

Draft Technology Assessment: Non-Truck Transport Refrigeration Units (TRU) Workshop

May 17, 2022

Workshop and Program Materials

- Workshop is NOT recorded
- Slides available at: https://ww2.arb.ca.gov/ourwork/programs/transportrefrigeration-unit/trutechnology-assessments
- Subscribe to the TRU email list

Before We Get Started

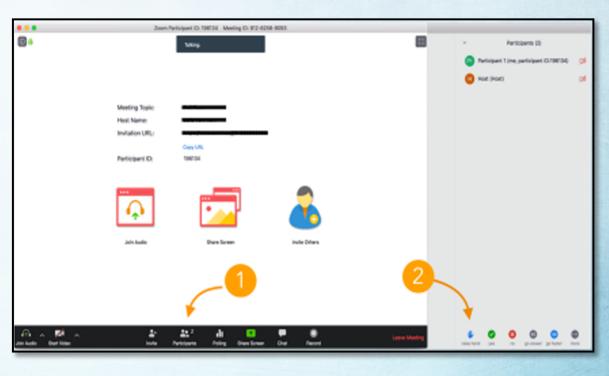
- Please mute yourself and make sure your name is showing as your screen name
- To rename, click on the top right side of your picture/video
- Use this naming convention, First Last Affiliation (e.g. Jane Doe - CARB)
 - Community Organization / Company / Air District / Agency / etc.
- Need help? Use the Chat function to request assistance

Zoom Orientation

Mute/Unmute

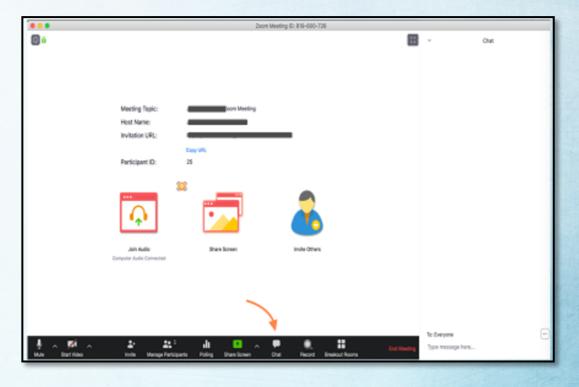
Please remain on mute unless your name has come up in the speaking queue

- Zoom: Mute/Unmute button at the bottom left
- Phone: Dial *6 to mute/unmute
 CARB


Raise Hand

To be added to the speaking queue, please use the **Raise Hand** option.

Zoom: Click
 Participants, then
 Raise Hand


CARB

Phone: dial *9
 We'll check in with the phone line periodically

Chat

- Click on the chat icon near the center bottom of your screen
- Choose "private" chat to chat with the Host or Co-host
- Private chats are archived

Need for Zero-Emission TRUs

Cut community health risk (support Assembly Bill 617 emission reductions)

Help attain regional air standards (support State Implementation Plan)

Mitigate climate change (support Scoping Plan and Short-Lived Climate Pollutant Reduction Strategy)

Governor's Executive Order N-79-20

Workshop Agenda

- TRU and Document Overview
- eTRUs
- Battery-electric TRUs
- Hydrogen Fuel Cell TRUs
- Cryogenic TRU Systems
- Range Extending Technologies
- Cold Plates

ARR

- Zero-emission Infrastructure
- Next Steps and Conclusion

Discussion/Q&A planned for **bolded** topics

Overview: Transport Refrigeration Units and Draft Document

Non-Truck TRU Classes

Domestic Shipping Container TRU

What is a transport refrigeration unit (TRU)?

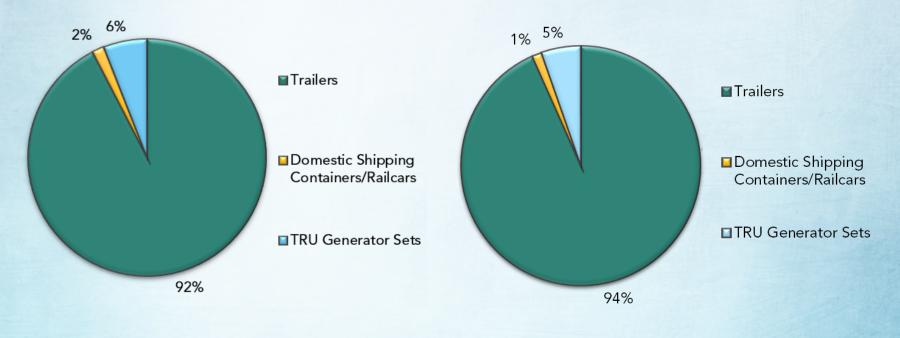
Refrigeration system that controls the environment of temperature-sensitive products during transport.

