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1 Introduction  
The growth of high-occupancy shared mobility, zero-emission vehicles, and active transportation modes 
in California, as well as the role they can potentially play in reducing transportation emissions, increases 
the priority of studying their potential impacts. In particular, the availability of various shared mobility 
modes (i.e., the shared use of a device, ride, or vehicle on an as-needed basis) may help encourage shifts 
toward higher occupancy, lower emission modes. This research project aims to identify barriers to the 
adoption of alternatives like shared mobility as well as to examine strategies to incentivize its usage. The 
implementation of these strategies might impact segments of the population in different ways. This report 
explores the potential impact of these strategies on transportation-related metrics while also considering 
their differential impacts on diverse socio-demographic groups. This report consists of seven sections 
including: 

1. Methodology: A review of the different qualitative and quantitative methods employed in the 
research;  

2. Literature Review: Summary of relevant literature on the topic areas including various shared 
modes (e.g., user demographic characteristics, impacts on other modes), equity considerations 
for vulnerable populations, transportation demand management (TDM) strategies, shared 
mobility differences across land uses, and COVID-19-related changes (e.g., teleworking, 
housing); 

3. Expert Interviews: Key findings from the expert interviews that covered different subjects 
including COVID-19 impacts, pooled rides, ridesharing, public transit, pricing, active 
transportation, electrification, and social equity;  

4. Focus Groups: Description of the focus group findings including the demographic makeup of the 
participants and information on travel behavior, pandemic impacts, land use and housing, public 
transit, micromobility, pooling and park-and-ride facilities, and pricing strategies;  

5. Activity Analysis: Review of the activity data and analysis used to understand modal use 
patterns; 

6. Survey: Summary of the survey tool used and relevant findings; 
7. Policy Scenario Analysis: Description of various policy scenarios that could be implemented and 

modeled potential impacts; and  
8. Conclusion: A summary of all the key findings to date. 
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2 Methodology  
The following subsections describe the methodology employed for the literature review, expert 
interviews, focus groups, surveys, and mobility data specification (MDS) collection and analysis. 

2.1 Literature Review 
From May 2021 to June 2022 the research team collected literature for this report. The literature 
selected for this review was identified through searches of journal articles, scholarly databases, and gray 
literature (to capture recent findings from a quickly evolving transportation landscape) using keywords, 
such as “bikesharing user demographics” and “carsharing environmental impacts” as well as variations 
of the words (e.g., “bikesharing,” “bike-sharing,” “bike sharing” and “Transportation Network 
Companies,” “TNCs,” “ridehailing,” “Lyft,” and “Uber”). The resulting research was then reviewed and 
documents that had substantiated, relevant findings were selected for inclusion in the literature review. 
These findings helped inform the research tools used in the study including the expert interview and 
focus group protocols, activity analysis, and survey.  

To provide further background information on the shared mobility space, additional information 
collected from literature reviews is included in Appendix A Shared Mobility Users and Impacts and 
Appendix B Trends and Policies Impacting Travel Behavior. In many subsections throughout the report, 
findings from multiple studies were aggregated and key takeaways summarized in tables to provide an 
overview of current trends. However, it is possible that relevant studies and documents were 
inadvertently missed in the literature included in the report and its appendices. This is especially true 
given the rapid changes that have occurred in the transportation industry throughout the course of the 
global pandemic. Additionally, it is important to note that not all findings and strategies may be 
applicable across every built environment type and community. Local characteristics and needs likely 
need to be considered. 

2.2 Expert Interviews 
The research team compiled a list of organizations to interview including the California Air Resources 
Board’s (CARBs) Clean Mobility Options (CMO) Voucher Pilot Program1 recipients, community-based 
organizations (CBOs), shared mobility operators, private companies, public transit agencies, travel 
demand modelers, and other transportation stakeholders. Twenty-five organizations were contacted, 
and 14 responded, yielding a response rate of 56%. Interviews were conducted between July and 
October 2021. The organizations, and their organization type, are summarized in Table 1. 

The interviews typically lasted an hour and covered the topic areas described in the expert interview 
protocol, which can be found in Appendix C – Expert Interview Protocol. Some experts only spoke about 
specific sub-topic areas due to subject matter expertise. The expert interview findings informed the 
subject areas discussed in the focus group.  

 

 

 
1 The Clean Mobility Options Voucher Pilot Program is a voucher-based funding program for transportation 
services (e.g., carpooling, bikesharing) that reduce greenhouse gas emissions, strengthen the economy, and 
improve public health and the environment in historically underserved communities.  

https://www.cleanmobilityoptions.org/about/
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Table 1. Expert Interview Organizations 
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Cambridge Systematics     X  
East Bay Housing Organizations  X     
Fresno Metro Black Chamber of 
Commerce* X X     

Housing Authority of the City of Los 
Angeles** X X     

Lyft   X    
Oakland Department of 
Transportation    X   

Ride Amigos   X    
RSG     X  
Shared-Use Mobility Center      X 
Shasta Regional Transportation 
Agency    X   

Steer Group     X  
TransForm      X 
Uber   X    
Via   X    
Totals 2 3 4 2 3 2 

*The Fresno Metro Black Chamber of Commerce received a Mobility Project Voucher for their project “Expansion 
Of E-Bike Services In Fresno.” 

**The Housing Authority of the City of Los Angeles received a Mobility Project Voucher for their project “Charging 
Forward: HACLA's EV Lending Library For Economic Equity.” 

2.3 Focus Groups  
In November 2020 two focus groups were held – one with nine participants from Southern California 
(Los Angeles region) and one with 10 participants from Northern California (San Francisco Bay Area). The 
groups helped the researchers understand people’s travel patterns, housing choices, and how COVID-19 
has impacted them. Participants were recruited through online forums (e.g., Craigslist) with ads that 
included information about the focus group (e.g., subject, time, location, contact information). 
Participation was incentivized by a $75 gift card distributed after the completion of the focus group. 
Participants were selected based on their travel behavior decisions and ability to reflect the area’s 
demographics.  

The focus groups took place virtually via Zoom due to COVID-19 social distancing measures. Prior to the 
focus groups, participants completed a five-minute Qualtrics screening survey that collected 
demographic characteristics (e.g., age, education level, family size), travel behavior information (e.g., 
modes used in a typical week and trip types), and COVID-19 related changes (e.g., shift to teleworking, 
differences in mode choices). The survey information helped guide the focus group conversations. The 
focus groups helped refine the survey (e.g., question wording, response option) that was later used in 
the research.  
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2.4 Activity Analysis  
The literature review also informed the subjects reviewed in the activity analysis. An analysis of activity 
data was conducted to gain a better understanding of micromobility, telework, high occupancy vehicle 
and high occupancy toll lane pricing, and park and ride options as strategies to improve transportation-
based emissions. Two data sources were used for this analysis: General Bikeshare Feed Specification 
(GBFS) and the American Community Survey (ACS). The GBFS data are open-source data that 
operators can use to display system information. GBFS data include both docked and dockless 
systems. The trip data include trips that start and terminate within the metropolitan regions of San 
Francisco (N=734,124), Sacramento (N=192,949), Los Angeles (N=234,918), and San Jose (N=42,011). 
The timeframe of the trips span January 6th, 2020, to February 28th, 2020. These data points were then 
evaluated based on different trip characteristics. The ACS data includes census tract-based data that 
encompass 42 demographic groups. The information was then used to evaluate the following metrics: 1) 
trips per person, 2) vehicle dwell time, and 3) households per vehicle.  

2.5 Survey 
The survey was a general population survey of five major metropolitan regions: 1) San Francisco Bay 
Area, 2) Los Angeles, 3) Sacramento, 4) San Diego, and 5) the Central Valley. The survey resulted in a 
sample of 2,354 responses. The demographic makeup of the respondents was compared to the 
demographic distributions of the population, as defined by the US Census’s American Community 
Survey. The demographic attributes compared included income, age, education, race/ethnicity, and 
gender. Additionally, the responses were analyzed along the four areas of interest: 1) micromobility, 2) 
telework, 3) high occupancy vehicle and high occupancy toll lane pricing, and 4) park and ride facilities. 
These analyses were conducted by selecting key survey questions and analyzing their responses. 
The  key questions explored include 1) What perceived user barriers exist with respect to using 
micromobility?  2) What are (and could be) the overall impacts of teleworking on VMT? In this report, 
insights on the VMT impacts of teleworking that occurred during the pandemic are explored through an 
analysis of the sample. Finally, this report evaluated 3) what responses users have to HOV/HOT lane 
pricing and Park and Ride and pooling?  Responses to the survey methodology was informed by the 
initial literature review efforts were applied to present insights on these and related questions within 
the survey results section of the report. 

2.6 Policy Modeling 
Three separate microsimulation modeling systems were integrated to create a robust research platform. 
The platform combines UrbanSim, which models evolution of urban development and the location 
patterns of households and jobs; ActivitySim, which models daily activity schedules and travel demand; 
and BEAM, which models traffic flow. This modeling framework is also among the first to integrate land-
use and transportation modeling in a systematic, sequential, and time-consistent way. Most modeling 
frameworks forecast land use models to 30 or 50 years, and then a travel model is simulated only for the 
last forecast year. However, this framework does not update traffic conditions that might influence land 
use modeling and vice-versa. Our integrated model system is designed to run sequentially for each 
iteration year(s). Therefore, this modeling framework aims to capture a more realistic and complex 
interdependency between land use and transportation systems. 
 
This research focuses on a sensitivity analysis and a policy scenario analysis to quantify the potential of 
land use and transportation policies to improve transportation-based emissions and equity outcomes. The 
set of policies in this report was chosen in coordination with the CARB team and the capabilities of the 



 

14 
 

model framework. The sensitivity analysis can aid relevant stakeholders and decision-makers in exploring 
the outcomes of different policy decisions as well as the impact of varying degrees of change in variables 
outside their control. The policy scenario combines variations of the modeling framework input variables.  
 
The modeling framework uses agent-based simulations using a synthetic population. The synthetic 
population is constructed from census data and contains detailed information about the characteristics 
of the agent, such as age, race, income, and household structure. This information is particularly valuable 
in this study since it supports detailed measurement of the elasticity, sensitivity, and impact of the 
proposed policies on different population segments, especially marginalized populations. 
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3 Literature Review  
3.1 Safety 
Micromobility has been identified by multiple studies to have a diverse set of barriers preventing non-
users from using these services. One common concern shared by both users and non-users is the issue 
of safety (Sanders et al., 2020; Rayaprolou and Venigalla, 2020; Winters et al., 2011; McNeil et al., 2017; 
and Bartkowiak et al., 2021). Safety concerns include unsafe riding environments, traffic safety, and 
motor vehicle interactions (Sanders et al., 2020). McNeil et al. (2017) reported that 48% of residents in 
underserved communities in Philadelphia, Chicago, and Brooklyn were particularly concerned about 
traffic safety and 22% of lower-income people of color reported they were also concerned about 
personal safety due to potential harassment or crime as a result of riding bikes in their communities. 
These residents cited similar concerns over lack of safe areas to leave bikes in public areas or lack of safe 
places to store the bike at home (McNeil et al., 2017). While McNeil et al. (2017) reported these 
statistics from their sample of underserved communities of low-income and Black, Indigenous, and 
People of Color (BIPOC) populations, Rayaprolu and Venigalla (2020) found that among a professional 
population of faculty members at Arizona State University, women were more likely to express concern 
over safety.  

3.2 Disinterest/Non-Viability 
Rayaprolu and Venigalla’s (2020) survey results from their study on e-scooters and bikeshare programs 
revealed that disinterest in and nonviability of micromobility services are major barriers. Each 
micromobility mode was found to cater to different trip lengths and purposes, rendering certain modes 
non-viable (of limited utility) and inconvenient, depending on user needs (Rayaprolu and Venigalla, 
2020). Uncertainty of availability was cited as another contributing factor to disinterest in these modes 
(Rayaprolu and Venigalla, 2020). Bartkowiak et al. (2021) similarly found that among their sample of 352 
Polish users, the other primary barrier was the issue of availability. This issue of availability points to a 
matter of unreliability and inequitable access to, and distribution of, these services. 

3.3 Spatial Barrier 
The matter of reliability and inequitable access and distribution of these services is further explored by 
studying the spatial distribution of these services. In Shaheen et al.’s (2017) framework for 
transportation equity, spatial inequity occurs when a user’s ability to access opportunities in a timely 
and affordable manner is impeded. The authors noted that tendencies to concentrate transportation 
services in the urban core could place populations in the lower-density areas at a disadvantage (Shaheen 
et al., 2017). Another study by Ursaki and Aultman-Hall (2015) investigated the equity of bikeshare 
access in several U.S. cities using spatial analysis. They found that bike sharing systems may be targeting 
a specific demographic through bikeshare station placement but noted that these allocations may have 
been done for the main purpose of ensuring maximum number of users (i.e., most densely populated 
areas). However, this spatial strategy in station placement consequentially limited access for other 
disadvantaged groups (Ursaki and Aultman-Hall, 2015). Meng and Brown (2021) likewise looked at 
spatial distribution of bikeshare systems to investigate geographic inequities of these services. In this 
study, the authors considered both docked and dockless systems. Docked systems refers to bikeshare 
systems in which bikes can be rented or borrowed from an automated station and returned to any other 
station within the system. Dockless systems do not require docking stations and typically have a lock 
that is integrated into the system for renting/borrowing. Meng and Brown (2021) found that the 
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distribution of docked systems, especially in low-density areas, were unequal and other micromobility 
services (e.g., dockless scooter sharing) were also limited in these areas. However, they did find that in 
areas where docked services were less prevalent, such as communities of color, dockless systems 
reduced such disparities in the docked systems (Meng and Brown, 2021). Mooney et al. (2019) focused 
on the equity of spatial access for dockless bikeshare system and found that the scale of the dockless 
systems in Seattle, Washington ensured that there was baseline access throughout the city. The 
dockless bikes eliminated the constraint of bike pickup and drop-off, allowing for broader spatial access. 
However, Meng and Brown (2021) found there were other areas of spatial inequity, in the form of 
‘rebalancing’ efforts by bikeshare operators. ‘Rebalancing’ is a process in which bikeshare operating 
companies move bikes that have been idle to meet demand in other locations where they are more 
likely to be ridden. This process could impact spatial equity, depending on where the idle and 
rebalanced locations are, and Meng and Brown’s (2021) study revealed that rebalancing destinations 
strongly correlated with demand in that area. Meng and Brown (2021) also suggested that dockless 
bikeshare could offer promising contributions to addressing inequitable spatial access.   

3.4 Spatial Access and Sociodemographic 
In studies that examine spatial access, many also suggest that sociodemographic are a contributing 
factor. Shaheen et al. (2017) pointed out that in addition to lower-density areas being at a disadvantage 
due to concentration of services in the urban core, lower-income households have also been pushed to 
peripheral “public transit deserts” due to increasing housing costs. Some of these rural areas also 
experience further disadvantage from limited mobile service and high-speed data (e.g., 4G/5G internet 
access), impeding access to micromobility services that may be dependent on Internet and mobile 
devices. Ursaki and Aultman-Hall (2015) used ArcGIS to define the location of bikeshare stations and t-
test compared socioeconomic characteristics of populations with and without proximate access to these 
stations. Their statistical tests showed disparities across race, income, and education level, suggesting 
inequity in bikeshare access. Mooney et al. (2019) also compared access between neighborhoods along 
resident sociodemographic and economic characteristics and found there were also modest inequities in 
spatial access in dockless bikeshare across income and education levels. However, unlike Ursaki and 
Aultman-Hall’s (2015) results, Mooney et al. (2019) did not find disparities in access by racial or ethnic 
composition, nor disproportionate risks of gentrification-related housing displacement. Meng and 
Brown (2021) collected and analyzed neighborhood characteristics of service geographies for docked 
and dockless systems and noticed unequal distribution of docked systems and limited micromobility 
services in low-median household incomes. Smith et al. (2015) examined the geographic allocations of 
bike-share infrastructure in the United States in relation to the demographics of surrounding 
communities serviced by the bike share systems. To examine the differential access that lower-income 
communities experience, an economic hardship index was created using six component variables, 
including unemployment, dependency (population under 18), education, proportion of housing costs 
relative to income, percent of occupied housing units with more than one person per room, and the 
percent of the population over 18 with no health insurance. Using spatial regression models, Smith et al. 
(2015) created a model from the six predictor variables and an analysis of this model showed that 
economic hardship and race and/or ethnicity were significant predictors for variations in the 
infrastructure. More than 75% of the stations were found in communities with lower or lowest 
economic hardships, revealing that the stations were skewed towards locations where the populations 
may be higher income. Martinez et al. (2021) performed a similar study on the effect of income on 
micromobility use, using comparative causal analysis across four United States cities – Chicago, Los 
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Angeles, New York City, and Washington, DC – and found that low-income contributes to lower number 
of e-scooter trips, with low-income accounting for 2.1-23.3% less e-scooter trips compared to their 
higher income counterparts. 

3.5 Temporal Barrier 
Shaheen et al.’s (2017) Spatial Temporal Economic Physiological Social (STEPS) framework for 
transportation equity includes the category of temporal barriers. Shaheen et al. (2017) defined this to 
occur when one’s ability to make time-sensitive trips in a reliable and cost-effective manner is impeded. 
The authors noted that docked bikeshare users might experience this when they encounter empty 
stations with no bikes at the start of their trip or full stations with no space to dock at the end of their 
trip. This may force them to divert to other stations, adding unplanned travel time. Rayaprolu and 
Venigalla (2020) and Bartkowiak et al. (2021) suggested similar barriers from uncertainty of availability, 
making these services unreliable and unappealing for time-sensitive trips. Such time-sensitive trips 
would include connecting to transit, which may impact the overall mobility that is achievable through 
micromobility. 

3.6 Economic Barrier 
Shaheen et al. (2017) defines economic barrier as part of their STEPS framework and states that this 
occurs if basic travel costs prevent spending on other basic goods. Rayaprolu and Venigalla (2020) also 
identified pricing of micromobility services as one of the major barriers in their sample of Polish users. 
High upfront costs of membership, credit hold, and liability due to bike damage or deposit for theft 
insurance are strong deterrents preventing lower-income users from using these services (Shaheen et 
al., 2017 and McNeil et al., 2017). McNeil et al. (2017) found that lower-income people and people of 
color were more likely to use bikeshare if there were changes to address cost and liability concerns such 
as discounted membership or use options, and access to free or low-cost equipment. Other relevant 
economic barriers come in the form of limited payment methods for these services (Shaheen et al., 
2017). Users who are unbanked or do not have credit or debit cards, are unable to use these services 
altogether (Shaheen et al., 2017). McNeil et al. (2017) suggested that changes to payment methods 
(e.g., cash payment) could also allow underserved communities to use these services and Shaheen et al. 
(2017) points out that this economic barrier could be slightly mitigated by reloadable prepaid cards. 
Users can load funds onto these reloadable prepaid cards via cash or direct deposit and use at 
unaffiliated merchants. Universal payment systems, which allow users to pay for all modes of 
transportation using a single payment method, can be part of the solution. Such systems are currently 
in-use with various metropolitan regions within California. For example, the TAP Card in Los Angeles 
allows for users to pay for Metro Bike Share along with the broader set of public transit systems 
operating in the region (LA Metro, 2023). At the same time, the Bay Area’s Clipper card works on most 
public transportation systems within the region and can unlock bikes, but cannot yet pay for rides within 
Bay Wheels, the region’s docked bikesharing system (Burckin, 2022). The California Integrated Travel 
Project (Cal-ITP) is working to expand the efforts made at the metropolitan level and streamline 
payment options across modes throughout the state (Cal-ITP, n.d.). This statewide streamlined, 
integrated transportation payment system would also include features, such automatically applied 
eligibility (e.g., if an individual’s income or age qualifies them for other social services, they are 
automatically enrolled for similar payment discounts like senior discounts). This points to the fact that 
micromobility and universal payments are presently at different levels of integration depending on the 
region.   
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3.7 Physiological Barrier 
One barrier identified by Shaheen et al. (2017) that is not explored or addressed by other studies is 
physiological barrier. It is defined to occur for users who have physical or cognitive difficultly navigating 
the transportation options (Shaheen et al., 2017). As a result, micromobility options may not be very 
physiologically accessible for those with disabilities. 

3.8 Social Barrier 
The final barrier included in the STEPS framework is social barrier in which the comfort of using these 
services is inhibited (Shaheen et al., 2017). Low-income communities agree that this is usually due to 
services being designed without their needs in mind (Shaheen et al., 2017). This barrier intersects with 
the other barriers previously discussed, as seen in the inequitable spatial distribution of micromobility 
services across different income and education levels and racial and ethnic composition. Similarly, 
McNeil et al. (2017) found that people of color and lower-income residents experienced more barriers 
compared to higher-income white residents, such as concerns over personal safety (discussed earlier in 
this section regarding safety concern as a barrier) from using these services in their communities. 
Another study by McNeil (2017) found these underserved communities were also less likely to have 
exposure to bikeshare through their existing network and lacked better-quality bike infrastructure.   

3.9 Telework 
In addition to barriers, such as safety concerns and limited spatial access, telework is also impacting 
travel behavior. Many studies have investigated telework before the COVID-19 outbreak. Most of them 
have reached a consensus that telework plays a crucial role in the reduction of trips, vehicle miles 
traveled (VMT), and emissions. Prior to the pandemic, interest in telework and its impacts on VMT 
peaked in the late 1990s and early 2005s. Choo et al. (2005) employed a multivariate time series analysis 
using VMT as a function of a set of explanatory variables (e.g., economic activities) and found that 
telework could reduce 0.79% VMT nationwide. However this reduction could change based on the 
variables included and studied. In the late 90s, Mokhtarian (1998) concluded from a multiplicative 
model that 1% of household VMT could be eliminated if 6.1% of the overall workforce telework and 
1.5% of the workforce telework every day. In terms of commute trips, Henderson and Mokhtarian 
(1996) found that home-based commute VMT reduced by 90% among the 72 employees who were 
recruited to telework from home rather than commute to an office or telework from another site. In 
contrast, employees that commuted to a telework center rather than their main worksites (i.e., center-
based telecommuting) saw 62% reduction in commute VMT. 

Projects/programs focused on telework as a trip reduction instrument also started to appear a few 
decades ago. These included the Teleworking Pilot Project in California and the Trip Reduction Program 
(CTR) in Washington State. Both projects were proven effective in reducing total VMT (i.e., commute 
and non-commute combined). The California project found that a teleworking day resulted in a 77% 
decrease in VMT (Hillsman et al., 2001). Similarly, teleworking under the CTR in Washington led to an 
overall 1.33% VMT reduction in a 3-hour morning peak (Koenig et al., 1996). In more recent years, an 
increasing number of telework policies started to burgeon across the nation. The goal of many of these 
programs was to stimulate the local economy and to bring diversity to lower-density areas. One of the 
more prominent examples is the Tulsa Remote program, which has attracted over 2,000 people to move 
over to Tulsa, Oklahoma. Tulsa Remote started in 2018 and offers a $10,000 cash incentive as well as 
connections to resources that help with finding housing and co-working spaces (Tulsa Remote, n.d.). 
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Eligibility requirements include a full-time remote or self-employment outside of Oklahoma. Likewise, in 
other places like Baltimore, the Shoals, and Southwest Michigan, eligible applicants can receive an 
incentive of $5,000 to $20,000 toward their move or purchase on their new home (Lui, 2021). There are 
some variations in the types of the relocation incentives (e.g., upfront, installment, post-paid), and the 
payment amount is sometimes dependent on income, employment, and household composition (Liu, 
2021). In contrast, several remote relocation programs in California are primarily paying workers to 
move away. Some of these were even in place prior to the pandemic. In 2019, a San Jose-based startup 
company started to offer a $10,000 temporary incentive to applicants who were able to conduct their 
jobs remotely and decided to move out of the Bay Area (Kim, 2019). They also promised to provide 
remote communication trainings and to build satellite offices. A similar program in 2017 was offered by 
another Silicon Valley tech company also with a $10,000 incentive (Robinson, 2017). Companies 
implemented these programs in the hope that the relocations could help them recruit skilled workers 
who desired to live out of state.  

Research has also explored the possibility that telework may stimulate induced travel demand other 
than commute purposes. The longer commute distance of teleworkers is another competing factor. 
These effects have a potential to increase the number of trips so that they equal the number of trips 
reduced from removing commutes. This can sometimes even increase VMT. As Mokhtarian (1998) 
pointed out, future VMT reduction may be small since workers tend to live farther away from work, and 
because of the potential grow in other, non-commute trips. Using a self-administered survey (n=218 
employees in California) conducted in 1998, Collantes and Mokhtarian (2003) found that the portion of 
commute VMT by teleworkers were lower than the portion of teleworkers, meaning that teleworking 
can effectively manage trip demand. However, they also observed that the ratio of these two portions 
exhibited an increasing trend over time, which indicates that the reduction in commute VMT caused by 
teleworking is becoming less prominent over time. Employing a Tobit model on the 2001 and 2009 
National Household Travel Survey, Zhu and Mason (2014) reached a conclusion that is opposite to the 
expectations of policy makers. They investigated the marginal effect of teleworking on VMT and found 
an additional 40 miles per telecommuter per day. These additional VMT were contributed by both work 
and non-work trips of teleworkers. 

Studies have also made efforts to understand the sociodemographic characteristics of teleworkers. In 
Finland, Helminen and Ristimäki (2007) identified teleworkers through a nationwide labor force survey 
(n=19,000). They concluded that teleworkers were primarily aged 25 to 40, highly educated, and upper 
level (e.g., administrative, managerial) employees. Additionally, men were found more inclined to 
telework based on a probit regression model (i.e., a type of regression model where the dependent 
variable is binary) (Shabanpour et al., 2018). Similarly, Vilhelmson and Thulin (2016) applied binary 
logistic regression on the Swedish National Survey data and found the factors that positively affect the 
likelihood of telework were being male, having family and young children, permanently employed in 
advanced services (e.g., informational, financial, scientific), earning higher incomes, university educated, 
and living in larger urban regions. In Korea, Eom et al. (2016) analyzed a national survey to investigate 
the intention and adoption of teleworking. According to the survey (n=17,214), younger workers in 
lower positions and workers in quasi-governmental organizations expressed greater intention and were 
also teleworking more frequently.  

While telework can potentially be effective in many aspects (e.g., trip reduction), there are several 
tradeoffs that employers and policy makers may need to consider. In an early exploration, Tsiligirides 
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(1993) suggested that telework could imply both benefits and barriers to employers, employees, and the 
society respectively. Employers may be able to save cost on workspace and hire skilled and productive 
labor through telework; employees can have better control of their own time and spend less on housing 
and commute; telework can also help reduce congestion, energy consumption, and environmental 
damages. On the other hand, telework may lead to managerial problems, isolation, less collaborations, 
technical difficulties (e.g., Internet equipment), etc. (Tsiligirides, 1993).They recommended that 
telework as a key rural development element should be integrated with improvements of infrastructure 
and other services (e.g., business, health care) (Tsiligirides, 1993). Similarly, Pratt (2002) seconded the 
productivity and cost benefits and observed from a nationwide online survey that many people would 
telework every day if their broadband equipment was paid for or provided by their companies. In 
Netherlands, another survey-based (n=1102) analysis suggested that over half of the teleworkers did not 
receive compensation for their computers/hardware (Vermaas and Bongers, 2007). Other studies 
argued that working productivity may not grow as expected due to concerns about keeping a work-life 
balance and other responsibilities such as childcare (Prager et al., 2022). 

Ever since the onset of the COVID-19 pandemic, the world has witnessed many changes in individual 
trip-making behaviors. One of the changes is a broader experiment and application of telework, which 
has gained unprecedented public attention during this time. Observations from a survey (n=7,613) 
conducted between July and October 2020 in the U.S., Salon et al. (2021) found that the percentage of 
respondents who expect to telework at least a few times per week after the pandemic is twice the 
percentage before COVID, and there is a 20% decrease in those who expect to always commute by 
personal vehicle after the pandemic. In California, Lu et al. (2022) conducted surveys (n=1985) and 
interviews (n=28) with both employees and managers to understand the patterns and trend of 
teleworking before, during, and after COVID. According to their analysis, travel demand significantly 
dropped in response to a shift toward telework. Most respondents reduced their drive-alone commute 
trip frequency from five to zero days per week, along with a considerable decline of commute distance 
and time. Overall, more than half of them observed an improvement in road congestion. These findings 
generally align with conclusions of other studies that were conducted earlier before the outbreak. 
Besides, they found that telework increased from 25% to 35% during the early pandemic, causing some 
respondents to move out of state without planning to move back. In addition, greater trip reductions 
were observed in lower-income areas, whereas rural counties contributed a greater proportion of 
commute trips. The authors further observed that these new patterns reached a certain level of stability 
and could possibly continue in the next three years. Moreover, another study investigated the pre- and 
during-pandemic telework adoptions in the south bay region of Los Angeles (Prager et al., 2022). 
Similarly, they found a desirable persistence of telework practices in the long run, and thus suggested 
using training programs and promotional campaigns to further incentivize telework in the post-
pandemic era. 

To summarize, most studies claimed that telework could be beneficial in many aspects such as trip 
reduction, cost saving, job-creating, and opportunities to increase productivity, while many of them also 
acknowledged the caveats, including isolation and the potential to work overtime due to a mix of work 
and personal life. The ability and desire to telework usually depends on factors like sociodemographic 
characteristics and the type of jobs. In addition, the pandemic was found to be an enabler of the further 
adoption of telework, which is likely to remain stable in the near future. 
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4 Expert Interviews  
Expert interviews were conducted to further the findings of the literature review and focus groups. The 
experts represent various organizations in the public, private, and non-profit sectors. This section 
summarizes the expert interview findings and is divided into the following seven subsections:  

1. COVID-19 Impacts: Overview of the COVID-19 pandemic transportation impacts including 
teleworking options, household changes (e.g., relocating to lower-density areas), and ridership 
trends (e.g., less peak travel); 

2. Pooled Rides: Description of existing ridesharing trends and discussions of ways to increase 
vehicle occupancy, such as through park-and-ride facilities and pricing strategies; 

3. Public Transit: Summary of strategies to encourage public transit use and recovery (e.g., 
increasing information availability);  

4. Pricing: Description of pricing strategies to shift people to higher-occupancy modes;  
5. Active Transportation: Identification of the opportunities and challenges to active 

transportation adoption; 
6. Electrification: Overview of the barriers and strategies to electric vehicle (EV) adoption; and 
7. Social Equity: Identification of potentially vulnerable populations and strategies to increase 

transportation equity.  

4.1 COVID-19 Impacts 
The interviews revealed that the global pandemic is impacting operations for most of the experts’ 
organizations. Many of the experts said their organizations shifted to teleworking and their operations 
and services changed to support COVID-19 protocols (e.g., increasing social distancing, providing 
personal protective equipment [PPE]). Experts also identified changes in household trends due to 
increased teleworking capabilities, these changes may remain in the future. The following subsections 
detail these COVID-19 impacts.  

4.1.1 Telework and Operations 
Overall, the COVID-19 pandemic is altering shared mobility operations and highlighting the demand for 
shared mobility services to meet community members’ changing needs. For example, one mobility 
service provider shifted from offering microtransit rides to grocery delivery services. In the remaining 
cases of passenger services, mobility providers are focusing on increasing flexibility and safety. However, 
some mobility providers are facing challenges meeting increasing trip demand and maintaining vehicle 
hygiene and safety. Additionally, health and safety messaging now has to rely on science but be phrased 
in a way that does not alienate individuals.  

All of the CMO recipients are also experiencing challenges conducting stakeholder engagement. The 
CMO recipients faced particularly difficult outreach challenges during early shelter-in-place orders. The 
CMO recipients had to pivot from their initial plans of in person community meetings and 
demonstrations to virtual meetings. The virtual meetings resulted in a slight disconnect from CMO 
constituents. One CMO recipient believes that limited in person outreach led to reduced service 
adoption and ridership rates. However, experts stated these changes positively impacted guidelines by 
requiring greater equity measurements and awareness.  
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4.1.1.1 Funding 
In addition to necessitating operational changes, the pandemic is highlighting the need for flexible 
funding. Some experts faced difficulties accessing and using funding sources that are tied to stringent 
regulations and requirements, especially for critical but unanticipated demands (e.g., PPE). For example, 
one public agency described a funding challenge they faced where there appeared to be ample funding, 
but a lot of it was inaccessible due to inflexible requirements and state level limitations. If the funding 
had been accessible, it could have helped improve the overall transportation network, kept people 
employed, and delivered high quality transportation services. Additionally, rural agencies struggled to 
gain access to necessary equipment (e.g., cleaning supplies) that larger agencies were more easily able 
to procure. Stakeholders’ limited resource access resulted in additional impacts to operational budgets.  

4.1.2 Household Changes  
The pandemic is also leading to household changes, such as residents relocating to lower density areas 
outside of the urban core. Many household changes are occurring along demographic lines, namely 
income. The transportation modeling experts described higher-income professionals in dense, urban 
areas moving to more suburban and/or scenic destinations. However, one stakeholder stated that 
vulnerable populations, particularly low-income households, are not likely to move due to limited 
financial resources. The only household change lower-income individuals are likely to make is increasing 
housing occupancy to improve affordability. However, changing housing demand is complicated by 
shortages, such as in labor and supplies. Shortages can not only delay the housing construction process, 
but also increase housing prices making them less affordable for lower-income individuals.  

Long-term housing changes for all demographic groups are likely to correspond to impacts to 
commercial leases (e.g., large scale employers giving up their commercial leases). However, the housing 
impacts that correspond to commercial lease changes will likely be delayed due to the longer time frame 
of commercial leases. Despite the trends identified, about half of the experts believe that, especially 
compared to transportation trends, housing changes have not been pronounced enough to see drastic, 
conclusive differences. 

4.1.3 Ridership Trends 
Transportation ridership trends are also accompanying housing changes. The general consensus on 
transportation trends include: low ridership, increase in goods delivery, less peaking travel (i.e., more 
consistent throughout the day), and faster weekend ridership recovery. Experts are also witnessing an 
increase in public transit use during off-peak hours, likely by individuals who do not own a vehicle and 
are essential workers. Several experts identified other ridership trends including:  

• Built Environment-Based Differences: Suburbanites may witness an increase in multimodal 
travel and walking while urban dwellers are more likely to purchase a vehicle to avoid high-
capacity transportation modes. Additionally, travel patterns are localizing at the neighborhood 
level (e.g., less long-distance trip commutes) and resulting in smaller transportation footprints 
(e.g., people walking and biking to nearby locations).  

• Commuting Changes: How frequently people travel into work is changing (e.g., most 
professional service companies are more willing to consider teleworking and/or flexible work 
schedules). Indicators exist demonstrating that this will be a longer-term trend (e.g., labor 
shortages granting potential employees greater bargaining power when requesting workplace 
designs and expectations).  
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• Income-Based Differences: The pandemic is highlighting the mobility dichotomy between 
lower- and higher-income households. Lower-income households may have less ability to afford 
other options (e.g., personally owned vehicles) and hold jobs that allow them to telework, which 
may result in them relying on potentially lower-quality and/or higher-risk transportation 
options. One private transportation stakeholder observed that in lower-income tracts, public 
transit ridership has remained the same.  

• Mode Shifts: According to one organization’s COVID-19 Panel Survey, vehicle-focused modes 
are expected to prevail (e.g., driving a personal vehicle, participating in carsharing) while public 
transit ridership will likely continue to be depressed. Lower public transit ridership is also 
expected as there may be less congestion in the areas that transit serves best (e.g., dense, urban 
downtowns) because employees of these areas can telework. The experts agree that public 
transit agencies and other transportation operators will have to adjust their service models to 
meet these new needs.  
 

While all of the experts noted the drastic decrease in public transit ridership, many of them view this as 
an opportunity to repurpose transportation services to better meet individuals’ needs. For example, 
resources devoted to peak period public transportation operations (e.g., vehicles, drivers) can be 
redistributed to off-peak hours (e.g., vehicles that are smaller but arrive more frequently throughout the 
day). This change can offer more transportation options to essential workers and transit dependent 
populations. The experts think these service changes may be necessary as people’s willingness to share 
rides, particularly with strangers, is greatly decreased. Experts also believe that enhanced cleaning 
protocols are likely to be the expectation going forward.  

4.2 Pooled Rides 
As COVID-19 containment increases and travel patterns continue to change, pooled rides can help 
improve mobility, decrease congestion, and reduce environmental impacts. However, barriers exist to 
shifting people to multimodal trips and higher-occupancy modes. The experts offered insights to these 
barriers and potential strategies to address them. The following subsections discuss barriers and 
strategies to increase ridesharing and public transit ridership, including potential pricing tools.  

4.2.1 Ridesharing  
Travelers’ lingering concerns about COVID-19 transmission and infection will likely impact their 
willingness to share rides in the future. Most of the experts believe that COVID-19 concerns will go 
away, although the timeline for this is unclear. Experts from every sector stated that COVID-19 concerns 
can be addressed through actions including clearly communicating (e.g., telling riders what agencies are 
doing to keep them safe, offering information on vaccine effectiveness) and reducing vehicle capacity 
(e.g., five to 10 passengers).  

However, one expert stated that even prior to the COVID-19 pandemic, drivers did not always like 
pooled rides because of routing challenges and unsatisfied passengers. Riders like the cost savings 
pooled rides offer, but not the long wait times. A non-profit representative described additional barriers 
that exist to shifting people to higher-occupancy modes including: existing access to traditional 
transportation modes (e.g., personal vehicles), knowledge gaps regarding vehicle sanitation in light of 
COVID-19, and difficulty engaging people in shifts toward higher-occupancy modes without incentives. 
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Strategies, such as park-and-ride facilities, may be opportunities that can be used to encourage pooled 
rides.  

4.2.2 Park-and-Ride 
Park-and-ride facilities are locations used to connect drivers and passengers to facilitate pooled rides. 
The experts were asked about their opinions on park-and-ride facilities (e.g., if they could be leveraged 
to support shared rides). The experts had mixed responses, with the majority of the experts stating that 
park-and-ride facilities, particularly a network of them, may work well in some environments but not all.  

All of the travel demand modelers stated that park-and-ride facilities work well in locations with 
congested corridors, where pooled rides can offer significant time savings. Locations with high density 
on both ends (i.e., origin and destination) can be ideal for park-and-ride facilities. However, inbound 
(i.e., morning commutes) trips will likely have higher ridership than outbound trips as people may end 
work at different times and have different plans. One public transit representative advocated for park-
and-ride facilities stating that they do not require a lot of infrastructure and are relatively easy to 
implement. Experts from all sectors stated that park-and-ride facilities can be beneficial and support 
higher occupancy trips, with certain considerations in place including: 

• Incentives: Park-and-ride facilities need to be incentivized (e.g., carpool lane access, mileage-
based car insurance discounts, parking cash outs at work).  

• Infrastructure: Design considerations and additions (e.g., seating, designated loading zones, EV 
charging) can support park-and-ride facility use. Infrastructure elements will likely precede 
people using park-and-ride facilities.  

• Network: Park-and-ride facilities may work best if they are designed as an accessible network.  
• Seamless Connections: Especially if park-and-ride facilities are designed as mobility hubs, 

seamless connections to other modes will be a key consideration for their use.  
• Wait Times: Long and/or uncertain wait times will need to be addressed (e.g., through trip 

routing, offering on demand services) as people have relatively limited thresholds for how long 
they are willing to wait. 

4.2.3 Pooling Strategies  
In addition to park-and-ride locations, the experts discussed strategies to increase vehicle occupancy. 
Generally, the experts think that pooled rides are successful in locations where public transit is less 
efficient (i.e., suburban and rural regions), within flexible transportation systems (e.g., short headways 
between vehicle arrival times), communities without pedestrian infrastructure, and areas with relatively 
temperate weather.  

Experts anticipate the need to leverage social networks to encourage shared rides in the future. Riders 
will likely feel more comfortable if they have commonalities with other riders (e.g., live in the same 
building, work for the same organization). Ride matching apps can help group riders with commonalities 
together. Ride matching apps can also be designed to increase pooling convenience (e.g., optimize pick-
up routes for drivers). Pooling, whether facilitated through ride matching apps or other mobility options 
(e.g., transportation network companies or TNCs like Lyft and Uber), can be improved by setting 
expectations for drivers and riders and designing services as “first in, first out” (i.e., the first rider picked 
up is the first rider dropped off). Despite these improvements, pooling will need to reach a critical mass 
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of interested people to be efficient. Experts described additional ways to reach this critical mass 
including: 

• Education and Outreach: Providing information on available pooling options can help raise 
awareness and increase vehicle occupancy.  

• Employer Incentives: Employers, especially larger ones, can support pooling through various 
means, such as: enrolling in vanpooling services, offering more off-street pooling parking spaces, 
and lowering the cost for pooled ride parking.  

• Infrastructure Investments: Infrastructure changes that offer time, rather than cost, savings can 
encourage pooling. For example, a network of high-occupancy vehicle (HOV) lanes that expands 
throughout the San Francisco Bay Area (e.g., Vallejo) and covers all of the bridges (e.g., Bay 
Bridge, Dumbarton Bridge) can save commuters’ time.  

4.2.4 Public Transit 
Supporting public transit can also help increase vehicle occupancy. The experts suggested strategies for 
supporting public transit including: 

• Integrating Trip Planning and Fare Payment: Stakeholders integrating different mobility options 
(e.g., pooled rides, public transit) into a single app and/or platform can encourage multimodal 
trips using public transit. Additionally, platforms can be designed to offer discounts for public 
transit trips (e.g., free scooter sharing rides that connect to public transit, weekly bundles and 
discounts). However, the experts noted that coordinating different stakeholders to integrate 
various modes may be challenging.  

• Leveraging Shared Micromobility: Since shared micromobility (e.g., bikesharing and scooter 
sharing) is well suited for short, point-to-point trips it can be used to fill first-and last-mile public 
transit gaps. Public and private partnerships can support multimodal trips using shared 
micromobility and public transit.  

• Providing Information: Riders’ COVID-19 transmission concerns may be amplified by riders 
feeling like they have less control while taking public transportation rides (e.g., versus a private 
vehicle). Public transit agencies can address these concerns by offering information (e.g., vehicle 
occupancy, time of last vehicle sanitation). 

• Spatially Changing Services: Many mobility providers are exploring spatially changing their 
services to serve their markets as efficiently as possible (e.g., offer first- and last-mile 
connections in lower-density areas, provide high-capacity services in higher-density areas with 
lots of congestion). These service changes can offer more flexible public transit options for 
individuals who do not live along a transit corridor. As stakeholders rethink transportation 
networks, they also need to include intercity and rural routes to create a comprehensive 
network. 

4.2.5 Pricing  
The experts were also asked about different pricing strategies that can be used to shift people to higher-
occupancy modes. The experts described characteristics of effective pricing changes including: 

• Cross Cutting: Ideally, fees applied to one mode would act as a discount for the preferred mode 
(e.g., fees leveraged on single occupancy rides would act as a discount for higher occupancy 
vehicles).  
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• Dollar Savings: Pricing changes should be presented as a dollar amount rather than a 
percentage because it is usually a more effective communication strategy. 

• Parking-Based: Typically in transportation models parking prices are the most influential 
variable in travel behavior changes. 

• Revenue Neutral: Ideally, future pricing strategies should be revenue neutral or offer returns 
that benefit communities (e.g., provide infrastructure funding).  

• Size: Pricing signals need to be large enough for people to change their behavior (e.g., $30 per 
day parking fees). 

• Time Savings: Pricing changes also need to be coupled with time savings, otherwise people are 
less likely to change their behaviors. 
 

Transportation stakeholders are currently exploring various pricing strategies to increase vehicle 
occupancy and public transit use. The pricing strategies include free public transit fares, comparative 
service rates (e.g., trip cost for carsharing versus public transit), and employer-based incentives. Some 
public agencies are looking at free transit fares for all, in part to ensure that individuals who need public 
transit the most are not financially burdened by it. However, free fares are a strategy that requires 
further research.  

4.3 Active Transportation  
Similar to pooled rides, active transportation options can help reduce negative transportation impacts 
(e.g., pollution, congestion) while offering additional health benefits to travelers (e.g., increased physical 
activity). However, approximately half the experts interviewed stated that a key barrier to active 
transportation adoption is safety concerns. Travelers’ concerns include both existing challenges (e.g., a 
lack of a network of protected bike lanes) and perceived ones (e.g., not knowing how to operate a 
device). Additionally, communities may be unwilling to adopt and support some active transportation 
options (e.g., scooter sharing) due to the perception that they are a nuisance (e.g., unsafe riders, 
improperly parked devices) and not useful (e.g., lack of storage space for bags and other goods).  

4.3.1 Active Transportation Adoption Strategies 
Despite the challenges facing active transportation adoption, opportunities exist to encourage its use. 
For example, a private sector expert noted that electric bikes (e-bikes) present a unique opportunity to 
encourage active transportation. E-bikes can decrease trip times with less effort than traditional bikes 
and still have lower energy requirements than a vehicle. Active transportation, especially shared 
micromobility, adoption can be supported through additional strategies including: 

• Accessories: Offering necessary accessories (e.g., bike locks, helmets) for device rentals, 
especially longer term options;  

• Coordination: Continuing to work with land use authorities and other agencies to reclaim 
streets (e.g., through Complete Streets2 efforts) for active modes; 

• Education: Providing information on how to safely operate different modes (e.g., dockless 
bikesharing) as well as maintain personally owned devices; 

 
2 Complete Streets is a transportation policy and design approach focused on increasing the accessibility and 
usability of built environments for everyone. Further information can be found here. 

https://smartgrowthamerica.org/program/national-complete-streets-coalition/
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• Infrastructure: Implementing supportive infrastructure (e.g., protected bike lanes, secure device 
storage) to address traveler concerns; 

• Insurance and Liability: Providing insurance for riders and clarifying liability, such as in the case 
of accidents; 

• Integrated Fare Payment: Integrating fare payment with other modes (e.g., public transit); 
• Local Context: Considering local land uses and contexts when deciding which active 

transportation modes to offer; 
• Multimodal Trip Incentives: Offering incentives for taking multimodal trips (e.g., free scooter 

sharing trips if they connect to public transit);  
• Permitting Processes: Streamlining permitting processes to increase their efficiency and 

decrease their costs; and  
• Service Area Evaluation: Reviewing service areas to identify potential areas of concerns for both 

drivers and riders (e.g., high volume streets). 

4.4 Electrification  
In addition to increasing vehicle occupancy and supporting active modes, shifting travelers to EVs can 
help reduce transportation-based emissions. Experts from all sectors also agreed that infrastructure 
availability is a key precursor to EV adoption. However, the experts identified infrastructure-based 
challenges facing EV adoption including: 

• Accessibility: EV infrastructure needs to be accessible to people with a range of capabilities, 
especially in lower-income and historically underserved areas. 

• Charging Station Locations: Charging stations need to be available to the public (e.g., not inside 
private apartment complexes). 

• Cost: High upfront costs (e.g., for infrastructure, vehicles) may prevent widespread EV adoption, 
although strategically designed incentives may help mitigate this challenge.  

• Funding: EV infrastructure may require funding that is difficult to acquire. Available funding 
sources may, intentionally or unintentionally, exclude EVs.  

• Grid Capacity: Some neighborhoods (e.g., older ones) may lack the energy grid capacity to 
support EV charging. In instances like this, alternatives like solar charging may be necessary to 
implement. Similarly, as EV adoption increases, mobility providers and utility companies will 
need to work together to ensure that vehicles can be charged without overburdening the 
energy grid. 

• Incentives: Neighborhoods that currently lack EV infrastructure (e.g., rural locations) may 
require incentives to encourage development.  

• Maintenance: EV infrastructure (e.g., charging stations, signage) need to be kept up to a good 
state of repair.  

• Security: Vehicles should be placed in safe and secure locations (e.g., covered parking) to 
protect them against vandalism and theft. Ideally, vehicles and chargers should be located in 
fenced-in areas with good lighting, but this may not be available in all communities.  

• Signage: Clear signage is needed to differentiate between EV parking, charging, and parking 
spaces equipped with chargers.  

• Vehicle Capacity: The battery capacity of existing vehicles may not be large enough to meet 
certain needs (e.g., longer range shuttle services). 
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• Vehicle Type: Higher capacity vehicles (e.g., buses) may not be available for mobility operators 
to purchase, partially due to prohibitive prices.  

• Voltage: Chargers need to be equipped with the proper voltage and converters to charge 
vehicles efficiently and safely. 
  

In addition to infrastructure, the experts identified the challenge of the social acceptance of EVs. In 
disadvantaged communities a mentality persists regarding EVs that they “aren’t for me.” This belief is 
rooted in the idea that EVs are only accessible and available to higher-income individuals who can afford 
the vehicles and understand the system (e.g., which chargers their vehicles can use, how long vehicle 
charging takes). The stigma stems from a lack of exposure to electric modes and experiences with racism 
while driving and charging EVs (e.g., pressure to leave charging stations, accusations that vehicles are 
stolen). The fact that many EV chargers are located in higher income, predominantly Caucasian 
neighborhoods may further this challenge. 

4.4.1 EV Adoption Strategies 
The majority of the experts cited the importance of education and financial incentives for EV adoption. 
Educational campaigns can target all community members – from high schoolers learning how to drive 
to immigrants. Outreach and education can help address knowledge gaps (e.g., vehicle maintenance) 
and concerns (e.g., range anxiety). Community members can act as ambassadors and help teach others 
about EV programs and resources. “Ambassador” programs can help increase EV understanding and 
familiarity through one-on-one relationships. Community members can be encouraged to act as 
ambassadors through benefits (e.g., reduced EV carsharing fees). One public sector expert also noted 
that it is important to include funding in EV program budgets to cover minor vehicle damages (e.g., 
damaged mirror, scratched door), due to inexperienced drivers operating the vehicles.  Additionally, tax 
credits and benefits, which may vary by state and can be supported at the federal level, can be 
leveraged to support EV programs (e.g., carsharing, transportation network companies that use EVs). 
Regulatory and financial incentives can also support electrifying higher capacity vehicles (e.g., 40-foot 
public transit buses) for both public and private mobility providers.  

