Advanced Clean Trucks Cost Discussion

Workgroup Meeting

December 4, 2018

Sacramento, California

Cost Discussion Goals

- Help us understand cost saving opportunities and find well-suited market segments
 - Costs and emission benefits should be consistent with timeframe for operations in California
- Share data sources we are aware of and receive feedback on them
- Use cost sources to develop total cost of ownership model for rulemaking purposes
 - Advanced Clean Trucks
 - Future fleet rules

Total Cost of Ownership

- Total Cost of Ownership (TCO) is the discounted sum of all costs of a vehicle
- Includes capital costs (vehicle purchase, infrastructure) and operational costs (fuel, maintenance, LCFS credits) as well as other miscellaneous expenses
- TCO depends on how the vehicle is operated vehicle miles travelled, years of operation, and other factors

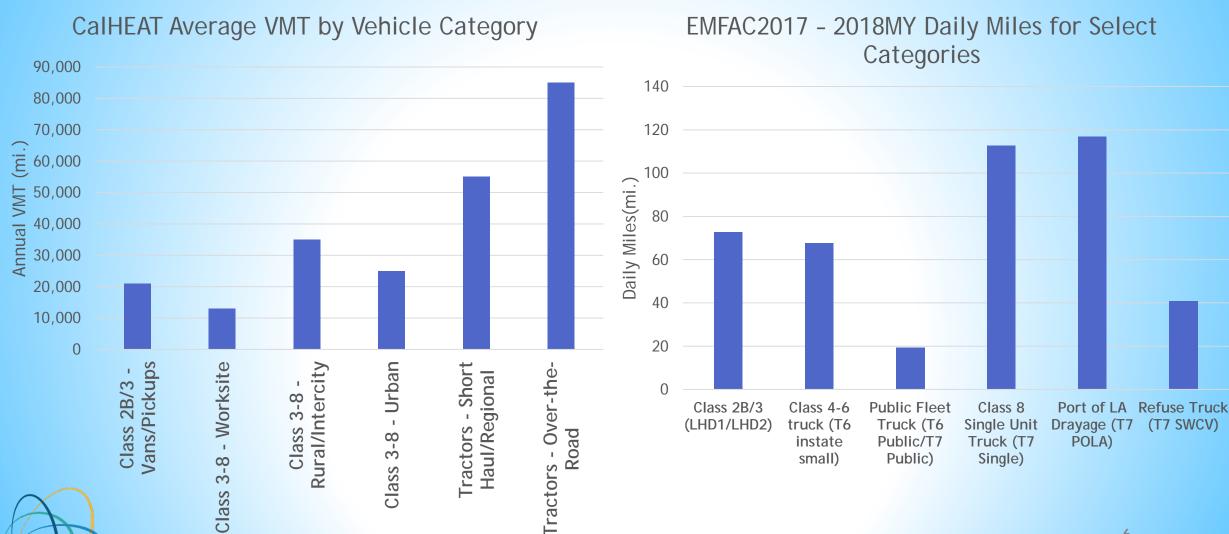
Topics for discussion

- Vehicle operations
- Capital costs
 - Vehicle purchase price
 - Residual values
 - Midlife refurbishment

- Operating costs
 - Fuel
 - Low Carbon Fuel Standard
 - Maintenance
- Infrastructure
- Other

Vehicle Operating Assumptions

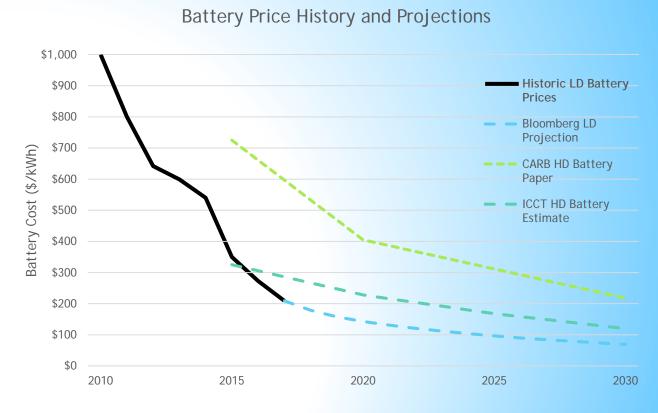
Annual miles


 Numerous sources estimate annual or daily miles for vehicle populations including CalHEAT, CARB's EMFAC, the Vehicle Inventory and Use Survey (VIUS), and the upcoming CalTrans Truck Survey (CalVIUS)

Vehicle life

- Based on DMV data and other sources, the average lifetime of a truck is 15-25 years
- Based on surveys, the typical first life of a vehicle is 8-10 years but varies significantly by truck type, usage, fleet priorities, and other factors

