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Part 1: Background and context
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OPGEE model

Source: El-Houjeiri and Brandt (2012a, 2012b)

• Model is called Oil Production Greenhouse gas Emissions 
Estimator (OPGEE)

• Estimates emissions given field parameters and technologies

The first open-source GHG
tool for oil and gas operations
• Anyone can download, modify and use
• 36 published papers, complete 

documentation (~400 pp.) with all 
sources defined

• Funded by CARB, U.S. DOE, Carnegie 
Endowment, Ford Motor Co., Saudi 
Aramco
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OPGEE model timeline
• Model development started in 2010
• First official version: OPGEE v1.0 released September 2012
• Second official version: OPGEE v2.0 released Feb 2018
• Third official version (candidate): OPGEE v3.0a - Introduced today

• Bibliography at end of slides:

Used in studies of crude oil CI for 
• US (Cooney et al. 2017, Yeh et 

al 2017, Brandt et al. 2016)
• Canada (Cai et al. 2015, 

Englander et al. 2015)
• China (Masnadi et al. 2018a)
• Globe (Masnadi et al. 2018b)

Methods development
• Overall (El-Houjeri et al. 2013)
• Drilling (Vafi et al. 2016)
• Gas processing (Masnadi et al. 

2020
• Uncertainty (Vafi et al. 2014a, 

2014b, Brandt et al. 2015)
• Time trends (Masnadi et al. 

2018c, Tripathi et al. 2017)
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Part 2: Updates to the model
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Major revisions in OPGEE v3.0a
• Improved model organization and process interconnections

• Expansion of natural gas life cycle coverage and option to 
choose gas as the functional unit

• Improved gas processing modeling

• New methodology for venting and fugitive emissions modeling

• Updated default input values

See slides from October 2020 workshop for additional details 
beyond this presentation

https://ww2.arb.ca.gov/sites/default/files/2020-10/101420presentation_stanford_opgee.pdf
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Improvement 1: Model organization and stream 
tracking
• OPGEE v2.0 mostly lacked stream tracking and interconnected 

processes
• Gas species tracked, but other streams were not reliably tracked
• Process units were not on individual sheets, and unclear exactly which 

mass flows were entering and leaving each sheet

• OPGEE v3.0a includes a completely reworked model “skeleton”
• All streams of oil, water, gas, etc. are tracked in mass flows
• Conservation of mass ensured at process unit and total model level
• Pressures, temperatures, and other properties tracked
• Navigation aided by graphical view of process connections (PFD)
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Graphical navigation

Trace flows along 
processing paths and click 
to navigate to sheets

Flows and properties into and 
out of each process unit tracked

Mass flows

Properties
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Gas as a primary product, different assessment points

OPGEE 2.0 
Always required oil to be the 
primary product

OPGEE 3.0 
Allows for selection of oil or gas 
as the primary product

Expanded coverage of the gas 
system, including midstream and 
downstream processes

Field

Transport

Oil at field boundary or refinery inlet

Gas at field boundary, 
transportation inlet or consumer
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Improvement 2: Gas processing simulation

• OPGEE v2.0 relied on ”textbook” treatment of gas processing units 
• Simple models of energy use and power needs per unit of throughput
• No way to customize process unit energy use for particular conditions

• OPGEE v3.0a includes ”proxy” models generated from process 
simulation tools
• Used Aspen HYSYS process simulation package
• Simulated three key gas processing units

• Acid Gas Removal, Dehydration, Demethanizer
• Simulated many cases at a variety of conditions
• Generated statistical representations to predict Aspen HYSYS results

M.S. Masnadi *, P.R. Perrier , J. Wang , J. Rutherford , A.R. Brandt. 
Statistical proxy modeling for life cycle assessment and energetic analysis. 
Energy. DOI: 10.1016/j.energy.2019.116882 



1212

Example: Acid Gas Removal proxy model vs. 
AspenHYSYS output on held-out testing data

Reboiler

Pump

Condenser

Cooler
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Take-aways from process simulation

• Quadratic regression able to replicate Aspen HYSYS 
results extremely well

• Most fits have R2 >0.95

• OPGEE now produces, for cases within our sampled 
input ranges, results very close to Aspen HYSYS
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Improvement 3: Fugitive and vented CH4
emissions
• OPGEE v2.0 relied on CARB survey data for fugitive and vented CH4

• Survey of California producers with detailed reporting on emissions
• Emissions factors obtained from EPA GHG Inventory
• Independent measurements lacking, with many studies done since 

OPGEE v2.0

• OPGEE v3.0a uses large set of measured field data for CH4 emissions
• Two models: “component” level as the recommended method and 