4.5 Social Equity  
As shared mobility options are developed and deployed in different communities, they present equity 
opportunities and challenges for different vulnerable populations including: 

• Immigrants: Individuals who have recently moved to the U.S., who may or may not have legal 
citizenship status; 

• Low-Income Households: Households whose incomes are 80% or less than the median income 
of the area; 

• People with Disabilities: Individuals with auditory, cognitive, mobility, physical, and/or visual 
disabilities;   

• Racial Minorities: People who are African-American/Black, Alaska Native, American Indian, 
Asian, Hispanic/LatinX, and/or Pacific Islander; and  

• Rural Populations: Residents of areas with between 2,500 and 50,000 people outside of urban 
clusters.  
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The unique challenges these demographic groups may face include: 

• Immigrants: Multiple experts stated that future shared mobility programs will need to include 
other languages and minorities. The languages included may need to vary based on the 
demographics of the area. For example, in certain areas of California Hmong may be the 
prevalent language, while in others it may be Spanish or Punjabi. Additionally, immigrant 
populations may face challenges obtaining necessary identification, like drivers’ licenses (e.g., 
lack of vehicles to practice driving, prohibitive costs). 

• Low-Income Households: The experts described the challenges low-income households may 
face regarding vehicle ownership and commute times. Many low-income individuals have 
vehicles, but they are typically older, unreliable, and have maintenance issues and/or are 
expensive to repair. Low-income individuals who do not own a vehicle are typically transit 
dependent but may have commute times 45 minutes or longer each way. Lower-income 
communities may have less mobility options than denser, higher-income areas that may be 
more profitable for shared mobility operators. Additionally, low-income households may be 
unable to afford privately provided mobility options.  

• People with Disabilities: The experts agreed that all aspects of a transportation service, from 
the platform it operates on to the devices and vehicles it uses, need to be designed accessibly so 
people with a range of capabilities can use it. Transportation accessibility challenges may be 
furthered by financial accessibility difficulties as people with disabilities face the greatest 
challenge accessing and affording housing options. 

• Racial Minorities: A travel demand modeler stated that historic inequities in transportation 
planning (e.g., highways bisecting communities, redlining practices) have resulted in 
discrepancies today regarding where transportation benefits and costs are. Transportation cost 
and benefit discrepancies tend to be along racial lines, rather than income ones. Additionally, 
racial minorities may face challenges, such as racial profiling.  

• Rural Populations: Rural communities may face unique challenges, such as difficulties with 
public health messaging and government mistrust. Rural populations may also feel unsafe 
traveling to more densely populated areas where COVID-19 transmission rates may be higher.  
 

A private mobility operator noted that an underserved demographic group, across most transportation 
services, is essential workers. Essential workers are the population group most likely to need 
transportation services, but their needs have not been clearly identified or addressed. Especially as 
budgets and services shift as COVID-19 is contained, public transit agencies need to focus on ensuring 
the riders who need public transit the most are served.   

4.5.1 Social Equity Strategies 
Various strategies exist to increase mobility for vulnerable populations. A public sector expert stated 
that providing reliable, consistent, and affordable transportation is key to support a positive cycle of 
economic development. Table 2 summarizes different strategies across different project and planning 
components (e.g., project planning and development, implemented pricing options) that can be used to 
support transportation equity for various vulnerable populations.  
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The experts agree that the COVID-19 pandemic presents the opportunity to rethink and redesign public 
transit options in new, innovative, and more equitable ways. Key questions to identify ways to rethink 
public transit includes: 

• Who has access to different modes? 
• Who is currently driving?  
• Who wants to change modes? 
• Who is price sensitive and how is that changing their travel decisions? 
• How can we support different populations? 

As public transit and shared mobility options evolve, a private mobility operator stated that any positive 
travel behavior change, no matter how seemingly minor (e.g., carpooling one day a week instead of 
driving alone all five days), needs to be rewarded. Constantly rewarding these small shifts can lead to 
greater overall changes.  
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Table 2. Social Equity Strategies 

  Demographic 
Group     

Strategy Description Immigrants 
Low-

Income 
Households 

People 
with 

Disabilities 

Racial 
Minorities 

Rural 
Populations 

Alternatives Provide various ways to pay (e.g., cash, debit cards) and book 
services (e.g., smartphone app, phone number) X X X  X 

Demonstrations Conduct demonstrations to expose communities to new modes 
and familiarize them with how to use them X X X X X 

Discounts Offer income-based discounts to qualified individuals  X    

Education 
Clarify differences in modes and service models (e.g., carsharing 
versus carpooling), especially in communities who have not 
previously seen these modes and may view them as exclusive 

X X X X X 

Fleet 
Distribution 

Distribute fleets, even portions of fleets, into historically 
underserved communities  X  X X 

Follow Up 
Start with initial, short outreach efforts that meet people where 
they are at (e.g., two-minute door-to-door surveys), with the 
option for participants to follow up and continue to participate 

X X X X X 

Frameworks Leverage environmental justice and/or equity frameworks to 
help guide changes X X X X X 

Incentives Target incentives to the objective demographic groups (e.g., 
minority communities) X X X X X 

Long-Term 
Evaluations 

Conduct long-term reviews of transportation services and 
modes to identify potential gaps and consequences X X X X X 

Normalization Create policies and procedures to actively work against 
stereotypes and stigmas of public transit use X  X X X 

Off-Peak Travel Offer transportation options during non-peak travel hours for 
transit dependent populations X X X X X 

Outreach 
Integrate transportation outreach with different community 
efforts (e.g., PPE distribution, community meetings) to reach the 
broadest population possible 

X X X X X 

Service Design Design services to allow trips to be terminated anywhere (i.e., 
point-to-point) to increase flexibility and mobility X X X X X 

Trusted 
Messengers 

Develop relationships with community members to do outreach 
person to person X X X X X 
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4.6 Expert Interview Key Takeaways 
• COVID-19 Measures: According to the experts, COVID-19 is impacting operations for most 

mobility providers including increasing social distancing (e.g., limiting public bus capacities), 
altering and suspending existing services (e.g., shifting from microtransit services to goods 
delivery), and changing outreach methods (e.g., webinars and Zoom meetings instead of 
community demonstrations). Additionally, the pandemic is demonstrating the need for available 
funding with limited restrictions.  

• Household Changes: Experts are witnessing individuals, typically who are higher-income, move 
to locations further from their places of work and into more suburban built environments. 
Housing trends are anticipated to continue to change as commercial leases and land uses are 
altered.  

• Transportation Trends: Generally, the experts identified low overall ridership across modes, 
increased goods delivery, and less peaking travel. Teleworking capabilities are also impacting 
travel patterns and these changes are expected to remain as many employers offer teleworking 
options and hybrid work models. As a result, public transit agencies and other mobility providers 
will likely need to rethink and redesign their services to increase flexibility and serve shorter 
distance trips at the neighborhood level. In the long term, experts anticipate needing to 
continue to provide transportation options for transit dependent populations, while 
encouraging other populations to shift from personal vehicle use to higher occupancy, active, 
and electric modes.  

• Shared Rides:  The experts anticipate that lingering COVID-19 transmission concerns will 
negatively impact people’s willingness to share rides, especially with strangers in larger capacity 
vehicles. COVID-19 concerns can compound previously existing ridesharing concerns, such as 
routing challenges and longer trip times. However, experts offered strategies to increase pooling 
including strategically selecting service areas, clearly setting expectations for riders and drivers, 
improving infrastructure, conducting education and outreach, and offering incentives.  

• Park-and-Ride Facilities:  The general consensus is that park-and-ride facilities may work well in 
some locations (e.g., higher-density areas with strong commute patterns), but not others. 
However, stakeholders can leverage various strategies (e.g., incentives, infrastructure changes, 
network enhancements, seamless connections) to support park-and-ride facilities. The experts 
also offered insights on ways to increase ridesharing through price incentives. The experts 
agreed that pricing changes need to be large enough to impact travel behavior and, ideally, be 
designed as cross cutting changes that are clearly communicated.  

• Active Transportation Adoption:  The experts noted that active transportation adoption may be 
challenged by safety concerns. To support active transportation, the experts recommended 
strategies including: offering necessary accessories, providing education on the different modes, 
implementing supportive infrastructure, clarifying insurance options and liability, integrating 
fare payment, offering multimodal trip incentives, streamlining permitting processes, and 
strategically selecting service areas.  

• Electric Vehicle Adoption: The experts also identified challenges facing EV adoption. The 
challenges are primarily concerned with infrastructure (e.g., charging station location, power 
availability). Despite these challenges, experts provided ways electric modes can be encouraged 
including educational campaigns that target a broad demographic of community members and 
offering financial incentives for EV use and development.  
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• Social Equity Concerns: The generally agreed upon communities of concern and challenges 
facing them include: 

o Essential Workers: This demographic group is frequently excluded from transportation 
research so their needs may be unknown and unmet.  

o Immigrants: People who have recently moved to the U.S., and who may not have legal 
citizenship status, may not be fluent in English and/or have necessary identification 
(e.g., drivers’ licenses).  

o Low-Income Households: Households with lower incomes may face financial 
accessibility challenges and are more likely to be transit dependent with limited mobility 
options available to them. 

o People with Disabilities: Mobility options, from their operating platforms to their 
devices and vehicles, may not be designed accessibly enough for people with a range of 
capabilities to use them. 

o Racial Minorities: Communities of racial minorities may face challenges, such as 
historically unjust transportation planning practices and discrimination when using 
shared mobility options.  

o Rural Populations: Lower-density and less developed regions may face challenges 
obtaining necessary resources (e.g., funding, PPE) and have additional COVID-19 related 
concerns.  

• Social Equity Strategies: The experts provided strategies that can help address these challenges 
including increasing transportation accessibility (e.g., financially, physically), working with 
community members to educate them on shared mobility options and hear their concerns and 
questions, and strategically investing in and implementing different mobility options. The 
majority of the experts agreed that COVID-19 poses a unique opportunity to redesign mobility 
options to best serve communities.  

• Future Research: Going forward, further clarity is needed regarding the impacts of COVID-19 on 
various industries including transportation, teleworking, and housing. Additionally, as residential 
densities and mode share shifts, mobility providers will need to understand how to 
accommodate these changes and alter their services accordingly. Further research is also 
needed to understand how to efficiently integrate different modes into trip planning and fare 
payment services, as well as implement necessary EV infrastructure.  
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5 Focus Groups  
This focus group review is separated into eight sections that provide information on key focus group 
themes including: 

1. Demographics: This section summarizes participant demographic information including 
household income, educational attainment, age, race/ethnicity, gender, marital status, and 
number of children. 

2. Travel Behavior: This section provides information on travel behavior including commonly used 
modes both active (e.g., walking, shared micromobility) and vehicle-based (e.g., personal 
vehicle, transportation network company [TNC]). 

3. COVID-19 Impacts: This section discusses how COVID-19 changed participants’ travel patterns. 
4. Land Use, Housing, Telework, and COVID-19: This section provides an overview of variables that 

have impacted participants’ travel decisions including surrounding land uses, housing locations, 
telework options, and COVID-19 concerns. 

5. Public Transit: This section describes public transit use including how participants access transit, 
parking around stops and stations, and service opportunities and challenges. 

6. Micromobility: This section discusses micromobility, both personally owned and shared, such as 
how devices are used and what would encourage greater use.  

7. Pooling and Park-and-Ride: This section provides details on participants’ understanding and use 
of pooling services and park-and-ride facilities.  

8. Pricing: This section summarizes participant feedback on different pricing strategies including 
cordon, congestion, and high-occupancy vehicle (HOV) lanes. 
 

The first three sections (Demographics, Travel Behavior, and COVID-19 impacts) are based on data from 
the pre-screener survey. This information likely informed the focus groups’ responses to the topics later 
discussed in the focus groups. The following sections (Land Use, Housing, Telework, and COVID-19; 
Public Transit; Micromobility; Pooling and Park-and-Ride; and Pricing) summarize and are based on focus 
group findings. The section concludes with a list of key takeaways from both the pre-screener survey 
and focus group. Throughout the focus group discussion summary, the Northern and Southern California 
groups are often compared to each other. This comparison shows how different variables may influence 
each other, such as how land uses may alter travel behavior. However, the similarities and differences 
identified cannot be extrapolated to characterize large regions of the state.  

5.1 Demographics 
Focus group participants were selected, in part, based on their ability to reflect the locations’ population 
demographics. This information was collected through the pre-screener survey. In both locations, focus 
group participants were relatively equally divided between female and male and diverse in terms of age, 
with participants ranging from age 18 to 69. The groups were also fairly well educated and participants 
in each group had at least some college education and a few participants had a master’s degree.  

However, there were slight differences in the demographic makeup of each group. Less Northern 
California participants were married than their Southern California counterparts. The Northern 
California group also had less participants with at least one child. Additionally, the Northern California 
participants had less racial diversity with participants predominantly identifying as Asian/Pacific Islander 
or Caucasian. Southern California participants identified as Asian/Pacific Islander, African American, 
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Caucasian, and Hispanic/Latin. Northern California participants tended to have higher incomes, with 
most participants reporting that their household income ranged from $35,000 to $199,000 annually. The 
Southern California group had more participants that made less than $34,999 annually but did have 
some participants that made $75,000 to $200,000 or more. Further information on the demographic 
information of each focus group can be found in Table 3. 

Table 3. Focus Group Demographic Information 

  
  

    

Focus 
Group 

Participants 
  U.S. Census 

Bureau*  

  

N. 
California 

S. 
California  

(n=9) 

Both  N. California  
(n=4.73 
million) 

S. California 
(n=13.21 
million)   (n=10) (N=19) 

Gender Female 50% 44% 47% 51% 51% 
 Male 50% 56% 53% 49% 49% 
 Other 0% 0% 0%  n/a  n/a 
 Decline to answer  0% 0% 0%  n/a  n/a 

Current 
Marital Status Single 80% 44% 63% 36% 40% 

 Married 10% 44% 26% 49% 45% 
 Separated 0% 11% 5% 2% 2% 
 Divorced 10% 0% 5% 9% 9% 
 Widowed 0% 0% 0% 5% 5% 
 Decline to answer  0% 0% 0%  n/a  n/a 

Age 18 to 29 30% 22% 26% 15% 18% 
 30 to 39 20% 11% 16% 16% 15% 
 40 to 49 20% 33% 26% 14% 13% 
 50 to 59 10% 22% 16% 13% 13% 
 60 to 69 10% 11% 11% 11% 11% 
 70 years or older 10% 0% 5% 11% 10% 
 Decline to answer  0% 0% 0%  n/a n/a 
 Average age  43 42   43  n/a n/a  

Children Have child(ren) 0% 66% 32% 27% 24% 
 One child 0% 22% 11%  n/a  n/a 
 Two children 0% 44% 21%  n/a  n/a 
 No children 100% 22% 63%  n/a  n/a 
 Prefer not to say  0% 0% 0%  n/a  n/a 
Highest Level 

of Educational 
Attainment 

Less than high 
school 0% 0% 0% 6% 11% 

 Some high school 0% 0% 0% 5% 8% 

 
Graduated high 
school or 
equivalent (GED) 

0% 0% 0% 18% 20% 

 Associate degree 10% 22% 16% 7% 7% 
 Some college 10% 33% 21% 18% 19% 
 Bachelor's degree 50% 33% 42% 26% 23% 
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Focus 
Group 

Participants 
  U.S. Census 

Bureau*  

  

N. 
California 

S. 
California  

(n=9) 

Both  N. California  
(n=4.73 
million) 

S. California 
(n=13.21 
million)   (n=10) (N=19) 

 Some graduate 
school 0% 0% 0%  n/a  n/a 

 Master's degree  30% 11% 21% 13% 8% 
 Ph.D. or higher 0% 0% 0% 6% 4% 
 Decline to answer  0% 0% 0%  n/a n/a 

Race/Ethnicity Asian/Pacific 
Islander 40% 22% 32% 28% 16% 

 Black/African-
American 10% 11% 11% 7% 6% 

 Caucasian 40% 22% 32% 39% 29% 
 Hispanic/Latin 0% 44% 21% 22% 45% 
 Two or more races 10% 0% 5% 4% 3% 
 Other 0% 0% 0% 0% 0% 
 Decline to answer  0% 0% 0%  n/a n/a 

Household 
Income Less than $15,000 10% 11% 5% 7% 9% 

 $15,000 to $24,999 0% 11% 5% 5% 7% 
 $25,000 to $34,999 0% 11% 5% 5% 7% 
 $35,000 to $49,999 10% 0% 5% 8% 10% 
 $50,000 to $74,999 10% 0% 5% 13% 16% 
 $75,000 to $99,999 40% 22% 32% 11% 12% 

 $100,000 to 
$149,999 20% 33% 26% 17% 17% 

 $150,000 to 
$199,999 20% 0% 11% 12% 9% 

 $200,000 and 
above 0% 11% 5% 23% 13% 

 Decline to answer  0% 0% 0%  n/a n/a 
*Source: American Community Survey, 2019a; American Community Survey, 2019b 

5.2 Household Characteristics 
In addition to demographic information, the pre-screener survey asked participants about household 
characteristics, such as vehicle and micromobility device ownership. These questions revealed relatively 
similar trends. Every participant household had at least one license. However, Northern California 
participants had less vehicles per household than their Southern California counterparts. Bicycle 
ownership was higher than scooter ownership across the groups. This trend was particularly true in 
Northern California, where over half of the participants had at least one bicycle per household, but no 
participants owned a scooter. The household differences between the focus groups likely contribute to 
their varied responses to the subject areas probed (e.g., public transit and micromobility use). Further 
information on the household characteristics can be found in Table 4. 
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Table 4. Focus Group Household Characteristics 

  Number        
Characteristic Location Zero One Two Three Four Five Average 
Licenses per 
Household Northern California 0% 50% 30% 10% 0% 10% 1.4 

 Southern California 0% 44% 44% 11% 0% 0% 1.7 
Vehicles per 
Household Northern California 30% 30% 10% 20% 10% 0% 1.2 

 Southern California 0% 55% 22% 22% 0% 0% 1.3 
Bicycles per 
Household Northern California 30% 30% 30% 10% 0% 0% 0 

 Southern California 11% 66% 0% 22% 0% 0% 0.3 
Electric 

Scooters per 
Household 

Northern California 100% 0% 0% 0% 0% 0% 1.5 

 Southern California 77% 11% 11% 0% 0% 0% 1.7 
 

5.3 Travel Behavior 
The pre-screener survey also asked participants about their use of various active and vehicle-based 
transportation modes. In terms of active transportation, Northern California participants walked and 
used a personally owned bicycle, a personally owned scooter, bikesharing, and scooter sharing less than 
Southern California participants. These travel behavior differences may be attributed to differences in 
built environment type and service availability, which will be discussed in subsequent subsections. More 
detailed information on active transportation mode use can be found in Table 5. 
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Table 5. Active Transportation Travel Behavior Information 

  Use 
Frequency      

Mode Location Never Rarely Sometimes Regularly Often Daily 
Walking Northern California 10% 0% 10% 30% 20% 30% 

 Southern California  0% 11% 22% 22% 0% 44% 
 Average 5% 6% 16% 26% 10% 37% 
Personally 

Owned 
Bicycle 

Northern California 50% 30% 20% 0% 0% 0% 

 Southern California 11% 11% 33% 22% 22% 0% 
 Average 31% 21% 27% 11% 11% 0% 
Personally 

Owned 
Scooter 

Northern California 100% 0% 0% 0% 0% 0% 

 Southern California 77% 0% 11% 11% 0% 0% 
 Average 89% 0% 6% 6% 0% 0% 
Bikesharing Northern California 70% 30% 0% 0% 0% 0% 
 Southern California 22% 11% 44% 11% 0% 0% 
 Average 46% 21% 22% 6% 0% 0% 

Scooter 
Sharing Northern California 80% 20% 0% 0% 0% 0% 

 Southern California 44% 0% 33% 22% 0% 0% 
 Average 62% 10% 17% 11% 0% 0% 

 

Northern California participants were more frequent public transit users whereas Southern California 
participants tended to use personal vehicles and TNCs more frequently. Neither focus group had high 
rates of carsharing, microtransit, or ridesharing use. More detailed travel behavior information for 
vehicle-based transportation modes can be found in Table 6. 
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Table 6. Vehicle-Based Travel Behavior Information 

  Use 
Frequency      

  Never Rarely Sometimes Regularly Often Daily 
Personal Vehicle 

Use Northern California 40% 10% 0% 20% 10% 20% 

 Southern California 11% 0% 0% 11% 33% 33% 
 Average 26% 5% 0% 16% 22% 27% 

Carsharing Use Northern California 60% 10% 10% 10% 10% 0% 
 Southern California 66% 0% 11% 11% 0% 0% 
 Average 63% 5% 11% 11% 5% 0% 

Microtransit Northern California 80% 10% 10% 0% 0% 0% 
 Southern California 66% 11% 11% 0% 0% 0% 
 Average 73% 11% 11% 0% 0% 0% 

Public Transit Northern California 0% 0% 20% 20% 30% 30% 
 Southern California 0% 11% 44% 11% 0% 33% 
 Average 0% 6% 32% 16% 15% 32% 

Ridesharing Northern California 60% 30% 0% 0% 10% 0% 
 Southern California 77% 11% 0% 11% 0% 0% 
 Average 69% 21% 0% 6% 5% 0% 

TNC Northern California 30% 10% 40% 0% 10% 10% 
 Southern California 11% 0% 77% 11% 0% 0% 
 Average 21% 5% 29% 6% 5% 5% 

 

5.4 COVID-19 Impacts 
The onset of the COVID-19 pandemic in March 2020 is greatly impacting various aspects of society. To 
try and capture some of these changes, the pre-screener survey also asked participants about their 
employment pre- and post-COVID-19. Employment remained about the same for Northern California 
participants, while Southern California participants faced employment reductions and job losses. 
Employment information is summarized in Table 7. 

Table 7. Focus Group Employment Information 

  Northern 
California  Southern 

California  

 Pre-COVID Post-COVID Pre-COVID Post-COVID 
Single job, fully employed 40% 40% 77% 22% 
Single job, partially employed 10% 20% 11% 33% 
Multiple jobs, fully employed 20% 10% 11% 0% 
Multiple jobs, partially employed 10% 0% 0% 0% 
Unemployed, searching  10% 20% 0% 22% 
Unemployed, not searching  10% 20% 0% 0% 

 

5.5 Land Use, Housing, Telework, and COVID-19 
Similar to the pre-screener survey, during the focus group participants were asked questions about the 
impact of COVID-19 regarding transportation choices, housing decisions, and telework options. Both 
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focus groups stated that COVID-19 has caused them to replace their use of public transit and TNCs with 
an increased use of personal vehicles and active transportation modes (e.g., walking, shared 
micromobility). COVID-19 also caused participants to consider moving their residential locations. Moving 
was predominantly motivated by amenity availability (e.g., having a backyard, proximity to a beach) and 
housing affordability.  

At the time of the focus groups, two of the Northern California participants had moved and three were 
considering moving. These decisions were based on COVID-19 related changes (e.g., shift to 
teleworking). Eight of the 10 participants were teleworking and would like to continue even after the 
containment of COVID-19. After one participant moved from the Bay Area to the less dense town of 
Madera, they purchased a vehicle. Other Northern California participants changed their travel patterns 
by overall traveling less, in part due to shelter-in-place orders, and trip chaining errands to limit 
potential COVID-19 exposure.  

Unlike the Northern California group, the Southern California focus group participants were generally 
satisfied with their housing location and its proximity to amenities (e.g., public transit stops, retail 
opportunities, grocery stores). Also inverse to the Northern California participants, only two of the nine 
Southern California participants were teleworking, and they wanted to return to work in person in some 
capacity (e.g., at a satellite office) after the containment of COVID-19. The low number of participants 
teleworking was partially due to the fact that two participants could not work remotely due to their 
professions (e.g., barber).  Similar to Northern California participants, Southern California participants 
stated COVID-19 altered their travel behavior, but their change was reflected in travel decreases and 
goods delivery increases.  

5.6 Public Transit 
In addition to COVID-19 related changes, focus group participants were also asked about public transit 
access, parking, and improvements. Participants in both focus groups accessed public transit by: driving 
and parking personal vehicles, getting dropped off, public transit connections (e.g., bus to rail), shared 
micromobility, and walking. Driving to and parking at public transit stations was a viable option for most 
participants as they viewed the parking fees (about $3 to $12 per hour) reasonable, especially when 
compared to the cost of parking garages in denser downtown areas. However, participants did mention 
that parking at public transit stations used to be free and they preferred that price point. Despite the 
relative appeal of parking at public transit stations, no one from either focus group was waitlisted for a 
public transit parking permit.  

The willingness to pay for parking differed between the two groups. Northern California participants 
were willing to pay for parking at public transit if a space was guaranteed. Participants classified the 
stress and time consumption of searching for a parking spot at public transit stations as a disincentive 
for parking there. Due to these difficulties, many Northern California focus group participants have 
typically chosen to forgo searching for parking at public transit stations and instead park on nearby 
streets. Participants who required an accessible parking spot had an especially difficult time finding 
available parking spaces. Unlike their Northern California counterparts, participants in the Southern 
California focus groups preferred to park at public transit stations due to concerns of tickets, vandalism, 
and theft if they parked elsewhere.  
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Participants from both focus groups offered recommendations to improve public transit services 
including increased cleanliness, maintenance, and service levels (e.g., frequency, reduced travel and 
wait times, fewer connections). Public transit was appealing to Northern California participants due to 
its relatively low environmental impacts. However, the risk of contracting COVID-19 decreased their 
willingness to take public transit. Southern California cited similar concerns regarding COVID-19 
exposure on public transit in addition to other considerations, such as inconvenience (e.g., limited bus 
routes drastically increasing travel times), safety (e.g., assault on public transit vehicles), and comfort 
(e.g., lack of air conditioning during the summer months).  

5.7 Micromobility 
Focus group participants were asked about other transportation modes including micromobility. Focus 
group participants from both locations stated that they used micromobility for shorter trips (e.g., 
recreational trips, to nearby grocery stores). However, the presence of hills and inconvenient weather 
conditions (e.g., rain, heat) impacted their willingness to use shared micromobility. Additionally, 
participants had concerns regarding public health (e.g., contracting COVID-19), safety (e.g., collisions 
with vehicles), reliability (e.g., locating a device when needed), and affordability/price variability (e.g., 
different pricing schemes from each operator).  

Overall, Northern California focus group participants had very limited experience with micromobility. For 
example, only two households owned bicycles. Participants who did have shared micromobility 
experience typically used bikesharing for shorter trips (e.g., connect to public transit, explore a new 
place). One commonly mentioned barrier to use was the ease of using the devices (e.g., understanding 
how to start, ride, and pay for them). However, participants were interested in trying shared bicycles 
with an electric assist. One participant stated that they would use shared micromobility to try devices 
before purchasing one for themselves.  

Unlike the Northern California participants, multiple Southern California participants owned 
micromobility devices, both bicycles and scooters. For shared micromobility users, scooter sharing was 
more popular than bikesharing, and typically used for recreational trips and to avoid paying for parking 
(e.g., parking further away from the final destination and scootering the last-mile). Southern California 
participants stated that micromobility use could be encouraged through infrastructure improvements 
(e.g., protected bike lanes). Despite the interest in shared micromobility, some participants stated that 
they would prefer to walk the distances that they would typically use micromobility (e.g., one to two 
miles).  

5.8 Pooling and Park-and-Ride 
Participants were generally familiar with the concept of park-and-ride facilities. Despite conceptual 
understanding, participants had limited to no experience with park-and-ride facilities and many did not 
know how to use them. Common points of confusion included where these facilities were located and 
how to identify where drivers were headed. Prior to the pandemic participants were hesitant to ride 
with strangers from park-and-ride locations, and these concerns were exacerbated with worries 
regarding COVID-19. However, participants stated that they would be more willing to use park-and-ride 
facilities if they had the option to ride with someone they knew, riders and drivers were vetted through 
a screening system, and cleaning measures with proof of completion were implemented.  
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Northern California participants had heard more anecdotes of negative experiences with ridesharing 
than positive experiences (e.g., riders not paying their share of the ride). Participants from this group 
preferred pooling and park-and-ride for commuting to work over other modes, such as public transit. 
One participant had experience with Scoop, a digital ridematching platform, and felt more comfortable 
ridesharing through that app since the profiles provided user information. 

Southern California participants had experience using park-and-ride and pooling when they were 
facilitated by community organizations (e.g., churches, universities). Participants preferred to use park-
and-ride and pooling as a means to connect to public transit. However, one participant stated that they 
would rather stay and have their needs met otherwise (e.g., goods delivery) than travel in a shared ride. 
To increase knowledge of park-and-ride and pooling, focus group participants recommended placing 
advertisements on billboards and public transit apps and websites.  

5.9 Pricing 
Conversations about pricing mechanisms brought up equity concerns in both focus groups. Participants 
were concerned about the idea of “double taxation” (e.g., travelers paying both a congestion fee and a 
toll) and affordability, especially for disadvantaged communities. Cordon pricing was particularly poorly 
received, especially if travelers were still required to pay for parking within cordon areas. In addition to 
these concerns, participants emphasized the importance of transparency with potential pricing 
mechanisms (e.g., clarity with how the money was spent). 

The Northern California group felt that existing bridge tolls were effectively the same as a cordon fee. 
Since bridge tolls already vary based on the time of the day, participants were somewhat open to 
congestion pricing. The participants were willing to change their travel times in response to congestion 
pricing but were concerned about their ability to change plans (e.g., attending an appointment that 
could not be moved). 

In Southern California, the participants had used express lanes before, predominantly because of the 
appeal of convenience and travel time reductions. Participants stated that the cost of the lane was 
worth the reduced time in traffic. However, one participant expressed concerns regarding the safety of 
express lanes (e.g., vehicles quickly merging into the lane). Regarding cordon fees, participants preferred 
to live and work outside of the cordoned area to avoid paying the fee. In terms of congestion pricing, 
participants stated that they had less flexibility with changing their travel and work schedules, which 
would make it difficult to avoid congestion fees. Due to the volume of congestion in the Los Angeles 
area, participants believed that congestion pricing would be an ineffective policy. 

5.10 Focus Group Key Takeaways 
• Demographics: Both focus groups were relatively diverse in terms of gender, age, income, 

education, and race. However, the Southern California focus group was more diverse in terms of 
family structure (e.g., marital status, children). 

• COVID-19 Related Changes: Participants in both groups changed travel patterns due to COVID-
19 to decrease travel overall and increase personal vehicle use and/or walking. 

o Telework: More participants in the Northern California focus group were teleworking 
than in Southern California. Additionally, more participants in the Northern California 
group were interested in continuing to telework, at least in a hybrid model. 

o Household Changes: More participants from the Northern California group had or were 
considering moving due to COVID-19. Individuals who had moved or were considering 
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moving were looking for amenities, such as increased affordability and/or access to 
green space. 

• Parking: Participants in Northern California were more concerned with competition for finding a 
parking spot at public transit stations, while Southern California participants were 
predominantly concerned with vehicle risks (e.g., tickets, vandalism, etc.), if they did not park at 
transit stations. 

• Public Transit: Public transit was not perceived well due to public health, safety, convenience, 
and comfort concerns. 

• Micromobility: More participants in the Southern California group owned devices or had 
experience using micromobility. 

o Micromobility Concerns: Common concerns regarding micromobility devices included 
affordability, public health, operational understanding, and safety. However, 
improvements, such as electric assist on bicycles and protected lanes, would encourage 
micromobility use. 

• Pooling and Park-and-Ride: Southern California participants had more experience with pooling 
services and park-and-ride facilities.  

o Pooling and Park-and-Ride Concerns: Most concerns with pooling were associated with 
public health/safety (i.e., COVID) and riding with strangers (particularly without any 
screening or connection to other riders (e.g., a common employer). 

• Pricing: Northern California participants were more familiar with and open to congestion 
pricing. Southern California participants did not believe in the feasibility of congestion pricing for 
the area and were concerned about the removal of an existing highway lane for repurposing as a 
congestion priced lane. 

o Pricing Concerns: Pricing strategies were typically accompanied by social equity 
concerns. 
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6 Activity Analysis  
This section presents the results of activity data analysis that evaluates barriers to the access and use of 
micromobility.  The analysis evaluates a unique set of micromobility trip activity data to explore how the 
spatial distribution of the vehicles relates to the demographic distribution of residents in the region. One 
of the research questions relates to evaluating barriers of access to micromobility. Namely, are there 
systematic spatial inequities to the distribution of micromobility systems that disfavor low income and 
vulnerable populations? The research develops and evaluates several measures to explore this question. 
In the sections below, the data and methodology describe the data applied and the metrics calculated to 
evaluate spatial inequities.  This is followed by the results section presenting the metrics and their 
interpretation in the context of the key research question noted above.  

6.1 Data and Methodology 
This study incorporates two data sources to evaluate the degree to which shared micromobility is 
physically accessible (i.e., individuals can physically access the shared bikes/scooters with ease). One is 
the shared micromobility activity data, and the other is the demographic information within the 
geographic areas of interest. 

The General Bikeshare Feed Specification (GBFS) is an open data standard that shared micromobility 
operators can use to display system information in an organized way (North American Bikeshare & 
Scootershare Association [NABSA], 2020). Shared micromobility systems may publish activity attributes 
that describe the state of the system both in real-time and historically using data fields and formats 
derived from the GBFS structure. The format of GBFS has undergone several revisions. The version 
applied with this data (Version 1) organized real-time shared micromobility trip information in the form 
of trip start and end times, trip start and end locations, as well as IDs of bikes or scooters as unique 
identifiers. The GBFS reports activity through both docked and dockless systems. In the meantime, trip 
data of some docked systems are also readily available directly from the operators. To reach a better 
accuracy, we use GBFS only when operator-provided data are not available. For the purpose of this 
study, we evaluate trips that both start and terminate within the metropolitan regions of San Francisco 
(N=734,124), Sacramento (N=192,949), Los Angeles (N=234,918), and San Jose (N=42,011). The 
timeframe of the trips span January 6th, 2020 to February 28th, 2020.  These trips included all trips 
observed to occur across operators that reported GBFS feeds within the regions evaluated.  This would 
be any activity that of the systems within the region since the feeds report on the entire system status 
continuously.  Table 8 presents a series of summary statistics of the data analyzed in this section.   
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Table 8. Summary Statistics of GBFS Information 

 

In addition, the demographic information of those regions in combination with the trip data can help 
identify the accessibility barriers experienced by certain groups of population in terms of the use of 
shared micromobility services. The American Community Survey (ACS) is a sample-based survey 
conducted on a yearly basis on the demographic and living status of individuals and households in the 
U.S., enabling the analysis of demographic distributions under different levels of resolution such as by 
census blocks or tracts (US Census Bureau, n.d.). In this exercise, we incorporate the 2019 ACS data 
release regarding age, gender, income, race and ethnicity, and education, by census tract within each of 
the four regions of California. 

6.1.1 Description of the Methodology  
The methodology evaluates the usage pattern and accessibility of shared micromobility services across 
various areas within the cities. The goal is to develop and evaluate the spatial distributions of metrics 
describing trip activity and vehicle accessibility. This process entails the analysis of three main 
components: demographics, trip activity, and the accessibility of shared micromobility devices/vehicles 
(bikes or scooters). The latter two components are dynamic features. These components are further 
embodied in a set of quantitative measurements and metrics. 

For demographics, we incorporate the census tract-based ACS data that include the percentage of 
population within 42 demographic groups (eighteen groups of age, four groups of education, two groups 
of gender, ten groups of income, and eight groups of race and ethnicity). 

Collectively, this information is used to compute and analyze three metrics. These metrics include 1) 
“trips per person”, 2) “vehicle dwell time per person”, and 3) “households per vehicle”. Each of these 
metrics is computed within each census tract. The behavior of these metrics within each census tract, as 
classified by certain population attributes (e.g., income) allows us to evaluate differences in accessibility 
for different types of populations.   

The first metric is one of demand, a larger number of trips per person indicates a larger number of 
activities, which also translates to a greater demand for shared micromobility services. The accessibility 
of shared micromobility devices is assessed by two other metrics. The first metric computes the total 
dwell time of bikes and scooters on a per-person basis. This metric indicates for how long the bikes and 
scooters are available to an individual in the census tract. This measurement of time available is a 
measurement of supply per person. Another metric, the number of households per vehicle, is also used 
to measure accessibility. This metric is informative when assessed across a dynamic set of thresholds 
and will be discussed in greater detail in the results section. 

Sacramento San Jose
Docked Dockless Dockless Docked Dockless Docked
555420 178704 192949 42613 192305 42011
9.46% 13.21% 9.68% 9.39% 16.35% 6.67%
0.93 0.91 0.87 0.87 0.95 0.95

Low-Income Tracts 24 0

Middle-Income Tracts 116 180

High-Income Tract 0 60

Total Tracts 140 240

146

964

54

San Francisco Los Angeles

7

137

195 1164

51

City
System Type

# Tracts

Total Trips
% Times being Moved

Trips/person vs Dwell/person
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These three metrics are by themselves informative, but their relationship with the surrounding 
environment is also very insightful. For example, the correlation between trip activity and the 
percentage of population within each demographic category shows how shared micromobility is utilized 
among people of different backgrounds. Likewise, the correlation between vehicle accessibility and the 
demographics tells how well the population is served by shared micromobility. Finally, the correlation 
between trip activity and vehicle accessibility indicates the degree to which the demand for shared 
micromobility services is met by its actual supply. Figure 1 presents a framework that summarizes the 
methodological approach. We carefully follow the steps below to compute the pertinent metrics in 
Figure 1. 

Figure 1. Methodological Framework of Barrier Identification 

 

 

6.1.2 Identification of System Movements 
System movements, or rebalancing trips, are often performed with rebalancing trucks owned by 
operators. These rebalancing activities can help maintain the number of bikes and scooters at a healthy 
level, in case that the natural trips completed by customers may lead to an oversupply at one place and 
an undersupply at another. These movements are not recorded in the dataset, but it is necessary to 
identify them for the purpose of computing the vehicle dwell time as well as the spatial distribution of 
bikes and scooters. After sorting the trips by bike IDs and trip start times, we flag a movement if the 
destination tract of one trip is different from the origin tract of the next trip completed with the same 
bike or scooter. These movements are then reconstructed into the same structure as the trip data 
(which include device IDs, start and end times, and locations), where the start location corresponds to 
the destination of the former trip, and the end location corresponds to the origin of the latter trip. 

6.1.3 Calculation of Dwell Time 
Dwell time is defined as the duration during which bikes and scooters stay in a census tract. It is 
calculated as the difference between the departure time of the latter trip and the arrival time of the 
former trip completed with the same vehicle, summed across all bikes and scooters that once visited 
that census tract. This is again done by sorting the trips, first by vehicle IDs and then by trip start times. 
For each census tract, we compute the total dwell time by adding up those time differences only if the 
destination of the former trip and the origin of the latter trip by the same vehicle fall into that tract.  The 
metric is a useful alternative measure for bike availability relative to trip activity.  The reason dwell time 
is useful is because it quantifies the time that vehicles are available.  For example, if trip activity results 
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in high vehicle turnover, where vehicles are constantly being used for trips, then the high trip activity 
with low dwell times could signal an underserved demand for micromobility vehicles.  The evaluation of 
the time that a vehicle is within a given area serves as an additional metric to determine if there are 
relative differences in dwell time that are correlated with census tracts that exhibit demographic 
associations that are different from those of trip activity.   

6.1.4 Calculation of the Count of Bikes and Scooters by Census Tract 
We follow a two-step procedure to estimate the initial spatial distribution of bikes and scooters as of the 
start of the data collection period (January 6th, 2020): 

1. For each bike or scooter, identify the census tract from which it was first ridden; 
2. For each tract, we add up the number of vehicle IDs that appear within the census tract, which 

in turn is the initial count of devices in that census tract.  
 

This methodology assumes all shared bikes and scooters that were physically present in the census tract 
were ridden at least once. This estimate of the initial spatial distribution can serve as the base case, 
from which the count of bikes and scooters can change at any time when there is either a customer trip 
or a system movement. That is, the count in a census tract increases by one if a trip terminates in this 
tract, or if a bike or scooter is relocated to this tract due to a system movement. Correspondingly, the 
count decreases under the opposite circumstance (i.e., when a trip is started in this census tract). We 
monitor the changes over time by rearranging the trips and system movements in chronological order. 

6.1.5 Thresholds Imposed on Households per Bike or Scooter 
The counts derived in the previous step can be used to compute the number of households per bike or 
scooter. Intuitively, the greater the number of households per vehicle, the harder it becomes for a single 
household to access a bike or scooter, and thus the worse the accessibility of shared micromobility 
services. 

Since the number of households per vehicle is a dynamic metric that fluctuates over time, and that the 
metric is sensitive to varying fleet sizes across different geographic contexts, it might not be practical to 
apply a fixed universal standard that simply judges the accessibility of shared micromobility systems as 
good or bad. One strategy we implemented was to apply a flexible threshold that ranges from the 
lowest to the highest number of households per bike or scooter over time, at an increment of one 
household per vehicle, and compute the percentage of time when the metric (number of households 
per bike/scooter) is under each threshold. If the metric of households per vehicle is under a given 
threshold for a greater proportion of time, that implies that the households or individuals in that census 
tract are more likely to have a chance to access those vehicles. The function is monotonically increasing 
in a sense that this percentage of time can only go up with the increase of thresholds. The analysis of 
these three metrics (“trips per person”, “vehicle dwell time per person”, and “households per vehicle”) 
are presented in the section that follows.  

6.2 Demographic and Modal Impacts 
This section first introduces several high-level results to set the stage and will then dive into the metric 
computation and analyses. These results will help us understand there are accessibility barriers of 
shared micromobility on different groups of population, as well as the level of severity of these barriers. 
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Across the four regions of California, we present the fleet size and the total system movements as noted 
in the methodology (Table 9). The dockless bikes and scooters in Los Angeles and the docked bikes in 
San Francisco are among the systems with the greatest fleet sizes (9,601 and 5,683 respectively). Other 
systems have only one to two thousand vehicles that are actively in use. Meanwhile, the shared 
micromobility vehicles in San Francisco and Sacramento are most efficiently used (about 80 trips per 
vehicle over two months). In Los Angeles and San Jose, however, the bikes and scooters completed 
about 20 trips per vehicle.  Figure 2 shows a map of the docked bikesharing stations during the period of 
the dataset within the cities that had docked bikesharing.   

Table 9. Basic Information of the Shared Micromobility Activity Data 
 

Dockless Systems 
(Bikes and Scooters) 

Docked Systems 
(Bikes) 

Number of Bikes or 
Scooters 

Number of Trips per 
Vehicle 

Number of Bikes or 
Scooters 

Number of Trips per 
Vehicle 

San 
Francisco 

2,211 81 5,683 98 

Sacramento 2,621 74 -- -- 
Los Angeles 9,601 20 1,820 23 

San Jose -- -- 1,637 26 
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Figure 2. Map of Bikesharing Docks During the Period of the Dataset within San Francisco, Los Angeles, 
and San Jose 

 

 

6.2.1 Demographics 
The distribution of demographic groups is measured by within-region percentages. This distribution 
varies across the four cities. San Francisco has the greatest percentage of population between ages of 25 
and 35 (about 24%). It is also one of the most educated cities with almost half of the population (49%) 
holding a bachelor’s degree, followed by San Jose (34%) (US Census, 2020). More than a quarter of the 
households in San Francisco and San Jose typically earn more than $200K per year, while in Sacramento 
and Los Angeles, the annual income of most households is between $35K and $150K. In terms of race 
and ethnicity, White and Asian population take up the majority in San Francisco and San Jose (above 
60%). In Los Angeles, individuals identified as Hispanic or Latino account for the largest proportion (47%) 
of the city’s population. In each region, the gender groups appear to be almost evenly distributed. 

Three income classes are defined to categorize the census tracts based on their levels of wealth. 
According to Pew Research Center, families that are in the middle-income tier have annual incomes 
between two-thirds to double the national median (Horowitz et al., 2020). That translates to $50,697-
$152,092 for a family of three (DePietro, 2021). Similarly, this study divides the census tracts into low-, 
middle-, and high-income with boundaries of $50K and $150K.  
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Figure 3 exhibits the income distribution derived with this rule. By this definition, there were no high-
income tracts in Sacramento, and no low-income tracts in San Jose. In all four cities, the middle-income 
tracts seem to be the most ubiquitous and higher-income tracts are mostly located in the outer 
periphery, which is particularly the case in Los Angeles and San Jose. 

Figure 3. Income Distribution in the Four Cities 

 

 

6.2.2 Count of Bikes and Scooters 
Following the methodology, the total number of bikes and scooters is computed by counting the 
vehicles by census tract of their first appearance, updated along with trip and system movements. The 
average bike/scooter count per low-, middle-, and high-income census tract is presented in Table 10. 
Due to the diverse scales of shared micromobility systems in different cities, it is more reasonable to 
perform a within-system (i.e., the same bikesharing or a scooter sharing operator), versus inter-system, 
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comparison on these counts. In shared micromobility systems in San Francisco, the total number of 
bikes/scooters increases with the average income, and there are always more bikes and scooters in 
high-income tracts relative to low-income tracts over time. In contrast, in Los Angeles and San Jose, 
high-income tracts have the smallest number of vehicles distributed. In Sacramento, however, there is 
almost no distinction in the counts among census tracts of different income levels. These counts are not 
calibrated with demographic information such as the size of population, and thus cannot serve as 
standalone arguments regarding barriers to accessing shared micromobility. 

Table 10. Average Count of Bikes and Scooters 

Average Vehicle Count per Census 
Tract 

Low-Income Tracts Middle-Income Tracts High-Income Tracts 

San Francisco Dockless 3.15 6.86 11.27 
Docked 15.49 17.64 34.02 

Sacramento Dockless 12.09 10.54 -- 
Los Angeles Dockless 5.72 6.78 3.45 

Docked 1.79 1.19 0.42 
San Jose Docked -- 7.61 0.48 

6.2.3 Correlations of Demographics and Trip Activity 
For all systems included in this analysis, correlation coefficients are computed between the percentage 
of population in a certain demographic group and the total number of trips per person conducted within 
an individual in a census tract.  The formula describing the correlation coefficient calculation 𝑟𝑟 is shown 
below: 

where, 

𝑥𝑥𝑖𝑖 = The percentage of population within a given demographic group in census tract 𝑖𝑖 (e.g., 𝑥𝑥𝑖𝑖 = 10%, if 
10% of the population are in this group) 

𝑦𝑦𝑖𝑖  = The number of trips per person in census tract 𝑖𝑖 

𝑛𝑛 = The total number of census tracts within a given city 

The correlation coefficient is a unitless measurement of association that is restricted to values that are 
between -1 and 1. It describes the degree to which the movement of two variables move together 
linearly.  A positive correlation means that two variables move in the same direction, while a negative 
correlation means that they move in opposite directions.  A correlation measure of 1, means that two 
series move together in a manner that is perfectly linear, while a measure of -1 implies that two series 
move in opposite directions in a manner that is perfectly linear.  Correlation coefficients do not imply 
causality, but are a measurement of association and nearness to a perfectly linear relationship.  The 
closer the correlation coefficient is to 1 or -1, the closer is the association of two variables to positive or 
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inverse linear relationship.  The correlation coefficient can be interpreted as a measure of relative 
association a given demographic attribute and the level of activity within census tracts. Due to some 
similar patterns observed between docked and dockless systems, results of no more than one system 
per city are presented in Figure 4. 

Figure 4. Correlations of Demographics with Trips per Person 

 

 

In most cities, the trip activity is positively correlated with the percentage of population between ages of 
20 and 39, and negatively correlated with older and younger age groups. To verify this conclusion, we 
tested the degree to which these correlation coefficients are different from each other. This was 
performed via a z-test (i.e., a statistical test that determines whether two parameters are significantly 
different from each other) using the Fisher transformation, which is a commonly used method to 
transform Pearson correlation coefficients into z-scores (Fisher, 1915). We tested the pairwise 
differences of the coefficients across all age groups and obtained results as displayed in Figure 5. It is 
observed that for the dockless trips in San Francisco, the coefficients of age groups between 25 and 39 
are all significantly different from all older ages (i.e., 40 to 49, and above 55 years) at the 0.01 level at 
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least. This finding is simultaneously supported by Figure 4, where those aged between 25 and 39 are 
found more likely to use shared micromobility services while others are not as likely to. 

Sacramento exhibits a slightly different pattern, where the correlation with older population is not 
clearly positive nor negative. We conducted a similar test on this statement (Figure 6). The results 
indicate that the correlations are generally not significantly different from each other among older 
population (i.e., above 35) groups.  Note that the results below correct for multiple hypothesis testing of 
91 hypotheses in each region using the Bengamini-Hochberg method.  This correction approach sorts 
the p-values and lowers the alpha values to linearly rise to the 5% level among the tests.  The correction 
slightly adjusts the relative levels of statistical significance for some comparisons relative to tests as 
evaluated without the correction, but does not change the broader findings. 

Figure 5. Significance Levels of Differences between Correlation Coefficients of Age (San Francisco, 
Dockless System) 

 
Figure 6. Significance Levels of Differences between Correlation Coefficients of Age (Sacramento, 

Dockless System) 
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Shared micromobility activity is generally positively correlated with areas that have higher education 
levels. As for income, there is a common pattern in Sacramento, Los Angeles, and San Jose, that the trip 
activity is positively correlated with lower-, and negatively correlated with higher-income groups. The 
critical income at which the correlation shifts from negative to positive is different across cities. In 
Sacramento, only the population with annual incomes below $25K are more likely to use shared 
micromobility, whereas in Los Angeles and San Jose, this shift does not happen until their incomes reach 
$75K. Notably, the correlations of docked trips in Los Angeles (not shown in Figure 4) are weak (i.e., 
most absolute correlation coefficients are below 0.1).  This suggests that the distribution of trip activity  
is relatively uncorrelated with the income of the residents within the service region. In San Francisco, 
the story is almost completely the opposite, where positive correlations largely exist in census tracts 
with annual household incomes between $75K and $200K, which might indicate that people beginning 
trips in higher-, rather than lower-, income census tracts are more likely to use shared micromobility in 
that city. 