TRU Generator Sets

What are TRU Generator Sets?

> Diesel-powered generators that power electrically driven refrigeration units, mainly refrigerated ocean containers.

Non-Truck TRU and TRU Generator Set Population in CA (2021)


	# TRUs that Operate in CA	TRUs Operating in CA Per Day
Trailer TRU	158,403	42,004
Domestic Shipping Container TRU and Railcar TRU	4,081	774
TRU Generator Set	30,255	7,031
Total	192,709	49,809

2021 Emissions Inventory

Annual PM2.5 Emissions (percent by class)

Annual NOx Emissions (percent by class)

Workshop Purpose

1. Document Framework

2. Zero-Emission Technologies 3. Solicit Input

Technology Assessment Framework

Introduction

Non-Truck TRU Overview

Zero-Emission Technologies

Conclusion

Appendices

CARB

II. ZERO-EMISSION TECHNOLOGIES	17
eTRUs	17
Technology Description	17
Technology Readiness	
Emissions Benefits	23
Infrastructure Requirements	23
Economics	24
Technology Outlook	27

Appendix Items

Appendix A: Zero-Emission
 Demonstration Projects (2015-2021)

- Appendix B: 2021-2022 Federal, State, and Local Funding Opportunities
- Appendix C: List of Reviewed Studies

More info on other State funding programs:

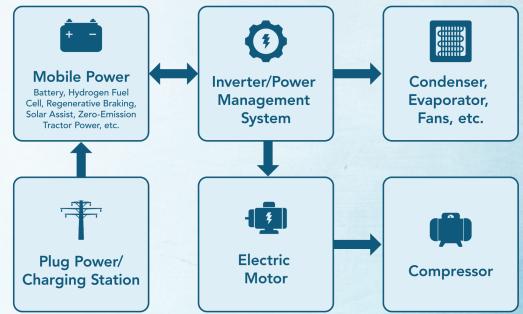
- <u>https://business.ca.gov/ind</u>
 <u>ustries/zero-emission-</u>
 <u>vehicles/zev-funding-</u>
 <u>resources/</u>
- <u>https://www.energy.ca.gov</u> /programs-and topics/programs/cleantransportation-program

Call Out Boxes

Example:

CARB staff seeking information on the demonstration projects in this table.

CARB staff also seeking information on any other demonstration projects for zero-emission technologies for non-truck TRUs which are not listed in this table.



Zero-Emission Technologies

eTRUs Overview

- A TRU electrically driven at least part of the time
- 3 Categories:
 - All-electric
 - Hybrid-electric
 - Standby-electric

eTRU Readiness

Advantages

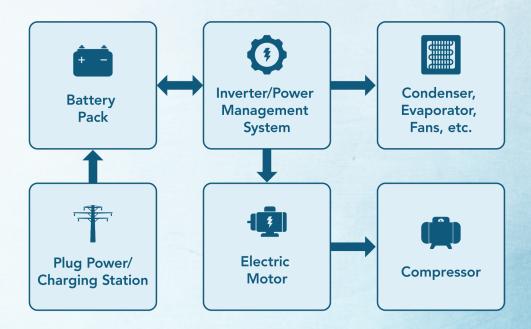
- Can use several power sources
- Readily Available
- Competitive pricing

Challenges

Compatibility

Estimated Costs

Cost Component	All-electric eTRU	Hybrid-electric/stationary eTRU Using Plug-In when Stationary Costs	Hybrid-electric eTRU when Mobile Costs	Mobile Diesel-Powered TRU Costs
Capital Cost of Equipment (manufacturer's suggested retail price)	[CARB Staff Seeking Info]	\$33,500 to \$36,000 (<25 hp with new standards)	\$33,500 to \$36,000 (<25 hp with new standards)	\$24,400 to \$28,500 (<25 hp)
Annual Fuel Costs	\$1.52 per hour on electricity \$3,040 per year electricity	\$1.52 per hour on electricity\$760 per year electricity\$4,780 per year total (diesel and electric)	\$2.68 per hour on diesel \$4,020 per year diesel \$4,780 per year total (diesel and electric)	\$2.68 per hour \$5,360 per year
Operation and Maintenance – Maintenance	\$0.50 per hour \$1,000 per year	\$0.50 per hour \$1,000 per year	\$0.50 per hour \$1,000 per year	\$0.95 per hour \$1,900 per year
Infrastructure	\$8,900 (one-time)	\$8,900 (one-time)	No additional cost	No additional cost
CARB Tables sources located in Chapter III of the draft document. 21				