“site” level as a validation
• Component data draws on multiple studies, 1000s of measured leaks
• Recreates observed US-wide emissions (e.g., Alvarez et al. 2018)

J.S. Rutherford, E.D. Sherwin, A.P. Ravikumar, G.A. Heath, J.G. Englander, D. Cooley, 
D. Lyon, M. Omara, Q. Langfitt, A.R. Brandt Closing the methane gap in US oil and 
natural gas production emissions inventories. Nature Communications. 
DOI: 10.1038/s41467-021-25017-4
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Top-down

e.g., Zhang et al. 2020, 
Permian Basin

Bottom-up
Component-level Site-level

e.g., Alvarez et al. 2018, 
National estimate

e.g., EPA Greenhouse 
Gas Inventory

Policy and programs Validation and assessment

Different types of methane measurement inform our 
understanding of emissions quantities and sources

OPGEE “component” 
recommended method

OPGEE “site” 
validation method
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Collecting component-level data from 
various studies

• Comprehensive literature search of component-level 
surveys (6 studies, ~3200 measurements)

• Filtered to include US studies only
• Limited global coverage
• Future model versions could include emissions 

distributions from other regions

• Data consolidated to consistent component and equipment 
type categories
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Development of a bottom-up tool
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Development of a bottom-up tool
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Development of a bottom-up tool
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Using equipment distributions in OPGEE
• Gas productivity tranches were observed as driver of fractional 

loss rate
• A stochastic leak process will tend to cause higher loss 

fraction in less productive wells

• A separate equipment-level loss fraction distribution was 
generated for each gas productivity tranche

• Loaded those average loss rates into OPGEE to apply to 
modeled fields based on gas production per well

• For further details, see documentation section 8.2.2.1 on 
“Design of the reduced order tool”
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Validating the method
Ideally the method adopted in OPGEE would recreate the key 

results of literature on methane emissions from the last 5 years

Key empirical features that have been found repeatedly:
1. Larger emissions than classical EPA Greenhouse Gas Inventory 

methods
2. Strong dependence of loss fraction on site gas productivity
3. Strong “heavy-tailed” behavior of emissions distributions: 

dependence on large emitters to drive large fraction of emissions
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Validating against US estimate of production-
segment emissions
Total emissions similar to Alvarez et al. 
2018 and higher than EPA GHGI

Distribution similar to Omara et al. 2018, 
which has the features from previous slide
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Drivers of differences between this study and GHGI

Largest discrepancies:
• Tank flashing and 

venting
• Equipment leaks
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Part 3: Comparisons of CI results 
between v2.0c and v3.0a
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Comparison of CI Values between OPGEE 2.0c 
and 3.0a
• 2010 LCFS baseline fields used to compare carbon intensity (CI) 

values between versions 2.0c and 3.0a
• These fields represent real-world data and a range of field types

• Key definitions
• CI: Carbon intensity
• VF: Venting and Fugitives
• VFF: Venting, Fugitives, and Flaring
• Non-VFF: Combustion, land use, credit/debit, and small sources 

(all except venting, fugitives, and flaring)
• GOR: Gas-to-oil ratio
• gCO2e/MJ: Units of carbon intensity (grams of carbon dioxide 

equivalent per megajoule of exported energy)
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Results: Comparing v2.0c to v3.0a

Dashed line = 1:1: 
agreement

Dot size = LCFS baseline 
volume

Similar CI for many fields 
between v2.0 and v3.0, with 
some clear differences 
based on model changes
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Different effects in different parts of the model

Non-VFF emissions 
lower for most 

fields in 3.0

Venting and fugitive 
emissions higher for 

most fields in 3.0

Flaring emissions 
essentially 
unchanged
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CI differences driven by changes in VF 
emissions for certain field types
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Fields using steam injection mostly fall near 
parity line
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Validation of component fugitives method 
against alternate site method

General agreement 
between (recommended) 
“component” approach 
and (validation) “site” 

approach



3131

More gas, less productivity -> Higher CI

Less productive 
wells

More gas/ 
Less oil

Higher CH4 CI
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Venting and fugitive changes by equipment type
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Non-VFF changes by component/source/unit
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Takeaways and next steps
Takeaways:
• OPGEE v3.0 contains fundamental improvements to gas 

handling, process simulation, and stream tracking
• Results between v2.0 and v3.0 are generally similar, with 

changes due to important improvements in modeling and 
corrections

• Fugitives higher for low productivity fields, gas 
compression work lower

Next steps:
• Improved field-level flaring estimates generated using GIS 

dataset and satellite flaring estimates
• Improved regionally specific equipment and activity 

counts to incorporate federally reported data (GHGRP)
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