Results on race and ethnicity do not look alike across systems (i.e., shared micromobility systems by 
operator, region, and vehicle type) either, except for the fact that the percentage of White population is 
always positively correlated with trip activity. This pattern appears to be most apparent in San Francisco 
and Sacramento (0.20). In San Francisco, almost all race and ethnicity groups encounter negative 
correlations except the White population. In contrast, the strongest positive correlation in Los Angeles is 
observed among the Asian population, whereas this group is found to be less likely to be riding a shared 
bike or scooter in other cities. In addition, Hispanic or Latino populations are found to be the least likely 
to use shared micromobility. Lastly, it is worth mentioning that in San Jose, trip activity is positively 
correlated with most population groups, especially with the Black and African American population 
(0.21).  

Finally, the correlation of trips per person with gender groups (not presented in Figure 4) exhibits a 
common pattern across cities and systems (i.e., docked or dockless). That is, the intensity of shared 
micromobility trip activity is positively correlated with the percentage of males, which indicates that 
males are more likely to use these services. This correlation is the strongest in Sacramento where the 
correlation coefficient is the greatest (0.35).   

6.2.4 Correlations of Demographics and Vehicle Accessibility 
Another correlation analysis is conducted between the demographics and the accessibility of shared 
micromobility devices/vehicles, where the accessibility is quantified as the total dwell time of bikes and 
scooters per person. This correlation indicates the extent to which the vehicles are accessible to an 
individual in each population group. 

Our results suggest this set of correlations ends up being very similar to that of the trip activity, and 
these correlations are thus not included in this report. That is, if the percentage of a population is 
positively correlated with the total dwell time per person, it is very likely to be positively correlated with 
the total trips per person as well. Therefore, the conclusions drawn from the previous section can 
potentially be applicable to both trip activity and vehicle accessibility. In San Francisco, for example, 
shared micromobility services are both more frequently used among, and more accessible to, the 
population of White males between 20 to 55 years old, with a bachelor’s degree, and having annual 
incomes above $75K. These extended conclusions, however, rely on the hypothesis that trip activity and 
vehicle accessibility are highly correlated. 
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6.3 Demographic and Modal Discussion  
This analysis presents a collection of methods and metrics for the purpose of evaluating barriers to 
shared micromobility access employing trip activity and sociodemographic data across a variety of land-
use contexts within California. 

The main goal of barrier identification was to understand the relationship of three major components: 
demographics, trip activity, and vehicle accessibility. To be specific, trip activity is associated with the 
number of trips per person. On the other hand, vehicle accessibility is evaluated through the total 
vehicle dwell time per person. With these metrics, the accessibility barriers of shared micromobility 
services are identified via pairwise comparisons (i.e., comparisons between different categories within 
demographic attributes) and correlations among the define metrics. 

There are several limitations and caveats in this study. First, the definition of the demand for shared 
micromobility services may require further refinement. Trip activity can serve as a rough indicator, but it 
can underestimate the demand when demand is saturated and limited by supply (when vehicles are not 
available). Therefore, the high correlation between trip activity and vehicle accessibility may not indicate 
that there is a demand-supply equilibrium, rather it indicates that activity and vehicle dwell time are not 
spatially mismatched. 

The derivation of the bike and scooter count can also be biased because this estimation assumes that 
every bike/scooter was ridden at least once. This may be an underestimate since the untouched vehicles 
remain unseen in the dataset, but this bias may be subtle since a two-month period is long enough for 
most vehicles to become active in the system. 

In addition, it is arguable that defining low-, middle-, and high-income census tracts with fixed bounds 
may not be applicable to all cities. This classification also leads to the fact that some cities do not have 
low- or high-income tracts available for evaluation. However, it is likely that a more rigorous income 
categorization that is tailored for each city will suggest similar findings. Moreover, flexible bounds will 
add more complexity to inter-city comparisons. Another possible improvement is to increase the 
number of income categories given that the middle-income range is relatively wide. This can add more 
resolution to the existing findings. 

In conclusion, this analysis evaluates the accessibility of shared micromobility services among various 
groups of population across California. It illustrates several methods for shared micromobility equity 
analysis and introduces and explores several metrics that convert activity data into measurements of 
access. The analysis presented explores barriers to micromobility by evaluating spatial distributions of 
system activity. The goal of this analysis was to explore whether there exist inequities of spatial access 
to micromobility systems that may be associated with specific demographics. In particular, the results 
evaluate whether there are relative differences in spatial distributions of vehicles that would limit the 
ability of vulnerable populations to access the vehicles relative to non-vulnerable populations. The 
correlation between activity and census-based demographics suggests that micromobility was most 
accessible in regions that had young and middle-aged adults and more educated populations. In 
addition, correlations were generally positive with regions that had  higher shares of males and whites. 
Associations with income exhibited mixed accessibility patterns across cities and systems. In most cities, 
lower income areas had greater access to shared bikes and scooters. The main contrary case was San 
Francisco, where vehicle accessibility was found to increase with income. The results of this analysis 
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found that in one of the cities explored, San Francisco, there is a high level of micromobility access 
available to wealthier populations. The metrics devised showed that spatial access to micromobility 
vehicles was correlated with higher incomes and other attributes associated with more affluent 
populations. In the other cities explored, micromobility vehicles were found to be located in areas 
associated with more vulnerable populations, where lower income demographics were generally more 
closely positioned to micromobility vehicles. Overall, the results suggest that spatial inequities that are 
tilted against vulnerable populations is likely a city-specific issue, rather than being systematic to the 
mode. The previously identified focus group findings complement these activity analysis findings by 
adding insight as to why activity rates may differ by region. In addition to device access, micromobility 
use is likely impacted by factors including: affordability, operational understanding, safety concerns, and 
lack of supportive infrastructure (e.g., protected bike lanes). Taken together, these findings can explain 
variations in micromobility use. 
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7 Survey Analysis  
The spatial analysis above constitutes an effort to identify metrics and understand the spatial 
implications of equity in access to the micromobility operating within cities, based on the location of 
vehicles. The research effort also deployed a survey of the general population within major regions of 
California in 2021 between the months of April and December. These regions included the metropolitan 
regions of San Francisco Bay Area, Los Angeles, Sacramento, and San Diego, as well as the Central Valley.  
Respondents were asked which region they lived in.  Those reporting that they did not live in California 
were screened out.  Respondents could pick “Other” and specify a locale with California.  Other 
responses were reviewed and reclassified to the most appropriate region based on the nearness of the 
locale stated to a region and/or home and work locations reported at the end of the survey. The survey 
resulted in a sample of 2,381 respondents. The analysis of the survey explored the topics within four 
areas of interest, noted earlier as micromobility, telework, HOV and HOT lane pricing, and park and ride. 
The sections that follow detail insights that have been drawn to date from the survey data. These 
include summaries of responses to key questions that were asked on specific topics. The results begin 
with a presentation of the sample demographics and regional breakdown of the survey respondents. 
This analysis explores the departure of the demographics from the true distributions of the general 
population. The results will help inform the parameterization of additional policy analysis in the context 
of over or under-represented demographics that could systematically influence conclusions. In this and 
subsequent sections, we present results that summarize survey responses to key questions related to 
behavioral response and VMT impacts within the policy areas of interest.  

Figure 7. Survey Respondent Region, Gender, and Age 
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Figure 8. Survey Respondent Race/Ethnicity and Income 
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The demographics distributions suggest that respondents were more likely to be female (57%).  About a 
third (34%) were between the ages of 30 to 45. The dominant race/ethnicity among respondents was 
White at 63%, while household incomes were predominantly middle income between $50,000 to 
$150,000 per year. The differences in these demographics from the state populations within these 
regions varied depending on the demographic attributes. The differences in demographics by age was 
more mixed and shown in Figure 9.  These difference by category are relatively small in magnitude by 
vary across region, with the Central Valley exhibiting the largest differences. 
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Figure 9. Differences in Survey Sample vs. Population by Age 
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relatively high as compared to the population, while the survey slightly over-represented households of 
lower incomes within most regions. These comparisons are shown in Figure 11 and Figure 12. 

Figure 10. Differences in Survey Sample vs. Population by Race/Ethnicity 

 

 

 

 

 

-50% -40% -30% -20% -10% 0% 10% 20% 30% 40%

White alone

Black or African
American alone

American Indian and
Alaska Native alone

Asian alone

Native Hawaiian and
Other Pacific Islander alone

Hispanic or Latino

Some other race alone

Two or more races

Sample vs Census Difference in Percentages 
(Race and Ethnicity)

State-Level San Diego Los Angeles and Orange Counties

Central Valley San Francisco Bay Area Greater Sacramento Area



 

62 
 

Figure 11. Differences in Survey Sample vs. Population by Education 
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Figure 12. Differences in Survey Sample vs. Population by Income 
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respondents, who somewhat agreed or strongly agreed that it was difficult to find shared vehicles and 
that they do not feel safe walking or bicycling. It is important to note that technical solutions addressing 
barriers identified in the survey, such as providing helmets, may not result in a substantive increase in 
ridership. During the mid-2010s, helmet kiosks were deployed in Seattle, Boston, and Melbourne 
bikesharing systems.  In Seattle and Melbourne, their deployment was motivated by a law that required 
helmets to be worn by all bicyclists.  These three docked bikesharing systems have since shut down 
(Melborne Bike Share, 2020; Seattle 2017; Boston, 2018).  In February 2022, Seattle’s all-ages helmet 
law was repealed and the bikesharing systems operating in Seattle today do not dispense helmets.  
Boston still operates a docked bikesharing system, but under a new name (BlueBikes).  The helmet 
kiosks servicing the previous system (Hubway) were not retained by the new system.  The present 
results may seemingly contrast with the analysis previously presented regarding the distribution of 
vehicles. That analysis evaluated the distribution of micromobility vehicles on a relative basis across 
census tracts and used several measures to ascertain the equity of distribution. It found that in cities 
outside of San Francisco, that micromobility activity was not correlated with high income areas. User 
perception however is a separate measure of the perception of accessibility that is relative to an 
individuals’ experience. Both types of measures provide context in separate ways to inform on the 
overall accessibility of micromobility vehicles to user populations. These measures can come to different 
conclusions depending on who is providing the response and the nature of different barriers to access 
that they may experience. 
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Figure 13. Attitudinal Factors Influencing Micromobility 
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but are not teleworking, and those who cannot telework does not add up to the total number of 
workers. 

Table 11. Respondents by Teleworking Status 

Type of Respondents 
Respondents within the Entire Survey Sample 
Pre-Pandemic At the Time of the Survey 

Total Respondents Teleworking 327 738 
  Teleworking, did not move --* 503 
  Teleworking, moved --* 235 
Could Telework, but are not Teleworking 262 158 
Cannot Telework 823 515 
Those that are Employed and reported 
teleworking status 

1,411 1,412 

Total Respondents 2,381 
* The survey did not distinguish between those who moved or not moved due to telework in the pre-
pandemic timeframe. 

An exploration of the attributes of respondents within these teleworking profiles can reveal additional 
insights as to where they reside and their general demographic profile.  Figure 12 shows a distribution of 
teleworking profiles by region of residence at the time of the survey.  Note that during the pandemic, 
the percentage of survey respondents reporting teleworking was relatively high.  Also, all percentages 
reported are as a total of all respondents within the given region.  Because there were respondents who 
were not employed as well as those who did not report their teleworking status, the percentages do not 
add up to 100% within any regions. They are useful however for cross-regional comparisons.  The results 
show that the regions with the greatest percentage of teleworkers included those within the San 
Francisco Bay Area, followed by Los Angeles and Sacramento.  Teleworking was reported to be far lower 
within the Central Valley.  The Central Valley also reported the highest percentage of respondents who 
were not able to telework.  Because the pandemic was characterized by the unique circumstances of 
indefinite teleworking, a number of people moved in response to the long-term teleworking 
arrangement.  On a relative basis, this phenomenon was found to be the highest in San Francisco 
followed by the Los Angeles and Sacramento regions.  The dynamic of moving was found to be the 
lowest in the Central Valley and San Diego regions.  Overall, the distribution of teleworking categories by 
attributes shows, not surprisingly, that teleworking was strongly influenced by the region of residence.  
In areas of higher housing costs, a greater relative share of respondents reported re-locating in response 
to the extended teleworking arrangements brought on by the pandemic.  
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 Figure 14. Teleworking Status by Region of Residence 
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those moving in response to the teleworking arrangements of the pandemic were on average the 
highest income earners. While those who could not telework are more evenly spread out across 
incomes. To be clear, both graphs illustrate the same data, but different x-axes to allow different visual 
representations of same information. 
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Figure 15. Teleworking Status by Income 

 

 

Another attribute that deserves inspection with respect to telecommuting status and descriptive 
statistics is race/ethnicity.  

Figure 16 shows the distribution of this attribute by teleworking in two ways.  The top plot shows the 
percentage of each race/ethnicity category by teleworking status.  The graph shows that all categories 
are dominated by the White alone demographic.  However, this is because this demographic is 
dominant within the sample overall.  The lower graph shows the difference between the overall sample 
representation and the representation of the race/ethnicity within each teleworking category.  This 
latter set of distributions more clearly accentuates the representation of teleworking activity by 
race/ethnicity.  The lower graph of Figure 16 shows that the White alone demographic broadly over-
represents those that could telework and move and telework overall.  While the Asian, Black, and 
Hispanic/Latino demographic under-represented those with similar flexibility.  The Black and 
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Hispanic/Latino demographics were also over-represented among those who reported being unable to 
telework at all.   

Figure 16. Teleworking Status by Race/Ethnicity 

 

 

 

Finally, the descriptive statistics of gender by teleworking show the relative gender balance of 
teleworking status.  Figure 17 shows five teleworking status categories along with the gender 
distributions. The proportions are computed within gender across teleworking categories.  The top 
figure shows the distribution for females while the bottom distribution shows that for males.  The 
within-gender distributions shows that 42% of females reported that they cannot telework.  A nearly 
equivalent 40% reported that they are teleworking but did not move.  A remaining 8% reported that 
they teleworked and moved, while 10% reported that they could telework but are not.  The within-
gender distribution similarly shows equivalency at between those who teleworked without moving 
(31%) and those who cannot telework (31%).  About a quarter of men reporting teleworking and 
moving, while the remaining 13% reported that could telework but are not.   
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Figure 17. Within Gender Proportions Across Teleworking Categories 

 

 

 

Overall, the descriptive statistics teleworking categories defined through survey responses show that 
there are several regional and demographic dissimilarities as related to teleworking.  Teleworking, 
among those that moved and did not move was found frequently reported by respondents in the urban 
regions in the order of 1) San Francisco (57%), 2) Los Angeles (54%), 3) Sacramento (52%), San Diego 
(47%), and then distantly followed by respondents in the Central Valley (27%).   Within-gender 
proportions showed that about equal proportions females teleworked without moving and could not 
telework. A similar dynamic was shown for males albeit at lower proportions (31%).  A main difference 
between these distributions is that a higher proportion (24%) of males had teleworked and moved 
relative to females (8%).  With regards to race ethnicity, the White (56%) and Asian (53%) demographic 
reported the most flexible arrangements, namely teleworking and teleworking and moving.  Whereas 
within race proportions showed that fewer African American (39%) and Hispanic/Latino (44%) 
respondents were teleworking with or without moving.  The next section introduces an analysis that is 
focused on VMT change associated with telework activities through an analysis of household VMT. 
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7.1.1.1 Household Miles Driven by Teleworking Status 
Respondents were asked about the miles that were driven within the household before the pandemic 
and currently (effectively during the pandemic).  The question was phrased slightly differently 
depending on the living circumstances of the respondent.  Respondents who lived with other people 
with whom they shared income were asked VMT questions in the context of being a household.  
Respondents who lived alone or who only shared costs with any co-inhabitants (e.g., living with 
roommates) were asked questions in the context of being a household of one.  Taken together, 
measurements of driving this section are reported as household driving.  Table 12 summarizes the per-
household annual miles driven, broken down by timeframe and teleworking status. On average, those 
who are currently teleworking reported their household driving about 5,700 miles on a yearly basis, 
while they used to drive almost 7,800 miles before the pandemic. Furthermore, those who never moved 
due to the telework policy reported their household driving about 5,200 miles on an annual basis, while 
those who did move travel 6,700 miles per year in an automobile. For context, data from the California 
add-on to the National Household Travel Survey (NHTS) suggested that average household VMT per 
adult was about 6082 miles per year (this is household divided by the number of household members 18 
years of age or older) (TSDC, 2019).  The survey asked respondents to report how many drivers were in 
the household, this was used to compute the average the miles per driver reported in the survey pre-
pandemic was about 4,000 miles.  Overall, the respondents who are currently employed experienced a 
cut in their total miles driven (22%), but the degree varies across groups. The total miles decreased by as 
much as 35% for those who telework without moving, but only around 10-20% for those who moved or 
are not teleworking. 

Table 12. Annual Miles Driven per Household 

 Survey Sample 

Current Pre-Pandemic 
Percentage 

Miles 
Reduction 

Teleworking 5,660 7,771 27% 
  Teleworking, not moved 5,174 7,979 35% 
  Teleworking, moved 6,700 7,326 9% 
Can but not teleworking 6,104 7,589 20% 
Cannot telework 6,482 7,568 14% 
Those that are Employed 5,979 7,633 22% 
Average of All Respondents in the Survey 5,109 6,650 23% 

 

The annual miles are much higher among those who typically drive to work. Among these respondents, 
there is a greater percentage of miles cut from before the pandemic. Particularly, those who did not 
move are driving 35% less. 

Figure 18 shows a comparative distribution of the commuting days per week among those that moved 
and those that did not move due to teleworking.  These two groups exhibit different travel patterns in 
the pre-pandemic timeframe. Most respondents in the first group reduced their commute days from 
five to zero days, meaning that they are completely working from home. For those who moved, they 
display a more flexible commute pattern. Most of them traveled five to seven days a week to work 
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before the pandemic. During the pandemic, only 3% shifted entirely to remote, while the rest of them 
are still traveling at least one day to work. As shown in the descriptive statistics presented earlier, this 
may be because the sociodemographic characteristics and travel patterns are by themselves distinct 
between these two groups, which in is further manifested through different shifts in weekly days 
commuting.  Not surprisingly, commute patterns before and during the pandemic are quite similar for 
those who can but are not teleworking and those who cannot telework.  

Figure 18.Change in Commute Patterns of Those Who are Teleworking but Did Not Move (left) and 
Those Who are Teleworking and Moved (right) 

 

 

The analysis of the survey responses as related to teleworking explored responses as defined by several 
different categories of teleworking behavior. Several key findings emerged from this analysis. The 
descriptive statistics showed that the respondents most likely to be able to take advantage of 
telecommuting have higher incomes, are more likely to be male, and generally more likely to be White, 
relative to the population.  The analysis of changes in household vehicle miles within these categories 
suggested that among those that teleworked, those who did not move with the teleworking 
arrangements of the pandemic saw the biggest reduction in VMT.  This average reduction was 2,805 
household VMT per year, which at the sample size (n = 503, see Table 11), is statistically different from 
zero (p = 0.000).  This reduction is statistically different from the reduction observed within the overall 
sample of 1,541 household VMT per year (n=2381, see Table 11).  The difference between these two 
reductions, that of those who teleworked and did not move and the broader sample is statistically 
significant (p = 0.000).  Similarly, the average reduction of 626 annual VMT by those households that 
teleworked and moved is statistically different from zero (n = 235, see Table 11).  This reduction is 
statistically different from the reduction of those who teleworked and did not move (p = 0.000).  Finally, 
the difference between those that teleworked and moved and the broader sample is statistically 
significant (p = 0.001).  This final difference is such that the reduction in VMT of the broader sample is 
actually larger than those who teleworked and moved.  The implication being that those who 
teleworked and moved appeared to make lifestyle changes that gave back VMT exceeding the changes 
that were associated with the pandemic along.  This dynamic may be the result of workers moving out 
of high cost, transit rich environments to lower density auto-oriented environments where on balance 
they experience a net increase in VMT.  Whereas those who teleworked and did not move experienced 
the largest overall changes in annual VMT, exceeding that reported by the overall sample.  
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The household VMT data contains the general reductions in driving of the pandemic within its estimates, 
and the individual effects of telework and moving cannot be fully disentangled.  However the pattern of 
average change suggests that teleworking did reduce VMT among those given the flexibility to do so and 
also did not move their location of residence in response.  These are other supporting findings yields 
insights on the nature of VMT shift that may result through different categories of teleworking.  Notably, 
households that moved and teleworked in response to pandemic related shutdowns seemed to negate 
any reductions in VMT as a result of their new land-use environment. Whereas, households that 
switched to teleworking but stayed put where they lived were found to reduce their annual household 
VMT relative to the broader survey sample by a degree that was statistically significant. 

7.1.2 HOV and HOT 
High-Occupancy Vehicle (HOV) and High-Occupancy Toll (HOT) lanes are traffic management strategies 
intended to increase the number of people and vehicles that can move through a congested corridor. 
This requires increased travel demand and travel congestion to be addressed, which can be done 
through two incentives: travel time savings and travel time reliability. HOV lanes restrict use to vehicles 
that meet a minimum occupancy requirement or other vehicle eligibility during its operation hours. If 
the HOV lane is not operated 24 hours per day, then the operation hours would typically fall during peak 
commute hours. Outside of operation hours, there is no restriction on vehicle occupancy and all vehicles 
can use the lane.  

By giving priority treatment to buses, pooling vehicles, and HOVs, HOV lanes have been found to 
encourage ridesharing and use of transportation. Cohen et al., 2020 conducted a data-driven 
assessment and found that HOV lanes can increase carpool intent and adoption, which can further 
enhance the effectiveness of HOV lanes. This can simultaneously remove congestion from general 
purpose lanes. The US Department of Transportation Federal Highway Administration states that this 
results in direct beneficiaries – HOV lane users – and indirect beneficiaries – passengers in the general 
purpose lanes with reduced congestion.  

HOT lanes are another way to increase throughput in these lanes. High-occupancy vehicles can continue 
to use these lanes at no cost, but vehicles that do not meet the occupancy or eligibility requirements can 
now use these lanes for a toll. Depending on the toll, the performance of these high occupancy lanes 
could be improved or degraded. Thus, the fees are typically variable according to the time of day or level 
of congestion. The Federal Highway Administration state that these paying vehicles would be able to 
take advantage of trip reliability, as the lanes would ideally be monitored for compliance to maintain 
speeds, allowing for uninterrupted pace. This could also make express bus service more attractive, 
especially during peak periods (Poole, Reason Foundation, 2020). According to Konishi and Mun (2010), 
HOT lanes are generally favorable due to three reasons: turning underutilized HOV lanes into HOT can 
make better use of these lanes, HOT lanes can generate additional revenue for new road and lane 
projects, it is a political feasible policy. Unfortunately, some are critical of the HOT lanes, calling these 
lanes “Lexus Lanes” due to beliefs that only higher-income drivers can use these lanes whereas lower-
income drivers will be stuck in congested general-purpose lanes (U.S. DOT, FHWA 2016). Some state 
Department of Transportations (DOTs) with HOT lanes have conducted studies using data collected from 
their electronic toll systems and found that the distribution of vehicles in the HOT lanes and general 
purpose lanes were similar (Poole and Reason Foundation, 2020).  
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Despite the anticipated benefits of HOV and HOT lanes, studies have shown that they are not as 
effective as expected or have other consequences. High occupancy lanes are still underutilized to some 
degree and have limited effectiveness in easing congestion (Konishi and Mun, 2010). Common 
responses to poor HOV or HOT performance are conducted through changes in policy regarding pricing, 
occupancy requirement, and vehicle eligibility. Depending on whether the issue is underutilization or 
overcrowding, these policies could be changed to increase or loosen restrictions. Changing these 
restrictions would induce or reduce volume in high occupancy lanes.  

Conversion of HOV to HOT lanes is another policy response that is expected to relax restrictions on HOV 
lanes, but HOV lanes and these conversions could have other negative effects (Konishi and Mun, 2010). 
While HOV lanes do encourage carpooling, they also introduce a distortion in congestion levels among 
the different types of lanes (i.e., general purpose and HOV) (Konishi and Mun, 2010). Conversion to HOT 
lanes address this as they allow single occupancy vehicles (SOVs) into these lanes, but this could also 
adversely discourage carpooling. Guensler et al., 2013 studied the conversion of an HOV2+ lane to 
HOT3+ on I-85 in Atlanta and found that average vehicle occupancy decreased along with vehicle 
throughput. However, this effect could also be seen and tied to general occupancy increase in high 
occupancy lanes. A review of HOV lane performance conducted by Chang et al., 2008 revealed that 
increased HOV occupancy policy decreases eligible carpool formation, which could lead to further 
congestion in general purpose lanes. Eligible carpools in this context are carpools that qualify for the 
carpool lane. For example, a 2-person carpool is a carpool, but not a carpool that is eligible to travel in 
an HOV-3 lane. Alternatively, another approach to addressing underutilization of HOV lanes would be to 
decrease occupancy requirements. Similar to what is expected in HOV to HOT conversion, there will be a 
volume shift from general purpose lanes to HOV lanes as a result of relaxed restrictions (Chang et al., 
2008). 

Pricing policies are popular strategies used to increase utilization, as it relaxes the restrictions on high 
occupancy lanes. According to Poole and Reason Foundation (2020), this may not be well-accepted as 
most would see this toll as an overall loss. Chang et al., 2008 believes that pricing strategies may be a 
more promising approach to lane management compared to occupancy policies, but it is more difficult 
to implement and will require more investments and complimentary action by federal, state, and 
regional government. Among complimentary actions that were mentioned included policies such as 
changes to hours of HOV lane operation or occupancy changes. They also found that areas more familiar 
and accepting of tolled facilities are more likely to buy into new pricing concepts. 

The efficiency of HOV and HOT lanes are investigated in this section as we analyze survey responses 
regarding availability, desire, and need for HOV and HOT lanes. Cost of HOV and HOT lanes are also 
analyzed to see if they pose as a substantial barrier to driving and use of HOT lanes.  

7.1.2.1 HOV and HOT Results  
HOV and HOT lanes are distributed within the major urban areas of the state along specific corridors.  To 
put the distribution of these lanes in context, Figure 19 shows a map of their distribution within 
northern and southern California as derived from GIS data published by Caltrans (Caltrans, 2022).  The 
red lines are HOV lanes, whereas the orange lines and HOV/HOT lanes.  The blue dots are Park and Ride 
lots (which are more widely distributed in other areas of the state).   
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Figure 19. Distribution of HOV and HOT Lanes within California 

 

 

 

Figure 20 presents a summary of responses to questions exploring the awareness of and use of HOV and 
HOT lanes.  The top two graphs show respondent awareness and use of the lanes.  The bottom two 
questions in investigate behavior and mode choice depending on availability of HOV and HOT lanes. The 
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questions asked respondents who did not report having HOV or HOT lanes within their region how their 
travel behavior might change if such lanes existed close to them. Among the respondents within this 
subset, 41% did not know if they would use them and 27% would not use any of the lanes. Only 10% of 
this subset would have considered using either of the lanes and 22% would consider using both. 

Another subset of respondents who lived in areas with HOV or HOT lanes and used those lanes for 
commuting were asked a different question. They were asked how they would change their commute if 
the HOV lane was not available or if the HOT lane was too expensive.  This question is important for 
understanding which changes in behavior would occur in response to changes in accessibility of the 
lanes. Among this subset, the most common response (62%) was that commuters would just drive in 
regular lanes rather than HOV and HOT lanes. Only 5% of this subset would purchase an eligible carpool-
sticker to continue using HOV lanes, while 9% would continue to carpool, and 12% would shift to public 
transit. Finally, 10% would seek to telework, while a final 1% would seek to change jobs.  

Figure 20. HOV/HOT Availability and Mode Choice Behavior Questions 

 

Figure 20 includes the responses to basic questions regarding availability of HOV and HOT lanes and 
desire to use these lanes. Nearly 30% of respondents state there are neither HOV or HOT lanes that exist 
in their region. While 28% responded that there exists HOT lanes near them, HOV lanes were stated to 
exist by 64% of the respondents. However, a follow up question reveals that more than half of the 
respondents do not use either of the lanes and only 6% use both HOV and HOT lanes. As demonstrated 
in the first question, twice as many people were aware of HOV lanes in their area compared to HOT 
lanes. This same trend is reflected in the reported usage, with 36% reporting HOV lane usage, which is 
approximately twice times the percentage of respondents using HOT lanes (15%). 
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Respondents were asked to report their monthly commute costs before, during, and expected after the 
pandemic.  The distribution of these costs is shown in Figure 21.  Note that the question was phrased to 
prompt the respondent to consider all costs for any mode.  Some costs may be perceived as highly 
variable, while others are the result of long-term activity (such as vehicle maintenance). The respondent 
was prompted to include what they considered to be their incurred monthly commute costs.  Notably, 
the distribution in Figure 21 does not shift much across the time frames, but the sample size does.  The 
average monthly commute cost reported before pandemic was reported to be $239 per month, while 
the average reported during the pandemic was reported to be $236 per month.  The average monthly 
commute cost expected after the pandemic was reported to be $259.  Only respondents who reported 
commuting to work within the last two years were asked this question and, if respondents reported that 
they did not commute to work at the time of the survey, then they were not asked about their commute 
costs within their current time frame.  This is why the sample moves across the time frames, with a 
notably lower sample size of responses for the current time frame.   

Figure 21. Distribution of Monthly Commute Costs 

 

Figure 22 displays the breakpoint cost at which respondents would not consider driving. 10% think any 
amount is too expensive. 54% would consider $200 per month or less to be their breakpoint cost. 
Another 15% would consider $300 per month to be too expensive, leaving nearly 70% respondents to 
consider mode shift at or below this threshold cost. On the other hand, less than 15% consider $600 per 
month and above to be too expensive.  

For context, according to the National Transportation Statistics reported by the Bureau of 
Transportation Statistics, the average total monthly cost was approximately $894 in 2022 (assuming 
15,000 miles per year, note this assumption of annual miles is high by most measures). This includes 
fixed ownership costs, such as insurance and tax, and other variable costs such as oil cost and 
maintenance. These results are based on data released by the American Automobile Association (AAA), 
which also releases their own in-depth report and statistics (BTS, 2022).  
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Figure 22. Breakpoint Cost for Driving  

 

Figure 23 presents the percentage of respondents that would or would not consider using HOT lanes at 
different price points. At $0 per way and $1 per way, 55% and 49% of respondents, respectively, chose 
probably or definitely would use HOT. However, at $5 per way, 54% responded that they probably or 
definitely would not use HOT and only 27% stated they probably or definitely would use HOT. Between 
those prices at $3 per way, each end of the spectrum (i.e. probably or definitely would use and would 
not use) was selected by approximately 40% of the respondents, each.  

The $0 per way was provided as a response option in order to calibrate the responses for analysis. There 
was no clear indication in the responses why someone may still opt-out of using HOT lanes despite it 
being free. However, there are some possible reasons for this. One main reason could be that they 
simply did not need to use HOT on their commutes, for reasons such as other preferred modes of 
transportation, lack of personal vehicle, preferring to drive on local roads over highways, or that their 
commute simply does not require HOT use.  

The U.S. Department of Transportation Federal Highway Administration reported 8 interstate system 
toll roads in California that have HOT lanes. All of the roads except for the I-680 SMART Carpool Lanes 
collect toll that account for both ways. All roads have dynamic pricing in which the rate depends on 
current traffic conditions. The average passenger vehicle fee across all California tolls roads with HOT 
lane is $5.41, with the average minimum being $0.50 and the average maximum being $13.80 
(calculated from averaging the min and max values over all the roads). Virginia is the next state with the 
most toll roads with HOT lanes. Virginia has 4 toll roads with HOT, and their average passenger vehicle 
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fee is $8.19. Other states with 1-3 toll roads containing HOT lanes include Florida, Georgia, Minnesota, 
and Washington. Their average passenger vehicle fee ranges from $4.13 to $6.38. 

Based on the average values above, the average toll fee per way would be approximately $2.71. At $3 
per way, approximately 39% believed it was too expensive to use, while 37% stated they would consider 
using it at this price. 

Figure 23. Breakpoint cost for HOT lanes 

 

7.1.3 HOV and HOT Findings 
HOV and HOT lanes are available at varying degrees in different regions. However, survey results 
indicate that HOV lanes are twice as common compared to HOT lanes. This outcome could point to 
possibilities: a general lack of HOT lanes, and a lack of awareness of HOT lanes.  However, survey 
responses also indicate that a little over half of the respondents do not use either of the lanes. Only 6% 
use both types of lanes. Despite 64% stating that HOV lanes are available near them, only 30% 
respondents would use the HOV lanes. This discrepancy could be an indicator that other factors play a 
role such as pricing or route incompatibility, that discourage or contribute to the decision not to use 
HOV lanes. Similarly, HOT lanes are only used by 9% of the respondents and could have other 
contributing factors to this low percentage of usage. 

Respondents were surveyed on mode choice in regard to using HOV and HOT lanes for commutes. Given 
the circumstance that HOV and HOT lanes were available within their region, an overwhelming 41% 
stated that they do not know whether they would use these lanes. This could suggest that these 
respondents are not equipped with sufficient information about HOV and HOT lanes to make a decision 
on HOV and HOT usage, or that their response varies depending on conditions such as if they are riding 
with another person.  Surprisingly, another 27% would use neither of the lanes while 22% would use 
both. This could further support the hypothesis other factors outside of availability influence the 
decision to not use these lanes. Alternatively, this could also pose a larger question of whether these 
lanes are generally necessary for a commute. When respondents were provided with the alternative 
situation where HOV and HOT lanes are unavailable and expensive, 62% would resort to using regular 
lanes, which could suggest that driving is a commonly preferred mode of commute regardless of HOV 
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and HOT lanes. Only 12% of HOV/HOT users reported that they would change to public transit and 
another 5% would seek to acquire carpool stickers to use HOV lanes. This suggests that few consider 
HOV lanes beneficial enough to consider purchasing carpool lanes to continue using HOV lanes 

The tolerance for the perceived total cost of commuting by driving is a strong factor that could naturally 
influence the decision to use HOT lanes. As shown in Figure 21. 

Figure 21. Distribution of Monthly Commute Costs 

 

Figure 22 displays the breakpoint cost at which respondents would not consider driving. 10% think any 
amount is too expensive. 54% would consider $200 per month or less to be their breakpoint cost. 
Another 15% would consider $300 per month to be too expensive, leaving nearly 70% respondents to 
consider mode shift at or below this threshold cost. On the other hand, less than 15% consider $600 per 
month and above to be too expensive.  

For context, according to the National Transportation Statistics reported by the Bureau of 
Transportation Statistics, the average total monthly cost was approximately $894 in 2022 (assuming 
15,000 miles per year, note this assumption of annual miles is high by most measures). This includes 
fixed ownership costs, such as insurance and tax, and other variable costs such as oil cost and 
maintenance. These results are based on data released by the American Automobile Association (AAA), 
which also releases their own in-depth report and statistics (BTS, 2022).  

In Figure 22, 10% think any cost involved in driving is too expensive for commute. A total of 54% believe 
that $200 per month or less is too expensive, while $300 per month brings the total percentage up to 
approximately 70% that believe pricing to be a strong influence on the decision to commute by driving. 
Therefore, a monthly cost within this $200-$300 range is a potential threshold cost that makes driving 
cost burdensome for most commuters. This value could be used in calculation and determination of 
subsidization costs for driving. Respondents were also surveyed on what costs they would consider for 
HOT lanes. Survey results indicate that $3 per way is a potential threshold cost as approximately 40% 
responded positively at this cost, and another approximate 40% also responded negatively at this cost. 
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$0 and $1 per way received positive responses by 49-55%, suggesting that keeping prices around this 
point may lower the pricing barrier for about half of the respondents. 

A large share of respondents stated that they would not use either lanes could suggest that these lanes 
are not needed to service the commutes of a fair share of the population. The underlying reason may be 
that HOV/HOT lanes serve a limited share of the general population and that only a subset of that 
population can make reasonably use of such lanes.  Pricing could also be a potential barrier to use HOV 
and HOT lanes as approximately 50% believe that driving costs of $200 per month are too high and $5 
per way for HOT lanes would not be considered. However, it should be noted that these survey results 
were collected before gas prices had risen to approximately $6-7 USD per gallon. These inflation prices 
could substantially affect the threshold and breakpoint costs.  

7.2 Park and Ride 
Park and ride lots is a resource that provides a convenient location to transfer from single passenger 
vehicle to other ridesharing, pooling or public transit systems. These locations are essentially parking 
lots where vehicles can be parked for a certain period of time as they complete the rest of their trip 
through pooling or public transit. Thus, the primary benefit of constructing a park and ride facility is 
encouraging ridesharing and public transit. The increased passenger occupancy would ideally remove 
vehicles from the transportation network and increase person throughput (Caltrans, 2010). This in turn 
would reduce traffic congestion and improve the overall mobility and performance of the transportation 
system (Public Works Los Angeles County and Parkhurst, G., 2000). Simultaneously, park and ride users 
benefit through reduced costs and time travel savings from the shift to multiple occupancy vehicles and 
transit. Improved accessibility is another expected byproduct of park and ride lots as it serves as a 
connection point to a variety of modal options (Caltrans, 2010). This is especially true for travelers from 
suburban and rural areas trying to reach urban destinations. Facilities situated at the urban fringe allow 
these travelers to park their cars and switch to other modal options that can take them to the city 
center. Situating Park and ride lots at the urban fringe would not only improve urban accessibility for 
these users, but also allow them to benefit from travel time savings as the number of vehicles entering 
the city is reduced (Zijlstra, T. et al., 2015). Overall, park and ride facilities can serve as means of 
sustainably meeting transportation demand and needs through encouraging multiple occupancy and 
transit use.  

However, there is no solid consensus that park and ride facilities leave a net positive effect on the 
transportation system. Katoshevski-Cavari R. et al. (2018) found park and ride facilities could induce a 
shift to multi-modal travel as commuters may first drive to the facilities before transferring to public 
transportation. This could lead to increased car dependence and additional trip generation (Parkhurst, 
G., 2000). Assuming that the generalized cost of travel was reduced due to park and ride, Parkhurst, G. 
(2000) noted that two studies reported a maximum of approximately 11-20% of samples stating they 
would not have made their trips without the park and ride lots (WSA, 1998 and Parkhurst, 1996). 
Attractiveness to park and ride schemes could turn these lots into a source of traffic growth as transit 
users would switch to accessing these sites by car. However, Katoshevski-Cavari R. et al. (2018) has 
noted that these additional car trips are undertaken in uncongested areas. Parkhurst, G. (2000) noted 
that of the eight park and ride schemes he had investigated, traffic was avoided in seven out of eight 
cases, whereas traffic was redistributed to outside the urban areas due to drivers making detours to the 
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park and ride. He concluded that park and ride’s effect on traffic is better described as traffic 
redistribution rather than traffic reduction.   

Other studies on the effectiveness and success of park and ride facilities have produced more positive 
results. In Katoshevski-Cavari, R.’s (2018) study in which the park and ride scheme is merged with a fast 
lane, and a shuttle running on the fast lane, it was found that the main group of potential users were 
daily commuters in the 26-50 year-old age group. This service was especially popular during the morning 
rush hours and shifted more than 50% of their current riders from commuting by car to public 
transportation. A study in Netherlands showed that approximately 40% of their 738 respondents would 
not ride transit without a park and ride facility (Mingrado, 2013), indicating that park and ride can be 
effective in attracting users to public transit. Several studies identified that the factors that contribute to 
the success and effectiveness of park and ride facilities include time travel savings, quality and quantity 
of offered public transportation at the facility, available shuttle services, price, and size of the facility. 
Many studies agree that time travel savings is one of the prime motivators that make the park and ride 
schemes effective (Van der Waerden et al., 2011; Sherwin, 1998; Zijlstra et al., 2015). Previous studies 
by Bowler et al. (1986) and Foote (2000) showed that offering shuttle services at these facilities 
significantly increase their attractiveness. Katoshevski-Cavari, R. et al. (2018) reaffirms this with their 
study as 30% of the users stated they were willing to pay for the service (at the time of the study, it was 
free) given that the service was comfortable and frequent. In Zhao et al.'s (2019) study, they 
investigated the effect of ORCA LIFT program, a reduced fare program for low-income riders (income at 
or below $35,000 per year). They found that the ORCA LIFT program and bus-rail integration to be the 
most efficient policy tool, as it jointly created a positive effect on ridership and positive externality on 
park and ride utilization.  

California currently has park and ride facilities in all 12 districts as defined by Caltrans. Park and ride 
facilities are specifically for commuter parking and not for other long-term parking purposes. Parking 
restrictions vary according to the different locations, but most locations do not allow parking for more 
than 24 hours. Most are free of charge and permits are usually not necessary. Parking spaces offered at 
each lot can be at a minimum of less than 10 spaces, while other larger lots could accommodate up to 
more than 500 spaces (Caltrans, 2021). Most locations will have 1 or more regional transit options.  

In this section, we investigate park and ride and whether it affects carpooling, vanpooling and 
ridesharing. We will look at the public sentiment regarding these services and try to identify potential 
barriers. Due to common use of park and ride lots for commutes, we looked at key associating factors 
such as commute distance, commute cost, and commute frequency. It should be noted that this survey 
was conducted during the pandemic, which is reflected in some of the survey questions and responses. 

7.2.1 Park and Ride Results  
Park and Ride infrastructure is distributed around major transportation corridors and mostly urbanized  
regions within the state.  A distribution of Park and Ride lots is shown in Figure 24, also derived from 
Caltrans GIS data (Caltrans, 2022).  As noted in Figure 19, manty of the Park and Ride lots are located 
along highway and transit corridors.  However, the scope of all such lots extends beyond the core 
urbanized regions of the state, including into locations that do not have HOV/HOT lanes or any form rail 
public transit.   

 



 

83 
 

Figure 24. Park and Ride Lots within California 

 

Figure 25 investigates the respondent’s opinions on pooled ride services. When analyzing these results, 
we grouped the answer choices into 3 general categories: positive/agreeable reaction 
(strongly/somewhat agree), neutral reaction (neither agree nor disagree), and negative/disagreeable 
reaction (strongly/somewhat disagree). Approximately 60% agree with the statements that they are 
uncomfortable sharing rides with strangers and that they do not feel safe doing so. Only 24% would 
prefer to share rides rather than ride alone, while 54% preferred the opposite. There is a roughly equal 
percentage of agreement (35%) and disagreement (34%) on the statement that the reduced costs of 
shared rides are worth its drawbacks. 

Respondents who indicated that they have used Transportation Network Companies (TNCs) such as 
Uber or Lyft were further asked if any of their TNC rides were shared. Based on the results, most 
preferred to ride these TNC services alone. Nearly 50% of respondents stated that none of their current 
rides with TNCs used shared services. Only 15% stated that 1-10% of their rides used shared services. As 
the percentage of rides using shared services increased, the percentage of respondents decreased. 
Across 11% to 75% of rides range, there are 10%-15% of respondents who fall in this category.  
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Figure 25. Opinions on Pooled Ride Services 

 

Figure 26 looks at respondent’s general willingness to carpool or vanpool for work/school commute. 
Descriptions of each mode were provided. Carpool was defined as 2-5 commuters sharing a commute in 
their personal vehicles. Vanpool was defined as a commute shared among 6 to 13 people, in a leased 
van. Both modes were suggested to commonly meet at park and ride lots.  

If the respondents had to choose between carpool and vanpool, 82% would prefer carpooling over 
vanpooling. This may suggest that policies focused on pooling may find more success with promoting 
carpooling versus vanpooling. Respondents who previously indicated that they were employed full-time 
or part-time or students were inquired whether they would consider pooling for their commute. 53% of 
these commuting respondents would still prefer other options over carpool/vanpool. Of the 53%, the 
most preferred method would be to drive themselves. Of the remaining 46% who indicated positive 
interest in carpooling or vanpooling, only 13% would definitely use them if the cost was low enough and 
if it worked with their schedules.  The results suggest that about half of respondents within the sample 
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that had a job or school to go to would be receptive to the concept of carpooling/vanpooling and would 
consider the mode if the costs of it were competitive with commuting by driving alone. 

Figure 26. Opinions on Carpool/Vanpool 

 

Figure 27 investigates factors that may affect consideration of carpooling or vanpooling after the COVID-
19 pandemic. In the first chart, respondents are more inclined to carpool/vanpool at lower monthly 
costs. At $0 per month, 47% stated they probably or definitely would use these forms of commute. 
However, at $100 per month, this percentage dropped to 30%. Starting at $200 per month, this 
percentage consistently stays around 20%. Conversely, 30% still probably or definitely would not use 
carpool/vanpool at $0 per month. This percentage increased to 51% at the next price range of $100 per 
month. From $200 to $400 per month, this percentage increased from 60% to 70% that probably or 
definitely would not carpool or vanpool. 
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The second chart looks at a question that provides respondents with different circumstances to consider 
in the decision to carpool/vanpool after COVID-19. Note that at the time of the survey, the restrictions 
and ongoing impacts of COVID-19 were still very active, and the purpose of this question was to allow 
respondents to opine as to how they felt certain travel behaviors might return following the end of the 
pandemic. Naturally, the exact timing of the end-of-the-pandemic was unknown to respondents and 
such an event probably does not have a precise date. The purpose of these types of questions was to 
assess what their post-pandemic normal circumstances might look like with respect to travel behavior.  
The three circumstances include: riding with someone you know, accommodating individual preferences 
by vetting passengers and drivers, and clean, sanitized vehicles. In all three circumstances, there were 
similar distributions across the different degrees of opinions. Around 40-45% stated they probably or 
definitely would consider taking a carpool/vanpool. 30% stated they maybe would consider 
carpooling/vanpooling and 25-30% probably or definitely would not consider it.  

Figure 27. Consideration of Carpool/Vanpool under Different Circumstances and Pricing 

 

Figure 28 shows the reported average distances of the work/school commute that may affect the need 
or desire to carpool/vanpool. 26% and 28% of commute to work and school, respectively, require an 
average trip distance of 5 to 10 miles. 67% of commute to work ranged from 2 to 20 miles. 73% of 
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school commute range from less than 2 miles up to 10 miles. Only 11% and 20% of commutes to school 
and work, respectively, were 20 miles or more.   

Figure 28. Average Distances of Commute 

 

Commute was typically required 5 days of the week, as seen in Figure 29, where 53% of respondents 
reported commuting 5 times a week before COVID-19.  However, this dropped to 28% during COVID-19 
and is expected to rise back to 42% after the pandemic ends. Another 22% responded that they did not 
need to commute at all during the pandemic, but this is also expected to drop to 5% when the pandemic 
ends.  

Respondents were also inquired about their ability to work/study from home. During the pandemic, 64% 
are able to work/study from home, but this is expected to fall back to 47% after the pandemic. The 
percentages after the pandemic are similar to percentages prior to the pandemic, possibly suggesting 
that conditions are expected to return to normal, with the exception of a slight increase in the ability to 
work/study from home after the pandemic. Notably, 12% are unsure about their situation after the 
pandemic.  
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Figure 29. Commute frequency and Ability to Work/Study from Home 

 

 

To investigate whether work/school locations support commute by personal car ownership/user, we 
inquired respondents about accessibility to free parking at these locations. Figure 30 shows an 
overwhelming 85% stating that such accommodation is available at their work/school locations. Just 
over 10% stated that this is not available at their locations.  
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Figure 30. Free Parking Availability at Work/School Locations 

 

Breakout analysis on the question asking about interest in commuting by carpool or vanpool was 
performed and the results are shown in Figure 31 below. The first chart is an analysis of the distribution 
of work commute distance among each answer selection. Although the preference to drive oneself 
received the most selections (N = 349), the other two options that positively considered carpooling or 
vanpooling were the next two popular selections (N = 336 and N = 123). The breakout analysis shows 
that around 65% to 71% of respondents who selected these options had a work commute distance from 
2 to 20 miles. These three categories of commute distance also had a relatively equal distribution within 
these answer selections. Of the three other answer options, those that had shorter travel distances 
would prefer public transit, and those that a commute distance closer to the average 5 to 10 miles were 
more likely to drive themselves to work. Those that traveled shorter distances for work commute as well 
as those that traveled 5 to 20 miles would prefer to find another mode of travel.  

The second chart is an analysis of the income distribution among each answer selection. Approximately 
50% of the respondents in each answer selection comprised of income levels from $50,000 to $149,999. 
In both positive answer selections, there was an approximately equal distribution in the remaining 
respondents, with income below $50,000 and income above $149,999. In all of the negative answer 
selections, 15% of the respondents had income above $149,999 and 30-40% of the remaining 
respondents had income below $50,000. Of these three answer selections, a greater percentage of 
respondents who preferred to travel in some other way or by public transit, had income below $50,000.  
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Figure 31. Breakout Analysis of Opinions on Carpool/Vanpool 

 

Breakdown by the number of vehicles and drivers in a household was performed in Figure 32 to see if 
there is any correlation with opinions on carpool/vanpool. For every answer selection, 70-80% of each 
answer option was selected by respondents with 1 or 2 vehicles. Similarly, the breakdown by the 
number of drivers had 70-80% of respondents with 1-2 drivers in their household for each answer 
option.  