Requested Info: eTRUs

- Zero-emission tractor power demonstrations
- Additional implementation challenges or technologies (Chapter III)
- Population of TRUs operating as eTRUs
- Cost Info:
 - Capital units
 - Operation fuel
 - Maintenance
 - Zero-emission infrastructure, maintenance (charging and plug), and installation

Battery-Electric TRU Overview

- An eTRU powered by rechargeable battery packs
- Rely on a power
 management system
- Plug into grid power or electric vehicle supply equipment (EVSE)

Battery-Electric TRU Readiness

Advantages

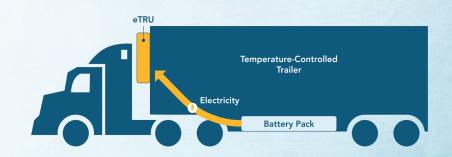
- Commercially available
- Quiet operations
- Reduced maintenance

Challenges

- Cost
- Limited operating range
- Longer refuel times

Estimated Costs

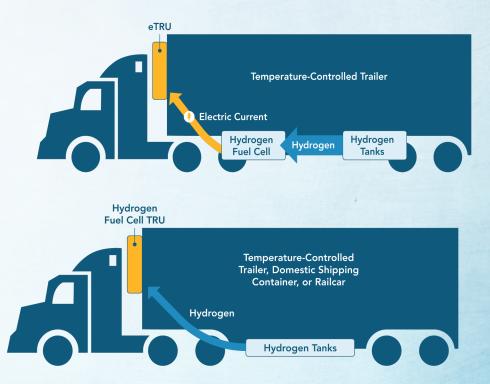
Cost Component	Battery-Electric	Diesel-Cost
Capital	\$80,000	\$36,000
Lithium-Battery Pack	\$450 to \$500 per kWh	Not Applicable
Battery/Diesel Engine Replacement	\$9,000 to \$50,000	\$7,295
Annual-Fuel	\$3,950	\$4,150
TRU Maintenance	\$0.50 per hour of operation	\$0.95 per hour
Infrastructure Capital	\$4,300 to \$5,700	\$0



Tables sources located in Chapter III of the draft document.

Requested Info: Battery-Electric TRUs

- Additional implementation challenges
- Battery Info
 - Average power draw
 - Door opening impacts
 - Required battery capacity
- Cost Info:
 - Capital units
 - Operation fuel
 - Maintenance
 - Zero-emission infrastructure, maintenance, and installation
- Any additional manufacturers (Chapter III)
- Additional demonstration projects (Appendix A)


Workshop Questions & Discussion

- Please use the raise hand function (*9 if calling on the phone) to speak or use the chat function
- Please include slide numbers
- Please state your name and affiliation before asking a question or making a comment

Hydrogen Fuel Cells Overview

- eTRU that uses hydrogen fuel cells as its power source
- Three potential configurations
 - Integrated fuel cell engine
 - Mounted fuel cell
 - Fuel cell housed with tanks

Hydrogen Fuel Cell Readiness

Advantages

- Commercially available
- Quiet operations
- Reduced maintenance

Challenges

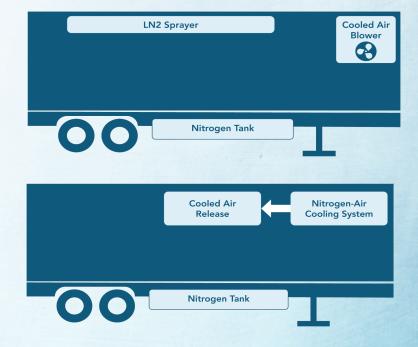
- Cost
- Limited operating range
- Tank weight
- Safety

