3.97 5.93 1,032 0.36 14.5 1.96 
All Years 2.35 2.86 11,478 0.48 9.93 0.51 

Notes: EC = elemental carbon, OC = organic carbon. One outlier capped at the maximum observed EC/OC concentration for the entire dataset of paired observations (205 
μg/m3)
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