Although the proportion of respondents with 0 vehicles are much less compared to the proportion of 
those with 1-2 vehicles, there were approximately 31 people in the 0 vehicles category who responded 
positively to this question. In the three other answer options, approximately 33 of the respondents were 
also in the 0 vehicles category. Notably, there were around 24 people in this category who would prefer 
driving themselves or using public transit, whereas there were 21 people who stated they could consider 
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carpool/vanpool given that it was convenient and cost-friendly. 13-20% of the respondents for each 
answer option had 3 or more vehicles in their household. While approximately 125 people in this 
category responded that they would drive themselves, another 129 respondents from this category 
stated they would consider the carpooling/vanpooling.  

Breakdown by number of drivers in the household also saw approximately 20% of each answer option 
selected by those with 3 or more drivers in the household and had similar distribution of counts as seen 
in the breakdown by number of vehicles. Of the respondents that did not have any drivers in their 
household, 20 of them responded positively to carpooling/vanpooling, whereas the other 17 responded 
negatively.  
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Figure 32. Breakdown by Number of Vehicles and Drivers in the Household 
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7.2.2 Park and Ride Findings 
Park and ride lots support shared rides. However, survey responses generally indicate that most do not 
prefer to share rides. Most cite that they are uncomfortable with sharing rides, particularly with 
strangers. Another top concern of pooled ride services is feeling unsafe pooling with strangers. Each of 
these concerns were indicated by approximately 60% of respondents. Only 35% agreed that reduced 
costs were worth the drawbacks of sharing a ride, suggesting that cost is not a top priority compared to 
other factors and/or cost may not be a considerable barrier in riding individually. These concerns are 
also reflected in behavior as most respondents indicated that they rarely or do not use shared services 
when riding with TNCs. The COVID-19 pandemic seems to have introduced an additional factor of health 
risk, leading to projections of greater percentages that would not use shared services, even after the 
end of the pandemic. Even with considerations such as the option to ride with familiar passengers, 
careful sanitization, and vetting of drivers and passengers to accommodate individual preferences, only 
40-45% responded positively. 

Carpooling/vanpooling and use of park and rides are typically used for commute to work or school. Thus, 
respondents asked whether they would consider carpooling/vanpooling for their commute if it took 
them directly to their destination. 46% responded positively under the condition that cost was low 
enough and it worked with their schedules. Although responses to other questions suggested that cost 
may not be the topmost concern in sharing rides, targeting costs and bringing them down could still 
bring in more potential users. These potential users are most likely to come from household income 
levels within $50,000 to $149,999, and also potentially from household income levels below $50,000. 
These households are also likely to have 1 to 2 vehicles and drivers.  

The influence of cost was also investigated by inquiring about what monthly cost would encourage 
respondents to commute by carpool/vanpool. At $0 per month, less than half of respondents would 
consider carpool/vanpool, and at $100 per month, this percentage drops to 30%. Responses also show 
that 30-40% already have existing monthly commute costs at $100 per month. Thus, cost may not be a 
strong incentive for a majority of the population even at $0 per month, but there is a substantial amount 
of potential users for whom cost may remain a top barrier to these options.  

We looked at whether there was a need for carpooling/vanpooling by investigating commute frequency, 
parking availability, and commute distance. On average, commute distance typically falls within 2 to 20 
miles for work and 2 to 10 miles for school. Of the respondents who responded positively to considering 
carpooling/vanpooling, approximately 70% of respondents have work commute distance within the 
average range of 2 to 20 miles. These respondents typically commute 5 times a week, but it has dropped 
throughout the pandemic and transitioned to working from home and is generally expected to rise back 
to the same frequency when the pandemic ends. These results further suggests that most of the 
potential users will comprise of working adults that commute every day of the work week for an average 
commute distance within 2 to 20 miles. However, most workplace locations have free parking available, 
supporting personal car ownership and usage. 

Most seem to be deterred from sharing rides due to the convenience of driving oneself and concerns 
over safety and feeling uncomfortable sharing rides with strangers as over 60% of respondents reported 
that they do not feel safe sharing a ride with strangers. About 46% of respondents reported that they 
would ride a carpool or vanpool if the cost is low enough. Just under 30% of respondents reported that 
they would take a carpool or vanpool to work or school if the monthly cost was $100, while just under 



 

94 
 

50% stated that they would use one if the ride was $0 per month. These responses, while stated 
preference, suggest that users would consider shifting their behavior if the costs of using carpools and 
vanpools began to drop considerably below the alternatives.  

7.3 Discussion 
The analysis presented in this report explored the impacts of telework on overall VMT. The results of the 
analysis presented estimates the changes in overall VMT (within the sample population) that resulted 
from telework. These changes were presented in the context of pre-pandemic and during-pandemic 
behavior. The survey, given in 2021, was administered during a time of increasing recovery and opening 
from the lockdowns of 2020. But it was a still a time when many large-scale teleworking arrangements 
were in place. The analysis of the survey sample shows that the impacts of teleworking on household 
VMT are present, particularly among households that did not move due to teleworking. However, the 
presence of the pandemic is likely to have influenced the magnitude of impacts found within the 
analysis.  Perhaps surprisingly, those that moved in response to remote work environments experienced 
a considerably smaller decline in VMT than those that did not move, but were allowed to telework. The 
analysis also presented a summary of survey responses in key areas of interest. The sample of 
demographic attributes and departures from the distributions of the population are shown. Additional 
survey results on micromobilty shown preferences and perceptions of respondents to the use and 
accessibility of micromobility, including user-based barriers (e.g., helmets, hills, etc.) that may also 
inhibit use even when vehicles are nearby. Survey results are further presented on the topics of HOV 
and HOT as well as Park and Ride use. Building on literature reviews of previous research in each, these 
survey results show responses describing awareness of HOV and HOT lanes and the propensity to use 
them under specific circumstances. A number of findings emerge from the summary of these results, 
among them, that 62% of respondents would drive in the regular lanes to commute if HOV lanes were 
not available or if HOT lanes were too expensive. Alternatives selected by respondents including using 
public transit (12%), teleworking (10%), joining a carpool (9%), and other alternatives.  Such results may 
be helpful in informing how commute patterns may shift in response to policies that influence pricing. In 
the section that follows, modeling of a series of policy actions and scenarios are presented using 
activity-based models that parameterize scenarios with the subject areas similar and related to those 
addressed in the survey analysis.  
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8. Modeling 
The rapid growth of high-occupancy, shared mobility, zero-emission vehicles, and active transportation 
modes in California has brought attention to their potential benefits in reducing transportation emissions. 
However, the full extent of their impact on travel demand and wellbeing remains uncertain. Thus, the 
primary objective of the modeling component of this research is to quantify their impact on travel 
behavior and wellbeing across different population segments for the year 2050. 

To accomplish these objectives, we have integrated three separate microsimulation modeling systems 
into a robust research platform. The platform combines UrbanSim, which models evolution of urban 
development and the location patterns of households and jobs; ActivitySim, which models daily activity 
schedules and travel demand; and BEAM, which models traffic flow. This modeling framework is also 
among the first to integrate land-use and transportation modeling in a systematic, sequential, and time-
consistent way. Most modeling frameworks forecast land use models to 30 or 50 years, and then, a travel 
model is simulated only for the last forecast year. However, this framework does not update traffic 
conditions that might influence land use modeling and vice-versa. Our integrated model system, on the 
other hand, is designed to run sequentially for each iteration year. Therefore, this modeling framework 
aims at capturing a more realistic and complex interdependency between land use and transportation 
system. 

In this section, we present the results of a simulation of a policy scenario for the nine-county San Francisco 
Bay Area Region that extends to the year 2050, using the modeling framework previously described. The 
set of policies included in the scenario were chosen in coordination with the CARB team and were based 
on a sensitivity analysis, considering the capabilities of the model framework. The policy scenario includes 
a range of policy variables aimed at increasing the use of high-occupancy, shared mobility, zero-emission 
vehicles, and active transportation modes. Moreover, the scenario also considers possible technological 
and behavioral developments, such as the penetration of Autonomous Vehicles (AVs) and telecommuting.  
 
To assess the impact of the policy scenario, we defined key performance indicators that incorporate 
multiple transportation-related metrics, as well as a welfare analysis. Along with the impact evaluation of 
the policy scenario on travel behavior and well-being, the distribution and equity of the impacts across 
different population segments are also evaluated. In this research we consider population segments based 
on income, race and ethnicity, and geographical distribution. Lastly, we conclude the modeling section 
with a discussion of the results, and the potential implications of the implementation of the policies.  
 

8.1 Modeling Framework 
Three model systems (UrbanSim, ActivitySim, and BEAM) have been integrated for use in this project 
and applied in the nine-county San Francisco Bay Area (see Figure 34): 

• UrbanSim: Land-use simulator, which models the choices made by households, businesses, and 
real estate developers, taking into account how these choices are influenced by different policies 
and investments and examine how these factors interact with transportation systems; 

• ActivitySim: Travel demand modeling tool, which models auto ownership, workplace choice, 
school choice, scheduling of arrival and departure for mandatory and non-mandatory activities, 
as well as their mode choice; and  
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• BEAM: A tool that performs the network assignment and uses discrete choice models in agent-
based simulations to predict how travelers might choose between modes and routes and hence 
will output behavior change indicators given different assumptions.  

Although the three model systems are independent, we operate them in a combined manner using the 
PILATES run management framework, as depicted in Figure 33. This framework is specifically designed to 
facilitate the integration of various containerized microsimulation applications that fully model the co-
evolution of land use and transportation systems. 

Figure 33. Modeling Framework 

 

The modeling framework in this study employs three primary inputs/outputs that flow throughout the 
simulator: the synthetic population, the travel plans, and the skims (defined below). The synthetic 
population is a comprehensive representation of the population residing in the study area, including their 
demographic and economic characteristics. The UrbanSim models modify the synthetic population to 
update household decisions, such as their residential location, based on different residential availability, 
cost, and transportation accessibility metrics.   
 
The travel plans represent individual trips made by the synthetic population and are the primary output 
of the ActivitySim model. They contain information about the purpose, origin, destination, time of day, 
and mode of transportation. These plans are a crucial input for the BEAM model, which updates travel 
times and costs for all modes of transportation, generating what is known as skims. The skims reflect the 
travel times and costs for each mode of transportation and are used as inputs for both the UrbanSim and 
ActivitySim models for the following simulation year. 
 
The present research project utilizes 2020 as the baseline year and conducts simulations until 2050 in five-
year intervals. Given the approximate 10-hour runtime of BEAM, integration with ActivitySim takes place 
every five simulation years. While UrbanSim preserves a one-year simulation increment, skims are 
updated only every five simulation years. 
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To model individual choices, the model system uses discrete choice analysis and Random Utility Models 
(RUM). In discrete choice analysis, decision-makers choose from a finite set of alternatives that maximize 
their utility. The utility function for each alternative includes variables such as the characteristics of the 
decision maker, and attributes of the alternatives. The output of the discrete choice model is a probability 
distribution for each alternative in the choice set. To predict the actual choice, the modeling framework 
uses a Monte Carlo simulation technique to randomly sample a choice for the given probability 
distribution. When possible, we maintain the same random seed, a starting point where a computer 
generates a random number, for all simulation to make results as comparable as possible. A more detailed 
explanation of the theory and decision-making process can be found in Section 8.2.1 
 
The following sections provide more detailed information on the inputs and each model system. Given 
different levels of documentation and multiple sources for each model, we have included relevant links 
to references that can serve as supplementary resources for further documentation. 
 

8.1.1 Model Inputs and Assumptions 
This section presents inputs for the models, including the synthetic population, land use, and transit 
operations for the nine-county region of the San Francisco Bay Area. The nine counties included in the 
region are: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and 
Sonoma. A map depicting the area of analysis, along with the area type for the 2020 baseline year, is 
presented in Figure 34. Additionally, references for further documentation are also provided.  
 

• Blocks: The block is the unit of analysis in the UrbanSim Models.  The model uses the 2010 census 
block geometries identified with the 15-digit Federal Information Processing Standard (FIPS) 
number. For the Nine-county San Francisco Bay, the total number of census blocks is 108,469.  

• Synthetic Population: The synthetic population is built using a synthesizer Synthpop (Ye et al., 
2009) using block-group level demographic marginals distributions (e.g., income, household 
children, head of household age, number of vehicles) from the 2009-2013 5-year American 
Community Survey (ACS), Public User Microdata Survey (PUMS) and the Public Use Microdata 
Areas (PUMAS). The synthesizer uses the marginal distributions to create joint distributions using 
an iterative proportional updating algorithm. Given that the base data is only a subsample of the 
population, the synthesizer uses the joint distributions to create a full representation of 
households and persons, such that it matches the total household population in the census data. 
For the 2020 baseline year, the households and persons summary statistics in the nine-county San 
Francisco Bay Area are presented in  

• In this study, the population growth is projected based on a control total obtained from the census 
data, as presented in Table 15. Addition of new households and agents involves sampling 
households from the existing population until the control total is attained. While this approach 
facilitates the modeling of population growth, it presupposes a certain level of homogeneity in 
the demographic composition over time. 
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Figure 34. Nine-County San Francisco Bay Area Type by TAZ (baseline year 2020) 

 
The area type category is obtained based on the population and employment density consistent with the MTC 
definition: (population + 2.5 employment)/Area (in acres). Rural: 0-6, Suburban: 6-30, Urban: 30+.  
 

In this study, the population growth is projected based on a control total obtained from the census data, 
as presented in Table 15. Addition of new households and agents involves sampling households from the 
existing population until the control total is attained. While this approach facilitates the modeling of 
population growth, it presupposes a certain level of homogeneity in the demographic composition over 
time. 
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Table 13. 2020 Baseline Household Summary Statistics 

Demographic Attribute Category  Count Pct.  
 Low ($0 - 80k) 1,475,456 51.7% 

Income3 Middle ($80k - $150k) 761,433 26.7% 
  High Income ($150k+) 615,832 21.6% 

 None 217,310 7.6% 
 One  827,110 29.0% 

Car Ownership  Two  1,195,753 41.9% 
 Three 428,542 15.0% 

  Four or more 184,006 6.5% 
 None  636,027 22.3% 

Household Workers  One  1,153,136 40.4% 
  Two or more 1,063,558 37.3% 

 One  761,385 26.7% 
Household Size  Two  893,810 31.3% 

 Three 461,482 16.2% 
  Four or more 736,044 25.8% 

Total Households   2,852,721 100.0% 
 

Table 14. 2020 Baseline Population Summary Statistics 

Demographic Attribute Category  Count Pct.  

 White  4,254,794 57.1% 
Race Asian 1,773,365 23.8% 

 Black  1,000,122 5.6% 
  Other 420,110 13.4% 
Hispanic Yes 1,654,872 22.2% 
  No 5,793,519 77.8% 
Sex Female 3,789,038 50.9% 
  Male 3,659,353 49.1% 

 0-20 1,905,444 25.6% 
 20-30 914,122 12.3% 

Age 30-40 1,006,261 13.5% 
 40-50 1,116,800 15.0% 
 50-60 1,137,774 15.3% 

  60+ 1,367,990 18.4% 

Total Population   7,448,391 100.0% 

 
3 Income categories are based on the 2019 median income of the San Francisco – Oakland – Berkeley Metropolitan 
Area of $106,025 (ACS, 2019). Low income is roughly 80% less of the median income, middle income is 80% to 
150% of median income, and high income is 150% greater than median income.  
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• Employment Data: The employment data is based on the Census Longitudinal Employer-
Household Dynamics (LEHD) data, which contains job estimates at the census block level. The 
employment data is stored in the jobs table and contains information about the sector (using 
NAICS sector ID) and the location where the job is located.  

 
For future simulation years, the population and employment growth are controlled by target values 
derived from census projections, as shown in Table 15. To add new agents due to population growth, we 
re-sample households from the available pool to maintain the population demographic distribution.  
 

Table 15. Control Totals - Number of Households and Jobs in the San Francisco Bay Area 2020 – 2050 

Year Control Totals Control Total 
 Number of Households Number of Jobs 

2020 2,852,721 5,261,920 
2025 2,927,113 5,364,976 
2030 3,014,649 5,468,408 
2035 3,096,392 5,575,060 
2040 3,173,057 5,685,031 
2045 3,238,257 5,798,430 
2050 3,287,392 5,915,370 

 
 

• Residential Units: The residential units are extrapolated from a joint distribution estimated with 
the 2009-2013 5-year ACS, using a marginal distribution of units per structure built and tenure at 
the census tract level. The total number of residential units matches the residential units in the 
census.  

 
For more information on the synthetic population, employment, and residential units, refer to the 
following: 
https://cloud.urbansim.com/docs/general/documentation/urbansim%20block%20model%20dat
a.html#block-households-table 

• Enrollment:  Enrollment data contains information on k-12 and higher education enrollment using 
the Education Data Explorer API. The information includes data on public and private schools for 
the year 2015. Further information can be found at:  https://educationdata.urban.org/data-
explorer 

• Transit Operations: The standard General Transit Feed Specification (GTFS) format contains 
information such as routes, stops, and trip information of public transit systems. The following is 
a compiled list of the 28 transit agencies in the San Francisco Bay Area that publish their GTFS on 
their websites and therefore are included in the simulation: Tri Delta Transit, AC Transit, Capitol 
Corridor, American Canyon Transit, BART, Caltrain, County Connection, ACE Altamont Corridor 
Express, San Mateo County Transit, Dumbarton Express, Emery Go-Round, Golden Gate Transit, 
Alcatraz Hornblower Ferry, Marin Transit, Petaluma Transit, Rio Vista Delta Breeze, San Francisco 
Bay Ferry, San Francisco Municipal Transportation Agency (SFMTA), Stanford Marguerite Shuttle, 
Sonoma County Transit, Santa Rosa CityBus, SamTrans, Union City Transit, Vacaville City Coach, 
Vine, VTA, WestCat, and Livermore Amador Valley Transit Authority.  

• Road Network: The network used is publicly available from the open street map API. For the San 
Francisco Bay Area, the network encompasses the nine-counties region.  

https://cloud.urbansim.com/docs/general/documentation/urbansim%20block%20model%20data.html#block-households-table
https://cloud.urbansim.com/docs/general/documentation/urbansim%20block%20model%20data.html#block-households-table
https://educationdata.urban.org/data-explorer
https://educationdata.urban.org/data-explorer


 

101 
 

• Transit Analysis zones: A Transit Analysis Zone (TAZ) are predefined zones within the area of 
analysis, such that the travel demand for each zone is relatively similar. The Metropolitan 
Transportation Commission has defined 1454 TAZs for the San Francisco Bay.  

• Model specifications: The model specifications employed in this study are consistent with those 
utilized in the original implementation of each model system for the nine-county San Francisco 
Bay Area region. It is important to note that the models utilized in ActivitySim and BEAM do not 
possess an inherent time component, thus the model specifications remain constant over time. 
Policies pertaining to time are better captured in UrbanSim. 

• Value of Time: The value of time (VOT) refers to the monetary value an individual is willing to pay 
to save time. For example, a value of time (VOT) of $5 per hour indicates that an individual is 
willing to expend $5 to save an hour of commuting time. In the ActivitySim model, the VOT is 
randomly selected from one of four log-normal distributions, with the specific distribution chosen 
based on the household income as show in Figure 35. 
 

Figure 35. Value of Time Distributions 

 
Source: Plan Bay Area 2050 - Forecasting Modeling Report October 2021 

 
 

8.1.2 UrbanSim  
UrbanSim is an urban simulation system developed over the past several years to better inform 
deliberation on public choices with long-term, significant effects4. A key motivation for developing such a 
model system is that the urban environment is complex enough that it is not feasible to anticipate the 
effects of alternative courses of action without some form of analysis that could reflect the cause-and-
effect interactions that could have both intended and possible unintended consequences. 
 
UrbanSim was designed to reflect the interdependencies in dynamic urban systems, focusing on the real 
estate market and the transportation system, initially, and on the effects of individual interventions and 
combinations of them on patterns of development, travel demand, and household and firm location.  

 
4 This section draws in part on reference (Waddell et al., 2008)  
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The implementation used for this project is the UrbanSim block model for the San Francisco Bay Area (see 
Figure 33). UrbanSim predicts the evolution of jobs, households, and real estate and their characteristics 
over time, using annual steps to predict the movement and location choices of businesses and households, 
the development activities of developers, and the impacts of government policies and infrastructure 
choices at the census block level. The land use model is interfaced with a metropolitan travel model 
system to deal with the interactions of land use and transportation. Access to opportunities, such as 
employment or shopping, is measured by the travel time or cost of accessing these opportunities via all 
available modes of travel. UrbanSim model specification is summarized in Table 16.  
 
We adopted the UrbanSim block model, designed to predict the dynamics of jobs, households, and real 
estate characteristics in the San Francisco Bay Area at the block level. The model employs annual time 
steps to simulate the movement and location decisions of businesses and households, the development 
activities of developers, and the effects of government policies and infrastructure decisions. Additionally, 
the model interfaces with a transportation system to account for the interplay between land use and 
transportation. Access to different opportunities, such as employment or shopping, is evaluated based on 
travel time or cost across all available modes of transportation. A summary of the main UrbanSim model 
is provided in Table 16.  
 

Table 16. Specification of the UrbanSim Block Model 

Model Agent Dependent Variable Functional Form 
Household Location 
Choice 

Household (new or 
moving) 

Residential blocks with vacant 
residential units Multinomial logit 

Employment Location 
Choice 

Establishment (new or 
moving) 

Non-residential block with vacant 
space Multinomial logit 

Building Location 
Choice Building Block Multinomial logit 

Real Estate Price Block Price Multivariable Linear 
Regression 

 
 
The household location choice model predicts the residential location of new households (e.g., those 
resulting from population increase) or existing households that decide to relocate. Given that the 
relocation data is collected after household relocation and the information on the attributes of the 
previous residence is lacking, it is challenging to identify the factors that influenced households' decisions 
to move. Consequently, we employed a rate-based relocation model estimated with the 5-year ACS survey 
as a viable alternative. When UrbanSim predicts that a household will relocate, their current residential 
unit is marked as vacant, and the location choice model is used to simulate their new location from the 
set of alternatives, which consists of all blocks with enough vacant residential units. The model focuses 
exclusively on the residential market within the nine-county region, although moves in or out of the region 
are accounted for with the population control totals. For instance, in the event that the resulting 
population for a given year exceeds the anticipated population, a random sample of the current 
population is designated as having moved outside the region. Following a similar logic, the employment 
location choice and building location choice are simulated in the model. Additionally, the real estate prices 
are updated annually using a multivariable linear regression. 
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Additional information and documentation for UrbanSim block models can be found in Waddell, (2008)  
and https://cloud.urbansim.com/docs/block-model/viewer-index.html 
 

8.1.3 ActivitySim  
ActivitySim is an open-source travel behavior modeling software developed by a consortium of 
Metropolitan Planning Organizations (MPOs), Departments of Transportation (DOTs), and other 
transportation planning agencies. This modeling tool is composed of discrete choice models, activity 
duration models, time-use models, entropy maximization models, etc., to predict a travel plan and its 
mode choice at the individual level for one typical day.  
 
The San Francisco Bay Area ActivitySim model is based on the MTC Bay Area Metro Travel Model One5, 
which uses the 1454 Transit Analysis Zones (TAZs) as the geographical aggregation. The decision-makers 
units are households and persons based on a synthetic population (the output of UrbanSim). For each 
household and individual it models long-term decision such as work and school location, household car 
ownership, and free parking availability at location of work. Then, the coordinated daily activity pattern 
model characterizes the daily patterns of individuals in a household by assigning specific tour types to 
each household member. These tour types include mandatory activities, non-mandatory activities, or 
staying at home. Lastly, ActivitySim models the frequency, location, scheduling and mode choice of tours 
and trips by type (Mandatory, Joint Trips, Non-mandatory, and at-work trips).  Non-mandatory activities 
can be further categorize in social, eating out, recreational, shopping, escorting, and other discretionary. 
For this project, we use the model specifications from Model One, as these models have been extensively 
validated and calibrated6. Table 17 summarizes the main models in ActivitySim.  
 

Table 17. ActivitySim Model Specification 

Model Agent Dependent Variable Functional Form 
Mandatory Activity 
Location Person Work or School TAZ Multinomial logit 

Auto Ownership Household Number of vehicles  Multinomial logit 

Free parking Eligibility Person Free parking eligibility for 
work trips Binary logit 

Coordinated Daily 
Activity Pattern  Person 

Number of tours by 
purpose (mandatory, non-
mandatory, stay at home) 

Multinomial logit 

Non-mandatory Activity 
Location Person Non-mandatory activities 

TAZs (for tours and trips) Multinomial logit 

Tour and Trip Scheduling  Tour/Trip - 
person 

Arrival and departure 
time (for tours and trips)  Multinomial logit 

Tour and Trip Mode 
Choice 

Tour/Trip - 
person 

Mode of transportation 
(for tours and trips - 21 
alternatives) 

Nested logit 

 
Most of the policy variables examined in this research pertain to transportation policies, which are 
primarily incorporated into the tour and trip mode choice models. Although the functional form of the 
tour and trip mode choice models is similar, there are conceptual differences between them. Specifically, 

 
5 GitHub repository: https://github.com/BayAreaMetro/modeling-website/wiki/TravelModel 
6 A detail report of model Calibration and Validation is available at 
https://mtcdrive.app.box.com/s/7crr7bwhromi2au42jnpp11fqe5l24xq 

https://cloud.urbansim.com/docs/block-model/viewer-index.html
https://github.com/BayAreaMetro/modeling-website/wiki/TravelModel
https://mtcdrive.app.box.com/s/7crr7bwhromi2au42jnpp11fqe5l24xq
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a trip refers to an individual journey made by an agent, while tours are a collection of sequential trips with 
one primary purpose. In ActivitySim, tours represent high-level plans for the day, with home as both the 
starting and ending point, except for at-work-based tours. Agents may have both mandatory (e.g., school 
or work) and discretionary tours. The mode choice model selects the primary mode of transportation for 
the entire tour based on outbound and inbound trip information only. Suppose, for instance, an agent has 
two tours in a given simulation year: one mandatory (home-work-home) and one non-mandatory (home-
shopping-home). The mode choice for the first tour may be public transit, while for the second tour, it 
may be drive-alone. Tours are then disaggregated into individual trips, with the first tour comprising two 
trips (home-work and work-home). A second mode choice model is performed for each individual trip, 
conditional on the tour mode choice. For example, if an agent takes public transit for the first trip, then 
drive-alone is not available for the second trip of the tour. This sequential modeling approach accounts 
for the fact that previous decisions can influence current mode choice decisions. Additionally, while tours 
represent one primary destination, secondary destinations can be added at the trip level. For example, a 
groceries trip can be added to a home-work-home tour. 
 
In this research, most policy levers primarily influence the mode choice model and the location choice 
models. The following sections provide an expanded description of these models.  

8.1.3.1 Location Choice Models 
Location choice model defines the location where an activity will take place. The model system consists 
of three high-level activity types, namely home, mandatory activity, and discretionary activity, as shown 
in Table 18. The household location model in UrbanSim simulates the residential location of a household 
at the block-level. This decision depends on the characteristics of the household (e.g.,   age of the head, 
number of children, income), characteristics of the block (e.g., number of years of building, cost, 
proportion own/rent, proportion of single-family housing), and accessibility variable (e.g., number of jobs 
at 5, 10, 20 mins by single occupancy vehicles). The mandatory and non-discretionary location models in 
ActivitySim define activity locations outside the household residential location. These activities depend 
on the capacity (opportunities), the distance, and logsum-based7 accessibility metrics.  

Table 18. Location Choice models explanatory variables overview 

Model  Model 
System Choice Explanatory Variables 

Household Location UrbanSim  

Residential blocks 
with vacant 

residential units 

Age of head, Number of Children, 
Number of years building, cost, 

proportion own/rent, proportion single 
family housing, ration households/units, 
job density, population density, income, 

time-based accessibilities (number of jobs 
at 5, 10, 20 minutes by single occupancy 

vehicle) 
Mandatory Location 
 (Work/School) ActivitySim 

TAZ Capacity, Distance, Income, accessibilities 
(Mode Choice Logsum) 

Discretionary Activity  
Location ActivitySim 

TAZ Capacity, Distance, accessibilities (Mode 
Choice Logsum) 

 
 

 
7 See section 8.2.1.2 for a more detail description of logsums.  
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8.1.3.2 Mode Choice  
 
The mode choice model implemented in this study is a 3-level nested logit model that includes 21 
alternatives, as illustrated in Figure 36. At the first level of the nest, modes of transportation are 
categorized into private, non-motorized, transit, and ride-hailing. Subsequently, the private modes are 
further split based on occupancy and toll price, whereas the transit mode is disaggregated into walking 
and driving access. The utility function specification takes into account the travel times and costs 
associated with each alternative, as presented in Table 19, which are aggregated at the TAZ level in the 
skims. 
 

Figure 36. ActivitySim Mode 3-level Nested Mode Choice Model. 
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Table 19. ActivitySim mode choice model explanatory variables overview. 

Mode Choice Alternatives Explanatory Variables  
Single Occupancy Vehicle 
Free In vehicle time, Operating Cost, Parking Cost, Bridge Toll 

Single Occupancy Vehicle 
Pay In vehicle time, Operating Cost, Parking Cost, Bridge Toll, HOV Lane Toll 

2-Occupancy vehicle Free In vehicle time, Operating Cost, Parking Cost, Bridge Toll 
2-Occupancy vehicle Pay  In vehicle time, Operating Cost, Parking Cost, Bridge Toll, HOV Lane Toll 
3+-Occupancy vehicle Free In vehicle time, Operating Cost, Parking Cost, Bridge Toll 
3+-Occupancy vehicle Pay  In vehicle time, Operating Cost, Parking Cost, Bridge Toll, HOV Lane Toll 
Walk  Distance, topology, destination density 
Bike  Distance, topology, destination density 

Walk Access - Local Bus  In vehicle time, wait time, transfer time, walk access/egress time, fare, 
destination zone density, topology 

Walk Access - Express Buss  In vehicle time, wait time, transfer time, walk access/egress time, fare, 
destination zone density, topology 

Walk Access - Bus Rapid 
Transit 

In vehicle time, wait time, transfer time, walk access/egress time, fare, 
destination zone density, topology 

Walk Access - Light Rail In vehicle time, wait time, transfer time, walk access/egress time, fare, 
destination zone density, topology 

Walk Access - Heavy Rail  In vehicle time, wait time, transfer time, walk access/egress time, fare, 
destination zone density, topology 

Drive Access - Local Bus  In vehicle time, wait time, transfer time, drive access/egress time, fare, 
destination zone density, topology 

Drive Access - Express Buss  In vehicle time, wait time, transfer time, drive access/egress time, fare, 
destination zone density, topology 

Drive Access - Bus Rapid 
Transit 

In vehicle time, wait time, transfer time, drive access/egress time, fare, 
destination zone density, topology 

Drive Access - Light Rail In vehicle time, wait time, transfer time, drive access/egress time, fare, 
destination zone density, topology 

Drive Access - Heavy Rail  In vehicle time, wait time, transfer time, drive access/egress time, fare, 
destination zone density, topology 

Taxi  In vehicle time, wait time, cost (base, per mile and per minute) 
TNC Single  In vehicle time, wait time, cost (base, per mile and per minute) 
TNC Shared In vehicle time, wait time, cost (base, per mile and per minute) 

 
The main output of ActivitySim is the travel plan for each individual in the synthetic population, containing 
information on the origin, destination, purpose, time, and mode choice for each trip. The model does not 
capture trips originating or ending outside the modeled region, potentially leading to an underestimation 
of the total trips in the area. The origin and destination of each trip are aggregated to the TAZ level, while 
the time of day is binned into one-hour intervals. Although most trips correspond to a single agent, the 
model also accounts for discretionary joint trips where multiple agents travel together for a common 
purpose. Notably, joint trips are limited to discretionary activities and not mandatory ones. 
 
Additional information and documentation of ActivitySim models can be found at 
https://activitysim.github.io. Information about the Travel Model One developed by Metropolitan 
Transportation Commission (MTC) can be found at https://github.com/BayAreaMetro/travel-model-one 
 

https://activitysim.github.io/
https://github.com/BayAreaMetro/travel-model-one
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8.1.4 Beam  
The modeling framework for Behavior, Energy, Autonomy, and Mobility (BEAM) is an open-source, agent-
based traffic assignment simulation software developed by the Lawrence Berkeley National Laboratory 
and derived in part from the MATSIM model system. BEAM allows for efficient and scalable simulation of 
the transportation network to understand congestion, energy, and emission implications of new mobility 
technologies for regional transportation systems. BEAM is currently used to evaluate and quantify 
strategies that ease congestion, improve mobility, and reduce pollution.  
 

Figure 37. BEAM Modeling Framework. 

 
                           Source: https://transportation.lbl.gov/beam 
 
BEAM has three main components (1) AgentSim, (2) PhysSim, and (3) a replanning module. AgentSim has 
a routing engine that considers a set of possible routes for different modes of transportation. PhysSim 
models the network congestion using a Java Discrete Event Queue Simulator. An R5 open-source engine 
dynamically updates congestion and travel time, so agents are sensitive to current network conditions. 
The replanning module allows agents to choose different alternatives (location and mode) depending on 
previous days’ decisions. Figure 37 shows the BEAM conceptual modeling framework.  
 
BEAM receives activity plans from ActivitySim and simulates the network utilization given these plans. It 
typically respects the mode choice from ActivitySim, but it may adjust it if the chosen mode is no longer 
available or feasible. For example, if an agent chooses a TNC option but there are no TNC vehicles available 
within a reasonable time, the agent will use the internal mode choice to re-estimate the choice. To 
construct the skims file for UrbanSim and ActivitySim, the travel times and costs for individual trips are 
aggregated at the TAZ level and for different times of the day. Due to the computationally intensive nature 
of BEAM, a reduction in travel plans for a subset of 10% the population is implemented. To capture 
realistic traffic dynamics, BEAM adjusts road capacities and other available supply by scaling them down 
accordingly. The calibration process estimates the appropriate reduction in road capacities to ensure 
similar levels of congestion as observed data. 
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Additional information and documentation about BEAM can be found in Bae et al., (2019) 
https://transportation.lbl.gov/beam. Additional information and documentation on MATSIM can be 
found at https://www.matsim.org/. 
 

8.2 Model Analysis, Evaluation, and Scenario Design 
In this section, we introduce the fundamental theory of discrete choice models, which forms the basis of 
the decision-making mechanism used in our modeling framework. We will discuss the estimation of 
consumer surplus within the context of discrete choice models. Additionally, we will describe the Key 
Performance Indicators (KPIs) that will be utilized to evaluate the impact of the policy scenario, as well as 
the procedure employed to design three policy scenarios. 
 

8.2.1 Discrete Choice Models  
The objective of discrete choice analysis is to explain and predict the choices made by decision-makers 
from a finite set of alternatives, taking into account the attributes of the alternatives and the 
characteristics of the decision-maker8. These models aim to construct a probability distribution that 
represents the likelihood of a decision-maker choosing any of the alternatives in the set. As a result, the 
estimation of discrete choice models aims to derive parameters that describe the relationship between 
the attributes of the alternatives, the characteristics of the decision-maker, and the probability of choice. 
 

8.2.1.1 Basics 
The basic concept that enables the estimation of choice probabilities is derived from Random Utility 
Theory, which treats the utility of each alternative as a random variable and breaks it down into a 
systematic and random component. In the case of a binary choice model with only two options, the utility 
function for each alternative can be represented as follows: 
 

𝑈𝑈𝑖𝑖𝑛𝑛 =  𝑉𝑉𝑖𝑖𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑛𝑛 
𝑈𝑈𝑗𝑗𝑛𝑛 =  𝑉𝑉𝑗𝑗𝑛𝑛 + 𝜀𝜀𝑗𝑗𝑛𝑛 

 
Where 𝑈𝑈𝑖𝑖𝑛𝑛 and 𝑈𝑈𝑗𝑗𝑛𝑛 are the utilities of alternatives 𝑖𝑖 and 𝑗𝑗 for decision-maker 𝑛𝑛. 𝑉𝑉𝑖𝑖𝑛𝑛 and 𝑉𝑉𝑗𝑗𝑛𝑛 are the 
systematic components, which are assumed to be deterministic. Lasty, 𝜀𝜀𝑖𝑖𝑛𝑛, and 𝜀𝜀𝑗𝑗𝑛𝑛 are the random 
components. The decision process assumes a utility maximization policy, in which decision-makers choose 
the alternative that maximizes their utility. As the utility is assumed to be a random variable, the 
probability of choosing a specific alternative can be estimated as the probability of the utility of that 
alternative being greater than the utility of the other alternatives: 
 

𝑃𝑃𝑛𝑛(𝑖𝑖) = 𝑃𝑃(𝑈𝑈𝑖𝑖𝑛𝑛 ≥  𝑈𝑈𝑗𝑗𝑛𝑛) 
 
Replacing the utility by its systematic and random component, we get:  
 

𝑃𝑃𝑛𝑛(𝑖𝑖) = 𝑃𝑃(𝑉𝑉𝑖𝑖𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑛𝑛 ≥  𝑉𝑉𝑗𝑗𝑛𝑛 + 𝜀𝜀𝑗𝑗𝑛𝑛) 
𝑃𝑃𝑛𝑛(𝑖𝑖) = 𝑃𝑃(𝑉𝑉𝑖𝑖𝑛𝑛 − 𝑉𝑉𝑗𝑗𝑛𝑛 ≥  𝜀𝜀𝑗𝑗𝑛𝑛 −  𝜀𝜀𝑖𝑖𝑛𝑛) 
𝑃𝑃𝑛𝑛(𝑖𝑖) = 𝑃𝑃(𝜀𝜀𝑗𝑗𝑛𝑛 −  𝜀𝜀𝑖𝑖𝑛𝑛  ≤ 𝑉𝑉𝑖𝑖𝑛𝑛 − 𝑉𝑉𝑗𝑗𝑛𝑛 ) 

 

 
8 This section is based on the reference (Ben-Akiva & Lerman, 1985) 

https://transportation.lbl.gov/beam
https://www.matsim.org/
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From the above equation, it is possible to conclude that only the difference between the systematic 
component of the utility matters to choose one alternative over another, and not its absolute values.  
 
The choice of distribution for the random components can lead to different models. The most used 
distributions for the random components are the normal distribution, which results in the Probit model, 
and the extreme value distribution, which results in the Logit model. In the modeling framework used in 
this research, it is assumed that the random components follow an extreme value distribution, resulting 
in all models being Logit-based. This assumption implies that the difference between the random 
components has a logistic distribution. As a result, the probability of choosing one alternative over the 
other can be expressed as: 

𝑃𝑃𝑛𝑛(𝑖𝑖) =  
𝑒𝑒𝑈𝑈𝑖𝑖𝑖𝑖

𝑒𝑒𝑈𝑈𝑖𝑖𝑖𝑖  + 𝑒𝑒𝑈𝑈𝑗𝑗𝑖𝑖
 

 
And the probability of choosing alternative 𝑗𝑗 is:  
 

𝑃𝑃𝑛𝑛(𝑗𝑗) = 1 −  𝑃𝑃𝑛𝑛(𝑖𝑖) 
 
The specification of the systematic components aims to capture the relationships between explanatory 
variables and the probability distribution. These components can be represented as a linear combination 
of the variables, such as the attributes of the alternatives and characteristics of the decision-maker. In a 
mode choice model, for instance, the attributes of the alternative can be cost and travel time, while the 
characteristics of the decision-maker can be income and age. The weights for each variable in the linear 
combination can be represented as a vector of coefficients β. Thus, the systematic components can be 
expressed as follows: 
 

𝑉𝑉𝑖𝑖𝑛𝑛 =  𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖𝑛𝑛 = 𝛽𝛽1𝑥𝑥𝑖𝑖𝑛𝑛1 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑛𝑛1 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑛𝑛𝑘𝑘 
𝑉𝑉𝑗𝑗𝑛𝑛 =  𝛽𝛽𝑇𝑇𝑥𝑥𝑗𝑗𝑛𝑛 = 𝛽𝛽1𝑥𝑥𝑗𝑗𝑛𝑛1 +  𝛽𝛽1𝑥𝑥𝑗𝑗𝑛𝑛1 +⋯+  𝛽𝛽𝑘𝑘𝑥𝑥𝑗𝑗𝑛𝑛𝑘𝑘 

 
The estimation of discrete choice models aims to determine the magnitude of the coefficients in the utility 
function, which represents the marginal utility of each explanatory variable. Of the many coefficients 
estimated, the marginal utility of income is one of the most studied as it reflects the decision-maker's 
sensitivity to costs for a given choice. Additionally, the alternative specific constant (ASC) is another 
important coefficient that is frequently estimated. This constant acts as the intercept term in the utility 
function and captures any unobserved factors that may influence the decision-making process. The ASC 
is constant across all decision-makers regardless of the attributes of the alternative; therefore, it is often 
interpreted as a general preference for one alternative over another. 
 
One of the many assumptions in logit models is the Independent of Irrelevant Alternatives (IIA), which 
states that adding or removing an irrelevant alternative in the choice set will not change the relative 
preference between remaining alternatives. This assumption is particularly problematic with alternatives 
that are correlated with each other. To overcome this assumption, the nested logit model groups 
alternatives that might be correlated into nests. In this research project, the mode choice model is a three-
level nested logit model. At the first level, private, public, non-motorized, and TNC modes are grouped 
into a nest, as illustrated in Figure 37. The nested structure allows for correlations between alternatives 
within a nest while preserving the IIA assumption across nests, thus mitigating the problem of biased 
estimates due to correlation between alternatives. 
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Most of the models in UrbanSim and ActivitySim are discrete choice models, as described in Modeling 
Framework.  

8.2.1.2 Welfare Analysis in the Context of Discrete Choice Analysis 
For this research, the objective of the welfare analysis is to evaluate and compare the impacts of a policy 
change on the well-being of a population, measured by changes in Consumer Surplus (CS) in the mode 
choice model. 

In the context of discrete choice model, the consumer surplus is the difference in the maximum expected 
utility of the choice set when a change occurs (Small & Rosen, 1981). The maximum expected utility is a 
metric that measures the expected benefit of a set of alternatives. In other words, it is a measure of the 
individual’s expected utility associated with a choice situation. Mathematically, the maximum expected 
utility of a choice situation is calculated by the logarithmic sum of the exponential individual utilities, a 
term that is known as the logsums: 

Where 𝐽𝐽 is the choice set, and 𝑈𝑈𝑗𝑗 is the systematic utility of alternative 𝑗𝑗 in 𝐽𝐽. The constant value C is an 
unidentified parameter that represents the fact that the absolute level of the utility cannot be measured. 
In transportation context, the logsums are also used as a measure of accessibility, as shown in Section 
8.1.3.1.  

As mentioned in the previous section, a discrete choice model estimates a probability distribution for each 
alternative in the choice set, rather than the actual choice. During simulation, a Monte Carlo approach is 
utilized to randomly sample an alternative based on the resulting probability distribution. If the probability 
distribution changes, it is not possible to replicate the same number of trips to the same locations for all 
agents from two separate simulations, even if the same random seed is set. Thus, a one-to-one 
comparison of the CS for each person-trip across simulations is not feasible. 

To overcome this problem, we estimate the average the maximum expected utility for each person-trip 
in a simulation, or population segment. To estimate the change in CS due to change of a policy we consider 
the differences between the average  maximum expected utilities between two simulations and assume 
that the mean values of C cancel out9. To transform the difference of CS to monetary value we use the 
estimated marginal utility of income to translate the maximum expected utilities to a monetary value 
(Allcott, 2013; Herriges & Kling, 1997; Train, 2015). Additionally, we use an average estimated marginal 
utility of income for all trips because it allows useful comparison of consumer surplus across different 
income groups (Bills, 2013). 
To summarize, the CS is the difference of the EMU  divided by the marginal utility of income as follows. 

9 The value C depend on the decision-maker, therefore, is reasonable to assume that the average value of C for 
two populations with the same characteristics is similar. As a result, this term cancels out in the consumer surplus 
estimation.  
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∆𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝐶𝐶𝐶𝐶𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑃𝑃𝑃𝑃𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃 
 
For this research, we conducted a welfare analysis for the mode choice model. The model results will save 
the logsums of the mode choice for each trip. The consumer surplus analysis will also be disaggregated by 
income, race, ethnicity, and area type. 
 

8.2.2 Key Performance Indicators (KPI) 
To evaluate the effectiveness of the policy scenario, our research team has identified key performance 
indicators (KPIs) as recommended by the California Air Resources Board, (2019). Additionally, we have 
incorporated the Consumer Surplus (CS) metric that was defined in Welfare Analysis in the Context of 
Discrete Choice Analysis. In order to optimize the analysis, CARB and our research team have selected 
Vehicles Miles Travelled (VMT) and CS as the two primary indicators used to gauge the responsiveness of 
travel demand and the well-being of the population in response to a policy change. These two KPI, have 
been further disaggregated by income, and race, ethnicity, and area type to better understand the impacts 
of the policies on various population segments. Additionally, we estimate VMT, CS and all other metrics 
using the entire synthetic population size. This section provides an overview of the key performance 
indicators used in our analysis, and a summary table is presented in Table 20. 
 

• Total Vehicles Miles Traveled (VMT): This metric represents the miles traveled by all vehicles on 
a given day. This metric can be used as a proxy for emissions if the average vehicle emission is 
given. For this research, the VMT estimate includes all private driving modes, taxis, and TNC 
options. In the case of AVs and TNCs, the VMT estimation does include deadheading or zero-
occupancy miles. One of the objectives of this research is to reduce VMT because it reduces 
congestion and emissions. Unit of analysis: Miles 

• VMT per Capita: The VMT per capita captures the average miles driven by individual in the 
synthetic population. This metric is valuable because it normalizes the total VMT by the 
population size. This is useful when comparing scenarios for different years, where populations 
sizes are different. Additionally, the magnitude of VMT per capita is easier to interpret and 
understand for a broader population, and can be disaggregated for different population 
segments, without loss of interpretability.  Given its importance, we disaggregate VMT per capita 
by disaggregating by income, and race and ethnicity, and area type. Unit of analysis: miles per 
person 

• Consumer Surplus (CS): The consumer surplus metric aims to capture the impacts of a policy 
change on the well-being of a population. We measure the consumer surplus base on the mode 
choice model in ActivitySim, and following the procedure explain in Welfare Analysis in the 
Context of Discrete Choice Analysis. Units: Dollars [$] 

• Mode Shares: Mode shares are a common transportation metric to measure the participation of 
each alternative mode in the total number of trips. This metric is normalized by the total trips, 
making it comparable across scenarios (and even geographies). The mode choice model 
implemented in this research includes 21 alternatives; however, to reduce complexity, we 
estimate this metric using the following categories:  

o Drive Alone: Private vehicle drive alone pay and free. 
o Share Ride: Private vehicle drive 2+ occupants pay and free.  
o Public Transit: Walk and driving access to local, express, and commercial bus, light rail, 

heavy rail, and ferry.  
o Walk: Walking mode 
o Bike: Biking model  
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o TNC Ride-alone: TNC with one occupant.   
o TNC Shared: TNC with 2+ occupants.  

 
Unit of analysis: percentage (%) 

• Average Travel Time: The average travel time measures the mean travel time for all trips on each 
day. Given that the location choice models are sensitive to changes in the transportation system 
this metric measures changes in trip travel times that can be caused by changes in congestion and 
trip length. In general, shorter average travel times are preferable. This metric is also 
disaggregated by income, purpose, and transportation mode. Unit of analysis: minutes per trip.  

• Average Trips Length: This metric estimates the mean distance for all trips. Contrary to travel 
time, the travel distance does not depend on the network congestion, therefore, this metric 
represents how far agents travel. Increase densities can result in reduced trip length because 
more opportunities are reachable within a given distance. Given the sensitivity of location choice 
models to changes in the transportation system, this metric can be interpreted as increased 
density. Shorter trips are preferred as they can improve efficiency, alleviate congestion, and 
reduce emissions. In this research, we disaggregate this metric by mode to also capture how 
effective each mode is depending on the travel distance. Unit of analysis: miles per trip. 

• Transit Ridership: Public transit ridership estimates the total number of trips made in public 
transit for a given day. The importance of this metric is that public transit options allow for high-
occupancy vehicles, one of the research objectives, therefore higher ridership is preferred. 
Additionally, it can be used to forecast transit revenue. Unit of analysis: trips  

• Seat Utilization: Seat utilization measures the average private vehicle occupancy. In this research, 
this metric is limited to private driving modes. For shared TNC, seat utilization is not possible to 
estimate because the number of people in the vehicle is unknown. As this research aims to 
incentivize high-occupancy vehicles, increased seat usage is preferred.  Unit of analysis: 
passengers per vehicle. 