Estimated Costs

Cost Component	Hydrogen Fuel Cell Costs	Diesel Costs	
Hydrogen Fuel Cell TRU			
Capital: Fuel Cell TRU			
	[CARB staff seeking information]	\$29,400	
(TRU with integrated fuel cell)			
Capital: Tanks			
Annual Fuel	[CARB staff seeking information]	[CARB staff seeking information]	
Maintenance			
Hydrogen Fuel Cell-Powered eTRU		¢20,400	
Capital: eTRU Capital: Fuel Cell		\$29,400 Not applicable	
Capital: Tanks	[CARB staff seeking information]		
Annual Fuel		[CARB staff seeking information]	
Maintenance			
Hydrogen Fuel Cell TRU Generator Set	Pin-On Class		
Capital		\$17,940	
Annual Fuel	[CARB staff seeking information]	[CARB staff seeking information]	
Maintenance			
Hydrogen Fuel Cell TRU Generator Set	Underslung Class	¢47.050	
Capital	ICADD staff secling information 1	\$17,250	
Annual Fuel Maintenance	[CARB staff seeking information]	[CARB staff seeking information]	
Hydrogen Fuel Cell TRU Generator Set:	Powerpack		
Capital			
Annual Fuel	[CARB staff seeking information]	[CARB staff seeking information]	
Maintenance	· · · · ·		
~~~			



Tables sources located in Chapter III of the draft document.


# **Requested Info: Hydrogen Fuel Cells**

- Additional demonstration projects (Appendix A)
- Cost Info
  - Capital units
  - Operation fuel
  - Maintenance
  - Zero-emission infrastructure, maintenance, and installation
- Refueling
  - How operators will refill hydrogen tanks
  - Fill rate standard preferences
  - Connection standard preferences



# **Cryogenic TRU System Overview**

- A cooling system that uses
  - Liquid nitrogen
  - Oxygen
  - Carbon dioxide
- Two systems
  - Standard v. Dearman
- Two Methods
  - Direct injection v. indirectinjection

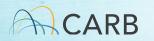




# **Cryogenic TRU System Readiness**

#### Advantages

- Quiet operations
- Reduced maintenance
- Faster cooling times

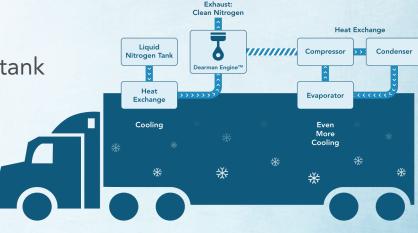

#### Challenges

- Cost
- Limited operating range



#### **Estimated Costs**

Frequency	Cost Component	Cryogenic TRU System Costs	Diesel Costs
One-Time Costs	Capital	\$35,000-\$50,000	\$29,400
One-Time Costs	Dispensing System	\$10,000	Not applicable
	LN2 Gravity Feed System	\$1,500 per month	Not applicable
	LN2 Quick Fill System	\$3,000 per month	Not applicable
Recurring Costs	Tank Lease	\$270 per month (13-ton)	Not applicable
	Operation	Cost varies	Cost varies
	Maintenance	\$100 per year	\$1,900 per year




Tables sources located in Chapter III of the draft document.

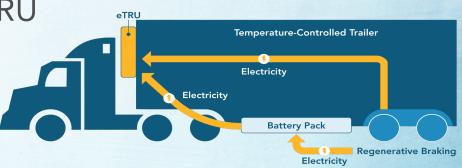
## **Requested Info: Cryogenic TRU Systems**

- Additional demonstration projects (Appendix A)
- Refueling
  - How operators refill the cryogen tank
- Cost Info
  - •Capital units
  - •Operation fuel
  - Maintenance
  - •Zero-emission infrastructure, maintenance, and installation
- How cryogenic systems perform in California
- Operating range capabilities





Clean Cold Power Dearman Engine™


## **Workshop Questions & Discussion**

- Please use the raise hand function (*9 if calling on the phone) to speak or use the chat function
- Please include slide numbers
- Please state your name and affiliation before asking a question or making a comment



#### **Range Extending Technologies Overview**

- Regenerative braking systems