• Household Vehicle Ownership: This metric measures the mean number of private vehicles owned 
by a household. Reducing the number of vehicles per household is preferred as it has the potential 
to incentivize alternative transportation modes such as transit, walking and biking. These modes 
are characterized by high occupancy vehicles and zero-emission options, aligning with the 
objectives of this study. Unit of analysis: Vehicles per household 
 

As BEAM aggregates travel time and travel to the TAZ in the PILATES framework, the research team does 
not have access to metrics such as congestion from the network. Therefore, we have chosen not to include 
this metric in our analysis. 
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Table 20. Key Performance Indicators (KPI) 

Performance Indicator Formula Notation 

Total VMT* 
[vehicle-miles] 

𝐸𝐸𝑖𝑖𝑑𝑑𝐸𝐸𝑖𝑖:𝐷𝐷𝑖𝑖𝑑𝑑𝐸𝐸𝐷𝐷𝑛𝑛𝐸𝐸𝑒𝑒 𝑜𝑜𝑜𝑜 𝐸𝐸𝑟𝑟𝑖𝑖𝑝𝑝𝐷𝐷𝐸𝐸𝑒𝑒 𝑝𝑝𝑒𝑒ℎ𝑖𝑖𝐸𝐸𝑢𝑢𝑒𝑒 𝐸𝐸𝑟𝑟𝑖𝑖𝐸𝐸 𝑖𝑖 
𝑁𝑁𝑣𝑣:  𝑁𝑁𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑟𝑟 of private vehicle trips 

VMT per Capita*, ** 
[vehicles-mile/person] 

∑ 𝐸𝐸𝑖𝑖𝑑𝑑𝐸𝐸𝑖𝑖𝑁𝑁𝑣𝑣
𝑃𝑃𝑜𝑜𝐸𝐸

𝐸𝐸𝑖𝑖𝑑𝑑𝐸𝐸𝑣𝑣𝑤𝑤:𝐷𝐷𝑖𝑖𝑑𝑑𝐸𝐸𝐷𝐷𝑛𝑛𝐸𝐸𝑒𝑒 𝑜𝑜𝑜𝑜  𝑝𝑝𝑒𝑒ℎ𝑖𝑖𝐸𝐸𝑢𝑢𝑒𝑒 𝐸𝐸𝑟𝑟𝑖𝑖𝐸𝐸 𝑖𝑖 
𝑁𝑁𝑣𝑣:  𝑁𝑁umber of Vehicle trips 

𝑃𝑃𝑜𝑜𝐸𝐸:𝑃𝑃𝑜𝑜𝐸𝐸𝑢𝑢𝑢𝑢𝐷𝐷𝐸𝐸𝑖𝑖𝑜𝑜𝑛𝑛 𝐶𝐶𝑖𝑖𝑆𝑆𝑒𝑒 
Consumer Surplus** 
[$] 

𝑈𝑈𝑗𝑗 :𝑈𝑈𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝐸𝐸𝑦𝑦 𝑜𝑜𝑜𝑜 𝐷𝐷𝑢𝑢𝐸𝐸𝑒𝑒𝑟𝑟𝑛𝑛𝐷𝐷𝐸𝐸𝑖𝑖𝑝𝑝𝑒𝑒 𝑗𝑗 
𝛼𝛼:𝐸𝐸𝐷𝐷𝑟𝑟𝑀𝑀𝑖𝑖𝑛𝑛𝐷𝐷𝑢𝑢 𝑢𝑢𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝐸𝐸𝑦𝑦 𝑜𝑜𝑜𝑜 𝐼𝐼𝑛𝑛𝐸𝐸𝑜𝑜𝑁𝑁𝑒𝑒 

Transit Ridership [trips] 𝑁𝑁𝑤𝑤 𝑁𝑁𝑤𝑤:𝑇𝑇𝑜𝑜𝐸𝐸𝐷𝐷𝑢𝑢 𝑁𝑁𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑇𝑇𝑟𝑟𝑖𝑖𝐸𝐸𝑑𝑑 𝑖𝑖𝑛𝑛 𝑃𝑃𝑢𝑢𝑁𝑁𝑢𝑢𝑖𝑖𝐸𝐸 
𝑇𝑇𝑟𝑟𝐷𝐷𝑛𝑛𝑑𝑑𝑖𝑖𝐸𝐸 𝐸𝐸𝑜𝑜𝐸𝐸𝑒𝑒𝑑𝑑 

Mode Shares [%] 𝑁𝑁𝑚𝑚
𝑁𝑁

∗ 100% ∀ 𝑁𝑁 ∈ 𝐸𝐸 𝐸𝐸: 𝐶𝐶𝑒𝑒𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝑢𝑢𝐸𝐸𝑒𝑒𝑟𝑟𝑛𝑛𝐷𝐷𝐸𝐸𝑖𝑖𝑝𝑝𝑒𝑒 𝑁𝑁𝑜𝑜𝐸𝐸𝑒𝑒𝑑𝑑  
𝑁𝑁𝑚𝑚:  Total number of trips with mode m 

𝑁𝑁:  Total number of trips 
Household Vehicle 
Ownership 
[Vehicles/Household] 

∑ 𝑉𝑉𝑒𝑒ℎ𝑖𝑖𝐸𝐸𝑢𝑢𝑒𝑒𝑑𝑑ℎ𝐻𝐻

𝐻𝐻

𝑉𝑉𝑒𝑒ℎ𝑖𝑖𝐸𝐸𝑢𝑢𝑒𝑒𝑑𝑑ℎ : Number of Vehicle for 
household h.    

𝐻𝐻:  Total Household Population.  

Seat Utilization 
[passengers/ vehicle] 

𝑁𝑁1 + (2 ∗ 𝑁𝑁2) +  (3 ∗ 𝑁𝑁3+) 
𝑁𝑁𝑣𝑣

𝑁𝑁1:  Vehicle Trips with 1 passenger 
𝑁𝑁2:  Vehicle Trips with 2 passengers 

𝑁𝑁3+:  Vehicle Trips with 3 +  passengers 
𝑁𝑁𝑣𝑣:  Total number of Vehicle trips 

Average Travel Time by 
Purpose [mins] 

∑ 𝐸𝐸𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖𝑁𝑁𝑝𝑝

𝑁𝑁𝑝𝑝
 ∀ 𝐸𝐸 ∈ 𝑃𝑃 

𝑃𝑃: Set of Purposes 
𝐸𝐸𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖:  Time of trip i with purpose p 

𝑁𝑁𝑝𝑝:  Total number of trips with purpose p  

Average Travel Time by 
Mode [mins] 

∑ 𝐸𝐸𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖𝑁𝑁𝑚𝑚
𝑁𝑁𝑚𝑚

 ∀ 𝑁𝑁 ∈ 𝐸𝐸 
𝐸𝐸: 𝐶𝐶𝑒𝑒𝐸𝐸 𝑜𝑜𝑜𝑜 𝐸𝐸𝑜𝑜𝐸𝐸𝑒𝑒𝑑𝑑 

𝐸𝐸𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖:  Time of trip i with mode m 
𝑁𝑁𝑚𝑚:  Total number of trips with mode m 

Average Travel Time by 
Income [mins] 

∑ 𝐸𝐸𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖𝑁𝑁𝑗𝑗

𝑁𝑁𝑗𝑗
 ∀ 𝑗𝑗 ∈ 𝐽𝐽 

𝐽𝐽: 𝐶𝐶𝑒𝑒𝐸𝐸 𝑜𝑜𝑜𝑜 𝐼𝐼𝑛𝑛𝐸𝐸𝑜𝑜𝑁𝑁𝑒𝑒 𝐶𝐶𝐷𝐷𝐸𝐸𝑒𝑒𝑀𝑀𝑜𝑜𝑟𝑟𝑖𝑖𝑒𝑒𝑑𝑑 
𝐸𝐸𝑖𝑖𝑁𝑁𝑒𝑒𝑖𝑖:  Time of trip i with income j 

𝑁𝑁𝑗𝑗:  Total number of trips with income j 

Average Trip Length by 
mode [miles] 

∑ 𝐸𝐸𝑖𝑖𝑑𝑑𝐸𝐸𝑖𝑖𝑁𝑁𝑚𝑚
𝑁𝑁𝑚𝑚

 
𝐸𝐸𝑖𝑖𝑑𝑑𝐸𝐸𝑖𝑖 :  distance of trip i in mode m 

𝑁𝑁𝑚𝑚:  Total number of trips with mode m 
* VMT includes private vehicle trips (drive alone, shared 2, and shared 3+ options) and TNC and Taxis miles.
** These metrics are disaggregated by income, race, ethnicity and area type. Income brackets are: Low (0-80k),
middle (80k – 150k), and high (150k+). Race categories are Asian, Black, White, and Other. Ethnicity categories are:
Hispanic and non-Hispanic. Area type categories are: Urban, Suburban and Rural.

8.3 Policy Scenario Design  
The research team drafted 28 possible policy variables for this research, grouped into six main categories 
(pricing, parking, curb policies, operational strategies, infrastructure changes, transportation services, and 
land use strategies). These policies targeted the objectives of the research, which were to explore 
strategies to incentivize the use of zero-emission, high-occupancy, and new mobility options.  A final set 
of 13 policy variables were selected in coordination with the CARB team, the research team, and the 
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model framework capabilities. Table 21 contains the list of policies, and Appendix A – Policies Under 
Consideration, presents a more detail explanation for each of them.  
 
CARB and the research team worked together to define a final set of policy scenarios that combine 
modifications to the input variables based on the results of a sensitivity analysis (see Appendix B). The 
objective of the sensitivity analysis was to isolate the impact of each policy variable to support the design 
of policy scenarios. To create these policy scenarios, the research team asked CARB to suggest policy 
bundles according to their priorities and needs.  
 
This exercise resulted in the policy scenarios, as presented in Table 21. The first scenario, option one, 
employs a comprehensive approach by incorporating multiple strategies, including enhancing transit 
services, incentivizing the use of shared TNC rides, increasing the Auto Operating Cost (AOC), and 
increasing residential and employment densities around transit stations. In contrast to the other 
scenarios, option one incorporates telecommuting, with 15% of working trips expected to be 
telecommute. The second scenario focuses solely on transit and land use improvements, specifically 
increasing transit frequencies by 200%, offering free transit, and raising employment and residential 
densities around mass transit stations by 50%. The third scenario prioritizes pricing by increasing the cost 
of ride alone TNC rides, AOC and implementing a $10 cordon pricing policy, as well a 10% increase density 
for the Transit-Oriented development (TOD) strategy. All scenarios assume a 25% penetration rate of AVs 
and a 40% reduction in the value of time (VOT) for households with AVs. Baseline values for other policy 
variables can be found in Table 38 – Appendix E.  
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Table 21. Policy Scenarios Creation 

ID Policy 
Category Name Modified Scoping 

Plan/ CTP   
Transit & Land Use 
Improvements Pricing 

   (Option 1) (Option 2) (Option 3) 

    Modeling Year 2045 Modeling Year 
2045 

1 Public 
Transit 

Transit 
Frequencies 

+100% (Increase in 
transit frequencies) 

+200% (Increase in transit 
frequencies) 

+100% (Increase 
in transit 
frequencies) 

2 Public 
Transit Transit Fare -100% (Free Transit) -100% (Free Transit) -100% (Free 

Transit) 

3 Public 
Transit 

Transit in-
vehicle times       

4 Shared 
Rides TNC Price     50% (Increase in 

cost of TNC) 

5 Shared 
Rides 

Share TNC 
Price 

50% cheaper than 
TNC ride alone BAU BAU 

6 Pricing Operating Cost 100% (Increase in 
AOC) BAU 100% (Increase 

in AOC) 

7 Pricing Cordon Pricing     $10  

8 Pricing Park and Ride       

9 Telework Telecommute - 
Option 15% of work trips* BAU   

10 Telework Telecommute - 
Frequency       

11 
Autonom
ous 
Vehicles 

AV 
Penetration 
Rate 

25% 25% 25% 

12 
Autonom
ous 
Vehicles 

AV Value of 
Time -40%** -40%** -40%** 

13 Land Use 

TOD 
Residential 
and 
Employment 

+25% (Increase in 
Density) +50% (Increase in Density) +10% (Increase 

in density) 

AOC = Auto Operating Cost. BAU = Business as Usual.   
* The telecommute model does not take a unique rate for telecommute. Rates for each segment were adjusted to 
reach this percentage. 
** No suggestion was given to the AV reduction of the VOT.  
For this policy result, the research team assumes a 40% reduction in the VOT for households with AV.  
 
Based on the sensitivity analysis (see Appendix E), we compute the sum of the individual policy impacts 
in terms of VMT and CS as shown in Table 22. The analysis shows that the option one policy scenario is 
associated with a substantial reduction in VMT of 22 million, but at the cost of a loss in consumer surplus 
amounting of $7.0 million. The reduction in consumer surplus is mainly driven by the increase AOC, though 
this effect is mitigated by the positive impact of other policies, such as the improvement of transit options 
and the TOD strategy. Conversely, Option 2 is associated with a positive consumer surplus of 
approximately $5.5 million, while potentially achieving a more modest VMT reduction of 4.72 million. 



 

116 
 

Option 3 policy scenario, which primarily focuses on pricing, has the potential to reduce VMT by as much 
as 21 million, but results in a loss of consumer surplus of approximately $7.9 million. However, it is 
important to note that the sum of the individual impact of the policies is expected to differ from their 
aggregate effect, as we anticipate that the interactions among these policies will be greater than their 
individual impact. 
 
Due to the limitations of resources and time, the research team was only able to simulate option one 
policy scenario up to the year 2050. The baseline population used for this simulation was that of the year 
2020. To simulate the changes in the transportation system over time, the UrbanSim models were run 
every year, while ActivitySim and BEAM models were run every five years. Over the course of the 30-year 
simulation period, there were seven 5-year cycles, and each cycle took between 10 to 14 hours to 
complete. Therefore, running a single policy scenario simulation for the entire 30-year period could take 
up to 98 hours.  
 
Table 22. Sum of Individual Impacts for the Policy Scenario - In terms of Vehicles Miles Travel (VMT) and 

Consumer Surplus (CS) 

Policy Modified Scoping Plan/ CTP   Transit & Land Use 
Improvements Pricing 

 (Option 1) (Option 2) (Option 3) 

  Total VMT 
[miles] CS [$] 

Total VMT 
[miles] CS [$] 

Total VMT 
[miles] CS [$] 

Transit 
Frequencies -2,610,208 $1,437,340 -4,045,504 $2,057,632 -2,610,208 $1,437,340 

Transit Fare -1,020,227 $688,196 -1,020,227 $688,196 -1,020,227 $688,196 
Transit in-
vehicle times             

TNC Price           -$750,032 
Share TNC 
Price ≅  ≅   = =     

Operating 
Cost -19,046,287 -$11,855,256 = = -19,046,287 -$11,855,256 

Cordon 
Pricing           ≅   

Park and Ride             
Telecommute 
- Option - +         

Telecommute 
- Frequency - +         

AV 
Penetration 
Rate 1,908,901 $2,234,097 1,908,901 $2,234,097 1,908,901 $2,234,097 
AV Value of 
Time 
TOD  -1,185,458 $444,925 -1,315,708 $532,041 -603,775 $299,998 
Total -21,953,279 -$7,050,698 -4,472,538 $5,511,966 -21,371,596 -$7,945,657 

 
The actual impact of the telecommute policies are not estimable as both the telecommute option and 
telecommute frequency models were changed to target the 15% telecommute working trips. However, 
we expect to see a reduction in VMT driven by the reduction in work trips; therefore, we include a negative 
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sign to reflect that the sum of individual impacts is underestimated. For CS, we expect to see a positive 
impact.  

8.4 Policy Scenario Analysis  
This section presents the simulation results of the policy scenario for the San Francisco Bay Area using the 
modeling framework described in the Modeling Framework section. The results are compared to a 
baseline scenario that reflects the expected travel demand evolution under current conditions, simulated 
up to the year 2050. To facilitate interpretation, most results are presented as both absolute and relative 
differences. As the simulation was conducted solely for the Option One policy scenario, which also aligns 
with the Scoping plan, the results and discussion focus exclusively on this particular scenario. 
 

8.4.1 Results  
Based on the policy scenario simulations, the results indicate that the option one policy is expected to 
generate a significant reduction in VMT by about 29 million (a 26% decline) by the year 2050, relative to 
the baseline as shown in Figure 38. This progress is attributable to the complementary effect of increasing 
AOC and improving transit, which decreases VMT. By increasing the cost of driving, individuals are 
motivated to consider alternative transportation modes, such as biking, walking, or public transit. At the 
same time, enhancing transit options can enhance the attractiveness and convenience of public 
transportation, reducing the need for driving. Moreover, a TOD strategy can further reduce VMT by 
creating more densely populated regions where home and work are in closer proximity. The findings also 
reveal a downward trajectory in VMT reduction from 2020 to 2050, implying the time component effect 
that could be explained by the TOD strategy. Collectively, these policies have a synergistic impact on 
reducing VMT, leading to a decline that is 33% greater than the sum of their individual impact (see Table 
22).  
 

Figure 38. Variation of Total VMT for A) Absolute difference, and B) Percentual Difference. 

 

Note: Estimated amounts based on a one-day simulation. 

 
When VMT looking by population segments, low-income populations, black and other races, and 
urban/suburban areas exhibit a higher percentage reduction in VMT compared to other categories, 
despite the absolute reduction being smaller.  Low-income populations experience a smaller absolute 
reduction of around 3 miles in VMT per capita by 2050, while middle- and high-income populations 
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achieve a greater reduction of approximately 3.7 miles. However, the reduction in VMT per capita 
constitutes nearly a 30% decrease for low-income groups, whereas it represents only a 24% reduction for 
middle- and high-income groups ( Figure 39 A and B). The results also indicate that Asians, Blacks, and 
other races have a smaller absolute difference in VMT reduction. However, when compared to their 
baseline, Blacks and other races, the reduction represents 28%, and for Asians and Whites represents 26% 
( Figure 39 C and D).  Similarly, the results suggest that VMT reduction for urban and suburban areas is 
just 2.5 and 3.5 VMT, respectively, compared to 5 VMT reduction for with rural areas, however, this 
reduction represent 28% reduction for urban/suburban areas, but only a 24% reduction for rural areas ( 
Figure 39 E and F).  
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Figure 39. Variation of VMT per capita by Income, Race and Area Type for Absolute and Relative 
Differences 

 

Note: Estimated amounts based on a one-day simulation. 
 
The policy scenario option 1 estimated a reduction in consumer surplus of approximately $6.9 million by 
2050 (Figure 40A). The negative impact on consumer surplus is mainly attributed to the increase in the 
AOC. Nevertheless, it is worth noting that the implementation of transit improvements and a TOD strategy 
has a mitigating effect on this negative impact. These strategies are expected to partially offset the decline 
in consumer surplus by improving transit waiting times and reducing transit travel costs for households. 
 
Low- and middle-income populations experience a higher reduction in consumer surplus compared to 
higher income populations, with an average loss of approximately 85 cents and 65 cents respectively 
(Figure 40B). These results indicate a disproportionate loss in the consumer surplus for low and middle-
income populations. When examining the impact of race, it appears that Asians and Blacks experience 
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relatively similar average losses in consumer surplus at approximately 75 cents, while Whites have a 
higher loss at 90 cents (Figure 40C). Additionally, rural areas experience a significantly higher loss in 
consumer surplus compared to suburban and urban areas, with a reduction of approximately 175 cents 
compared 80 cents and 40 cents respectively (Figure 40C). These findings are consistent with the baseline 
results, which show that rural areas have a significantly higher average trip length, and therefore, greater 
AOC disproportionately impacts the consumer surplus of rural areas. Furthermore, it is important to note 
that access to public transit options in rural areas may not be enough to offset the negative impact of 
increasing AOC on consumer surplus, highlighting the need for careful consideration and strategic 
planning of policy interventions to ensure equitable outcomes. 
 

Figure 40.  Variation of Consumer Surplus (CS) per capita A) Total B) by Income, C) Race, and D) Area 
Type 

 

Note: Estimated amounts based on a one-day simulation. 

The analysis of policy scenario shows that there is a stable mode shift across the simulation period, as 
illustrated in Figure 41. Notably, modes that are characterized by high occupancy, zero emissions, and 
new mobility options witness a greater mode share for the suggested policy scenario. For instance, the 
mode share for public transit is projected to increase to nearly 6% in the year 2050, indicating the largest 
mode shift. Furthermore, zero-emission modes such as walking and biking demonstrate a positive 
increase in their mode share by 0.85% and 0.25%, respectively, compared to the baseline. 
 
Similarly, both TNC options, namely TNC ride alone and shared TNC, show an increase in their mode 
shares. However, the increment in shared TNC mode share (0.71%) is significantly higher than TNC ride 
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alone (0.25%). It is worth noting that the use of private vehicles is projected to decrease considerably. For 
instance, the drive alone option reduces the mode share by nearly 5 points, whereas driving with two or 
more passengers (share ride) decreases by 2%. 
 
The mode shift towards public transit can be attributed to the improvements made to the transit system. 
In contrast, the reduction in private drive mode share might be due to the increased cost of driving. 
Overall, the analysis underscores the potential benefits of the suggested policy scenario, such as reducing 
the reliance on private vehicles and promoting the use of high occupancy, zero emissions, and new 
mobility options.  
 

Figure 41. Mode Shift - Baseline and Policy Scenario Option 1 

 
Note: Estimated amounts based on a one-day simulation. 
 
The simulation of policy scenarios predicts a different impact in the variation of average travel times by 
population segments. On average, the travel time is projected to increase from 17.82 to 18.20 minutes, 
indicating a difference of 0.38 minutes. However, low-income populations are likely to experience greater 
increases in travel times, as illustrated in Figure 42A. By 2050, the difference in travel time for low-income 
individuals is expected to be 0.61 minutes, compared to 0.35 and 0.19 minutes for middle and high-
income individuals, respectively. Moreover, there is a marked contrast between commute and non-
commute travel time differences. For instance, the average travel time for commute trips is projected to 
increase by 1.2 minutes, whereas for non-commute trips, there is a slight decrease in travel time by 0.14 
minutes (Figure 42B). 
 
In terms of travel time by mode, public transit shows the greatest increase in travel time, which is 
estimated to be approximately 4 minutes (Figure 42C). This metric is largely influenced by the increased 
demand for public transit in the policy scenario relative to the baseline, and the fact that mode shifts have 
encouraged longer transit trips, as suggested in Figure 42D. Additionally, biking and walking are also 
projected to experience an increase in average travel time of 0.35 minutes by 2050. Overall, the simulation 
results suggest that the policy scenario may lead to variations in travel times, with low-income populations 
being more affected.  
 
In the simulation, walking and biking modes are not affected by traffic conditions, thus the increased 
travel time observed in these modes may be attributed to longer trip distances. On the other hand, the 
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average travel time for TNC modes has decreased, as indicated by a decrease of 0.28 minutes for TNC 
ride-alone and 0.19 minutes for TNC shared rides in Figure 42C. This reduction can be attributed to a 
decrease in congestion, which may be attributed to the increased use of sustainable modes of 
transportation. Similarly, car trips also show a reduced travel time, with a decrease of 0.63 and 0.71 
minutes for shared and ride-alone private vehicles, respectively. The observed reduction in travel time for 
private vehicles may be attributable to a decrease in congestion as well as a reduction in the average trip 
length, as evidenced by Figure 42D, which indicates an average reduction of approximately one mile for 
private modes. The reduction of average travel length for private vehicles can result from the increased 
AOC, which disincentivize longer trips, in favor of public transit trips.  
 

Figure 42. Average Travel Time Difference by A) Income, B) Purpose, C) Mode, and D) Change in Trip 
Length by Mode 

 

Note: Estimated amounts based on a one-day simulation. 

 
As shown in the mode choice, the increased mode share of transit is seen in transit ridership. In the policy 
scenario results, transit ridership in 2050 is 3.32 million, an 80% increase with respect the baseline 
comparison (Figure 43A). The mode shift to public transit is mostly driven by public transit improvements 
in frequencies and cost, and the increased cost associated with driving a private vehicle. However, average 
vehicle ownership by household remains similar in the baseline and the policy scenario results (Figure 
43B). While any of the policies target private vehicle seat utilization, the policy scenario results suggest a 
small, yet stable increase in seat utilization (Figure 43C).  
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The policy scenario simulation predicts a significant increase in public transit ridership of 1.46 million by 
2050, as compared to the baseline scenario, which is consistent with the increase in the public transit 
mode choice. This trend is expected to start in 2025, with an increase in public transit ridership from 1.34 
million to 1.46 million. The increase can be attributed to transit improvements such as increasing transit 
frequencies and offering free transit, as well as population growth. It is important to note that despite the 
significant increase in public transit ridership, none of the proposed policies seem to project any effect on 
the average vehicle ownership and seat utilization. This is evident from the plots in 11B and 11C, where 
the variation for these two metrics is close to zero. The findings suggest that while policies to encourage 
public transit usage may have a significant impact on ridership, they may not necessarily affect the overall 
ownership or utilization of private vehicles. Therefore, further research may be necessary to identify 
effective policies to reduce private vehicle ownership and promoting sharing a private vehicle ride. 
 

Figure 43.  Difference in KPI between Baseline and Policy Scenario. A) Total Public Transit Ridership, B) 
Average Vehicle Ownership by Household, and C) Average Seat Utilization 

 

Note: Estimated amounts based on a one-day simulation. 

 
To summarize, the findings from this modeling study suggest that the policy one scenario can be effective 
in reducing VMT by 26% and increasing the mode share of high occupancy, zero emissions, and new 
mobility options such as public transit, biking, walking and shared TNC rides. The increase in transit 
ridership by 1.46 million by 2050 is a significant achievement that can be attributed to transit 
improvements and population growth. However, the policy scenario also predicts a reduction in the 
consumer surplus estimated in $6.9 millions. The variations in VMT reduction and consumer surplus loss 
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are not evenly distributed across population segments and geographical areas. Specifically, low-income 
populations and rural or suburban areas are more negatively affected than high-income populations and 
urban areas. These findings highlight the need for policies that are targeted towards different population 
segments and areas.  
 

8.4.2 Limitations of the model  
New mobility options, such as shared bikes and scooters, are increasingly gaining popularity as potential 
alternatives to traditional transportation modes. However, the mode choice model employed in 
ActivitySim does not incorporate these options as alternatives. Introducing such alternatives to the model 
is also challenging due to the geographical aggregation of Traffic Analysis Zones (TAZs) and the diversity 
of new micro-mobility modes. While the average travel time within a TAZ might be similar for driving 
modes and even transit, this may not hold true for micro-mobility options. The topography of the area, 
the type of micro-mobility option available, and other factors might lead to variations in trip duration and 
routes within a TAZ. For instance, in regions with hilly terrain, electric scooters or bikes may be preferred 
to shorten travel distances on steep inclines, while regular bikes may opt for routes with fewer hills. 
Further research is necessary to assess the feasibility of incorporating micro-mobility options into the 
mode choice model and to explore the potential impact in VMT, consumer surplus and in the travel 
demand behavior. 

The modeling framework utilized in this research does not incorporate the penetration of electric vehicles, 
which could significantly impact the sensitivity to AOC. It is worth noting that electric and hybrid vehicles 
typically possess greater fuel efficiency, leading to a reduction in the AOC. Furthermore, the car ownership 
model employed in this study exclusively considers the number of vehicles a household is likely to possess, 
without taking into account the type of car(s) owned. As a result, the model's sensitivity to the penetration 
rate of new fuel efficiency technologies, which tend to be more prevalent in higher-income populations 
due to their novelty and high costs, is limited. 

Although this study takes into account the population growth up to 2050, it does not factor in the 
evolution of the population within the given timeframe. As mentioned in the Modeling Framework 
section, to match a household control total, new agents are selected randomly from the current pool of 
households, therefore, maintaining their demographic distribution. Additionally, the study does not 
account for family events or restructuring trends that may significantly impact the decision-making 
process related to transportation choice. Furthermore, the models do not consider any potential changes 
in behavior within a population segment. In other words, a 30-year-old agent is assumed to behave 
similarly in both 2020 and 2050, without accounting for the possibility of behavioral shifts over time. 

The policy scenario is implemented in an all-or-nothing fashion from the first year of simulation. However, 
certain policy variables are expected to grow from year to year. For instance, the modeling framework 
assumes a constant penetration rate of 25% for AVs from the first year, but a more realistic model would 
consider varying penetration rates over time. Similarly, the AV penetration rate in this study assumes that 
all vehicles within a household are AVs, and the reduction in the VOT applies to all household members. 
A more refined model would consider the possibility of only a portion of a household's vehicles being AVs 
and varying the VOT reduction for different household members based on their travel needs and 
preferences. 
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It is possible that the results of the VMT and VMT per capita estimates in this study are underestimated 
because the model does not factor for AV deadheading trips. Nevertheless, the reduction in trips using 
private vehicle modes continues to serve as a consistent indicator of the potential VMT reduction that 
could result from the implementation of policy scenario option one, which may also help mitigate the 
potential impact of deadheading VMTs. However, further research is needed to better understand the 
role of AVs in the context of deadheading miles, especially its cost sensitivity and how to effectively 
address this issue in transportation policy. 

Given the limitation of the current implementation of BEAM, this study did not include a High Occupancy 
Toll Lane policy, which would incentivize the use of private shared rides, part of the objective of this study. 
Differentiated toll lanes strategies based on congestion and the number of occupancies might incentivize 
the average seat utilization and reduce congestion.   

8.5 Discussion  
The policy scenario analyzed for this research highlights the benefits of combining multiple policies. For 
instance, when evaluating the individual policy impacts for policies in Option One in the sensitivity 
analysis, it  estimated a VMT reduction of 22 million miles and a loss in consumer surplus of $7 million for 
the base year. However, when these policies are combined in Option One, the estimated reduction in 
VMT is 25 million miles, and the loss in consumer surplus decreases to $6.3 million. Representing a 13% 
larger reduction in VMT, and a 10% smaller loss in consumer surplus for the same base year. These results 
also reveal a greater impact in terms of VMT and CS for low-income populations, which are more sensitive 
to increases in AOC. Additionally, the policy scenario results suggest that most of the mode shift will favor 
public transit, therefore state tax revenue collected due to VMT fees can be invested in transit to mitigate 
the extra loss in CS for the low- and middle-income population.  

In the policy scenario option one, the daily VMT is estimated in approximately 102.4 million. Assuming 
that 20% of the AOC can be collected as a VMT tax (7.36 cents), this would only lead to $7.5 million in 
revenue. As the policy scenario analysis suggests, the majority of the mode shift is towards transit modes, 
indicating the need to allocate a substantial portion of VMT tax revenue to transit investments. 

However, it's important to note that currently, only 15% of the gas tax is invested in transit, according to 
data from The California Legislature’s Nonpartisan Fiscal and Policy Advisor in 2021. Consequently, this 
would reduce the estimated revenue from the VMT tax to $1.12 million. Comparatively, this revenue 
amount is significantly lower than the daily loss in consumer surplus, which amounts to approximately 
$11.8 million due to the increase in AOC. 

This analysis underscores the critical importance of carefully considering the revenue implications in policy 
decisions. While the VMT tax has the potential to generate revenue, its effectiveness in compensating for 
the losses in consumer surplus needs careful evaluation. Ensuring an appropriate allocation of the VMT 
tax revenue towards transit, in line with the observed mode shift, could play a crucial role in balancing 
revenue generation and maintaining consumer welfare. Further research and discussions are critical to 
formulate a well-informed approach to policy implementation that optimizes both revenue and consumer 
well-being. Assuming that only 15% of the tax revenue is invested in transit (The California Legislature’s 
Nonpartisan Fiscal and Policy Advisor, 2021), this estimate is reduced to $1.12 million, which is 
significantly lower than the $11.8 million daily loss in consumer surplus due to increase AOC.   
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A 25% increase in residential and employment density around transit stations was associated with a 
decrease in 1.2 million VMT, and a consumer surplus of $0.44 million, especially benefiting low-income 
population. However, the experiments in this report were limited to current mass transit stations and did 
not consider new mass transit lines. Given the limitations, and the small number of mass transit stations 
(147 stations), there is the potential to increase mass transit services to other areas with a TOD strategy. 
A deeper analysis of where these services and stations might locate to maximize the benefits would also 
be needed.  
 
The sensitivity analysis shows that the elasticities of transit in-vehicle times to VMT and CS surplus are 0.1 
and -0.2 respectively, which are the third highest elasticities after Operating Cost and the AV scenarios. In 
this analysis, the experiments only consider reducing the in-vehicle time, however, no explicit policy was 
attached to it. Short- and middle-term policies that might reduce in-vehicle transit times are exclusive bus 
lanes, intermittent stops, and traffic signal prioritization. However, the way the experiments were set up 
for this research, it is also possible to conclude that the difference in in-vehicle travel time between private 
driving and public transit modes is a decisive factor in the mode share. Decreasing this gap can also be 
achieved by increasing accessibility and connections through new transit services, which can be integrated 
with the expansion of the TOD policy mentioned above. 
 
The response to autonomous vehicles and telecommute policies still carries a lot of uncertainty for the 
future. In this research, it is assumed that households with autonomous vehicles have a lower sensitivity 
to in-vehicle time and, therefore, a lower VOT. The sensitivity analysis showed that this assumption is 
associated with a significant increase in VMT per capita, even when the experiments did not consider 
deadheading VMTs, which is likely to underestimate the true VMT increase. If this assumption is true, then 
it is possible that in the long term, households will tend to relocate to cheaper suburban areas.  Although 
the household location model in UrbanSim can capture relocation to suburban areas, it is not possible to 
determine if AV penetration leads to such relocation since the AV scenarios were tested for only one 
simulation year. However, strategies such as VMT fees and TOD can help mitigate this impact. VMT fees 
penalize longer commutes, and TOD strategies incentivize shorter and/or transit-accessible commutes. 
Similarly, telecommuting options might incentivize household relocations. However, while this parameter 
lever might reduce VMT, few benefits are associated with low-income populations.  
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9. Conclusion 
This research explored strategies and policies to help incentivize the adoption of high-occupancy, zero-
emission shared mobility and active transportation options in California. The research paid additional 
attention to impacts to and strategies for vulnerable populations (e.g., low-income communities). This 
research is critical as higher-occupancy, lower-emission, and active modes may help reduce negative 
transportation impacts (e.g., VMT, greenhouse gas emissions). Additionally, shared mobility modes may 
be able to increase the number of higher-occupancy, lower-emission, and active mode options available 
to travelers. This research leveraged four research tools: 1) a literature review, 2) interviews with 
experts from 14 organizations, 3) two focus groups with a total of 19 participants, 4) a survey from five 
metropolitan regions in California (n=2,354), 5) shared micromobility data analysis, and 6) the use of 
three modeling options to analyze various policy scenarios. Each research method informed the 
development and use of the subsequent research tool. For example, the literature review helped tailor 
the subjects covered in the expert interviews. The expert interview findings then further refined the 
topic areas reviewed in the focus groups.  

The literature review revealed that shared mobility tends to be used by Caucasian males, aged 25 to 34 
years old, with high annual incomes and levels of educational achievement. Shared mobility may result 
in equity concerns for select populations including people with disabilities, unbanked and underbanked 
and low-income households, and individuals without digital literacy. However, strategies exist that can 
be implemented to address these concerns. Shared mobility may also result in various impacts on the 
local economy, environment, modal shifts, and user health and safety, although this varies by mode. 
Shared mobility adoption also varies by different built environments and tends to be more widely 
available and used in dense, urban and lower-density, suburban environments. However, current 
understandings of shared mobility adoption and use may be impacted by the global pandemic. The 
pandemic has also increased teleworking, and this is anticipated to continue. Teleworking has resulted 
in distributing travel demand more consistently throughout the day. The pandemic also encouraged 
individuals, particularly higher income individuals, to move from higher-density areas to lower-density 
ones, especially in the Midwest and Northeast. Transportation demand management strategies can help 
address new transportation characteristics, resulting from shared mobility availability and the pandemic. 

The expert interviews reiterated many of the literature review findings. The experts also noted that the 
pandemic altered operations for many transportation service providers (e.g., service suspensions) and 
ridership is returning to higher demand levels from its suppressed state. In the future, mobility 
operators will likely need to tailor their services to meet new needs (e.g., demand from teleworking 
schedules). The experts offered insights on various strategies to encourage high-occupancy, lower-
emission, and active mode adoption. Generally, the experts believe that park-and-ride infrastructure 
may work well in some locations but are likely not a ubiquitous strategy. Infrastructure specifically for 
active transportation (e.g., networks of connected bike lanes) is likely necessary to support its adoption. 
Similarly, specific infrastructure components as well as educational campaigns are expected to be 
necessary to encourage EV adoption. The experts also highlighted communities that may be vulnerable 
to negative equity impacts including essential workers, immigrants, low-income households, racial 
minorities, and rural populations. Experts would like to see further research to be done on equity 
impacts, especially for the aforementioned populations, as well as on COVID-19 impacts and multimodal 
integration. 
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The focus group echoed the previous findings, particularly on pandemic-related changes, such as 
increases in teleworking and considering changing residential locations. When discussing potential 
strategies to encourage high-occupancy, lower-emission, and active mode adoption, they were most 
concerned with affordability and safety. To encourage public transit use, specifically, participants 
focused on addressing: safe parking availability, public health concerns, personal safety and security, 
and trip convenience and comfort.  

The shared micromobility analysis explored potential spatial. The correlation between activity and 
census-based demographics suggests that micromobility was most accessible in regions that had young 
and middle-aged adults and greater layers of educational attainment.. With the exception of San 
Francisco, in most cities lower income areas had greater access to bike- and scooter- sharing. The results 
found that in San Francisco there is a high level of micromobility access available to wealthier 
populations. Overall, the results suggest that spatial inequities but are not systematic to a particular 
mode.  

The analysis also explored the impacts of telework on overall VMT. The results find that changes in 
overall VMT (within the sample population) resulted from telework. These changes were presented in 
the context of pre-pandemic and during-pandemic behavior. The survey, given in 2021, was 
administered during a time of increasing recovery and opening from the lockdowns of 2020. But it was a 
still a time when many large-scale teleworking arrangements were in place. The analysis of the survey 
sample shows that the impacts of teleworking on household VMT are present, particularly among 
households that did not move due to teleworking.  Respondents who moved in response to remote 
work environments experienced a considerably smaller decline in VMT than those who did not move, 
but were allowed to telework. The survey also found that 62% of respondents would drive in general 
purpose lanes to commute if HOV lanes were not available or if HOT lanes were too expensive. Other 
alternatives selected by respondents including using public transit (12%), teleworking (10%), joining a 
carpool (9%), and other strategies.  These results could lend some insight to how commute patterns may 
shift in response to other transportation demand management policies.  

Thirteen policy scenarios were created that included various components including plans, transit and 
land use, and pricing. The modeling results revealed that mode shifts would generally benefit public 
transit, and funding could be reinvested to support more price sensitive, lower-income populations. TOD 
strategies also had a significant impact, specifically on VMT. However, these strategies only explored 
current mass transit options. The models also revealed a high-elasticity of VMT per capita for transit in-
vehicle time decreases. Changes like teleworking and automated vehicles are difficult to model and the 
future impacts are unclear.  
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Appendix A Shared Mobility Users and Impacts 
 

Advancements in social networking, location-based services, wireless networks, and cloud technologies 
are contributing to the sharing economy (i.e., sharing, renting, or borrowing goods and services rather 
than owning them). Shared mobility is part of the sharing economy and is an innovative transportation 
strategy enabling users to gain short-term access to transportation modes on an “as-needed” basis.  
Table 23 summarizes commonly found shared mobility modes. 

Table 23. Shared Mobility Terms and Definitions 

Term Definition 

Advanced Air 
Mobility 

A broad concept that enables consumers access to on-demand air mobility, goods delivery, 
and emergency services through an integrated and connected multimodal transportation 
network. 

Carsharing 

A service that provides the traveler with on-demand, short-term access to a shared fleet of 
motor vehicles typically through a membership and the traveler pays a fee for use. Carsharing 
service providers typically own and maintain the vehicle fleet and provide insurance, 
gasoline/charging, and parking. 

Courier 
Network 

Services, or 
CNS or Flexible 
Goods Delivery 

A commercial for-hire delivery service for monetary compensation using an online application 
or platform (such as a website or smartphone app) to connect freight (e.g., packages, food, 
etc.) with couriers using their personal, rented, or leased vehicles, bicycles, or scooters. 

Microtransit 

A technology-enabled transit service that typically uses shuttles or vans to provide pooled on-
demand transportation with dynamic routing. Typically, microtransit services are operated by 
or provided on behalf of a government entity or nonprofit organization but privately operated 
microtransit programs may also exist. Variations could include fixed schedules and routes and 
larger or smaller vehicles.  

Public Transit A system of transportation for the public provided by public agencies. 

Ridesharing The formal or informal sharing of rides between drivers and passengers with similar origin-
destination pairings.  

Shared 
Micromobility 

The shared use of a bicycle, scooter, moped, or other low-speed vehicle or device that 
provides travelers with short-term access on an as-needed basis. Micromobility vehicles and 
devices may be propelled by a variety of power sources, including human, engine, or 
motor. Shared micromobility includes various service models and transportation modes, such 
as: 

• Bikesharing: A service that provides travelers on-demand, short-term access to a 
shared fleet of bicycles, usually for a fee. Bikesharing service providers may own, 
maintain, and provide charging (if applicable) for the bicycle fleet. Users may access 
bicycles through annual, monthly, daily, or per-trip pricing. Bikesharing includes 
pedal-only and powered bicycles such as e-bikes. 

• Scooter Sharing: A service that provides the traveler on-demand, short-term access 
to a shared fleet of scooters for a fee. Scooter sharing service providers typically own, 
maintain, and provide fuel/charging (if applicable) for the scooter fleet. Service 
providers may also provide insurance. Generally, participants pay a fee each time 
they use a scooter and trips can be roundtrip or one-way. Scooter sharing includes 
standing and seated scooters that are solely human powered and those that are 
partially or fully powered by a motor or engine. 

Taxis A service that provides the traveler pre-arranged and/or on-demand access to a ride service in 
a motor vehicle for a fee for use. The travelers can typically access this ride by scheduling trips 
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Term Definition 
in advance, by street hail, or by e-hail. Street hail is done by raising a hand on the street, 
standing at a taxi stand, or specified loading zone. E-hail entails dispatching a driver on-
demand using a smartphone app. Taxi ride service typically uses sequential sharing (although 
taxi splitting—the sharing of a taxi ride and fare between two travelers—is allowed in some 
areas). 

Transportation 
Network 

Companies, or 
TNCs 

A service that provides the traveler with pre-arranged and/or on-demand access to a ride for 
fee using a digitally enabled application or platform (e.g., smartphone apps) to connect 
travelers with drivers using their personal, rented, or leased motor vehicles. Digitally enabled 
applications are typically used for booking, electronic payment, and ratings. TNCs are not 
allowed to street hail (on-demand does not include street hail). Concurrently shared TNC ride 
service is referred to as “ridesplitting.” TNCs may also be used to provide goods delivery. 

Source: SAE International (2021) 

Shared mobility availability may be able to support reductions in single occupancy and personal vehicle-
based trips and encourage trips made via higher-occupancy, lower-emission vehicles, and active modes. 
However, research has found that shared mobility adoption does not appear to be uniform across 
various demographic groups, which may cause equity concerns. Shared mobility modes may result in 
additional equity concerns if they exclude select populations (e.g., people with disabilities, low-income 
households). In addition to equity challenges, shared mobility may result in various impacts including on 
the economy, vehicle miles traveled (VMT) and resulting greenhouse gas emissions (GHG), individual 
health and safety outcomes, and modal shifts.  

The literature review is separated into two halves. This half of the literature review focuses on shared 
mobility user demographics and impacts, while the other half summarizes travel behavior trends based 
on different built environments, pandemic impacts, and transportation demand management strategies. 
Both halves of the literature review are intended to provide relevant background information and key 
findings on the current state of shared mobility and travel behavior trends. The literature review focuses 
predominantly on carsharing, shared micromobility, and TNCs as they are some of the more well studied 
modes. These modes were selected specifically due to their opportunity to encourage active 
transportation and increase vehicle occupancies. In its entirety, the literature review includes the 
following sections: 

Shared Mobility Users and Impacts 

• Shared Mobility Demographics: Summary of the demographic characteristics of shared mobility 
users;  

• Shared Mobility Equity Impacts: Description of the equity impacts, and strategies to address 
them, that may result from shared mobility; and 

• Common Shared Mobility Impacts: A description of the common impacts carsharing, 
ridesharing, shared micromobility, and TNCs result in. 

Trends and Policies Impacting Travel Behavior  

• Land Use and Built Environment: Description of various land uses and their resulting impacts to 
shared mobility use,  

• COVID-19 Changes: Summary of broad teleworking and housing changes resulting from the 
pandemic and their anticipated transportation impacts, and 
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• Transportation Demand Management: Policies and strategies to improve transportation 
demand management and improve transportation network efficiency. 

 

A. 1.1 Shared Mobility Demographics  
Shared mobility use may vary by demographic characteristics including gender, age, race, income, and 
education level. Generally, users tend to be male, Caucasian, ages 25 to 34, and with high annual 
incomes and levels of educational achievement. Table 24 summarizes different demographic trends 
regarding carsharing, bikesharing, scooter sharing, and TNC users. The table uses a metanalysis 
approach. This approach aggregates the results of multiple studies across the United States. The data 
used were the most recent at the time of each source’s publication. The metadata analysis was selected 
because shared mobility modes and resulting studies are relatively new, resulting in inconsistently 
provided data (e.g., age and race but not education, information only in a select area). A metadata 
analysis provides a broader look at the overall shared mobility user demographics. The analysis and 
table findings can help detail the demographic characteristics of users of each mode, which may indicate 
equity concerns. Further equity concerns as discussed following the table.  
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Table 24. Shared Mobility User Demographics 

Mode Gender Age Race Income Education Source 

Carsharing 
Female: 43-
49% 
Male: 47-56% 

<18: n/a 
18 to 24: 5-38% 
25 to 34: 23-48% 
35 to 44: 16-23% 
45 to 54: 11-16% 
55 to 64:  5-15% 
65 to 74: 3-11% 
>75: 1-8% 
 

African American: 6-
22% 
American Indian or 
Alaska Native: 1-2% 
Asian: 13-14% 
Caucasian: 32-89% 
Hispanic: 1-29% 
Native Hawaiian or 
Pacific Islander: 0-1% 
Two or More Races: 2-
4% 
Other: 1-2% 

<$9,999: 2-9% 
$10,000 to $14,999: 5-6% 
$15,000 to $24,999: 6-9% 
$25,000 to $34,999: 7- 18% 
$35,000 to $49,999: 10-
19% 
$50,000 to $74,999: 14-
19% 
$75,000 to $99,999: 11-
15% 
$100,000 to $149,999: 7-
19% 
$150,000 to $199,000: 4-
21% 
>$200,000: 12-19% 
 

Grade School: 1-
19% 
High School/GED: 
2-24% 
Some College: 5-
10% 
Associate’s Degree: 
3-22% 
Bachelor’s Degree: 
22-43% 
Master’s Degree: 
15-28% 
Doctorate Degree: 
4-5% 
Other: 7-8 

Kim et al. (2017) 
Martin and 
Shaheen (2010) 
Martin et al. (2010) 
Martin et al. (2020) 
Martin et al. (2021) 
Shaheen et al. 
(2019) 

Shared 
Micromobility 
- Bikesharing 

Female: 34-45 
Male: 55-66 

<18: 1-3% 
18 to 24: 6-12% 
25 to 34: 26-48% 
35 to 44: 19-28% 
45 to 54: 10-23% 
55 to 64:  8-13% 
>65: 1-15% 
 

African American: 1-2% 
American Indian or 
Alaska Native: 0% 
Asian: 3-6% 
Caucasian: 61-92% 
Hispanic: 1-5% 
Native Hawaiian or 
Pacific Islander: 0%  
Other: 1-5% 

<$9,999: 1-5% 
$10,000 to $14,999: 2-3% 
$15,000 to $24,999: 3-5% 
$25,000 to $34,999: 3-6% 
$50,000 to $74,999: 19-
31% 
$75,000 to $99,999: 14-
20% 
$100,000 to $149,999: 12-
18% 
$150,000 to $199,000: 8-
12% 
>$200,000: 7-8% 

Less than High 
School: 0% 
High School/GED: 
1-2% 
Some College: 7-
11% 
Associate’s Degree: 
3-4% 
Bachelor’s Degree: 
42-43% 
Advanced Degree: 
42-46% 
Other: n/a 

Hirsch et al. (2019) 
Shaheen et al. 
(2012) 
Shaheen et al. 
(2014) 

Shared 
Micromobility 

- Scooter 
Sharing 

Female: 19-
34% 
Male: 34-81% 

<18: 1-2% 
18 to 24: 5-21% 
25 to 34: 31-42% 
35 to 44: 25-27% 
45 to 54: 9-19% 
55 to 64:  4-16% 

African American: 2-3% 
American Indian or 
Alaska Native: n/a 
Asian: 4-5% 
Caucasian: 67-79% 
Hispanic: 9-10% 

<$9,999: 9-10% 
$10,000 to $14,999: 11-
12% 
$15,000 to $24,999: 8-11% 
$25,000 to $34,999: 9-11% 

Less than High 
School: n/a 
High School/GED: 
7-8% 
Some College: 25-
26% 

City of Santa 
Monica (2019) 
Dibaj et al. (2021) 
National 
Association of City 
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Mode Gender Age Race Income Education Source 
>65: 0-2% 
 

Native Hawaiian or 
Pacific Islander: n./a 
Two or more: 5-6% 
Other: 8-9% 

$35,000 to $49,999: 10-
15% 
$50,000 to $74,999: 14-
22% 
$75,000 to $99,999: 12-
14% 
$100,000 to $149,999: 17-
36% 
$150,000 to $199,000: 9-
10% 
>$200,000: n/a 

Associate’s Degree: 
n/a  
Bachelor’s Degree: 
65-66% 
Advanced Degree:  
Other: n/a 

Transportation 
Officials (2019) 
Orr et al. (2019) 
Rayaprolu and 
Venigalla  (2020) 
Sanders et al. 
(2020) 
Zhang and Guo 
(2021) 

TNCs Female: 40-53 
Male: 47-60 

<18: n/a 
18 to 24: 17-62% 
25 to 34: 25-69% 
35 to 44: 13-69% 
45 to 54: 6-10% 
55 to 64: 2-3% 
>65: 1-4% 
 

African American: 3-
27% 
American Indian or 
Alaska Native: 2-4% 
Asian: 8-23% 
Caucasian: 21-84% 
Hispanic: 10-54% 
Native Hawaiian or 
Pacific Islander: n/a 
Two or more: 6-14% 
Other: 5-15% 

<$9,999: n/a 
$10,000 to $14,999: n/a 
$15,000 to $24,999: n/a 
$25,000 to $34,999: n/a 
$35,000 to $49,999: 18-
19% 
$50,000 to $74,999: 19-
20%  
$75,000 to $99,999: 14-
15% 
$100,000 to $149,999: n/a 
$150,000 to $199,000: n/a 
>$200,000: n/a 

Less than High 
School: 1-5% 
High School/GED: 
8-19% 
Some College: 19-
20% 
Associate’s Degree: 
7-42% 
Bachelor’s Degree: 
21-54% 
Advanced Degree: 
25-27% 
Other: n/a 

Circella et al. 
(2018) 
Clewlow and 
Mishra (2017) 
Gehrke et al. 
(2018) 
Grahn et al. (2019) 
Hampshire et al. 
(2018) 
Henao et al. (2019) 
Rayle et al. (2016) 

 

 



 

 

A. 1.2 Shared Mobility Equity Impacts 
Shared mobility adoption may be lower among vulnerable populations, particularly: 1) 
people with disabilities; 2) unbanked and underbanked households; 3) low-income 
households; and 4) individuals who are not digitally literate (Shaheen & Cohen, 2018). 
These demographic groups often make up disadvantaged communities. Disadvantaged 
communities are defined as those who most suffer from a combination of economic, 
health, and environmental burdens. These burdens include poverty, high 
unemployment, air and water pollution, presence of hazardous wastes as well as high 
incidence of asthma and heart disease (California Public Utilities Commission, n.d.). 
Shared mobility’s equity impacts are further described in the following subsections.  

A. 1.2.1 People with Disabilities 
An estimated one in four Americans currently lives with a disability (Center for Disease 
Control, 2018). In the United States, by 2045, the number of Americans over the age of 
65 will increase to 77% (U.S. Department of Transportation, 2016). As populations 
across the world age, the number of persons with disabilities will continue to increase 
(U.S. Department of Transportation, 2016). Shared mobility has the opportunity to 
lower the cost and diversify the range of assisted modes to users with cognitive and 
physical challenges. However, rapid technology change can create unforeseen access 
challenges for disabled users, if specific needs are not considered (Shaheen, Bell, 
Cohen, & Yelchuru, 2017). People with disabilities may face challenges including visual 
limitations making it hard to recognize their TNC vehicle, physical difficulties prohibiting 
them from operating shared micromobility devices, cognitive differences impacting 
their understanding and use of shared mobility apps and platforms, et cetera (Goralzik, 
Konig, Alciauskaite, & Hatzakis, 2022). Organizations have begun funding programs to 
increase transportation equity, including with shared mobility. The U.S. Department of 
Transportation’s Intelligent Transportation Systems Joint Program Office (ITS JPO) 
launched the Accessibility Transportation Technologies Research Initiative (ATTRI) 
through a partnership with the National Institute on Disability, Independent Living, and 
Rehabilitation Research (NIDILRR) to improve transportation accessibility in the areas of 
wayfinding and navigation, pre-trip concierge and visualization services, safe 
intersection crossings, and robotics and automation. However, studies are limited on 
how programs like these improve transportation accessibility. 

Mandated by federal law, demand-responsive service provides support to passengers 
with limited mobility through dial-a-ride or paratransit services. However, these 
services often have limited geographic coverage, require advance scheduling, and are 
generally very expensive to operate on a per trip basis (compared to public 
transportation and other modes). Demand-responsive, shared mobility services for 
people with limited mobility may be one way of complying with U.S. federal 
requirements and potentially offering users enhanced services (e.g., reduced wait 
times) and at reduced cost (e.g., to the end user, public agency, or both). However, 
shared mobility also can raise a number of social equity concerns, particularly around 
the lack of demand-responsive services for passengers with limited mobility when 



 

 

shared modes do not offer accessible services or equivalent accessible alternatives 
(Shaheen S. , Cohen, Yelchuru, & Sarkhili, 2017). 

A. 1.2.2 Unbanked and Underbanked and Low-Income Households  
Economic inclusion can represent a notable barrier for some travelers. Many shared 
mobility services require debit/credit cards for payment and, in some cases, collateral 
for vehicles or equipment. This can be a barrier for consumers who are underbanked or 
unbanked (i.e., households without a bank account or debit/credit card). For example, 
two major TNCs – Lyft and Uber – accept payment options that include major credit and 
debit cards, prepaid cards, various payment platforms (e.g., Google Pay, Venmo), and 
direct bank account links, but not cash (Lyft; Uber). In Uber’s payment information 
section, the company explicitly states that it is intended to be a cash free experience. 
Similarly, Lime, a scooter sharing company, accepts bank account-based payment 
services (Lime). In 2019 in the San Francisco Bay Area, the San Francisco Bicycle 
Coalition advocated for the local bikesharing program, Bay Wheels, to maintain a cash 
payment option to serve populations, such as low-income riders (Lewis, 2019). Cash 
payments are currently accepted for Bay Wheels riders. However, paying with cash 
requires the completion of one of two multistep processes: 1) using a Clipper card (the 
local public transit agency reusable fare card), 2) purchasing a prepaid card. To use a 
Clipper card, riders must go to a single location in Downtown San Francisco, even 
though Bay Wheels serves multiple cities in the Bay Area (e.g., Oakland, San Francisco, 
San Jose), to add cash to then be used to pay for Bay Wheels rides (Metropolitan 
Transportation Commission). If riders wish to use a prepaid card, they must go to select 
retail locations (e.g., drug stores, grocery stores, online), although a list of specified 
retailers is not available online, then load the card then use it for membership or use 
charges (Lyft). Information is not available as to whether or not these cash payment 
options have increased Bay Wheels use for unbanked and underbanked households.  

To assess the inclusiveness of the banking system, the U.S. Federal Deposit Insurance 
Corporation (FDIC) conducts a biennial survey of household access to the bank system. 
In 2017, the FDIC found that 6.5% (approximately 8.4 million) of U.S. households were 
“unbanked” and did not have access to an account at a financial institution ( Federal 
Deposit Insurance Corporation, 2018). The survey also found that 18.7% (approximately 
24.2 million) of U.S. households were “underbanked” meaning that a household had a 
checking or savings account but also obtained financial products and services outside of 
the banking system ( Federal Deposit Insurance Corporation, 2018). In addition to 
banking access, the survey also asked questions about access to credit card payment 
methods. Sixty-nine percent of households surveyed had a credit card from Visa, 
MasterCard, American Express, or Discover ( Federal Deposit Insurance Corporation, 
2018). However, the survey found that only 7.2% of unbanked households had a credit 
card, compared to 60% of underbanked households and 76.3% of fully banked 
households. 



 

 

The study also found that a household’s availability and use of mainstream credit 
products varied widely across demographic and socioeconomic groups ( Federal 
Deposit Insurance Corporation, 2018). Generally, households that were lower income, 
less educated, Black or Hispanic, younger, older, or with a working-age disabled 
member(s) were less likely to use mainstream credit cards. The study also identified 
related racial and ethnic demographic differences that could have been contributing 
factors. For example, the study found that 36% of African American households and 
31.5% of Hispanic households had no mainstream credit compared to 14.4% of 
Caucasian households. At all income levels, African American and Hispanic households 
were more likely not to have mainstream credit. The study concluded that racial and 
ethnic differences in bank account ownership and socioeconomic and demographic 
characteristics beyond income can account for some, but not all, of the racial and 
ethnic differences in the likelihood of limited or no mainstream credit. 

Additionally, shared mobility typically employs a pay-as-you-go pricing model that can 
be expensive (and sometimes costlier in comparison to walking, cycling, and public 
transportation) (Manjoo, 2016). For example, in Helsinki, Finland, the Kutsuplus 
program, a municipal demand-responsive transit service in the urban core, was 
critiqued as having too few vehicles and too large a service area, creating higher user 
fees. The program had a service area of 100 square kilometers (approximately 38 
square miles) with a fleet of 10 shuttles (expanding later to 15 vehicles). This resulted in 
higher program costs and fares with a base fare of $4.75 plus $0.60 per kilometer 
(about $0.97 per mile) (Shaheen & Cohen, 2018; Barry, 2013; Shared-Use Mobility 
Center, 2016). 

Other pricing strategies, such as surge or demand-pricing, can also create affordability 
challenges. Proponents of dynamic pricing argue that surge pricing can help to increase 
supply and manage demand. However, other studies have found that uncertain 
roundtrip costs (e.g., the risk of surge pricing on the return leg of a journey) can make 
these services less desirable or reliable, particularly among low- to moderate-income 
user groups (Shaheen & Cohen, 2018). 

A. 1.2.3 Individuals without Digital Literacy 
While some shared modes can be accessed without a smartphone, shared mobility 
increasingly requires a smartphone and high-speed data packages to access services, 
multimodal aggregation, on-demand trip planning, booking, and payment. Lack of 
mobile Internet access can inhibit travelers from using shared modes. Since many 
shared mobility services are accessed by a smartphone, even the lack of familiarity with 
and access to mobile and web technology can preclude users from accessing the 
potential benefits of these services. 

One notable social equity concern is the lower rate of smartphone and mobile data 
usage among older adults, lower-income households, and persons with disabilities; this 
is often referred to as the digital divide or digital poverty (Shaheen, Bell, Cohen, & 
Yelchuru, 2017; Shaheen & Cohen, 2018; Anderson, Perrin, & Jiang, 2018). According to 



 

 

a recent study by Anderson et al. (2018), 11% of Americans do not use the Internet. The 
percentage of Americans who do not use the Internet is notably higher among 
vulnerable populations including older adults, rural residents, low-income households, 
and individuals without a high school diploma. Of the U.S. adults who do not use the 
Internet, Anderson et al. (2018) found that 35% had less than a high school diploma, 
34% were 65 years of age or older, 22% lived in rural communities, and 19% had an 
annual household income of less than $30,000 (Anderson, Perrin, & Jiang, 2018). Lack 
of Internet access can be a barrier to low-income and rural households who may not be 
able to afford or may lack mobile data coverage to access shared mobility modes. 
Swenson and Ghertner (2020) found that 18% of individuals who had incomes below 
the federal poverty line lacked internet access. Additionally, households below the 
federal poverty line in nonmetropolitan areas were 8% less likely to have internet 
access compared to similar households in metropolitan areas (Swenson & Ghertner, 
2020). Alternatives such as digital kiosks, telephone services, and non-tech access (such 
as street hail) can help overcome these challenges.  Research on ridesharing services for 
older adults by Freund et al. (2021) found that these services, which include service 
considerations like ride requests that can be made via smartphone app and phone-in 
options, have the potential to address equity and mobility gaps for older adults.  

A. 1.3 Common Shared Mobility Impacts  
In addition to adoption differences across different populations, carsharing, ridesharing, 
shared micromobility, and TNCs may impact societal features (e.g., vehicle miles 
traveled, greenhouse gas emissions), as well as individual changes (e.g., travel behavior 
decisions). The impacts from these modes are described in the following subsections.  

A. 1.3.1 Carsharing Impacts 
Carsharing provides members access to a fleet of autos for short-term use throughout 
the day, reducing the need for one or more personal vehicles. Carsharing tends to be 
more widely available in walkable, high-density mixed-use areas (Cohen, Shaheen, & 
McKenzie, 2008). However, evidence has shown that carsharing can fulfill various use 
cases in different built environment types and land uses including central business 
districts, new development units, and university and medical campuses (Cohen, 
Shaheen, & McKenzie, 2008). In lower-density areas, different carsharing business 
models considerations may need to be factored in, such as greater public agency 
involvement (Rotaris & Danielis, 2018). 

A number of academic and industry studies of shared mobility have documented 
carsharing impacts, predominantly employing self-reported survey data. These studies 
collectively show the following commonly associated carsharing outcomes: 

● Sold vehicles or delayed or foregone vehicle purchases; 

● Increased use of some alternative transportation modes (e.g., walking, biking); 

● Reduced VMT/VKT; 



 

 

● Increased access and mobility for formerly carless households; 

● Reduced fuel consumption and GHG emissions; and 

● Greater environmental awareness. 

While the environmental, behavioral, and economic impacts of carsharing services have 
been well studied, the magnitude of impact varies. Variations in measured impacts can 
be due to a variety of factors such as 1) region; 2) density; 3) built environment; 4) 
public transit accessibility; and 5) business model.  

The vast majority of carsharing impact studies have examined carsharing’s impact 
based on business-to-consumer (B2C) and peer-to-peer (P2P) business models. In a B2C 
model, a carsharing provider offers individual consumers access to a business-owned 
fleet of vehicles through memberships, subscriptions, user fees, or a combination of 
pricing models. Examples of B2C carsharing providers include Zipcar and Enterprise 
CarShare (roundtrip) and GIG Car Share (free-floating one-way). In a P2P model 
(sometimes referred to as personal vehicle sharing), carsharing providers broker 
transactions among vehicle owners and guests by providing the organizational 
resources needed to make the exchange possible. Members access vehicles through a 
direct key transfer from the host (or owner) to the guest (or driver) or through 
operator- installed, in-vehicle technology that enables unattended access. Pricing and 
access terms for P2P carsharing services vary, as they are typically determined by 
vehicle hosts listing their vehicles. The P2P carsharing operator generally takes a 
portion of the P2P transaction amount in return for facilitating the exchange and 
providing third-party insurance. Examples of P2P carsharing providers in the United 
States include Turo (formerly RelayRides) and Getaround. 

A. 1.3.2 Impacts of Business-to-Consumer (B2C) Carsharing 
According to Shaheen et al. (2019) carsharing participation may also contribute to: 

• Lower vehicle miles traveled (VMT)/vehicle kilometers traveled (VKT) by as 
much as 67%,  

• Reduced parking demand by removing as many as 11 vehicles for every 
carsharing vehicle and encouraging up to 23% and 44% of carsharing members 
to sell or avoid purchasing a vehicle respectively, and  

• Increased use of other transport modes (such as cycling and walking) in lieu of 
vehicle travel by as much as 49% for select modes.  

Further information on how these numbers vary by location, built environment type, 
and service characteristics can be found here.  

Carsharing is also thought to lead to lower VMT/VKT by emphasizing variable driving 
costs, such as per hour and/or mileage charges. Reduced vehicle ownership rates and 
VMT/VKT can also lead to lower greenhouse has (GHG) levels, as trips are shifted to 
other modes (e.g., shared rides, public transit). Additionally, empirical evidence 
demonstrates that carsharing has a range of beneficial social impacts (Shaheen, Cohen, 

https://www.sciencedirect.com/science/article/abs/pii/S2543000919300356


 

 

& Farrar, 2019)(Shaheen, Cohen, & Farrar, 2019). For example, carsharing may offer a 
more cost-effective vehicle access option for lower-income households. Additionally, 
the anticipated lower environmental impacts from carsharing may benefit 
disadvantaged communities in particularly, as this population tends to be 
disproportionately impacted by negative environmental impacts (Shaheen, Cohen, & 
Farrar, Carsharing's Impact and Future, 2019) 

A. 1.3.3 Impacts of Peer-to-Peer (P2P) Carsharing 
A few studies have examined P2P carsharing impacts. Shaheen et al.  (2018) found that 
P2P carsharing encourages some households to reduce, delay, or even avoid a vehicle 
purchase. P2P carsharing also enables hosts to reduce their ownership costs, monetize 
otherwise idle assets, or both. The authors surveyed 1,151 guests and hosts from three 
U.S. P2P carsharing companies and documented four key findings: 

1. Vehicle Ownership: Forty-six percent of P2P carsharing members were from 
carless households that joined P2P carsharing to gain additional mobility. 
Another 20% enrolled to earn money sharing their vehicle, while 14% of 
respondents indicated that they held off on a vehicle purchase due to their 
carsharing membership. A small percentage (3%) noted that they had sold a 
vehicle because of their membership. . It is important to note that it is difficult 
to definitively identify differences between B2C and P2P vehicle ownership 
rates due to data limitations.  

2. Ease of Use: Forty-eight percent of respondents felt that P2P carsharing was 
easier than expected to use compared to 15% who said that vehicle sharing was 
more challenging to employ than anticipated. 

3. Travel Mode Changes: Most respondents reported no major change in their 
public transit use as a result of P2P carsharing, with 9% increasing bus ridership 
and 10% decreasing it. Similarly, 7% of respondents reported increasing rail use, 
while 8% reported a decrease. Taxi use showed a net decline among all 
respondents. Survey respondents that use TNCs were split, as 9% reported an 
increase and another 9% noted a decrease. In contrast, carpooling showed a 
net increase (6%) among the sample, suggesting that P2P carsharing users were 
likely traveling with multiple occupants. 

4. Super Sharers: In addition, P2P carsharing was used in conjunction with other 
shared mobility services. Respondents reported that 14% were members of at 
least one other P2P carsharing service, 43% were members of at least one 
other carsharing organization, and 78% had used at least one other shared 
mobility service. Many P2P carsharing members were also frequent Lyft and 
Uber users, broadly suggesting that they used an array of shared mobility 
modes to meet their mobility needs (Shaheen, Martin, & Bansal, 2018). 

 

Additionally, the study unveiled motivations and barriers for using P2P carsharing. For 
vehicle owners, key opportunities and motivations included 1) increasing revenue on 



 

 

existing, often underused vehicles and 2) contributing to the “sharing economy” by 
providing mobility access to others. Common barriers for vehicle owners included 1) 
concerns about their inability to use their personal vehicle when it is accessed by a 
guest, 2) potential vehicle damage, and complex insurance requirements that vary by 
jurisdiction. 

For vehicle guests, key opportunities and motivations to participate in P2P carsharing 
were 1) accessing a wide array of vehicles, including luxury and zero- emission models 
and 2) avoiding the costs and hassles associated with private vehicle ownership, such as 
parking, maintenance, and insurance. Common barriers for vehicle owners include 1) 
first- and last-mile connections to access P2P carsharing vehicles, 2) key pick-up and 
drop-off, and 3) lack of reliable response from a car host following a sharing request. 
Access to/from vehicles and other challenges suggest expanding P2P carsharing outside 
of urban areas could be more challenging. 

While P2P carsharing studies are limited, a few have supported the findings of Shaheen 
et al. (2019), particularly regarding VMT. A P2P carsharing study in Portland, Oregon 
found that overall, P2P carsharing participants’ driving behavior did not significantly 
change. However, for 39% of drivers their driving decreased by 10% from their annual 
baseline due to variations in baseline higher vehicle use, higher rental activity, income 
constraints, and increased travel behavior flexibility (Dill, McNeil, & Howland, 2019).  

Similarly, in a P2P carsharing model, vehicle owners may be incentivized to reduce their 
driving to make their vehicle more widely available why carsharing borrowers may 
reduce vehicle ownership and drive less due to the more apparent marginal vehicle 
costs (Dill, McNeil, & Howland, 2017).  

Additionally, Clark et al. (2014) found that P2P overall increases driving mileage among 
carsharing participants. This is likely, in part, because individuals who are part of 
corporate carsharing services (i.e., businesses offer employees carsharing access) tend 
to make more business trips than they otherwise would. However, P2P carsharing does 
reduce personal vehicle travel and commuting trips for corporate carsharing members 
(Clark, Gifford, & Le Vine, 2014).  

P2P carsharing represents a portion of carsharing, which is part of the overall suite of 
shared mobility options. While the study by Shaheen et al. (2018) provides insights 
from thorough research on P2P carsharing, the findings focus on characteristics within 
P2P carsharing users and compared to larger demographic trends. The findings are not 
compared to other carsharing users. Even though these findings are limited to P2P 
carsharing users, they provide useful insights on how to leverage existing resources 
(e.g., personally owned vehicles) to increase mobility. Additionally, P2P carsharing could 
increase equity in similar ways to other carsharing business models, such as by 
increasing more affordable vehicle access and reducing environmental impacts for all. 
See Table 25 for further potential impacts. The section following the table discusses 
shared rides, rather than shared vehicles. 



 

 

Table 25. Carsharing Impacts 

Impact 
Category 

Service Name 
Location 

(if applicable) 
Finding Source 

Environmental 

car2go 
Germany 

Over 25% of car2go members/survey respondents would forgo a vehicle purchase if car2go 
was a permanent service.  
The car2go service could potentially result in a reduction of 146 to 312 kilograms of CO2 per 
participating household annually.  

Firnkorn and 
Muller (2011) 

Europe Carsharing is estimated to reduce the average user’s carbon dioxide emissions by 40% to 50%. Ryden and Morin 
(2005) 

North America** Carsharing resulted in an estimated an average GHG emission reduction of 34% to 41% per 
household or an average reduction of 0.58 to 0.84 metric tons per household. 

Martin and 
Shaheen (2011) 

North America* 

On average, car2go carsharing reduced passenger vehicle GHG emissions by 4% (Calgary) to 
18% (Washington, D.C.). 
Carsharing fleets that include low-emission vehicles — such as electric, plug-in hybrid, and 
gasoline-electric hybrid cars— can contribute to additional GHG emission decreases.  

Martin and 
Shaheen (2016) 

 One-way electric vehicle-based carsharing can offer a potential public transit connection that 
has lower environmental impacts. 
In order to full capture the potential benefits of one-way, electric carsharing, vehicle 
redistribution systems will need to be strategically considered.  

Mounce and 
Nelson (2019) 

 Various strategies have been employed to address one-way carsharing vehicle redistribution 
challenges and these may be implemented to maximize the potential carsharing 
environmental benefits.  

Illgen and Hock 
(2019) 

 Individuals who gave up personal vehicles due to carsharing participation can decrease their 
transportation-based impacts by 40%.  
Zero-car households who started using carsharing as at least 3% of their VMT increased their 
transportation-based emissions by 0.42 to 0.7%.  
These findings are comparable for both B2C and P2P models. 

Velez (2023) 

 Carsharing members also report a higher degree of environmental awareness after joining a 
carsharing program. 

Lane (2005) 



 

 

Impact 
Category 

Service Name 
Location 

(if applicable) 
Finding Source 

Modal 

Autolib 
France* 

Carsharing participants removed 3 private vehicles from the road (on average), reducing 
overall private vehicle ownership by 23%.  
Both roundtrip and one-way carsharing forms reduced private vehicle use, with roundtrip 
carsharing having a greater reduction impact. 
Both carsharing forms reduced private bicycle use, and roundtrip carsharing increased 
bikesharing ridership. 
Roundtrip carsharing increased public transit use slightly. 
Station-based one-way carsharing reduced public transit use. 

6t (2014) 

Car2go 
Germany In a densely populated, urban area 1 shared vehicle could replace up to 24 personal vehicles. Firnkorn and 

Muller (2011) 

City CarShare 
San Francisco, 

CA 

Approximately 30% of City CarShare members (about 1,800) shed one or more personal 
vehicles. 
Two-thirds of carsharing members chose to postpone the purchase of another vehicle after 
using the service for 2 years. 

Cervero and Tsai 
(2004) 

CA, Sweden 
Expanding carsharing model and attribute (e.g., all-wheel drive, 7-seater vehicles) variety and 
availability, especially through P2P carsharing, could increase carsharing adoption and reduce 
personal vehicle ownership and use.  

Sprei and 
Ginnebaugh 
(2018) 

Canada** Between 15% and 29% of carsharing participants sold a vehicle after joining carsharing 
programs, while 25% to 61% delayed or had forgone a vehicle purchase. 

Martin et al. 
(2010) 
Communanauto 
(2000) 
Jensen (2001) 

Canada, U.S. 

Roughly 25% of carsharing members sold a vehicle due to carsharing and another 25% 
postponed a vehicle purchase due to roundtrip carsharing availability.  
One carsharing vehicle replaced 9 to 13 vehicles among carsharing members (on average 
across this aggregate-level study). 

Martin and 
Shaheen (2011) 

Canada, 
U.S. 

Each roundtrip carsharing vehicle removed an average of 6 to 23 cars on roads over the 
course of a year. Lane (2005) 



 

 

Impact 
Category 

Service Name 
Location 

(if applicable) 
Finding Source 

Martin et al. 
(2010) 
Zipcar (2005). 

Canada, U.S. 
 

Across five cities in the United States and Canada, about 2% to 5% of participants sold a 
vehicle after joining carsharing and 8% to 10% on average delayed or had foregone a vehicle 
purchase. 
Each free-floating one-way carsharing vehicle removed seven to 11 vehicles from the road. 

Martin and 
Shaheen (2016) 

Europe** A roundtrip carsharing vehicle reduced the need for 4 to 10 privately owned vehicles. Ryden and Morin 
(2005) 

Italy Adoption of carsharing could increase by 10% by diverting personal vehicle trips.  
Carsharing adoption could also crease active transportation and public transit adoption.  

Chicco and Diana 
(2021) 

Netherlands 
B2C and P2P carsharing adopters may vary in the frequency in which they use carsharing and 
public transit ; B2C adopters tend to use carsharing for more regular trips but use active 
transportation or public transit for other trips. 

Munzel et al. 
(2019) 

Portland, OR 

About 37% of families in poverty live in a census block group that contains at least one P2P 
vehicle, but only 13% live in a census block that has a roundtrip carsharing vehicle.  
In parts of East Portland, which is a lower-income area of Portland, P2P vehicles are the only 
type of carsharing vehicles available.  
P2P carsharing will likely have more pronounced impacts on below-median income 
consumers than above-median income users. 

Dill et al. (2014). 

Switzerland Free-floating carsharing can reduce personal vehicle use by 6%. Becker et al. 
(2018) 

U.S. 

Carsharing resulted in a slight overall decline in public transit use. 
Carsharing members tended to increase their use of alternative modes (e.g., walking). 
Modal impacts may vary by location-specific variations including urban density, public transit 
service and availability, sociodemographics, and cultural norms. 

Martin and 
Shaheen (2011) 

U.S.** About 11% to 26% of carsharing participants sold a personal vehicle. 
Nearly 12% to 68% carsharing participants postponed or entirely avoided a car purchase. Lane (2005) 



 

 

Impact 
Category 

Service Name 
Location 

(if applicable) 
Finding Source 

Martin et al. 
(2010) 
Arlington County 
Commuter 
Services (2012) 

Societal 

North America** Carsharing households saved an average of $154 US to $435 US per month in contrast to 
private vehicle use. 

Shaheen et al. 
(2012) 

City CarShare 
San Francisco, 

CA 

Almost 30% of carsharing members got rid of one or more vehicles after joining the 
carsharing service. 
Approximately 2/3 of carsharing members opted not to purchase another vehicle.  

Cervero and Tsai 
(2004) 

U.S. Low-income households and college students can also benefit from participation in carsharing 
programs. 

Kyeongsu (2015) 
Stocker et al. 
(2016) 

U.S. 

Households can gain or maintain access to vehicles without bearing the full costs of car 
ownership.  
Depending on the location and the organization operating the carsharing program, the 
maximum user mileage where carsharing is more cost effective (in comparison to owning or 
leasing a personal vehicle) between 6,200 and 10,000 miles. 

Shaheen et al. 
(2006) 

VMT/VKT 

Autolib 
France* One-way station-based carsharing recorded an 11% VKT reduction. 6t (2014) 

Canada, U.S.** Carsharing VMT/VTK reductions, on average, ranged from 7.6% to 80% of a member’s total 
VMT/VKT.  

Shaheen et al. 
(2006) 

Canada, U.S.* 

VMT reductions ranged from 6% (in Calgary, Alberta) to 16% (in Vancouver, British Columbia 
and Washington, D.C.) for free-floating one-way carsharing in the United States and Canada. 
(This percentage reduction considers an estimate of the total driving by households on 
average, as derived from annual VMT/VKT responses and broader driving reductions 
computed for the population.) 

Martin and 
Shaheen (2016)  



 

 

Impact 
Category 

Service Name 
Location 

(if applicable) 
Finding Source 

Canada, U.S.** Roundtrip carsharing reduced VMT/VKT from 27% to 43% in the United States and Canada.  Martin and 
Shaheen (2011) 

Europe** VKT reductions ranged from 28% to 45% on average. Shaheen and 
Cohen (2007) 

*One-way carsharing  

**Roundtrip carsharing 



 

 

A. 1.4 Ridesharing 
Empirical and anecdotal evidence indicates that ridesharing (e.g., carpooling and 
vanpooling) provides numerous societal benefits, such as:  

• Reduced vehicle miles/kilometers traveled and congestion mitigation, 

• Reduced energy consumption and emissions, and 

• Reduced parking and roadway infrastructure demand. 

One impact commonly associated with ridesharing is a reduction in VMT/VKT. VMT/VKT 
is a travel demand metric that measures the sum of the number of miles traveled by 
each vehicle. Employee-based trip reduction (EBTR) and transportation demand 
management (TDM) programs are recognized as best practices to support VMT 
reduction goals. However, many of these programs lack performance monitoring and 
assessment and only a handful of empirical studies have examined the VMT impacts of 
these policies.  

A. 1.4.1 Individual Impacts of Ridesharing 
Studies suggest that ridesharing is a flexible strategy that can be employed by many 
users. Although research is limited, ridesharing participants frequently benefit from 
pooling in a number of ways. Individually, ridesharing users can benefit from: 

● Cost savings (through shared travel costs), 

● Travel time savings from high occupancy vehicle (HOV) lane access and 
preferential parking at destinations, and 

● Reduced commute stress (through shared driving responsibilities). 



 

 

Table 26. Ridesharing Impacts 

Impact 
Category Finding Source(s) 

GHG 
Emissions In China, ridesharing could reduce CO2 emissions by 46.2 thousand tons and NOX emissions by 253.7 tons.  Yu et al. (2017) 

 
Ridesharing can save fuel and reduce greenhouse gas (GHG) emissions by increasing vehicle occupancy. 
Carpooling could save 33 million gallons of gasoline daily if each average commuting vehicle carried one 
additional passenger (PACommutes, 2016). 

Minett and Pearce (2011) 

 Enacting policies to increase pooling is the most effective strategy to reduce energy consumption besides 
driving prohibitions. Noland et al. (2006) 

 Adding one additional passenger added to every 100 vehicles could result in a potential fuel savings of 0.80 to 
0.82 billion gallons of gasoline per year in the United States.  
If one additional passenger was added to every 10 vehicles there could be a potential annual fuel savings of 
7.54 to 7.74 billion gallons per year in the United States. 

Jacobson and King (2009) 

 Individual carpoolers reduce personal annual commute GHG emissions by approximately 4% to 5% after 
joining an employer trip reduction program.   Hillsman et al. (2001) 

 Adding one passenger to every 10 vehicles could result in a savings of 68 million tons of GHG emissions 
annually in the United States. Jacobson and King (2009) 

 Employing information and communication technology (ICT), such as app-based carpooling, to optimize 
roadway performance could abate 70 to 190 million metric tons of carbon dioxide emissions annually. 

The Global e-
Sustainability Initiative 
(2008) 

Societal 
Casual carpooling users between the ages of 25 and 34 in Houston, Texas were more likely to make commute 
trips (96%) versus noncommute trips (80%). 
HOV lane users tended to belong to larger households with over 60% of carpools comprising family members. 

Burris and Winn (2006) 

 Carpooling can provide job access to households with lower incomes and households with more workers than 
vehicles.  Tomer (2016) 

 Ridesharing users tend to have lower incomes, and Hispanics and African Americans carpool more than other 
racial and ethnic groups. Liu and Painter (2012) 



 

 

Impact 
Category Finding Source(s) 

Ridesharing may serve an important role in enhancing mobility in low-income, immigrant, and nonwhite 
communities where travelers are more likely to be unable to afford personal automobiles and obtain driver’s 
licenses. 

 Some ridesharing users can have longer commute distances and therefore have higher commute costs.  
Ridesharing can be an important cost-saving travel strategy for commuters.  
Carpool participants were more likely to have lower incomes and be the second worker in a household.  

Teal (1987) 

 According to a 1998 survey, approximately 9,000 commuters (6,000 riders and 3,000 drivers) used casual 
carpooling each weekday morning in the San Francisco Bay Area. 

Metropolitan 
Transportation 
Commission (1999) 

 Commuters who participate in ridesharing frequently have access to preferential parking and HOV lanes, 
which also contribute to pooling’s convenience and time savings.  
Casual carpooling can result in travel time savings, cost savings, and convenience as key motivators to share a 
ride. 

Burris and Win (2006) 
Maltzman and Beroldo 
(1987) 
Reno et al. (1989) 
Beroldo (1990) 

 Convenience, time savings, and monetary savings were key motivators to carpool. Shaheen et al. (2016) 
 In Washington D.C. and Northern Virginia, driver departure flexibility was a primary reason for driving instead 

of riding as a carpool participant.  
The top reason for choosing to be a rider was the desire to save on gasoline cost, followed by a preference to 
do other things during the drive. 
About 60% of casual carpooling participants in Washington D.C. and Northern Virginia only participated as 
passengers, 12% only as drivers, and 28% as both passengers and drivers. 

Oliphant (2008) 

VMT/VKT 

Employees participating in a TDM program had 4.2% to 4.8% lower VMT than employees at the same worksite 
who did not participate. 
Total VMT declined by 1.33% annually on all roadways and annual freeway VMT was reduced by 1.07% for the 
four central counties in metropolitan Seattle when TDM measures were implemented. 

Hillsman et al. (2001) 

 
VMT in Washington was reduced by 1.6% from carpooling over the course of the study. 

Interagency Commute 
Trip Reduction Board 
(2011) 

 TDM programs can reduce VMT for workplace commutes by 4% to 6% (or approximately 1% regionally). Boarnet et al. (2014) 



 

 

Impact 
Category Finding Source(s) 

 Employees of locations with TDM measures in place had an average VMT reduction of 6%. Lagerberg (1997) 
 



 

 

A. 1.5 Shared Micromobility Impacts 
Although before-and-after studies documenting shared micromobility impacts are 
limited, a few North American programs have conducted user surveys to record 
program outcomes. These studies suggest that a number of social, environmental, and 
behavioral impacts are attributable to shared micromobility, and an emerging body of 
empirical evidence supports many of these relationships—although more research is 
needed as studies on dockless modes (bikesharing and scooter sharing) are limited. In 
general, impact studies of shared micromobility tend to demonstrate the following 
outcomes: 

● Assistance with bridging gaps in the transportation network and encouraging 
multimodal journeys;  

● Increased use of some alternative and nonmotorized modes of transportation 
(e.g., walking and biking); 

● Potential for reduced fuel consumption and GHG emissions; 

● Opportunities to burn calories (Freed, 2014); and 

● Greater environmental awareness. 

Table 27 and Table 28 describe the economic, environmental, health, modal, and 
environmental impacts of bikesharing and scooter sharing, respectively.  

 



 

 

Table 27. Bikesharing Impacts 

Impact 
Category 

Service 
Location Finding Author 

Economic 
Nice Ride Minnesota 
Minneapolis and Saint 

Paul, MN 

Users spent an average of $1.25 per week on new economic activity that would likely have 
not occurred without the bikesharing system; this resulted in approximately $29,000 of new 
economic activity per season in the Twin Cities.  
Bikesharing stations may: 1) increase accessibility to station areas, 2) users may alter 
destinations or make additional trips, and 3) users spend more money in the immediate 
vicinity around bikesharing kiosks. 

Schoner 
(2012) 

Environmental Bluebikes 
Boston, MA 

In 2018, 267,000 users completed more than 1.7 million trips, traveled 2.1 million miles, and 
offset three million pounds of GHG emissions. 

Bluebikes 
(2019) 

 Fort Work BCycle 
Fort Worth, TX 

In 2017, approximately 15,000 unique riders completed 59,000 trips covering 266,000 miles, 
which offset 251,000 pounds of GHG emissions. 

Camareno 
and Brennan 
(2017) 

Health Bluebikes 
Boston, MA In 2018, users expended nearly 159 million calories riding on bicycles in 2018. Bluebikes 

(2019) 

 Capital Bikeshare 
Washington, D.C. 

Approximately, 31.5% of Capital Bikeshare users reported reduced stress, and about 30% 
indicated they lost weight due to bikesharing use.  
However, a key limitation of bikesharing health impact assessment studies is that they do 
not examine potential negative health impacts associated with ridership, such as the costs 
associated with increased exposure and risks related to injuries and collisions. 

Alberts et al. 
(2012) 

 CitiBike 
New York City, NY Between 2013 and 2018, users burned 4.5 billion calories between 2013. Motivate 

(2018) 

Modal  

Capital Bikeshare, 
Nice Ride 

Washington, D.C.; 
Minneapolis and Saint 

Paul, MN 
 

In Minneapolis-Saint Paul modal changes in response to bikesharing included:  
• 15% of people shifted toward rail while 3% shifted away from it,  
• 38% of respondents shifted toward walking while 23%, and  
• 15% of respondents increased their use of buses compared to 17% that decreased 

it.  
In Washington, D.C. modal changes in response to bikesharing included:  

• 47% of people shifted away from rail than to it (7%), 

Shaheen et 
al. (2012) 
 



 

 

Impact 
Category 

Service 
Location Finding Author 

• 31% of respondents shifted away from walking than to it (17%), and 
• 5% of respondents increased bus ridership compared to 39% that decreased it. 

 

Bike Share Toronto, 
BIXI Montreal, Capital 
Bikeshare, Nice Ride 

Toronto, Ontario; 
Montreal, Quebec; 
Washington, D.C.; 

Minneapolis and Saint 
Paul, MN 

Shifts toward public transportation in response to bikesharing tend to be more prevalent in 
lower-density regions on the urban periphery, suggesting that station-based bikesharing may 
serve as a first- and last-mile connector in smaller metropolitan regions with lower densities 
and less robust public transit networks.  
In larger metropolitan regions with higher densities and more robust public transit networks, 
station-based bikesharing may offer faster, cheaper, and more direct connections compared 
to short distance transit trips.  
Public bikesharing may be more complementary to public transportation in small and 
medium metropolitan regions and more substitutive in larger metropolitan areas, perhaps 
providing relief to crowded transit lines during peak periods 

Shaheen and 
Martin 
(2015) 

 Citi Bikeshare 
New York City, NY 

Every thousand bikesharing docks along a bus route are associated with a 1.69% to 2.42% 
reduction in daily unlinked bus trips on routes in Manhattan and Brooklyn (with and without 
controlling for bicycle infrastructure, respectively) 

Campbell 
and 
Brakewood 
(2017) 

Safety 

Bay Wheels, Capital 
Bikeshare, Nice Ride 

San Francisco Bay 
Area, CA; Washington, 
D.C.; Minneapolis and 

Saint Paul, MN 

The number of bicycle collisions was generally rising in bikesharing regions, but this increase 
was very likely due to bicycle activity growth in all regions. 
Between 2006 and 2013 the following trends were noted:  

• In Washington, D.C. the estimated number of people commuting to work by bicycle 
increased 162%, while bicycle collisions increased 121%.  

• In San Francisco, the estimated number of bicycle commuters increased 98%, and 
collisions increased 40%.  

• In Minneapolis-Saint Paul, collision rates remained relatively flat (a 1% increase), 
while bicycle commuters increased an estimated 65%. 

Identifying comparative safety outcomes is challenging for researchers to determine. If trips 
were diverted from automobiles, buses, or rail, then the risk to individual bikesharing users 
as well as overall transportation safety could be expected to increase—based on statistics of 
the per-trip fatality rates of bicycle ridership in comparison to car, bus, or train travel. 

Martin et al. 
(2018) 



 

 

Impact 
Category 

Service 
Location Finding Author 

 Bike Share Toronto, 
BIXI Montreal, Capital 
Bikeshare, Nice Ride 

Toronto, Ontario; 
Montreal, Quebec; 
Washington, D.C.; 

Minneapolis and Saint 
Paul, MN 

Operators with more than 1,000 bicycles have an average collision rate of 4.33 crashes per 
year, with rates decreasing among operators with smaller fleets. 

Shaheen et 
al. (2012) 

 Capital Bikeshare 
Washington, D.C. Only 6% of short-term users wore helmets, while 37% of annual users wore helmets. Buck et al. 

(2013) 
 Nice Ride, Capital 

Bikeshare 
Minneapolis and Saint 

Paul, MN; 
Washington, D.C. 

A high number of respondents in four North American cities never wear helmets: 
• 62% in Montreal,  
• 50% in Minneapolis-Saint Paul,  
• 45% in Toronto, and  
• 43% in Washington, D.C. 

Shaheen et 
al. (2014) 

 

Table 28. Scooter Sharing Impacts 

Impact 
Category 

Service 
Location Finding Author 

Environmental  

An average value of lifecycle global warming impacts of 202 grams (g) CO2-eq/passenger-mile, driven 
by materials and manufacturing (50%), followed by daily collection of scooters for charging (43%). 
The potential to reduce lifecycle emissions through a variety of scooter collection and charging 
approaches such as: 1) using fuel-efficient vehicles for collection (yielding 177 g CO2-eq/passenger 
mile), 2) limiting scooter collection to those with a low battery state of charge (164 g CO2-
eq/passenger-mile), and 3) reducing the driving distance per scooter for e-scooter collection and 
distribution (147 g CO2-eq/passenger-mile).  

Hollingsworth 
et al. (2019) 



 

 

Impact 
Category 

Service 
Location Finding Author 

However, when scooter sharing use replaces average personal automobile travel, there is almost 
universally a net reduction in environmental impacts. 

Modal 

Bird 
Rides 
Inc., 

Lime, 
Skip 

Transport 
Portland, 

OR 

Over the course of the four-month pilot in Portland, 700,369 scooter trips were made (averaging 
approximately 5,885 per day) covering a total of 801,888 miles (averaging 1.15 miles per a trip).  
Approximately 34% of local users would have used a motor vehicle had scooter sharing not been 
available.  
Roughly 19% of respondents would have driven a personal vehicle, and 15% stated they would have 
used a for-hire service, such as a taxi, Uber, or Lyft in the absence of scooter sharing.  
Among visitors, 48% would have used a motor vehicle (driving or a for-hire service) without the 
availability of scooter sharing.  
Around 6% of local users sold a vehicle, and 16% considered selling a vehicle due to standing electric 
scooter sharing. 
Nearly 43% percent of respondents said they would have either walked (37%) or ridden a bicycle (5%), 
if scooter sharing had not been available.  
However, scooter sharing added some vehicular trips to retrieve and redistribute scooters throughout 
the day.  

Portland Bureau 
of 
Transportation 
(2018) 

Safety 

Bird 
Rides 
Inc., 

Lime, 
Skip 

Transport 
Portland, 

OR 

During the pilot period, the study identified 176 scooter-related emergency room visits compared to 
16 during the same period a year earlier (prior to the pilot).  
On average, emergency room visits increased from less than one a week prior to the pilot to 
approximately 10 a week during the pilot period.  
The study also suggests that scooter-related emergency room visits accounted for approximately 5% 
of total traffic crash injury visits during the pilot.  
Of the entire sample of scooter-related emergency visits, 83% did not involve another mode 
compared to 13.6% involving a motor vehicle and 2.8% including a pedestrian.  
Only one collision (0.6%) was reported involving two scooters.  
Intoxication was reported in 16% of the collisions.  
PBOT staff observations suggest that approximately 90% of riders do not wear helmets. 
PBOT received over 1,600 complaints of illegal sidewalk riding, representing approximately 27% of 
public comments. These complaints generally indicated that sidewalk use made pedestrians and 
persons with disabilities feel unsafe.  

Portland Bureau 
of 
Transportation 
(2018) 



 

 

Impact 
Category 

Service 
Location Finding Author 

Los 
Angeles, 

CA 

Over 1-year period between September 2017 and August 2018, 249 patients sought medical 
treatment at two medical center emergency rooms.  
The mean age of patients was 33.7 years, and 58% of patients were male.  
Ninety-two percent were injured as riders compared to 8% as nonriders. Approximately 11% of 
patients were under 18 years of age, and less than 5% reported wearing a helmet.  
Roughly 5% of patients were intoxicated at the time of their medical treatment.  
Of the emergency room visits, only 6% (15 reports) were admitted patients, and only two cases (less 
than 1%) were admitted to the intensive care unit.  

Trivedi et al. 
(2019) 

 

 



 

 

A. 1.6 Transportation Network Company Impacts 
TNCs provide prearranged and on-demand transportation services for compensation, 
which connect drivers of personal vehicles with passengers. Smartphone applications 
are used for booking, ratings (for both drivers and passengers), and electronic payment. 
TNCs can provide both pooled services, sometimes referred to as ride-splitting, and 
non-pooled services. In a pooled service, a TNC ride serves separate parties with similar 
routes. In a non-pooled service, a TNC ride serves only one party. TNCs differ from 
taxicab services in that taxis are permitted to pick-up street hails where TNCs are not in 
most jurisdictions (Shaheen & Cohen, 2018). As TNCs have gained popularity, 
policymakers, advocates, and researchers have sought to understand how these 
services are changing travel behavior and affecting the environment. 

A number of studies assessing the impact of TNC services on modal shift have found 
that passengers are either substituting a trip they formerly made with another 
transportation mode (public transit, driving, walking, biking, etc.) or making a new trip 
they otherwise would not have made without the availability of TNC services (i.e., 
induced demand). There are conflicting conclusions regarding the extent to which TNCs 
compete with public transit. While some studies conclude that TNCs are largely not 
substituting for public transit trips (Hampshire, Simek, Fabusuyi, Di, & Chen, 2017; 
Feigon & Murphy, 2018; Clewlow & Mishra, 2017), several others suggest that a 
significant portion of travelers do substitute TNCs for public transit, biking, and walking 
(Martin, Shaheen, & Stocker, 2021; Gehrke, Felix, & Reardon, 2017; New York City 
Department of Transportation , 2017; Henao, 2017; Rayle, Dai, Chan, Cervero, & 
Shaheen, 2016; Alemi, Circella, Handy, & Mokharian, 2018). Past surveys show that the 
degree to which TNCs substitute for other travel modes varies by city and the built 
environment. Denser cities such as New York City, Boston, San Francisco, and 
Washington, D.C. exhibited some of the highest proportions of passengers who would 
have used public transit for their last TNC trip had TNCs been unavailable. 

It is important to note that aggregated cross-city studies may obscure city-specific 
differences in TNC impacts. Also, studies may frame the question aimed at analyzing 
modal shift differently. Some ask in a general manner what transportation mode 
travelers might have taken instead of a TNC, while others may ask what mode travelers 
would have used for their last TNC trip. Depending on how this question is presented, 
responses may be less representative. The results of existing modal shift studies are 
shown in Table 29, along with the survey question asked in each study. 

Broadly, TNC impacts can be summarized in terms of the impacts on public 
transportation ridership, automobile ownership, and VMT/VKT and GHGs. Each of these 
impacts are summarized in Table 29. Specific information on the modal impacts of TNCs 
can be found in Table 30.  



 

 

Table 29. TNC Impacts 

Impact 
Category Finding Source(s) 

Personal 
Vehicle 

Ownership 
About 9% of respondents sold one or more household vehicles due to TNCs.  Clewlow and Mishra 

(2017) 

 About 5% of respondents in Atlanta, 12% in the San Francisco Bay Area, and 21% in Washington, D.C. either 
postponed a purchase, decided not to purchase, or sold a personal vehicle due to TNCs. 

Feigon and Murphy 
(2018) 

 

About 9% of respondents acquired a personal vehicle due to the Uber service suspension in Austin, Texas.  
Another 9% considered purchasing one but ultimately did not.  
Although Lyft and Uber were not operating in Austin from mid-2016 to mid-2017, other smaller TNC services 
continued to operate in their place. An even larger portion of respondents may have acquired a personal 
vehicle, if all TNC services had exited the region. 

Hampshire et al. 
(2017) 

Public 
Transportation 

Uber acted as a complement for the average public transit agency in 196 U.S. Metropolitan Statistical Areas, 
increasing ridership by 5% after 2 years. Hall et al. (2018) 

 
Between 2010 to 2016 in six U.S. cities (Chicago, Illinois; Washington, D.C.; Los Angeles, California; Nashville, 
Tennessee; Seattle, Washington; and San Francisco, California) there was no relationship between the peak-
hour TNC trip share and changes in public transit ridership in these cities.  

Feigon and Murphy 
(2018) 

 A greater portion of respondents would have used public transit (bus and rail) than would have driven or rode 
in a personal vehicle, if TNCs were not available in San Francisco and Washington D.C.  Martin et al. (2021) 

 The entry and presence of TNCs cumulatively decreased heavy-rail ridership by 1.29% per year and bus 
ridership by 1.70% per year. Graehler et al. (2018) 

 

Passengers with lower incomes and those who possess a weekly or monthly transit pass were more likely to 
have substituted TNC services for public transit.  
Relatively low TNC service cost, low TNC trip times, poor weather, and the unavailability of public transit were 
also predictive of public transit substitution.  

Gehrke et al. (2017) 

VMT/VKT and 
GHG Emissions 

Usage rates among taxis and TNC vehicles declined in New York City between 2013 and 2017, while the 
number of unoccupied taxi and TNC vehicles increased by 81% over this time period.  
The total taxi and TNC weekday mileage in the central business district (CBD) increased by 36% from 2013 to 
2017. 

Schaller (2017) 



 

 

Impact 
Category Finding Source(s) 

After accounting for mileage declines in yellow cabs and personal vehicles, TNCs and other on-demand ride 
services (including Uber, Lyft, Via, Gett, and Juno) contributed 600 million additional miles of vehicle travel to 
the city’s roads between 2013 and 2016.  
These additional miles equate to an estimated 3.5% increase in citywide VMT and a 7% increase in VMT in 
Manhattan, western Queens, and western Brooklyn in 2016. 

 In San Francisco and Los Angeles, the VMT produced by Lyft and Uber was larger than the VMT reductions 
that occurred due to passenger behavior and vehicle ownership changes.  
In Washington, D.C., the balance of impacts resulted in a net VMT and GHG reduction.  
These differences may reflect land use and built environment factors that led to lower VMT traveled by TNCs.  
The potential substitution effect of TNCs in place of personal vehicle ownership suggests that between 2016 
to 2017, TNCs may have contributed to a reduction in individual vehicle registrations of 1.7% to 4.2%.  

Martin et al.  (2021) 

 TNC trips made up 15% of average weekday vehicle trips within San Francisco and 9% of average weekday 
person trips within the city. 
 TNCs represented 20% of average weekday intra-San Francisco VMT (trips that originate and end within city 
limits only) and 6.5% of total VMT (including regional trips starting or ending within city limits) on an average 
weekday. 
Around 20% of all TNC miles were deadheading (or zero-occupancy travel) miles.  