  - Installed on trailer axle or wheel hub
  - Generates electricity
- Solar assist
  - Provides power to eTRU
  - Charge batteries

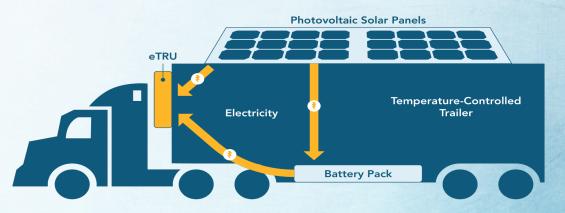




#### Regenerative Braking/Solar Assist Readiness

#### **Advantages**

- Commercially available
- Extend operating range
- No infrastructure requirement


#### Challenges

- Cost
- Additional weight (solar)

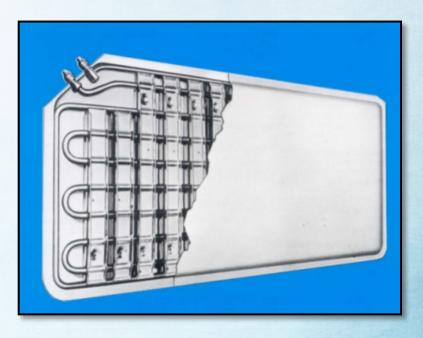


#### Requested Info: Range Extending Technologies

- Data on range extension capabilities from both
- Data on energy generation from both systems
- Cost Info
  - Purchase of system
  - Installation






#### **Cold Plates**

#### Overview

- Sheet metal enclosures with internal evaporator coils surrounded by eutectic fluid.
- Absorb cargo space heat.

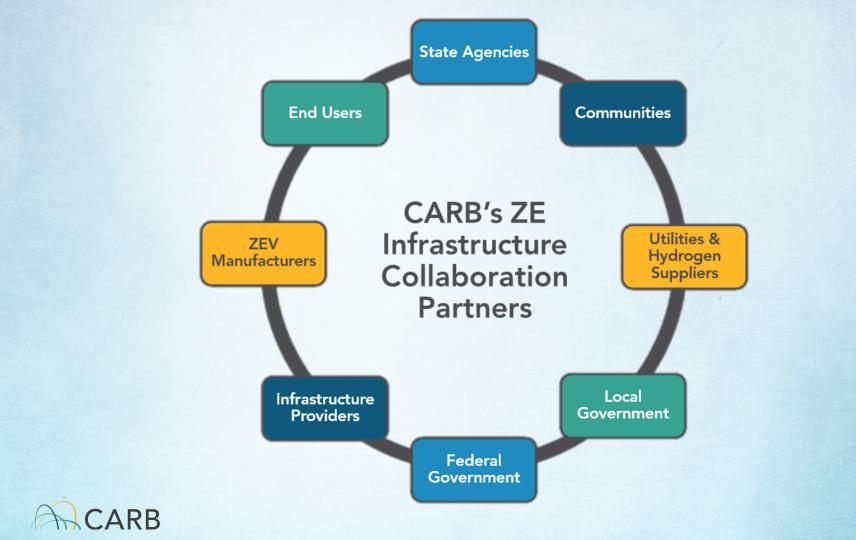
#### Information Requested

• Development for non-truck transport.





### **Workshop Questions & Discussion**


- Please use the raise hand function (*9 if calling on the phone) to speak or use the chat function
- Please include slide numbers
- Please state your name and affiliation before asking a question or making a comment



#### **Zero-Emission Infrastructure**

# 





#### **CARB Shares Information**

- Providing off-road equipment & emission impacts of technology shifts
- Coordinating with CA Energy Commission (CEC) on the development of ZE infrastructure
- Provide information to energy agencies
- Provide expertise to support development of new building codes for ZE infrastructure



#### **Infrastructure Deployment**

- Determine which ZE technology best suits your operational needs with the lowest capital & operational costs
- Installation takes time, start early
- Coordinate early & often with fuel provider
- Consider ways to reduce costs



#### **Next Steps**

- Submit comments and information by June 3, 2022
  - freight@arb.ca.gov

- Final draft release anticipated:
  - 2022



DRAFT TECHNOLOGY ASSESSMENT: NON-TRUCK TRANSPORT REFRIGERATION UNITS (TRU)

Trailer TRUs, Domestic Shipping Container TRUs, Railcar TRUs, and TRU Generator Sets

May 2022



#### Please Submit Data for the Technology Assessment

- Cost info (including infrastructure)
  - Operating info
    - Projects info
  - Manufacturer and product info
    - Food safety considerations



### **Fleet Survey for Non-Truck TRUs**

- California Air Resources Board is working with Foundation for California Community Colleges
- Survey will be administered online and by phone
- Survey anticipated to close Late-2022



FOUNDATION *for* CALIFORNIA COMMUNITY COLLEGES



## We are looking for your input for the fleet survey:

- 1. What is your fleet fuel use per day on average?
- 2. How many hours does your fleet spend at a given facility on average?
- 3. When considering transitioning your fleet to zeroemission, what factors go into your decision-making?

Your input will help us transition to zero-emission TRUs



## **Thank You for Attending!**

Please send written comments, feedback, and supporting data by June 3, 2022, to <u>freight@arb.ca.gov</u>

For more information on TRUs, please visit our webpage at: <u>https://ww2.arb.ca.gov/our-work/programs/transport-</u> <u>refrigeration-unit</u>