San Francisco County 
Transportation 
Authority (2017) 
San Francisco County 
Transportation 
Authority (2018) 

 

 



 

 

 

 

Table 30. TNC Mode Substitution Impacts*,†,‡ 

Study 
Rayle et al.* 

(2016) 
Henao* 
(2017) 

Gehrke et 
al.* (2017) 

Clewlow and 
Mishra† 
(2017) 

Feigon and 
Murphy‡ 

(2018) 

Hampshire et 
al.**  (2017) 

Alemi et 
al. ‡‡ 
(2018) 

NYCDOT 
‡‡  (2017) 

Location San 
Francisco, CA 

Boulder and 
Denver, CO Boston, MA 7 U.S. 

Cities†† 
7 U.S. 

Cities†† Austin, TX CA New York 
City, NY 

Drive (%) 7 33 18 39 34 45 66 12 
Public transit 
(%) 

30 22 42 15 15 3 22 50 

Taxi (%) 36 10 23 1 8 2 49 43 
Bike or walk (%) 9 12 12 23 18 2 20 15 
Would not have 
made the trip 
(%) 

8 12 5 22 1 - 8 3 

Carsharing/car 
rental (%) 

- 4 -  24 4     

Other/other (%) 10 7 -   42/2 6/0    
TNC (%)         

^Survey question: “If Lyft and Uber were not available, how would you have made your most recent trip instead?” 

*Survey question: “How would you have made your last trip, if TNC services were not available?” 

†Survey question: “If TNC services were unavailable, which transportation alternatives would you use for the trips that you make using TNC 
services?” 

‡Survey crosstab and question, for respondents that use TNCs more often than any other shared mode: “How would you make your most 
frequent (TNC) trip if ridesourcing was not available?” 

**Survey question: “How do you currently make trips like the last one you took with Uber or Lyft, now that these companies no longer operate 
in Austin?” 

††The impacts in these studies were aggregated across Austin, Boston, Chicago, Los Angeles, San Francisco, Seattle, and Washington, D.C. 

‡‡These studies allowed multiple responses to the question: “How would you have made your most recent TNC trip (if at all), if these services 
had not been available?” Therefore, the percentages add up to more than 100%, making it challenging to directly compare it to the other 
studies.



 

 

A. 1.7 Key Takeaways 
The key takeaways from this literature review are summarized in the following bullet points.  

• Demographics: Shared mobility users tend to be male, Caucasian, aged 25 to 34 years old, and 
with high annual incomes and levels of educational achievement. 

• Equity Impacts: Shared mobility may result in various equity impacts, particularly for vulnerable 
populations. 

o People with Disabilities: Various shared modes may be able to offer more accessible 
transportation services (e.g., larger service area, on-demand scheduling option). 
However, they may exacerbate accessibility challenges if they do not offer accessible 
services or equivalent accessible alternatives. 

o Unbanked and Underbanked and Low-Income Households: Certain required payment 
methods (e.g., credit/debit cards) and structures (e.g., pay-as-you-go) may exclude 
certain populations from using the associated shared mobility option. These challenges 
may be particularly true for select demographic groups (e.g., minority populations). 

o Individuals without Digital Literacy: People who are not digitally literate may face 
difficulties accessing and navigating smartphone-based transportation modes.  

• Common Shared Mobility Impacts: Different shared mobility options may result in various 
impacts including on the economy, environment/GHG, modal choices, VKT/VMT, and society. 
These impacts may vary based on characteristics like the population density of the service area 
and service model.  

o Carsharing: Carsharing may encourage participants to forgo vehicle purchases and/or 
decide to sell a vehicle. Additionally, carsharing may lower VKT/VMT and associated 
GHG emissions, while improving mobility and lowering the full cost of vehicle use.  

o Ridesharing: Similarly, ridesharing may lower VKT/VMT and associated GHG, while 
increasing mobility, particularly for more vulnerable populations. 

o Shared Micromobility: Bike-sharing and scooter sharing may increase economic activity 
within their service areas, encourage people to shift to certain forms of public transit 
(e.g., buses), lower transportation emissions, and offer health benefits. 

o Transportation Network Companies: The impacts of TNCs varies greatly by location and 
built environment characteristics. Many TNC-focused studies are not conclusive and 
there is evidence that TNCs may increase VKT/VMT and associated GHG, while in other 
cases lowering it. TNCs may also encourage modal shifts (e.g., away from personal 
vehicles and public transit).  

  



 

 

Appendix B Trends and Policies Impacting Travel Behavior 
In addition to varying user demographics and impacts, shared mobility use may be altered by different 
transportation trends. For example, shared mobility tends to be available in two predominant built 
environment types: 1) Higher-Density, Urban; and 2) Lower-Density, Suburban areas. Additionally, 
impacts from the global pandemic are impacting shared mobility and the broader transportation 
industry. The pandemic is resulting in greater teleworking capabilities and adoption rates (which vary by 
different demographic groups), transportation changes (e.g., modal shifts), and housing changes (e.g., 
increased suburbanization). Transportation demand management strategies may be able to help 
address resulting changes from these transportation trends. This second half of the literature review is 
separated into four sections: 1) Land Use and Built Environment, 2) COVID-19 Changes, 3) 
Transportation Demand Management Strategies, and 4) Key Takeaways.  

B. 1 Land Use and Built Environment  
Various land use patterns and built environment types can impact travel patterns in various ways 
including altering congestion patterns and influencing transportation priorities (e.g., longer hours of 
public transit operation) (Polzin & Choi, 2021). Most shared mobility services have been deployed and 
for use cases in two built environment types: 1) higher-density, urban environments, and 2) lower-
density, suburban environments. Higher-density, urban environments tend to have a high concentration 
of jobs, mixed-used developments, and multimodal transportation networks and are often the location 
of central business districts (Shaheen, et al., 2020). Lower-density, suburban environments are typically 
less urbanized and have high-levels of low-density residential uses, fewer jobs than residences, and 
segregated land uses (Shaheen, et al., 2020). 

These built environment types often impact what shared modes are available and the frequency in 
which and how they are used (e.g., as part of a multimodal trip, replacement for a personal vehicle). 
Most research has focused on shared mobility use in two predominant areas – higher density, urban and 
lower-density, suburban areas. The following subsections discuss shared mobility in these regions. 
However, it is important to note that the COVID-19 pandemic is increasing suburbanization and 
consequently reducing the importance of brick-and-mortar retail spaces, office developments, and 
restaurant and lodging options (Polzin & Choi, 2021). The pandemic is also illustrating travel behavior 
trends in various land uses (e.g., lower public transit use in central business districts in urban areas, 
continued personal vehicle use in suburban retail locations). Travel volumes in rural and non-
metropolitan areas have been more resilient than travel behavior trends in more urban environments 
(Polzin & Choi, 2021). These changes may alter future land uses and shared mobility use patterns. 

B. 1.1 Higher-Density, Urban Areas 
Although shared mobility can potentially increase mobility and fill transportation gaps in various land 
uses and built environment types, shared modes tend to be more frequently available and used in 
higher density, mixed-use urban areas. For example, Hu et al. (2018) found that carsharing is more 
popular in areas with mixed land uses and high population density, number of adults (i.e., individuals 
between 15 and 65 years of age), and number of males. The study found that carsharing users tend to 
be 81% adults and 53% male. Additional land use characteristics that support carsharing use include 
more designated carsharing parking spaces, longer surrounding business hours, and fewer nearby 
transit-based carsharing locations where carsharing vehicles tend to be oversupplied (Hu, Chen, Lin, Xie, 
& Chen, 2018). Khan and Machemhal (2017) and Stillwater et al. (2009) also found that carsharing 



 

 

locations near public transit stops and stations positively and significantly increased carsharing demand.  
Similarly, Brown (2020), Conway et al. (2018), and Lee et al. (2016) found that ridesharing tends to occur 
in lower-income, high density areas. 

Higher density, mixed-use environments may also encourage TNC availability and use (Circella, Alemi, 
Tiedeman, Handy, & Mokhtarian, 2018; Conway, Salon, & King, 2018; Hasnine, Hawkins, & Habib, 2021). 
For example, in major U.S. cities, 21% of adults use TNCs (Clewlow & Mishra, 2017). Approximately 29% 
of TNC users who live in more urban neighborhoods use TNCs regularly (Clewlow & Mishra, 2017). 
Additionally, Schaller Consulting (2018) found that 70% of U.S. TNC trips, specifically made via Lyft and 
Uber, occur in nine densely populated metropolitan areas (Boston, Massachusetts; Chicago, Illinois; Los 
Angeles, California; Miami, Florida; New York City, New York; Philadelphia, Pennsylvania; San Francisco, 
California; Seattle, Washington; Washington, D.C.). Locations with greater density of employment 
opportunities and services, public transit stops and stations, roads, and complete pavements can also 
encourage TNC use (Yu & Peng, 2019; Shokoohyar, Sobhani, Nargesi, & Ramezanpour, 2020; Grahn, 
Harper, Hendrickson, Quan, & Matthew, 2019). 

Shared micromobility use also tends to be higher in locations with higher population density, higher 
incomes, a younger population, and more mixed land uses – specifically commercial areas and public 
spaces (Jing, Hu, & Lin, 2021; Shaheen, Martin, Cohen, & Finson, 2012). Bikesharing services, in 
particular, are more likely to be used when devices and stations are located near dense public areas with 
high levels of economic development and recreational activity opportunities (He, Song, Liu, & Sze, 2019). 
Bikesharing users also tend to rely more on bicycle infrastructure more than bicyclists using personally 
owned devices (Jing, Hu, & Lin, 2021). Additionally, scooter sharing ridership appears to be higher in 
urban areas and around universities; neighborhoods with mixed land uses; locations with connected 
streets; and locations with high population, employment, intersection, and public transit stop and 
station density (Huo, et al., 2021; Bai, Jiao, Chen, & Guo, 2021; Jiao & Bai, 2020). Research by Caspi et al. 
(2020) on scooter sharing in Austin, Texas similarly found that scooter sharing use almost exclusively 
occurred in the central part of the city. Scooter sharing use was higher in locations with high 
employment rates, places of interest (e.g., museums, stadiums) ample amounts of bicycle infrastructure, 
and large student populations (Caspi, Smart, & Noland, 2020; Hawa, Cui, Sun, & El-Geneidy, 2021). 
Locations with a variety of dining, drinking, shopping and recreational activities may also encourage 
scooter sharing use (Bai, Jiao, Chen, & Guo, 2021). Public transit ridership may be higher in locations 
with mixed-land uses, particularly retail opportunities within 0.25 miles of public transit stops or stations 
(Johnson, 2003).   

B. 1.2 Lower-Density, Suburban Areas 
While shared mobility is typically used in higher-density areas, there are still use cases and opportunities 
for high ridership in lower-density locations. These areas may be better suited for select shared modes. 
For example, carsharing, especially peer-to-peer models, may be able to fill transportation gaps and 
improve mobility in lower-density areas (Shaheen, Marin, & Hoffman-Stapleton, 2019). Carsharing 
locations near public transit hubs, colleges and universities, and shopping centers tend to be used more 
frequently (Hu, Chen, Lin, Xie, & Chen, 2018). Areas with higher percentages of zero car households are 
more likely to participate in carsharing (Khan & Machemehal, 2017). Carsharing is also more popular in 
suburban locations with high parking fees (e.g., downtown business districts) (Khan & Machemehal, 
2017). Similarly, ridesharing may be more popular in lower-density locations with designated spaces 
(e.g., pick-up and drop-off zones), mixed uses, and select built environment features (e.g., lighting) 



 

 

(Shaheen, Darling, Broader, & Cohen, 2021). Similarly, taxis, rather than TNCs, serve more riders in 
suburban and rural areas (Schaller Consulting , 2018). Some lower density areas may support select 
shared micromobility trip types. McKenzie (2019) found that shared micromobility trips tend to occur in 
recreational/public land uses (40.6%), then commercial areas (36.3%), and finally residential locations 
(23.1%). 

B.2 COVID-19 Changes 
Land use is not the only variable that can impact shared mobility use. The COVID-19 pandemic has 
spurred various changes to education, industries, travel behavior, and workplaces. Two areas of 
pandemic-related changes may drastically impact transportation: 1) the increase in teleworking 
capabilities (and resulting business model and workplace redesigns), and 2) housing changes (e.g., 
moving from urban to suburban areas). However, the impact of these changes may vary by 
sociodemographic characteristics. The following subsections discuss teleworking and housing changes 
and their respective transportation impacts in greater depth.  

B.2.1 Telework 
Pabilonia and Vernon (2020) define teleworking (also referred to as telecommuting, working from 
home, and working remotely) as “a formal or informal arrangement allowing workers to work from 
home or a location other than their traditional workplace.” Prior to the onset of the COVID-19 pandemic 
in March 2020, teleworking was typically promoted as a tool to help employees with work-life balances 
(Pabilonia & Vernon, 2020). In 2018, only about 5% of U.S. workers teleworked (TRIP, 2021). However, 
social distancing measures implemented to help protect public health led many workplaces to offer 
and/or require employees to telework. While initial teleworking efforts may have been mandated or 
necessary, many workers are now opting to telework. Parker et al. (2022) found that in February 2022, 
approximately 61% of U.S. workers who were able to telework chose to. Of individuals who are currently 
teleworking, about 78% would like to continue (Parker, Horowitz, & Minkin, 2022). In the future, about 
60% of employees with jobs that can be completed via teleworking would like to telework most or all of 
the time (Parker, Horowitz, & Minkin, 2022). However, approximately 60% of U.S. workers do not have 
jobs that can be completed via teleworking (Parker, Horowitz, & Minkin, 2022).  

B.2.2 U.S. Teleworking Demographics 
The U.S. workers who are able to telework vary by factors including demographic makeup, occupation, 
industry, and geographic region. Research by Bick et al. (2020) revealed that highly educated, higher-
income, Caucasian individuals were more likely to be able to shift to telework and maintain employment 
after the onset of the global pandemic. Day et al. (2020) also found that individuals who were 
teleworking were likely to be employed through the pandemic and containment of the COVID-19 virus. 
Further information on the demographic makeup of individuals able to telework can be found in Table 
31.  

 

 

 

 

 



 

 

Table 31. Ability to Telework by Demographic Characteristics 

Category Characteristics Ability to Telework 

Gender Female  48-52% 

 Male  39-40% 

Age 15 to 24 years  22-24% 

 25 to 54 years 46-48% 

 55 years and older 47-49% 

Race/Ethnicity Black 34-40% 

 Hispanic  29-30% 

 Non-Hispanic white 47-49% 

Marital Status Married 48-50% 

 Not Married  34-39% 

Children Have children 42-51% 

 No children  44-45% 

Educational 
Attainment 

Less than a high school diploma 
11-17% 

 High school diploma 25-30% 

 Some college or associate’s degree 37-43% 

 Bachelor’s degree and higher 68-71% 

Job Status Full time 46-48% 

 Part time 29-32% 

Source: Day et al. (2020) 

Bick et al. (2020) also identified demographic characteristics of individuals who teleworked every day in 
February and May 2020. These findings are summarized in Table 32. The percentages represent the 
percent of the population able to telework.  

 

 

 

 

 



 

 

Table 32. Teleworking Rates in February and May 2020 

Category Characteristic 
Date 

February 2020 May 2020 

Total Work 
Force 

Percentage of employed 8% 35% 

Gender Female 9% 39% 

 Male 8% 32% 

Race/Ethnicity Black 7% 25% 

 Hispanic 5% 23% 

 White 10% 39% 

Children No children  10% 36% 

 Have children 6% 34% 

 Youngest child under 13 years old  5% 33% 

Educational 
Attainment 

High school or less 
8% 15% 

 Some college 8% 25% 

 College degree or higher 8% 50% 

Income Less than $50k 8% 18% 

 $50k - $100k 7% 31% 

 More than $100k 10% 46% 

Source: Bick et al. (2020) 

Dalton and Groen (2022) examined the business side of teleworking. They found that about 33% of U.S. 
businesses increased telework capabilities. This was particularly true of establishments who offered 
flexible or staggered work hours. These businesses increased their teleworking capabilities by 57%. 
Teleworking ability also varied by occupation. Table 33 provides information on the ability of individuals 
in various occupations to telework. 

 

 

 

 

 



 

 

Table 33. Ability to Telework by Occupation 

Category Occupation Ability to Telework 

Administrative and 
Professional 

Administrative and office  
59-62% 

 Business, financial, and management  86-88% 

 Professional and related  63-65% 

Agriculture Farming, fishing, forestry  0% 

Labor Construction and extraction  0% 

 Installation, maintenance, and repair  1-4% 

 Production  0-4% 

 Material moving and transportation  0-1% 

Miscellaneous Sales and related  30-32% 

 Services and related  8-13% 

Source: Day et al. (2020) 

However, ability to telework may not be determined by occupation, but other factors such as tasks and 
activities (e.g., need for fixed equipment) (McKinsey Global Institute, 2020). As a result, Dalton and 
Groen (2022) examined teleworking rates by occupation. Across all sectors approximately 13% can 
telework full time, 9% can telework part time, and 78% can rarely or never telework (Dalton & Groen, 
2022). The McKinsey Global Institute (2020) found that individuals in finance, management, professional 
services, and information sectors had the highest ability to telework. Teleworking capabilities in 
different industries also impacted employment rates. Information collected by Day et al. (2020) showed 
that from February to April 2020, employment decreased by 21% in industries where teleworking was 
not possible, compared to an 8% decrease in industries that could offer teleworking options.  

B.2.3 Transportation Impacts from Telework 
Teleworking changes may impact transportation by altering travel behavior decisions, peak congestion 
time, etc. Bick et al. (2020) analyzed differences in commute patterns after the onset of the global 
pandemic, when people started teleworking. These commute frequency rates are summarized in Table 
34.  

 

 

 

 

 

 



 

 

Table 34. Commute Frequency in February 2020 

Commute Frequency February 2020 May 2020 

 (n=3,587) (n=2,565) 

Daily 75% 51% 

Some Days 16% 14% 

Telework Everyday 8% 35% 

Source: Bick et al. (2020) 

Teleworking is anticipated to impact transportation in numerous ways. Prior to the pandemic, about 
58% of people primarily traveled for work. However, this percentage decreased to 30% during the 
pandemic (Abdullah, Dias, Muley, & Shahin, 2020). Increases in teleworking led to many transportation 
changes, such as greater e-commerce use, particularly for home deliveries (TRIP, 2021). Additionally, 
teleworking altered travel patterns and peak congestion times. Stiles and Smart (2021) found that 

people who shift to telework 
typically decrease their daily 
travel duration and increase 
their likelihood of avoiding peak 
hour travel. Supporting research 
has found that teleworking 
drastically decreases trips at 
peak commute times (e.g., 8 AM 
and 6 PM), particularly during 
morning commutes, and 
maintains travel demand at 
lower, but more consistent, 
levels throughout the day (Liu, 
Miller, & Scheff, 2020; Stiles & 
Smart, 2021; Goulias, Su, & 
McBride, 2020). Roughly 80% of 
teleworkers make at least one 
trip during their workday, 
accruing more VMTs and 
numbers of trips than traditional 
commuters (Goulias, Su, & 
McBride, 2020). Teleworkers 

also typically have less predictable trips in which they visit multiple locations (Goulias, Su, & McBride, 
2020).  

Teleworking Impacts in Washington, D.C. 

Table X summarizes different modal splits in Washington, D.C. 
commutes in 2019 and 2022.  

Table X. Washington, D.C. Commute Mode Split 

Mode 
Year 

2019 2022 
Telework 10% 48% 
Drive alone 58% 41% 
Public Transit 24% 8% 
Active Transportation  3% 2% 
Carpool/Vanpool 5% 2% 

Source: LDA Consulting (2022) 

The research by LDA Consulting (2022) also found that public transit 
commuters in the Washington, D.C. area were less satisfied with their 
commutes, likely due to longer trip times due to longer vehicle 
headways and increased commute difficulties (e.g., fewer timed 
transfers). In 2022, Washington, D.C. commuters were less aware of 
commute resources, like carpooling platforms (LDA Consulting, 2022). 



 

 

Teleworking is anticipated to continue 
impacting public transit ridership and VMT, 
especially in downtown areas and job 
centers (TRIP, 2021; National Academies of 
Science, Engineering, Math, 2022). At the 
beginning of the pandemic, many public 
transit agencies introduced service cuts and 
reroutes to address pandemic impacts (e.g., 
low ridership, unavailable drivers) (Sutcliffe 
& Bahnam, 2021). Research has found that 
these service changes disproportionately 
impacted individuals with limited mobility 
options, including those facing 
socioeconomic challenges, such as Latinx, 
female, and non-binary riders (He, 
Rowangould, Karner, Palm, & LaRue, 2022). 
Research by the National Capital Region 
Transportation Planning Board (2021) on 
public transit service in Washington, D.C., 
found that marginalized populations 
tended to have more public transit service access than the general population, but only about 41 to 55% 
of marginalized individuals had access to high-frequency public transit service (i.e., 15-minute 
headways), compared to 62 to 68% of the general population. DeWeese et al. (2020) found that some 
communities applied service changes uniformly throughout their service hours, potentially 
disproportionately impacting low-income areas. However, some communities, such as San Francisco, 
California and Portland, Oregon, strategically implemented service cuts to minimally impact vulnerable 
populations (DeWeese, et al., 2020).  

According to the American Public Transportation Association (2022), after being dramatically impacted 
by the pandemic (e.g., shelter-in-place orders, teleworking capabilities) public transit ridership has 
increased to 70% of pre-pandemic levels. Ridership recovery has varied by mode and the modes ranked 
by order of greatest to least ridership recovery include: demand responsive transit, bus services, heavy 
rail, light rail, and commuter rail (American Public Transportation Assocation, 2022). Currently, public 
transit ridership is predominantly serving essential workers and lower-income households. Public transit 
recovery is largely dependent on service delivery (e.g., service hours) and reliability and is impacted by 
external factors (e.g., surrounding economic recovery) (American Public Transportation Assocation, 
2022).  

Changing travel patterns resulting from teleworking increases have encouraged public transit operators 
to prioritize maintaining core operations and meeting freight and essential workers’ needs (Deloitte, 
2020). However, altering public transit priorities and schedules has been impacted by difficulties rehiring 
public transit operators and other staff. This may make returning public transit services to pre-pandemic 
levels (e.g., hours of operation, arrival frequency) challenging (Mack, Agrawal, & Wang, 2021). Based on 
lessons learned from the pandemic, the Community Transportation Association of America (2022) 
recommends the following steps to encourage public transit ridership even as teleworking continues: 

Telecommuting Impacts in Chicago, Illinois 

Research by the Argonne National Laboratory (2022) found 
that in Chicago, Illinois if individuals’ concern regarding 
COVID-19 transmission continued and individuals 
teleworked at least one day per week, the city would 
witness a public transit ridership decrease, 22% decrease in 
vehicle speed, and an 8.5-minute increase in travel time 
(from individuals choosing to take personal vehicles rather 
than shared modes). Research in New York City had similar 
findings. The regional shelter-in-place order, and subsequent 
increases in teleworking, led to drastic declines in public 
transit ridership and vehicular traffic (94% and 72% of pre-
pandemic levels, respectively) (Gao, Bernardes, & Bian, 
2020). As pandemic recovery continues, residents are more 
likely to have longer commutes originating from further, 
suburban destinations (Chicago Metropolitan Agency for 
Planning ). 



 

 

• Leverage services to meet new needs (e.g., access to public health services), 
• Make fare payment more equitable (e.g., free transit rides for eligible passengers), 
• Improve service frequency and reliability, 
• Enhance employment outreach and employee retainment, 
• Redesign routes to better meet traveler’s needs (e.g., routes on less congested streets for faster 

trip times), and 
• Expand demand responsive services. 

 

Telework has led to physical workplace changes, such as downsizing and relocations, which are also 
likely to impact future teleworking and travel patterns. Dalton and Groen (2022) found that of the 6% of 
establishments that have relocated since the pandemic’s onset, 58% increased teleworking, compared 
to the 32% of establishments that did not relocate. Similarly, establishments that plan to relocate by 
March 2023 increased teleworking by 50%, compared to a 32% increase in teleworking for 
establishments not planning to relocate.  

Some research anticipates that after COVID-19 is contained, as much as 15 to 25% of Americans will 
telework in some capacity (Polzin & Choi, 2021). Teleworking capabilities can increase teleworking 
services including remote learning, telemedicine, electronic banking, and online platforms for religious 
and social activities, amplifying travel behavior changes (Polzin & Choi, 2021).    

Other factors, such as shifts to lower emission vehicles and high gas prices, may also impact travel 
behavior going forward by encouraging the use of EVs or more cost effective, shared modes (Nehiba, 
2021). Teleworking may also impact EV charging locations by encouraging the use of more 
neighborhood-based chargers (e.g., at strip malls) and encouraging building and land owners to replace 
a few parking spaces with EV chargers (McDonald, 2020). As COVID-19 is contained, these changes 
might promote and popularize increased biking and walking, which has been cited as a way to safely 
return to pre-pandemic mobility (Habib & Hasan Anik, 2021). 

B.2.4 Housing Changes 
COVID-19 encouraged individuals to move from dense urban areas to lower density suburban areas. This 
shift was influenced by teleworking considerations (e.g., appeal of larger homes with more space for 
home offices, need for strong internet connections and reliability), recreational access (e.g., backyards, 
proximity to parks), and improved safety and security (e.g., lower neighborhood crime, in building 
security systems) (Nanda, Thanos, Valtonen, Xu, & Zandieh, 2021; TRIP, 2021). Increasingly, Americans 
are moving to places that are warmer, healthier, smaller, less dense, with greater access to better 
healthcare facilities and smaller schools, and that have more highly educated populations, lower taxes, 
and less regulation (Taylor, 2020). Data trends illustrate moves to the Midwest and Northeast over the 
Southeast and West Coast, in part because of greater home availability and affordability (J.P. Morgan, 
2021; Polzin & Choi, 2021; Mondragon & Wieland, 2022).  

Some moving trends varied by demographic characteristics. Approximately 37% of young adults (aged 
18 to 29 years old) moved. Moving was more common by Hispanics (28%), than Asian (24%), Caucasian 
(20%), and Black (19%) adults (Cohn, 2020). Individuals who are “untethered” (i.e., can telework, have 
no school-aged children, rent rather than own their home, have no spouse or have a spouse who can 
also telework) are more likely to move (Patino, Kessler, & Holder, 2021). Common reasons for moving 



 

 

include reduced COVID-19 contraction risk (28%), closed college campuses (23%), desire to be with 
family (20%), money-related reasons (10%), and job loss (8%) (Cohn, 2020). In late 2020, approximately 
14 to 23 million Americans had or were planning to move due to the greater options that teleworking 
provided (TRIP, 2021). Between 7% and 12% of households were planning on moving explicitly due to 
increased options from teleworking. Within this group, about 7% were planning on moving to an area 
that had greater teleworking options and 3% were moving because of a household member’s ability to 
telework (UpWork, 2020).  

Typically, individuals moving during the pandemic shifted from central urban areas into outlying, more 
suburban and rural regions where larger square footage residences are more available (Kikuchi, 2021; 
Popken, 2020). This is, in part, because individuals in larger, more expensive urban environments 
appeared to be unwilling to pay premium prices for amenities that were not available during the 
pandemic (e.g., museums, theatres) (Dowell, 2021). Americans are particularly interested in locations 
like Atlanta, Georgia; Austin, Texas; Las Vegas, Nevada; Phoenix, Arizona; and Sacramento, California 
(Popken, 2020). The pandemic and teleworking capabilities also resulted in people moving to and 
working from “vacation towns” (e.g., Ocean City, New Jersey; Key West, Florida) (Dowell, 2021). People 
are looking for amenities including affordability; yard and greenspace; and room for teleworking, 
remote learning, and home workouts (Popken, 2020). Researchers anticipate that people will continue 
placing greater value on community amenities (e.g., parks, stadiums), rather than home amenities (e.g., 
swimming pools) (Gascon & HaaS, 2020). Home ownership, particularly by young adults, increased 
during the pandemic (Kikuchi, 2021). This was likely enabled by the ability to move to more affordable 
locations.  

B.2.4.1 Transportation Impacts from Housing Changes 
Household location can impact various transportation decisions including vehicle ownership, commute 
length, and mode choice (Lerman, 1976). Often, people make tradeoffs regarding transportation levels 
of service compared to other variables (e.g., neighborhood quality) (Wesibrod, Ben-Akiva, & Lerman, 
1980). Historically, commute time has been a dominant determinant of residential location (Levine, 
2007). However, increasing teleworking opportunities is likely to change this. For example, changes in 
housing location to various built environment types could drastically impact car ownership rates and 
travel behavior decisions (Scheiner & Christian, 2021). Currently, most U.S. EV chargers are located in 
urban areas, but trends like increasing suburbanization could encourage greater EV charging availability 
in these locations to better meet drivers’ needs (International Energy Agency, 2022). Increasing 
suburbanization increases vehicle use and decreases use of public transit, biking, and walking. Inversely, 
moves to more urban environments result in decreases in personal vehicle use and increases in public 
transit, biking, and walking (Scheiner & Christian, 2021).  

Additionally, changing residential preferences, particularly the ratio of housing options to jobs, can alter 
commute distances, trip types (e.g., chained trips), and VMT (Peng, 1997). Having higher job-housing 
balances can substantially decrease travel and VMT (Cervero & Duncan, 2008). Lower VMTs may 
increase the opportunity for alternative modes (e.g., shared micromobilty) to serve as transportation 
options. Lastly, housing pattern changes could alter necessary infrastructure projects (e.g., EV charging 
options), changes tax bases that maintain capital projects, and create new demands (e.g., for scooter 
sharing options) (Polzin & Choi, 2021).  

 



 

 

B.3 Transportation Demand Management 
Transportation demand management (TDM) strategies can be used to instigate or mitigate the trends 
and policies such as those described in this document. TDM is defined as a set of strategies that increase 
transportation network efficiency by shifting single-occupancy vehicle trips to shared rides and modes or 
to non-peak periods (Seattle Department of Transportation, 2017). Generally, TDM strategies help shift 
travelers to higher-occupancy and/or lower emission modes (e.g., bikesharing) and by doing so increase 
mobility and decrease congestion and subsequent environmental impacts. Table 35 summarizes various 
TDM strategies and provides examples.  

Table 35. TDM Strategies and Examples 

Strategy Description Example 

Allocated 
Space 

Provide space exclusively for select 
modes (e.g., high-occupancy vehicle 
lanes that can also be accessed by 
electric vehicles) 

In San Francisco, California, the city closed 2.2 miles 
of Market Street (a main thoroughfare) to private 
vehicles, including TNCs, to prioritize active and 
shared modes (San Francisco Public Works, 2021). 
Early findings reveal that the project increased the 
number of bicyclists on Market Street by 25% and 
improved public transit times by 12% (SFMTA, n.d.). 

Employer 
Benefits 

Work with employers to encourage 
employees to take modes including 
carsharing, public transit, ridesharing, 
and shared micromobility 

Amazon encourages their employees to bike to 
work by facilitating bike leases, allowing employees 
to expense bikesharing costs, providing two 
complimentary bike tune ups per year, and offering 
bike parking at the office. The goal is to reduce 
Amazon’s emissions and adhere to the company’s 
climate goals (Amazon Staff, 2021).  

Incentives 

Incentivize modes other than personal 
vehicles (e.g., free public transit 
passes, priority parking for 
ridesharing) 

The California Clean Mobility Options Voucher Pilot 
Program awarded roughly $20 million to 21 
stakeholders (e.g., Cahuilla Band of Indians, Imperial 
County Transportation Commission) to provide 
funding for shared modes in different communities 
(Clean Mobility Options, 2022). The program works 
to fill clean transportation gaps via zero-emission 
modes and improve community mobility (Clean 
Mobility Options, 2022).  

Infrastructure 

Provide supportive infrastructure for 
shared modes (e.g., shared 
micromobility docks, TNC loading 
zones) 

In 2018, Santa Monica, California installed 19 corrals 
and four docks for shared micromobility parking 
(Linton, 2018). Santa Monica is using the shared 
micromobility infrastructure to manage device 
storage and availability (Linton, 2018). 

Integration 

Integrate various modes (e.g., 
seamless fare payment, multimodal 
trip planning platforms) to encourage 
the use of alternative modes 

San Diego, California is in the process of developing 
mobility hubs that co-locate various transportation 
services including public transit, shared 
micromobility, and TNCs (San Diego Association of 
Governments, 2021). San Diego is hoping that the 



 

 

Strategy Description Example 

mobility hubs will support multimodal trips and 
decrease personal vehicle use (San Diego 
Association of Governments, 2021).  

Marketing 
Provide information about various 
alternatives to single-occupancy 
vehicles  

Los Angeles, California has a transportation plan 
that includes digital marketing strategies for various 
shared and technology enabled modes (Hand, 
2016). These considerations in Los Angeles’s 
transportation plan help distribute program 
information and decrease personal vehicle trips 
(Hand, 2016). 

Pricing 
Increase the price of high emission, 
single-occupancy vehicles (e.g., 
parking fees, tolls)  

In the San Francisco Bay Area, express lanes can be 
accessed for free for high-occupancy vehicles (HOV) 
and eligible electric vehicles, and for a fee by single-
occupancy vehicles (FasTrak). The HOV/EV lanes 
improve public transit service reliability and trip 
times by reducing congestion and encouraging 
carpooling (The Bay Link, 2022). 

Policies 
Implement policies and regulations 
that support lower-emission, higher-
occupancy modes 

CARB adopted regulation that requires TNCs to 
begin electrifying their fleets in 2023 (California Air 
Resources Board, 2021). This regulation is part of 
CARB’s efforts to reduce greenhouse gas emissions 
(California Air Resources Board, 2021). 

Parking 
Prioritize parking for higher-
occupancy, lower-emission modes 

In San Jose, California, vehicles that are registered in 
the city, have obtained a valid State of California 
Carpool lane sticker (ensuring that the vehicle 
meets emission requirements), and pay a $40 
program fee can park free at all city parking meters, 
four city-operated parking garages, and city parks 
and recreation facilities (Park San Jose, 2022). The 
program was designed to encourage EV adoption 
and use (Kadah, 2022). 

Ridematching 

Leverage platforms and other 
resources to pair travelers with 
various options to meet their travel 
needs (e.g., ridematching) 

In the San Francisco Bay Area, the merge platform 
allows travelers to make a profile then match with 
other travelers to facilitate carpools (merge). The 
platform’s goal is to encourage carpooling to 
increase vehicle occupancies and decrease 
congestion and travel times throughout the Bay 
Area (merge).  

Zoning 
Develop regions to increase density, 
mixed-use development, and shared 
mobility options  

In 2021, California Governor Newsom signed into 
law a bill allowing more dwelling units (i.e., 
increasing density) in areas currently designated for 
single-family zoning, with priority in areas near 
public transit (Sheyner, 2021). The law increases 



 

 

Strategy Description Example 

density to encourage public transit ridership 
(Sheyner, 2021).  

Source: Institute for Transportation and Development Policy (2017), Federal Highway Administration (n.d.), 
RideAmigos (n.d.), Schaller Consulting (2018), Washington State Department of Transportation (n.d.) 

B.4 Key Takeaways 
• Land Use and the Built Environment: Built environment types can significantly impact shared 

mobility availability/access and adoption.  
o Higher-Density, Mixed-Use Urban Areas: These locations have higher use rates of 

shared modes such as public transit, carsharing, bikesharing, and TNCs. This may be due 
to the greater density of shared mobility facilities and services in mixed-use urban areas, 
creating a conducive environment for increased use of shared mobility.  

o Lower-Density Suburban Areas: These built environment types also provide 
opportunities for using shared mobility. Smaller-scale, locally oriented shared vehicle 
modes such as carsharing near popular public areas or taxis (as opposed to TNCs) can 
help cover the longer distances in suburban areas, many of which are not pedestrian-
friendly. 

• Teleworking: Prior to March 2020, telework was typically promoted as a tool to improve 
employee work-life balance. However, not every worker was able to transition to telework 
during the pandemic.  When looking at telework rates by occupation, across all sectors, 78% can 
rarely or never telework, and only approximately 13% can telework full time. Non-Hispanic 
white individuals with high education and high income were more likely to be able to shift to 
telework and maintain employment during the pandemic. 

o Telework Transportation Impacts: In general, increased telework has shifted travel 
behavior away from peak hour commutes and toward a more even distribution 
throughout the day, therefore maintaining a similar volume of VMT but reducing 
congestion. Telework has also reduced the need to travel to a specific workplace, 
although teleworkers tend to travel more frequently and unpredictably than traditional 
commuters. 

• Housing Changes: Individuals who moved during the pandemic typically moved from high-
density, urban areas to lower-density suburban or rural areas. A significant proportion of these 
individuals moved in order to take advantage of teleworking options but may have also wanted 
to enjoy expanded outdoor space and amenities away from urban cores. Individuals who moved 
during the pandemic leaned toward the Midwest and the Northeast, where there are more 
affordable housing options. However, individuals who moved were more likely to be 
“untethered”, with much more flexibility to telework and relocate.  

• Transportation Demand Management: Various TDM strategies (e.g., space allocation, 
incentives) can be implemented to address the changing transportation landscape from impacts, 
such as shared mobility use and increased teleworking. These TDM strategies can encourage 
increased vehicle occupancies, shifts toward shared modes, lower VMT, and improved 
environmental impacts.  



 

 

Appendix C Expert Interview Protocol 
Thank you for taking the time to speak with us today. This research is supported by the Transportation 
Sustainability Center (TSRC) at UC Berkeley and the California Air Resources Board (CARB) and should 
take about an hour. Your answers will help inform future strategies and policies implemented by CARB 
to encourage multi-passenger trips and the use of more efficient vehicles.  

1. Before we begin, can you describe a little about your position at (INSERT ORGANIZATION)? 

C.1 COVID-19 – Impacts and Telework 
The outbreak of COVID-19 in early 2020 resulted in a variety of impacts in the US and throughout the 
world. 

1. How is your organization responding, or planning to respond to, the COVID-19 pandemic? 

2. How do you think organizations’ experience with telework during COVID-19 will impact the 
transportation network throughout the recovery process?  

3. How do you think telework will impact transportation after a vaccine is widely deployed? 

C.2 COVID-19 – Housing Affordability 
COVID-19 has caused people to move for a variety of reasons including increased affordability, greater 
access to greenspaces, etc.  

1. For some people housing has become more affordable (e.g., by moving to less dense areas, rent 
decreases). How do you think this will impact transportation choices? 

2. For other people, housing has become less affordable (e.g., income or hour reductions). How do 
you think this will impact transportation choices? 

3. As residential densities shift, what changes are required to the transportation system to meet 
needs? 

C.3 Shared Rides – Pooled Rides 
During the COVID-19 pandemic, guidelines from the Center for Disease Control discouraged the use of 
pooled rides. As we recover from COVID-19, CARB and other agencies are looking for ways to increase 
trip occupancy, through means such as pooled rides.  

1. What do you think are some of the best strategies for supporting pooled or shared rides? 

2. In light of COVID-19, what would increase trust in pooled rides? 

3. What incentives can support shared rides? 

4. What infrastructure changes may need to be made to support shared rides? 

5. What do you think are some of the biggest contributors to health and safety challenges for 
shared rides? 

C.4 Shared Rides – Public Transit  
Public transit is one of the highest occupancy modes of travel.  



 

 

1. What strategies can be used to encourage public transit use in California? 

a. Has your organization implemented any strategies to encourage shared rides? 

2. Do you think park-and-ride facilities can support the use of public transit? 

a. What strategies could support the use of park-and-ride facilities? 

b. What challenges do you think park-and-ride facilities could present? 

3. In light of COVID-19, what is needed to increase trust in public transit? 

4. What do you think are some of the biggest contributors to health and safety challenges for 
public transit? 

5. What incentives may encourage public transit use? 

6. Are there infrastructure changes that should be implemented to support public transit use? 

7. What changes to the payment process would allow for more seamless ridership between 
transit and other mobility modes? 

C.5 Pricing 
Incentives, or disincentives, may play a critical role in encouraging the use of shared rides, including 
public transit. 

1. What pricing strategies (e.g., reduced toll costs for high-occupancy vehicles) would be most 
effective to support shared rides? 

2. Are there any programs or resources that may need to be adapted to support these strategies? 

3. What design and implementation tools can allow for equity to be embedded in the process 
from the beginning? 

4. What evaluation tools or other strategies can be used to help ensure that pricing strategies 
have equitable impacts? 

C.6 Electrification  
In addition to shared rides, CARB wants to encourage the use of zero-emission travel.  

1. What do you think are some of the biggest challenges to the widespread awareness and 
adoption of low-emission vehicles? 

a. Do you think these challenges vary by demographic characteristics, such as population 
density, income, or age? 

2. How do you think zero-emission or electric vehicles can best be supported? Infrastructure? 
Incentives? 

a. If they respond infrastructure: What infrastructure changes do you think need to be 
made to support higher occupancy and lower emission modes? More charging stations 
for electric vehicles?  



 

 

b. If they respond incentives: What incentives do you think would be the most effective in 
California? Where incentives are most useful to allow for broader access to 
transportation and mobility options leveraged? 

C.7 Active Transportation  
In many areas of the United States, COVID-19 encouraged the use of active transportation. However, 
some areas also witnessed an increase in collisions and fatalities. 

1. How do you think we could support the use of active transportation (e.g., land use changes, 
infrastructure changes)? 

2. What do you think are some of the biggest contributors to health and safety challenges for 
active transportation? 

a. Do you think these challenges vary by mode or operational characteristics, such as time 
of day? 

b. Do you think these challenges vary by built environment factors, such as surrounding 
land uses? 

3. What strategies or policies do you think could address these challenges? 

C.8 Social Equity 
As CARB works to increase mobility, it is important to consider the options for low-income and 
disadvantaged communities - those with a combination of economic, health, and environmental 
burdens.  

1. What unique barriers to mobility options do you think these groups face? 

2. What strategies do you think would support increased access for these groups? 

3. What environmental justice challenges do you think low-income and disadvantaged 
communities face? 

4. What strategies do you think could address these challenges? 

5. What racial justice challenges do you think these groups face? 

6. What strategies do you think could address these challenges? 

C.9 Closing 
1. Is there anything else you would like to add? 

2. Would you mind if we contacted you with any follow up questions or for clarification? 

  



 

 

Appendix D Policies Under Consideration - Modeling 
The research team drafted 28 possible policy variables for this research, grouped into six main categories 
(pricing, parking, curb policies, operational strategies, infrastructure changes, transportation services, and 
land use strategies). These policies targeted the objectives of the research, which were to explore 
strategies to incentivize the use of zero-emission, high-occupancy, and new mobility options.  A final set 
of 13 policy variables were selected in coordination with the CARB team and the research team, 
considering model framework capabilities, as presented in Table 36. 
 

Table 36. Final Set of 13 Policy Variables 

ID Policy Category Name 

1 Public Transit Transit Frequencies 

2 Public Transit Transit Fare 

3 Public Transit Transit in-vehicle times 

4 Shared Rides TNC Price 

5 Shared Rides Share TNC Price 

6 Pricing Operating Cost 

7 Pricing Cordon Pricing 

8 Pricing Park & Ride 

9 Telework Telecommute - Option 

10 Telework Telecommute - Frequency 

11 Autonomous Vehicles AV Penetration Rate 

12 Autonomous Vehicles AV Value of Time 

13 Land Use TOD Residential and Employment 
 
This appendix describes in more detail each policy variable, the mechanics of how the input variables are 
modified in the modeling framework presented in the Modeling Framework section, elasticities found in 
the literature when applicable, a description of the test ranges used in the analysis (Appendix B), and 
possible policy implications. 
  
D.1 Transit Frequencies  
We hypothesize that increasing transit frequency will increase ridership by reducing the average waiting 
and transfer times. The implementation of the mode choice model in ActivitySim has an in-vehicle time 
coefficient, and other time-related variables, such as waiting and transfer times, use the same coefficient 
modified by a multiplier. In ActivitySim, short waiting times (10 minutes or less) increase the time 
coefficient sensitivity by two, whereas long waiting times (greater than 10 minutes) maintain the same in-
vehicle time sensitivity, consistent with reported time multipliers in the literature (Abrantes & Wardman, 
2011). These coefficients suggest decision-makers are more sensitive to short waiting and transfer times, 
meaning that reduced waiting times increase the probability of selecting public transit modes. 
Additionally, a literature review on this topic suggests that increasing frequencies by 1% increases 
ridership by 0.5% (Handy et al., 2013)  
 
As mentioned before, changes in transit frequencies impact the average waiting and transfer times at 
transit stations. Waiting and transfer average waiting times are the model inputs we modify for this 



 

 

sensitivity test. In BEAM, the public transit network schedules transit routes according to the General 
Transit Feed Standard (GTFS); buses follow the scheduled arrival and departure time and are not affected 
by dynamic traffic congestion. Additionally, BEAM takes the ActivitySim person's departure time, meaning 
that the model does not represent when a person plans to leave a location based on the public transit 
expected arrival time. Given the current implementation of the model system, and to simplify the 
implementation of this policy scenario, we use the average waiting time and the average transfer time 
skims matrix as a proxy for transit frequencies. Modes affected by this sensitivity test are local bus, light-
rail, express bus, bus rapid transit, and heavy rail, in both walk and drive access. CARB and the research 
team were primarily interested in exploring improved frequencies at the beginning of this project, which 
began before the start of the COVID-19 pandemic. However, after the pandemic began in 2020, many 
transit agencies have seen a sharp ridership decline, which has resulted in reduced frequencies and bus 
services. As a result, the sensitivity test includes scenarios that reduce frequencies in addition to those 
that increase them.  
 
In the above scenario, riders leave the current location at a planned time regardless of the transit 
schedule. While this is a common behavior for frequencies less than 10 minutes, it might not be realistic 
for frequencies greater than 10 minutes. In reality, travelers tend to arrive at the transit stop closer to the 
scheduled time, which implies that the current implementation may overestimate the actual waiting times 
and, consequently, underestimate the demand for transit. 
 

D.2 Transit Fare 
The decision-making process of travelers is heavily influenced by the trade-off between travel time and 
cost. As such, if the cost of a particular mode of transportation decreases while the travel time remains 
constant, it is anticipated that there will be an increase in demand for that mode. For instance, research 
suggests that a 1% reduction in transit fares is associated with an increased ridership between 0.17% and 
1% (Handy et al., 2013). Furthermore, Tod Litman, (2022)reviews the literature on transit fare elasticities 
and recommends the use of a range of -0.2 to -0.5 for transit ridership for short-term ranges. The broad 
range of elasticities is because studies disaggregate elasticities by transit mode and trip lengths. Uneven 
impact across population segments, however, has been explored to a lesser extent. Gillen, (1994)reported 
an elasticity of 0.19 for individuals earning less than $5000 and -0.28 for those earning more than $15000. 
These findings are unexpected, as lower-income populations are generally considered more price-
sensitive than higher-income groups, which would lead to a higher absolute elasticity. We hypothesize 
that decreasing transit fare will increase ridership, but elasticity for lower-income populations is greater 
than for higher-income because of higher price sensitivity among lower-income travelers.  
 
In the model system, transit fares are an input variable reflected in the GTFS. BEAM configuration files 
include a transit fare tuning multiplier that reflects changes in the transit fare. These changes are 
reflected in the skims, which contain the average transit fare for every Origin-Destination pair at 
different times of the day. ActivitySim reads the skims with the modified transit fare, which are used in 
the tour and trip mode choice model. Transit fares are modified for all transit modes (local bus, light-rail, 
express bus, bus rapid transit, and heavy rail, in both walk and drive access).  

For this research project, CARB and the research team are interested in exploring policies that subsidizes 
the transit fare in ranges from 25% and 50%.  Additionally, the study investigates the potential impact of 
a 100% reduction discount, which corresponds to a free transit policy.  Furthermore, CARB and the 
research team explore the sensitivity of increased transit fares resulting from factors such as increased 
operation cost of transit and reduced federal or state funding.   



 

 

 
D.3 Transit In-Vehicle Time 
Improving transit speeds reduces total in-vehicle time, which incentivizes the use of public transit by 
increasing the speed of transit compared to driving and other modes, holding price and other mode 
attributes constant. Therefore, we hypothesize that increased transit speeds increase ridership. In the 
mode choice model, the travel time coefficient is negative, which reflects that lower in-vehicle times 
increased the probability of transit modes. Previous research suggests that reducing the time spent on 
the vehicle by 1% is associated with ridership increases between 0.4% and 0.9%, depending on the transit 
mode (Handy et al., 2013). Similarly, differential impact across population segments has been less 
explored.  
 
Improved speeds for bus systems can be attained with different policy strategies, such as priority 
signaling, exclusive bus lanes, and intermittent bus stops. While a better approach would be to test the 
sensitivity of each of these strategies, the model system does not yet offer such detailed capabilities. 
Therefore, for this sensitivity analysis, we modify the average in-vehicle times for all transit modes and 
every Origin-destination pair as a proxy. In coordination with the CARB team, the elasticity of this policy 
is only tested for a -10% and -25% variation, as any policy that might result would incentivize improved 
speeds.  
 

D.4 TNC Price and Shared TNC Pricing 
Transportation Network Companies (TNCs) are a relatively new mode of transportation that became 
popular in the last decade with companies such as Uber and Lyft. This new option has two main 
alternatives, which are ride-alone or pooled/shared. In the ride-alone option, a person orders a ride 
through their phone and does not share the ride with any other user. In contrast, in the pooled options, 
for the possibility of a lower cost, the app matches riders with similar trajectories in one ride. The pool 
option, therefore, incentivizes higher vehicle occupancy. For this research, we hypothesize that lower TNC 
prices for shared rides with respect to ride-alone options increase the mode share of pooled rides. Given 
that the mode share of TNC is still relatively low, we do not expect to capture a significant reduction in 
VMT when TNC prices are lowered. Elasticity studies for TNC prices are limited. Middleton et al., (2021) 
suggest that a $1/mile price difference between ride-alone and pooled rides results in a VMT change of -
0.06% for the San Francisco Region. Other studies estimate a price elasticity on demand of -0.84 in Egypt 
(Christensen & Osman, 2021), and between -0.42 to -0.50 for a 1.5 surge price factor in the United States 
(Cohen et al., 2016).  
 
For this sensitivity analysis, we consider the price of ride-alone and pooled rides as two sensitivity tests. 
Taxis, while included in the mode choice model in ActivitySim, are not included in any of the sensitivity 
test. For both tests, we modify the cost per mile, per minute, base fare, and minimum fare by the same 
percentage in the tour and trip mode choice. For the sensitivity analysis, we vary TNC price from ±50% 
and ±25%. 
 

D.5 Operating Cost  
In the model system, the operating cost is associated with the cost of driving a private vehicle. One of the 
few policies that could impact the operating cost is the gas tax, which is 53.9 cents per gallon (assuming a 
vehicle efficiency of 27mpg, this translates to 2 cents per mile). However, improved vehicle efficiency and 
the penetration of EVs might put gas tax revenue at risk. In 2017, a California VMT pilot conducted by the 
California State Transportation Agency and California Department of Transportation (Caltrans) suggest a 



 

 

VMT fee of 1.8 cents per mile, which is assumed to be a revenue-neutral rate (California State 
Transportation Agency, 2017). In a Portland pilot program, daily VMT was reduced by 2.9 miles with a 
VMT charge of 1.2 cents per mile (Boarnet et al., 2014; Guo et al., 2011). We hypothesize that an increase 
in operating costs will reduce the total vehicle miles traveled and increase the mode share for public 
transit systems and pooled TNC rides.  
 
For the purpose of this study, we modify the average operating cost per mile for driving modes. Currently, 
the model has an operating cost of 18.29 cents per mile which includes gas and other maintenance cost 
but not the cost of purchase. The ranges for the sensitivity test were coordinated with the CARB team, 
and they vary from a 100% increase to a 50% decrease. This range is selected to test potential VMT fees 
policy, but also increase fuel efficiency and greater electric vehicle electrification.  The VMT fees impact 
all private modes, as well as TNCs and Taxis.  
 
D.6 Cordon Pricing 
A cordon pricing strategy aims at reducing congestion by charging a fee to drive into a pre-defined zone 
such as a downtown area. While the main objective of this policy is to reduce congestion, especially in 
busy financial districts, international experiences also suggest increased public transit use. In Singapore, 
the reduction of vehicles entering the cordon area was 24%, and the increase in public transit use was 
between 25% and 34% (Bhatt et al., 2008). The same report states that in London, vehicles accessing the 
charging zone were reduced by 18%, and public transit use increased by 40%. Similarly, in Stockholm, the 
congestion pricing reduced city-wide VMT by 1% and increased transit use by 9%. Therefore, our 
hypothesis is that an increased price to the cordon price will increase the mode share of public transit.  
 
The baseline scenario for the congestion pricing policy is based on a current San Francisco County 
Transportation Authority (SFCTA) proposal. A baseline with no congestion pricing would not allow 
estimating an elasticity because the reference value is zero. Even estimating arc elasticities, the 
percentage increase for all scenarios would always be 200% regardless of the price change, which would 
result in meaningless elasticities.  
 
The cordon is defined by the smaller zone (shown in a darker shade in Figure 44) in the San Francisco 
downtown area. The cost is set to $6.5. Additionally, the hours of operations are approximated to 6 am 
to 11 am (AM period) and 4 pm to 8 pm (PM period) to match the time period embedded in the skims 
data. The cost is applied to every driving mode, including TNCs and Taxis, for those trips whose destination 
is a zone within the cordon. Trips starting and ending in the zone or going through the zone are not 
charged. Trips that go through the zone are not charged if they only use the highway system, they would 
be charged otherwise. The current implementation does not consider discounts for households living 
within the cordon area, toll bridge, or base on income. For the sensitivity analysis, the upper and lower 
bounds range from a 25% increase to a 50% reduction. Since the experiments use a baseline charge of 
$6.5, the results do not test the effectivity of the congestion pricing policy but rather the impact on 
different price strategies.  
 
 
 
 
 
 
 



 

 

Figure 44. Proposed Cordon Areas 

 
Source: https://www.sfcta.org/downtown 
 
More information about the cordon pricing strategy in the San Francisco Bay area can be found here: 
https://www.sfcta.org/downtown 
 
D.7 Park & Ride  
The Park & Ride strategy refers to the availability of parking spaces close to public transit access with the 
purpose of increasing public transit access by private vehicles. Other potential benefits of this strategy are 
avoiding congestion in busy financial districts, reducing the cost of parking at the destination, and reducing 
VMT in private vehicles. In the San Francisco Bay Area, parking availability at most mass transit stations is 
already available, however, high demand and limited parking spaces have increased parking prices at 
some stations. For instance, West Oakland's daily fare is $12.40; the reserved monthly pass is $311.05 per 
month (Bay Area Rapid Transit, 2022). For this sensitivity analysis, we test different prices for park and 
ride options at mass transit stations. We hypothesize that lower parking prices increase public transit 
mode shares and reduce VMT. In the literature, parking price sensitivities are tested for general off-street 
parking prices but not for park and ride strategy.   
 
The current implementation of the model system does not consider the cost of parking for drive-to-transit 
modes. Therefore, to test price sensitivity, the baseline scenario includes a $3.0 per day cost, the BART 
average parking cost. Since the main interest is to make mass transit more available, we only include this 
cost to drive to heavy rail options, which include BART and Caltrain. The model framework also assumes 
infinite parking, therefore capacity constraints are not considered. For the sensitivity analysis, the 
variation in the parking cost at mass transit stations is from a 50% increase to a 50% reduction.  
 

D.8 Telecommute 
Telecommuting is the possibility of performing work activities in places different from the workplace, such 
as from home. While telecommuting alone may not directly impact the use of sustainable transportation 

https://www.sfcta.org/downtown
https://www.sfcta.org/downtown


 

 

options such as high-occupancy, zero-emission, and new mobility options, the travel restrictions put in 
place during the COVID-19 pandemic have greatly increased the adoption of telecommuting as a viable 
alternative to commuting. As of 2022, 60% of workers who are able to work remotely continue to do so 
(Pew Research Center, 2022), a substantial increase from the 23% reported in the 2017 NHTS (Federal 
Highway Administration, 2017). However, the impact of a high penetration rate of telecommuting on VMT 
and other transportation metrics remains unclear. As the COVID-19 pandemic is still evolving, there is 
great uncertainty about the future of telecommuting, which is why CARB, and the research team are 
interested in quantifying its potential impact. We hypothesize that a greater percentage of the population 
with the option of telecommuting reduces total VMT and VMT per capita.  
 
A previous implementation of the model system did not include a telecommute model. This capability was 
added to ActivitySim for the purpose of this research project. The telecommuting capability consists of 
two main models that answer two questions: (1) Does a worker have the option of telecommuting, and 
(2) What is the weekly frequency of telecommuting given that telecommuting is an option? The first 
question separates workers who might not be able to perform their jobs outside the workplace (e.g., 
essential health work professionals, constructing workers, retail, etc.) and those who can perform their 
job outside the workplace, and their employer allows telecommuting for all or some days per week. The 
research team used the San Francisco Bay Area subsample from NHTS 2017 data to estimate these two 
models. The models are implemented as stochastic models predicting the outcomes using simulation 
based on pre-determined rates. It is important to note that this model only applies to worker agents 
residing in the study area and not to students, unemployed individuals, retirees, or people residing outside 
the study area. The estimated rates for these models can be found in Appendix 0. 
 
For the sensitivity analysis, this research divide telecommutes into two tests. The first one varies the rates 
at which workers have the option of telecommuting (called telecommute – option) by ±50%. The baseline 
for this model is the NHTS 2017 rates. The second varies the weekly frequency of telecommuting for 
workers who have the option of telecommute (called telecommute – frequency). Regarding the latter, the 
CARB team acknowledges recent changes in telecommuting patterns due to the COVID-19 pandemic, and 
thus considers a baseline that is 100% higher than the rate suggested by NHTS (2017). Specifically, a recent 
study by the Pew Research Center (2022) reports that the average number of telecommute days per week 
is 2.72, compared to 0.77 days per week in the NHTS survey. Although the telecommuting rate is still 
heavily influenced by the pandemic, the CARB team believes that the baseline should reflect the significant 
changes observed in telecommuting behavior, and therefore has adjusted the baseline accordingly. 
 
To build the scenarios of analysis for the telecommute – Weekly Frequency model, we use the average 
number of days per week of telecommute in the NHTS 2017 as the lower bound and increase it by 50%, 
100%, 200%, and 300% for the other scenarios, as shown in Table 37. For the purpose of this study, the 
baseline is set to 1.5 days of telecommute per week, which is twice the rate in the 2017 NHTS. Then, for 
each scenario, the research team modified the probability distribution in the baseline to match the 
increased average. In the baseline scenario, we lowered the percentage of workers with the option to 
telecommute who would still choose to commute for work from 46.7% to 30.4%. At the same time, we 
raised the percentage of workers who would telecommute 4 to 5 days per week from 2.5% to 16.6%. The 
upper-bound scenario assumes that all workers with the option to telecommute would telecommute at 
least once per week, with 56.2% telecommuting at least 4-5 days per week. Our conservative scenario 
falls between the lower bound and baseline, while the aggressive scenario falls between the baseline and 
upper bound. 
 
 



 

 

Table 37. Upper and Lower Bounds for the Telecommute Weekly Frequency Model 

 Lower bound Conservative Baseline Aggressive Upper 
Bound 

Days Per Week (Average) 2017 Rates 
(NHTS) 

50% 
Increase 

100% 
Increase 

200% 
Increase 

300% 
Increase 

0 47.60% 39.00% 30.40% 14.80% 0.00% 

1 39.60% 39.60% 39.60% 39.60% 36.60% 

2.5 10.40% 10.40% 10.40% 7.20% 7.20% 

4.5 2.50% 11.00% 19.60% 38.40% 56.20% 

Average Number of Days Per 
Week 0.77 1.15 1.54 2.31 3.07 

 
 
D.9 Autonomous Vehicles Penetration Rates and Value of Time 
Autonomous vehicle technology has advanced in the last few decades and is expected to continue doing 
so in the near future, to the point that fully autonomous vehicles are expected in the next decade or two 
(Todd Litman, 2017). However, the penetration of autonomous vehicles will change in response to the 
evolving cost and availability of the technology. There is substantial uncertainty around the exact 
magnitude of penetration rates given the unknown pace of future technological progress, changes in 
costs, regulatory changes, future population preferences for adoption, and the behavioral changes that 
might generate. A study of the I-80 corridor in Iowa stated a conservative and aggressive AV penetration 
rate, which varies 2050 penetration from 100% in the aggressive scenario, to 50% in the conservative 
scenario (Iowa DOT, 2017). Given the high degree of uncertainty, it is particularly appropriate to study the 
adoption of AV technology using alternative assumptions. 
 
As the adoption of AVs becomes increasingly likely, researchers are investigating the potential behavioral 
changes that may result. One such change is a decrease in the VOT attributed to AVs due to a reduced 
sensitivity to travel times. With the elimination of the need to drive, passengers can utilize their travel 
time for other activities, such as work or leisure, while still enjoying the benefits of driving, such as shorter 
travel times and greater flexibility. While other transportation modes also eliminate the need to drive, 
they may not offer the same level of time savings or flexibility, as models account for different time 
sensitivities, such as waiting, walking, and transfer times. Furthermore, other factors, such as bus 
crowding (Tirachini et al., 2013) may counterbalance the benefits of in-vehicle time sensitivities.  
 
However, the magnitude in which VOT changes is uncertain. Multiple studies have tried to quantify it by 
using stated preference surveys, real-life experiments, and simulations. Kolarova et al., (2018) used stated 
preference surveys to estimate a 40% reduction in the VOT across multiple income levels. In addition, 
Correia et al., (2019) employed stated preferences to estimate a 26% reduction in the VOT for AVs that 
provide a working environment compared to conventional cars, as well as a similar VOT for AVs that offer 
a "leisure interior". Harb et al., (2018), revealed preferences data (a study conducted using a chauffeur as 
a proxy for AVs) estimated a reduction of 60% in the VOT. Therefore, we hypothesize that a decreased 
VOT and greater AV penetrations increase the total VMT and VMT per capita.  
 
For the purpose of the sensitivity analysis, the research team divides AV scenarios tests into two (1) AV 
penetration rates and (2) VOT reduction. The baseline scenario does not consider AV penetration or VOT 
reduction. For the first scenario, we use CARB inputs to vary AV penetration from 5% to 50%. For these 



 

 

tests, we assume a VOT reduction of 40%. To test VOT reduction sensitivity, we used lower and upper 
limits suggested by the literature, which vary from 10% and 60% reduction. In the model, AV penetration 
rates are randomly assigned to households, and we assume an all-or-nothing allocation, meaning if a 
household is flagged with an AV, all vehicles in the households are AVs. Consistently, the VOT will be 
changed for all household members as well.  
 
It is also worth noticing that the current implementation of the mode choice model has the VOT and the 
time-sensitivity (𝛽𝛽𝑤𝑤) coefficient as inputs. The model, then, estimates a cost-sensitivity (𝛽𝛽𝑃𝑃) coefficient 
depending on the household VOT following this relationship 𝛽𝛽𝑃𝑃 =  𝛽𝛽𝑤𝑤/𝑉𝑉𝑉𝑉𝑇𝑇. While this approach makes 
the decision-making process sensitive to income characteristics, it is not appropriate to reduce the VOT 
variable, as the model will keep the time-sensitivity coefficient constant and increase the cost-sensitivity 
parameter.  For this research, we leave the cost-sensitivity parameter constant and modify the time-
sensitivity to match the target value of time reduction. 
 
D.10 Transit-Oriented Development 
Transit Oriented Development (TOD), which combines land use and transportation planning, aims to 
increase access to opportunities by developing areas around transit stations. Cervero & Kockelman (1997) 
state that potential benefits of TODs are the reduction of motorized trips and especially solo driving; the 
shortening of motorized trip length; and the increase of non-motorized trips like cycling and walking, all 
of which are the objectives of this research. The literature reports strong effects of TODs on travel 
behavior. Cervero & Kockelman (1997) found that residents of a TOD development use transit 1.4% to 
5.1% more than a non-TOD resident. Similarly, Cervero (2007)  studied 26 TOD housing projects in 
California and reported that the transit mode share of residents living within half a mile from a transit 
station was 27%, in contrast to 7% of residents living within half and mile and three miles. This finding 
suggests that proximity to mass transit stations plays a crucial role in promoting transit and reducing the 
need to drive, thereby decreasing vehicle miles traveled (VMT). Based on this observation, we hypothesize 
that increasing the density of development around mass transit stations will lead to an increase in the 
transit mode share and a reduction in VMT per capita.  
 
For the sensitivity analysis, we modify the residential and employment capacities half a mile around mass 
transit stations (BART and Caltrain). The capacity is a block-level input variable for UrbanSim models, 
which determines the maximum development for each block. The building location model is sensitive to 
the increased capacity and the likelihood of developing new real estate increases.  However, increasing 
capacities does not immediately increase densities, since real estate supply responds to market 
opportunities over many years. Therefore, the research team runs the sensitivity test from 2020 to 2035. 
The land-use portion of the modeling (UrbanSim) runs every year; however, the travel demand model 
(ActivitySim) and network assignment (BEAM) run every five years. The upper and lower limits were 
defined to increase capacities, ranging from 10% to 50% increase in both residential and employment 
capacities.  

  



 

 

Appendix E Sensitivity Analysis 
 

The objective of the sensitivity analysis is to isolate individual impacts of the policies variables suggested 
in Appendix A to explore their relative influence and quantify their elasticity on key metrics. These policies 
allow for the exploration of hypothetical future scenarios through the combination of technological, 
behavioral, and economic changes, as well as policy levers that can significantly alter the transportation 
system.  
 
In general, sensitivity tests were designed to vary from +50% to -50%, in 25% steps. The CARB team 
suggested limits outside these boundaries to explore the elasticities of more aggressive policies. An 
example is free to transit fare policy, where transit fare reduces by 100%. The tests for the sensitivity 
analysis are summarized in Table 38. To evaluate the induvial impact of the policy variable, we estimate 
the arc elasticities for the KPI described in Key Performance Indicators (KPI).  
 

Table 38. Sensitivity Analysis Tests 

Policy Variable Model Variable (proxy) Forecasting Horizon Baseline level Test 
    200% 

Transit Frequencies Average waiting time One year (2021) Current Transit  100% 
    Frequencies -25% 
        -50% 
    50% 

Transit Fare Transit Fare One year (2021) Current Transit -25% 
    Fare -50% 
        -100% 

Transit Speeds Transit in-vehicle times One year (2021) Current Transit -10% 
       in-vehicle times -25% 
   Base: $2.20 50% 

TNC Price TNC Prices One year (2021) Minimum: $7.20 25% 
   Per mile: $1.33 -25% 
      Per Minute: $0.24 -50% 
   Base: $2.20 50% 

Share TNC Price Share TNC Prices One year (2021) Minimum: $3.0 -10% 
   Per mile:  $0.53 -25% 
      Per Minute: $0.10 -50% 
    100% 

Operating Cost Operating cost per mile One year (2021) 18.29 cents 50% 
    -25% 
        -50% 
    50%  

Cordon Pricing Price to access cordon One year (2021) No Cordon Pricing 25%  
 perimeter   -25%  
        -50%  
    50% 

Park & Ride Parking price for One year (2021) Average of $3/day 25% 
 driving options (only    -25% 
  for mass transit)      -50% 
    50% 

Telecommute   Telecommute  One year (2021) 2017 NHTS Model 25% 
Option option rates  (see Appendix F) -25% 



Policy Variable Model Variable (proxy) Forecasting Horizon Baseline level Test 
-50%

NHTS 2017 
Telecommute Telecommute Frequency One year (2021) +100% 2017 NHTS 50% 

Frequency rates Model 200% 
(see Appendix F) 300% 

5% 
AV Penetration AV penetration rates One year (2021) 0% Penetration rate 10% 

Rate 25% 
50% 

Current Value of Time -10%
AV Value of Time AV value of time One year (2021) for Non-AV - AV -20%

Penetration rate of  -40%
25% -60%

Residential and 
Employment capacities 10% 

TOD Residential   ½ mile around mass  2035 Current Residential and 25% 
and Employment transit stations Employment Capacities 50% 

This appendix is structured as follows: E.1 Elasticity Estimation outlines the methodology used to estimate 
arc elasticity. E.2 Baseline Results presents the baseline results. Lastly, E.3 Results shows the results for 
various KPI, including Vehicles Miles Traveled (VMT), Consumer Surplus (CS), mode shares, travel times, 
and others. 

E.1 Elasticity Estimation
The elasticity measures the percentage change in one output of interest in response to a percentage
change in one input variable. It is a particularly helpful metric for policy evaluation because it provides a
standardized way to interpret the scale of sensitivity of an output to a change in a specific input, and it is
widely used in economic analysis. More formally, elasticity is of input variable 𝑥𝑥 on 𝑦𝑦 is defined by:

𝜀𝜀 =  
𝜕𝜕𝑦𝑦/𝑦𝑦
𝜕𝜕𝑥𝑥/𝑥𝑥

In this case, the policy variable is the input variable, and the key performance indicators are the output of 
interest. To estimate the elasticity from the sensitivity analysis, we use arc elasticity estimation. In the arc 
elasticity estimation, the percentage change of the output variable and the policy variable is estimated 
with respect to their corresponding midpoint, as follows: 



 

 

Where 𝜀𝜀𝑖𝑖,𝑗𝑗 is the arc elasticity of 𝐾𝐾𝑃𝑃𝐼𝐼𝑖𝑖 with respect to the policy variable 𝑗𝑗. To estimate a final elasticity, 
we average the estimated elasticity for each test. The range of the elasticity estimate is from negative 
infinitive to positive infinity, although most estimated elasticities are between 10 and -10. A positive 
elasticity means that an increase in the input variable results in an increase in the output variables. A 
negative elasticity, on the other hand, reflects an inverse relationship; the output variable decreases, and 
the input variable value goes up. Notice that if the Policy Variable in the baseline is zero, then the percent 
change would always yield to 200%, regardless of the value of the policy in the experiment.  
 
For many policies, estimating the percentage change of the policy variables is not always possible because 
a unique factor is applied to modify the policy variable. For instance, the cost of transit is different for 
each O-D pair. Hence, a uniform factor was applied to adjust all the values, either by increasing or 
decreasing them. For such cases, the corrected percentage change to estimate the arc elasticity is defined 
by:  
 

% 𝐶𝐶ℎ𝐷𝐷𝑛𝑛𝑀𝑀𝑒𝑒 𝑖𝑖𝑛𝑛 𝑃𝑃𝑜𝑜𝑢𝑢𝑖𝑖𝐸𝐸𝑦𝑦 𝑉𝑉𝐷𝐷𝑟𝑟𝑖𝑖𝐷𝐷𝑁𝑁𝑢𝑢𝑒𝑒𝑗𝑗 =  
2 ∗ (𝑜𝑜𝐷𝐷𝐸𝐸𝐸𝐸𝑜𝑜𝑟𝑟 − 1)

(𝑜𝑜𝐷𝐷𝐸𝐸𝐸𝐸𝑜𝑜𝑟𝑟 + 1)
 

 
 
 
E.2 Baseline Results 
For the sensitivity analysis tests, we use the baseline results from Table 39.  The baseline one results are 
used to compare TNC price, share TNC price, cordon pricing, Park & Ride policies and telecommute 
models. The baseline two results are used to compare Transit Frequencies, Transit Fares, Transit in-vehicle 
times, and AV scenarios.  The TOD scenario uses a different baseline result because the forecasting period 
is the year 2035. For the other input variables, a discrepancy in the transit fare magnitude was corrected 
for baseline two, resulting in a different baseline result. Since the objective of the sensitivity analysis is to 
isolate the impact of each input variable, we do not anticipate that the discrepancy in the transit fare 
magnitude has a significant impact in the elasticity estimate of other policies, therefore we kept the 
elasticity estimations that use the baseline one results. To ensure the integrity and accuracy of our 
research findings, we validate the decision to retain the previous results. 
 

Table 39. Baseline Results for Baseline 1, Baseline 2, and Baseline TOD Shares 

KPI Demographic 
Attribute Category  Baseline 1 Baseline 2 Baseline TOD 

Ridership     1,951,653 1,626,553 2,089,347 

Vehicle Ownership     1.89 1.89 1.88 

Seat Utilization      1.32 1.32 1.32 

Total VMT     119,115,247 120,506,735 128,901,277 

 Average   15.86 16.04 15.94 
 Income  Low 13.03 13.21 13.14 
  Middle 18.19 18.37 18.31 
   High Income 18.25 18.44 18.25 
 Race Asian 15.14 15.42 15.24 
  Black 13.96 14.18 14.10 

VMT Per Capita  other 13.08 13.24 13.18 



 

 

KPI Demographic 
Attribute Category  Baseline 1 Baseline 2 Baseline TOD 

   White 16.99 17.15 17.07 
 Ethnicity Hispanic 13.24 13.35 13.31 
   Non - Hispanic 16.61 16.81 16.70 
 Area Type Urban  11.72 11.93 11.76 
  Suburban 16.25 16.31 16.51 

    Rural 23.92 24.41 24.41 

 Income  Low 17.18 16.91 16.96 
  Middle 18.54 18.39 18.32 
   High Income 18.43 18.26 18.20 
 Purpose Commute 19.12 18.80 18.96 

Average Travel    Non-commute 16.71 16.61 16.43 
Times Mode Bike 11.63 11.76 11.72 

  Drive Alone 18.83 18.80 18.53 
  Drive Shared 16.48 16.43 16.15 
  Public Transit 28.35 27.22 28.53 
  TNC - Pooled 13.91 13.85 13.53 
  TNC - Ride Alone 11.44 11.36 10.93 
   Walk 13.96 14.35 14.37 

  Mode Bike 1.40% 1.47% 1.40% 
  Drive Alone 44.59% 45.29% 44.64% 
  Drive Shared 32.48% 32.99% 32.49% 

Mode Shares  Public Transit 7.60% 6.33% 7.55% 
  TNC - Pooled 1.30% 1.31% 1.32% 
  TNC - Ride Alone 3.37% 3.41% 3.45% 

    Walk  9.26% 9.20% 9.16% 
 Mode Bike 2.35 2.35 2.34 
  Drive Alone 8.09 8.09 8.14 
  Drive Shared 6.16 6.16 6.20 

Mode Shares  Public Transit 5.52 5.52 5.98 
  TNC - Pooled 5.87 5.87 5.90 
  TNC - Ride Alone 3.75 3.75 3.75 

    Walk 0.72 0.72 0.72 
 

There are several potential explanations for the differences in vehicle miles traveled (VMT) across 
different population segments. For example, low-income populations tend to have a lower average trip 
per person compared to high-income groups (NuStats, 2013), which may contribute to the observed 
differences in VMT. Additionally, urban areas tend to have lower VMT per capita (Cervero & Murakami, 
2010), which might be explain by higher accessibility to jobs and opportunities, resulting in shorter travel 
times. Furthermore, commute trips are more strongly affected by congestion since they tend to occur 
during peak travel times.  
 



 

 

E.3 Results  
The section below displays the outcomes of the sensitivity analysis. According to Castiglione et al., (2003),  
results that range between 2% and 0.5% are attributable to the stochastic element of the models. For the 
outcomes presented in this appendix, it is assumed that results with variations of less than 0.5% are due 
to random factors and do not represent a significant signal for the model. The results for VMT and CS are 
presented in tables for all experiments. However, to simplify the results by population segment, average 
elasticity is plotted for each policy. This is because the elasticity estimation trend is relatively stable 
regardless of the percentage variation of the policy scenario. 
 
E.3.1 VMT and VMT per Capita  
Table 40 presents the sensitivity analysis results for the VMT metric. The analysis assesses the impact of 
various policies on the total VMT difference with respect to the baseline scenario. Elasticities for most 
policies are relatively stable regardless of the percentage change in the policy variable. The highest 
absolute elasticity on VMT is associated with operating cost and transit in-vehicle times. A 1% increase in 
auto operating cost predicts a reduction in VMT between 0.24% and 0.18%, while reducing transit in-
vehicle times by 1% is associated with a 0.11% reduction in VMT. Increasing transit frequencies and 
reducing transit fare are also associated with less VMT, with absolute elasticities of approximately 0.02 
for both. Greater telecommute rates are associated with a decrease in VMT, with a 1% increase in 
telecommute rates leading to a 0.05% decrease in VMT. The TOD scenario has a negative elasticity of 0.04, 
suggesting that a 1% increase in residential and employment density around mass transit stations is 
associated with a 0.04% reduction in VMT.  Finally, the cordon pricing and park & ride policies test do not 
show any signal, as results vary less than 0.5% (approx. 600k VMT). For TNC scenarios, only changes of 
±50% result in significant VMT change. 
 
When examining the impact of policies on VMT elasticities by population segments, the results indicate 
significant variations, as shown in Figure 45. For example, the VMT elasticity for operating cost varies by 
income, race, and area type. Low-income populations show the highest VMT elasticity with operating cost 
at 0.24, while middle and high-income populations have lower elasticities at 0.17 and 0.16, respectively. 
Additionally, black populations exhibit a 22% higher elasticity than white and Asian populations, and the 
Hispanic population's elasticity is 9% higher than that of non-Hispanics. Elasticities for area type are 
relatively similar, but urban areas exhibit a 7% greater elasticity than rural areas. 
 
Regarding the TOD strategy, the analysis indicates a significant negative elasticity of -0.04 and -0.06 for 
low- and middle-income populations, respectively, but almost zero for high-income populations, as 
presented in Figure 45. This suggests that the TOD strategy has a positive impact on low- and middle-
income populations. The elasticity for black populations is almost twice that of white populations, and the 
elasticity for Hispanics is also twice as high as for non-Hispanics. Similarly, the telecommute-option policy 
shows an elasticity 2.5 times higher for high-income populations than for low-income populations, 
indicating a disproportionate benefit for higher-income populations. However, the impacts of this policy 
are relatively similar in terms of race, ethnicity, and area type. Finally, transit in-vehicle times are almost 
two times more elastic in urban areas than in suburban or rural areas, with an elasticity of 0.15 compared 
to 0.08, respectively. 
 
 
 
 
 



 

 

Table 40. Total VMT Sensitivity Analysis Results for All Policies 

 
For each policy, the first row shows the difference with respect to the baseline, the second row shows the 
elasticity estimation, and the third row shows the percentage change corresponding to the scenario. 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 45. Per Capita VMT Elasticities by Income, Race, Hispanic status, and Area Type 

 

 
E.3.2 Consumer Surplus (CS) 
The sensitivity analysis results for the CS metric are shown in Table 41. The results indicate that increasing 
transit frequencies by 100% and 200% leads to an increase in CS of $2 million and $1.4 million, 
respectively, and providing free transit results in an increase of $688k in CS. Decreasing transit-in-vehicle 
times by 10% results in an increase of $755k in CS. The elasticity of transit policies to CS ranges from 0.01 
to 0.2, being in-transit time the more elastic policy. The elasticity for TNC services is varies from -0.02 to 
0.11, being the ride-alone option more elastic in general. For instance, a 50% reduction in TNC ride alone 
option is associated with a CS of $1.8 million, while the same reduction for the share TNC is only associated 
with a CS of $0.5 million.   
 
For the telecommute option model, an increase of 50% leads to an increase in CS of $1.2 million. The CS 
also increases as the penetration rate of AVs increases, and the VOT decreases. For instance, 25% 
penetration rate for AVs, with a 40% reduction in VOT due to AV ownership, results in $2.2 million in 
consumer surplus. Additionally, increasing residential and employment density by 25% around transit 
stations results in a consumer surplus of $444k. However, cordon price and park & ride policies have a 
limited impact on consumer surplus, with the variation being less than 0.5% threshold. Finally, the study 
finds that the operating cost policy is the most elastic to consumer surplus, and a 100% increase in the 
AOC results in a loss of consumer surplus of approximately $11.8 million. Considering the stochastic nature 
of the model, fluctuations of CS values within the range of +-$250,000 can be attributed to model 
stochasticity, which suggests that these variations might not be significant. 
 
 
 
 
 
 



 

 

 
 

Table 41. Consumer Surplus (CS) Sensitivity Analysis Results for All Policies 

 
 
For each policy, the first row shows the difference with respect to the baseline, the second row shows the 
elasticity estimation, and the third row shows the percentage change corresponding to the scenario. 
 
AV scenarios also have a positive impact on consumer surplus. AV penetration rate and VOT of AV have 
elasticities of 0.27 and -0.14, respectively. At increased AV penetration and reduced VOT, trips with the 
same length will experience an increase in the consumer surplus driven by the reduced in-vehicle time 
sensitivity. Since the AV assignation is random across the population, differential impacts across income, 



 

 

race, and ethnicity are relatively small. For the telecommute option and frequency, a similar trend is 
shown, with consumer surplus elasticities of 0.08 and 0.02, respectively. However, the benefits are 
disproportionally shared by high-income populations. It is important to notice that for telecommute 
scenarios, the increased consumer surplus is given by not making a trip. Since trips are usually considered 
a disutility, not making a trip increases the consumer surplus. Lastly, a 1% increase in TNC ride-alone prices 
is associated with a decrease in consumer surplus of 0.08%.  Nevertheless, other policies such as park & 
ride, cordon pricing, and share TNC prices show almost no elasticity to consumer surplus.  
 
The impact of transportation policies on consumer surplus varies by income, race, and location, as shown 
in Figure 46. The CS for low-income is more sensitive to transit in-vehicle times, with an elasticity of 0.14 
compared to 0.08 for middle- and high-income populations. Similarly, the elasticity of transit in-vehicle 
times to CS is approximately 37% higher for Asians, Blacks, and other races than White. This result suggests 
that low-income, and Asian & Black populations are mostly benefit for reduced transit in-vehicle times. 
Low and middle-income populations are also more sensitive to changes in consumer surplus in response 
to TOD strategies. A 1% increase in residential and employment density around mass transit stations is 
associated with a 0.07% increase in consumer surplus for low- and middle-income populations, while high-
income populations experience only a 0.02% increase. However, the benefits of the telecommute option 
are disproportionately shared by high-income, non-Hispanic in suburban areas.  
 
The elasticity of consumer surplus to operating cost also varies based on income, race, and location. For 
middle- and high-income populations, the elasticity is -0.45, indicating that a 1% increase in operating 
costs leads to a 0.45% decrease in consumer surplus. In contrast, the elasticity for low-income populations 
is 9% lower at -0.40. Among different races, Asians have the highest elasticity at -0.47, while Blacks and 
other races have lower elasticities of -0.40 and -0.34, respectively. Finally, rural, and suburban areas have 
higher elasticities of -0.43 and 0.45, respectively, indicating that they are more sensitive to changes in 
operating cost compared to urban areas with an elasticity of 0.39. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 46. Consumer Surplus per Capita Elasticities by a) Income Category, B) Race, C) Hispanic Ethnicity, 
and D) Area Type 

 

 

E.3.3 Mode Shares 
According to the sensitivity analysis results, improving public transit can lead to an increase in ridership. 
Specifically, increasing transit frequencies, decreasing transit fare, and reducing transit travel times by 1% 
are associated with a 0.29%, 0.15%, and 1.80% increase in ridership, respectively. Moreover, it was 
observed that as transit ridership increases, the demand for other modes of transportation decreases. For 
instance, a decrease of 1% in in-transit in-vehicle times, for instance, was associated with a decrease in 
walking and biking by 0.24% and 0.48%, respectively.  
 
In term of TNC policies, a 1% cost increase in the TNC ride alone option leads to a 1.27% reduction in 
demand for this service, while the share TNC pooling option increases by 1.09%. In contrast, a 1% decrease 
in the cost of share TNC results in a 1.71% increase in demand, with only a 0.24% reduction in demand for 
ride alone services. These findings suggest that there is a trade-off between ride-alone and pooling 
services for TNCs, and pricing strategies can significantly impact mode choices. 
 
The results in Figure 47 also indicate that there is a negative relationship between AOC and private 
transportation modes such as ride alone and share rides. Specifically, a 1% increase in AOC leads to a 
reduction of private modes by 0.07%. Conversely, there is an increase in demand for other transportation 
modes. Notably, biking and transit demand experienced an increase of 0.34%, and walking of 0.12%.  
 
 
 
 
 
 



 

 

Figure 47. Mode Share Elasticity by Policy Variable 

 
 
An increase in telecommute models is linked to a rise in TNC trips. For example, a 1% increase in the 
telecommute-option model leads to a 0.11% increase in TNC ride-alone and TNC pooled options, which 
may indicate a preference for these options for discretionary trips. In addition, the telecommute option 
shows a negative elasticity of -0.05 on public transit modes, indicating a decrease in their usage as 
telecommuting rates increase.  
 
Increasing the penetration rate of AVs is associated with an increase in driving and a reduction in 
participation in other modes. The elasticity for ride-alone and share rides is 0.02 and 0.01, respectively. 
Additionally, a 1% increase in AV penetration is linked to a reduction in demand for biking, transit, share 
TNC rides, and walking by 0.16%, 0.15%, 0.13%, and 0.12%, respectively. 
 
The TOD strategy indicates that increasing residential and employment densities by 1% is associated with 
a 0.01% increase in biking and a 0.34% increase in walking, underscoring the importance of this policy not 
only for zero-emission modes, but also for the investments required to support these modes and the 
development of the necessary infrastructure.  Moreover, it decreases the demand for driving modes and 
TNC options. However, it also seems to reduce the mode choice for public transit services. 
 
E.3.4 Travel Times  
For most policy variables, the elasticity of travel time is less than 0.05, except for transit in-vehicle times 
(Figure 48). While an improvement in travel times would be expected as a result of this policy, our findings 
indicate the opposite. Transit in-vehicle times elasticities are -0.18 and -0.05 for commute and non-
commute trips, respectively. When examining the elasticity by income, high- and middle-income groups 
exhibit a 40% lower elasticity than low-income (0.09 versus 0.15). This result suggests that reduced transit 



 

 

in-vehicle times incentivizes longer trips in transit, which is confirm by the positive elasticity of transit in-
vehicle times in average trip length (Figure 50).  
 

Figure 48. Average Travel Time Elasticities by Policy Variable and Trip Purpose and Income 

 

 
The sensitivity analysis also shows that the elasticity of travel time to operating cost is significantly higher 
for non-commute trips compared to commute trips. However, for a TOD strategy, the elasticity is higher 
for commute trips. While we expected that commute and non-commute trips would benefit from a 
reduction of congestion, increased operating costs might also reduce the length and proportion of non-
mandatory trips. Increasing residential and employment capacities around transit stations reduces 
commute travel times more than discretionary trips. This differential impact suggests an increased 
accessibility to job opportunities driven by increased density. The result is expected as the probability of 
reducing commute distances increases, given the increase in residential and employment densities 
around mass transit stations.  
 
AV penetration rate and AV value of time also have an impact on the average travel time. For both policies, 
the results suggest a higher elasticity for non-commute trips and high-income populations. Similarly, it 
increases the average travel time and travel distance for driving modes, as suggested by Figure 49. 
 
 
 
 
 
 
 



 

 

Figure 49. Average Travel Time by Mode 

 
 
 
Our analysis also indicates that the elasticities for travel distance by mode are reflected in travel times by 
mode, but not in the same proportion. For instance, reducing transit in-vehicle times by 1% leads to a 
0.66% increase in trip distance and a 0.43% increase in public transit travel times. Similarly, a 1% increase 
in operating costs results in a 0.12% increase in transit trip length and a 0.07% increase in travel time. 
Since speed is a function of distance over time, lower increases in travel time and higher increases in travel 
distance result in higher speeds. Therefore, it is possible to conclude that policies that discourage the use 
of private cars and incentivize the use of public transit can improve congestion by improving speeds. It is 
worth noting that for all policies examined, the average travel time and average travel length for both 
biking and walking options have equal elasticates. This finding is not surprising given that these two modes 
of transportation are typically not affected by congestion.  
 
 
 
 
 
 
 



 

 

Figure 50. Average Trip Length by Mode 

 
 
E.3.5 Other KPI  
Our sensitivity analysis indicates that an increase in transit frequencies, a reduction in transit fares, and 
transit in-vehicle times are all positively associated with an increase in public transit ridership, as 
presented in Figure 51A. However, it shows that transit in-vehicle times have a more significant elasticity 
than the other two policy variables. A 1% decrease in transit in-vehicle times is predicted to result in a 
1.32% increase in ridership, whereas a 1% increase in transit frequencies and a 1% decrease in transit 
fares are predicted to result in only a 0.32% and 0.19% increase in ridership, respectively. 
 
The non-transit-related variable that is most elastic to ridership is operating cost, with an elasticity of 0.31. 
This finding is consistent with the public transit mode share elasticities presented in Figure 47, and suggest 
that increasing AOC is associated with mode shift to public transit modes.  
 
Vehicle ownership has virtually no elasticity to any of the policies examined, with elasticities ranging from 
-0.0007 to 0.0012.  
 
 
 
 



 

 

Figure 51. Policy Variable Impacts on A) Transit Ridership Elasticity and B) Average Vehicle Ownership 

 

 

 
 
 
 
 
 
 
 
 

  



 

 

 

Appendix F Telecommute Models 
Telecommute as an Option: Rate-based model to estimate what workers have telecommute as an option. 
This model was estimated using the Bay Area Subsample in the NHTS 2017.  
 

Table 42. Telecommute as Option Rates 
Job Sector Income Category Age Category Base Year 
      WFH Option Rate - NHTS 

 
 less than 25 0.0% 

 0k - 50k 25 - 45 9.5% 
Sales or Service,   45+ 9.7% 
Clerical or Administrative,   less than 25 0.0% 
Support, Manufacturing,  50k - 150k 25 - 45 20.2% 
Construction, Maintenance,   45+ 13.5% 
or farming   less than 25 0.0% 

 150k+ 25 - 45 34.3% 
    45+ 30.0% 

   less than 25 23.3% 

 0k - 50k 25 - 45 30.2% 
   45+ 18.1% 

Professional, Managerial    less than 25 32.4% 
or Technical 50k - 150k 25 - 45 39.7% 

   45+ 26.3% 
   less than 25 22.0% 
 150k+ 25 - 45 54.9% 

    45+ 40.8% 
Estimated from NHTS 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
Frequency of telecommuting: Models the weekly frequency of telecommuting given that telecommuting 
is an option. This model was estimated using the Bay Area Subsample in the NHTS 2017.  



 

 

 
Table 43. Telecommute Frequency 

Frequency 
Rates Baseline 

  NHTS - 2017 

0 Days/week 0.476 

1 Day/Week 0.396 

2-3 Days/week 0.104 

4+ Days/week 0.025 

 

Estimation process and exploratory data analysis can be found here:  
https://github.com/ual/activitysim/blob/main/carb/jupyter_notebooks/WFH_rates.ipynb 
  

https://github.com/ual/activitysim/blob/main/carb/jupyter_notebooks/WFH_rates.ipynb


 

 

Appendix G Sensitivity Analysis Test  
During the sensitivity analysis, the research team identified a discrepancy in the transit magnitude fare in 
the modeling framework PILATES10.  As a result of addressing the discrepancy, the baseline results 
changed, making it inappropriate to compare the new baseline with previously conducted tests that 
reflect the discrepancy. Therefore, sensitivity runs associated with the discrepancy would need to be re-
run.  
 
However, due to the high computational costs associated with re-running the analysis, the team decided 
to keep the results unchanged for the policies that had been run until that point (highlighted in green and 
orange in Table 44). The rationale behind this decision was that we did not anticipate a significant impact 
of the fare magnitude error on the elasticity estimation results of other policies. Additionally, re-running 
the entire analysis would have resulted in at least a month's delay in the project timeline.  
 
Nevertheless, to ensure the integrity and accuracy of our research findings, we validate the decision to 
retain the previous results. Therefore, the purpose of this appendix is to evaluate whether the fare 
magnitude error during the PILATES run has a substantial impact on the sensitivity analysis results and the 
conclusions drawn in Appendix E Sensitivity Analysis. We re-ran the sensitivity analysis for two policies 
and compared the results with the corrected PILATES version. Table 44 provides an overview of the 
policies examined in the present research project. The table highlights in green the two policies being 
tested in this appendix, and in orange, the policies excluded. Other rows represent the policies for which 
the corrected version of PILATES was used. Given the time and resources constraints, the policies 
highlighted in orange will not be re-run. 
 

Table 44. List of Sensitivity Review Policies 

Policy Variable Forecasting Horizon Baseline level 
Corrected 
in Pilates Test 

Corrected 
in Pilates 

Included 
in Policy 
Scenario 

    200%   
Transit 

Frequencies One year (2021) Current 
Transit  

NO 100% NO YES 

   Frequencies  -25%   
       -50%   
    50%   

Transit Fare One year (2021) Current 
Transit 

YES -25% YES YES 

   Fare  -50%   
       -100%   

Transit Speeds One year (2021) Current 
Transit 

YES -10% YES NO 

     in-vehicle 
times 

 -25%   

  Base: $2.20  50%   

 
10 PILATES is the modeling framework that integrates the land use model UrbanSim, the activity-based 
model ActivitySim, and the network assignment model BEAM.  

 



 

 

Policy Variable Forecasting Horizon Baseline level 
Corrected 
in Pilates Test 

Corrected 
in Pilates 

Included 
in Policy 
Scenario 

TNC Price One year (2021) Minimum: 
$7.20 

NO 25% NO NO 

  Per mile: 
$1.33 

 -25%   

    Per Minute: 
$0.24 

 -50%   

  Base: $2.20  50%   

Share TNC Price One year (2021) Minimum: 
$3.0 

NO -10% NO YES 

  Per mile:  
$0.53 

 -25%   

    Per Minute: 
$0.10 

 -50%   

    100%   
Operating Cost One year (2021) 18.29 cents NO 50% NO YES 

    -25%   
       -50%   
    $7.15    

Cordon Pricing One year (2021) No Cordon 
Pricing 

NO $6.50  NO NO 

    $4.80    
       $3.20    
    50%   

Park & Ride One year (2021) Average of  NO 25% NO NO 
  $3/day  -25%   
       -50%   
    50%   

Telecommute   One year (2021) 2017 NHTS 
Model 

NO 25% NO NO 

Option  (see 
Appendix F) 

 -25%   

       -50%   
    NHTS 

2017 
  

Telecommute One year (2021) +100% 2017 
NHTS  

NO 50% NO YES 

Frequency  Model  200%   

    (see 
Appendix F)  

 300%   

    5%   

AV Penetration  One year (2021) 0% 
Penetration  

YES 10% YES YES 

Rate  rate  25%   
       50%   
  Current Value 

of  
 -10%   

AV Value of  One year (2021) Time for Non-
AV /  

YES -20% YES YES 



Policy Variable Forecasting Horizon Baseline level 
Corrected 
in Pilates Test 

Corrected 
in Pilates 

Included 
in Policy 
Scenario 

Time  AV 
Penetration -40%

rate of 25% -60%

TOD Residential 
Current 

Residential 
and 

10% 

and 2035 Employment YES 25% YES YES 
Employment Capacities 50% 

Highlighted in green are the selected policies to verify that the discrepancy does not significantly affect 
the elasticities estimated with the transit fare magnitude discrepancy. The column “Corrected PILATES 
run” references the policies run with the corrected version. Highlighted in orange are the policies that will 
not be re-run. 

G.1 Methodology
To assess the changes in elasticities resulting from variations in the transit fare magnitude, we re-ran the
sensitivity analysis for two policies: "Transit Frequencies" and "Operating Cost.” The former policy
pertained to public transit and had previously shown low elasticities, while the latter is indirectly related
to transit and demonstrated higher elasticities. Both policies are also included in the final policy scenario
run.

In this study, we estimated the arc elasticities for all Key Performance Indicators, some of which were 
categorized by income, race, and transportation mode, resulting in 51 elasticities per policy. A pair-wise 
difference of the elasticities for the corrected and uncorrected simulation results are compared and 
analyzed. To evaluate the statistical significance of the of the pair-wise difference, we conducted a one-
sample t-test. The null hypothesis posits that the mean of the pair-wise difference distribution is zero, 
while the alternative hypothesis states that the mean of pair-wise difference distribution deviates 
significantly from zero. We reject the null hypothesis if the p-value associated with the t-ratio is less than 
0.05. 

We estimated the arc elasticity. In the arc elasticity estimation, the percentage change of the output 
variable and the policy variable is estimated with respect to their corresponding midpoint, as follows: 



 

 

Where 𝜀𝜀𝑖𝑖,𝑗𝑗 is the arc elasticity of 𝐾𝐾𝑃𝑃𝐼𝐼𝑖𝑖 with respect to the policy variable 𝑗𝑗. To estimate a final elasticity, 
we average the estimated elasticity for each test. The range of the elasticity estimate is from negative 
infinitive to positive infinity, although most estimated elasticities are within 10 and -10. A positive 
elasticity means that an increase in the input variable results in an increase in the output variables, while 
a negative value indicates an inverse relationship between the output variable and the input variable. 
Specifically, as the input variable increases, the output variable decreases. 
 
G.2 Results  
The findings of the Transit Frequency policy are presented in Figure 52. The policy's elasticity remains 
relatively inelastic, ranging from -0.1 to 0.3. It is worth noting that the sign of the elasticities might change 
depending on the metric being evaluated, even within the same policy. For instance, increasing transit 
frequencies results in a negative elasticity for VMT, but a positive elasticity for consumer surplus. Figure 
52A depicts the distributions, which exhibit a significant resemblance, albeit the corrected elasticity shows 
a sharper peak in proximity to zero. Figure 52B shows that the pair-wise difference distribution is 
concentrated around zero and is bounded between ±0.06, indicating that the elasticities of the two tests 
are reasonably similar. To test the null hypothesis that the mean of the pair-wise difference is zero, we 
conducted a t-test, yielding a t-statistic of 1.45 and a p-value of 0.15, indicating insufficient evidence to 
reject the null hypothesis. 
 

Figure 52. Sensitivity Test for Transit Frequency Policy with A) Distribution of Elasticities for Corrected 
and Uncorrected Simulation Results and B) Pair-Wise Elasticity Difference Distribution 

 

 
 
Figure 53 presents the elasticity results of the Operating Cost policy, derived from two sensitivity analyses. 
The distributions of elasticities in the two tests, as depicted in Figure 53A, are comparatively similar, with 
elasticities ranging from -0.2 to 0.45. The variation in the elasticity sign is related to the estimated 
elasticity. For instance, increasing operating cost results in a negative elasticity for VMT, but a positive 
elasticity for transit ridership. Notably, the pair-wise elasticity difference distribution in Figure 53B 
appears to be center around zero and oscillating between -0.02 and 0.06, even though it does not appear 
to follow a normal distribution. The corresponding t-statistic for this distribution is 1.72, with a 



 

 

corresponding p-value of 0.09, also suggesting that there is not enough evidence to reject the null 
hypothesis.  
 

Figure 53. Sensitivity Test for Operating Policy Cost by A) Distribution of Elasticities and B) Pair-Wise 
Elasticity Difference Distribution 

 

 
G.3 Conclusion  
Based on the sensitivity analysis conducted in this appendix, it is evident that the variation in transit fare 
magnitude does have some impact on the elasticity estimates for other policies. However, the degree of 
change observed is not statistically significant, indicating that it is unlikely to alter the conclusions stated 
of the sensitivity analysis in Appendix E Sensitivity Analysis. The distribution of elasticity differences 
suggests that the discrepancy in transit fare magnitude has only a minimal impact on the elasticity 
estimates of other tested policies. Therefore, it can be concluded that the Transit Frequency policy and 
Operating Cost policy remain and have no substantial differences in their elasticities despite the variation 
in transit fare magnitude.  
 
It is important to note that for the results in the policy scenario in Policy Scenario Analysis , the modeling 
framework runs the corrected version of PILATES.  
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