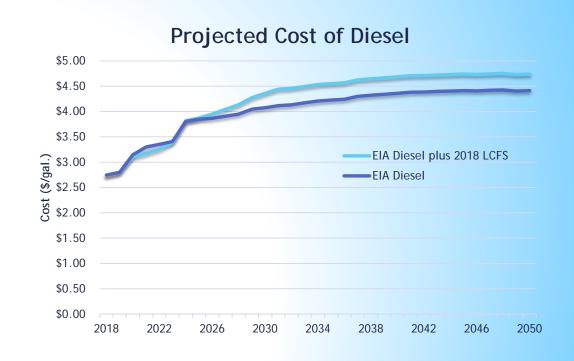
Mileage Examples


Vehicle Prices

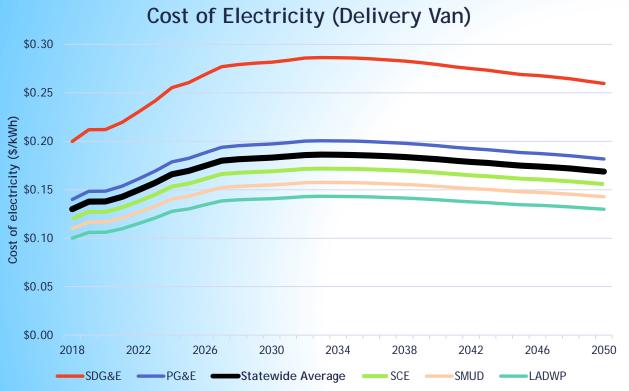
- Manufacturer websites and online truck marketplaces
 - Includes TruckPaper.com and CommercialTruckTrader.com
 - Future truck prices influenced by GHG Phase 2 compliance costs
- Zero-emission vehicle prices can be calculated using estimated glider costs and component-level cost estimates
 - Heavy-duty sources include CARB, the International Council on Clean Transportation, Ricardo, University of California, Davis and others
 - Can we use light-duty projections for some vehicles i.e. Class 2B-3?
- Residual values for vehicles
 - Battery-electric
 - o A SAE paper estimates BEV battery's residual value of \$20-\$100/kWh for BEV batteries
 - Hydrogen fuel cell

Battery Costs

- The cost of the battery is the largest component of battery-electric vehicles
 - Light-duty battery costs have declined dramatically over the last decade
- Cost reductions expected for other EV components
- Today, heavy-duty batteries cost more than light-duty batteries. It is unclear if this trend will continue.
 - Companies may use LD batteries in HD applications


Midlife Costs

- Midlife costs include diesel engine rebuilds, battery replacements, and fuel cell stack refurbishments
- Dependent on vehicle life and usage more miles means one or more midlife expenses
- Battery replacement
 - Based on battery price curve, battery size, warranty period, and other factors
- Hydrogen fuel cell stack refurbishment
 - Ricardo estimates a refurbishment costs 1/3 of the fuel-cell stack's cost


Fuel Cost

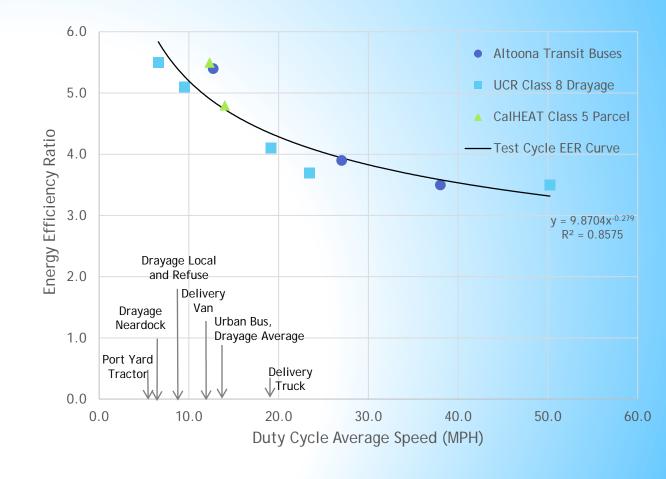
- Diesel fuel cost Energy Intelligence Agency's (EIA) Annual Energy Outlook (AEO) 2018
 - Add in projected 2018 Low Carbon Fuel Standard Amendment costs
- Electricity fuel cost CARB Battery-Electric Truck and Bus Charging Calculator for initial cost
 - EIA AEO 2018 models cost increase over time
- Hydrogen fuel cost
 - Production method and volume dependent

Fuel Cost (Cont'd)

Cost of Hydrogen* (Trillium Estimate)

Buses	kg/day	GH2 Delivery	LH2 Delivery	Onsite SMR	Onsite Electrolysis
5	150	\$11+	\$12+	\$11	\$11-\$16
35	1,000	\$8+	\$7+	\$6	\$7-\$12
200	6,000	\$6+	\$4+	\$4	\$4-\$10

*Deduct \$6/kg for 5 buses, \$1.50/kg for 200 buses for direct CapEx purchase

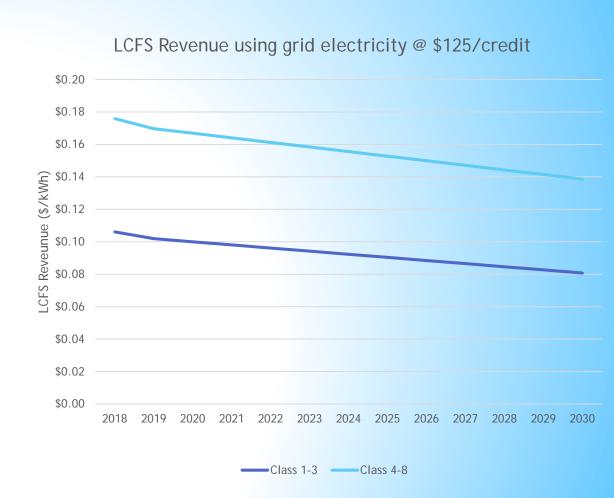


Input for electricity graph: 20 vehicle deployment, 19 kW charger, 100 mi./day, 0.96 kWh/mi. 90% charging efficiency, 10PM-6AM charging period, managed charging strategy, 3% local taxes and fees, LADWP - A-2(B), PG&E - CEV-L @ 400kW, SMUD - GS-TOU3, SDG&E - AL-TOU2/EECC-CPP-D, SCE - EV-8

Note: The graph shows Pacific Gas and Electric's CEV-L rate and Southern California Edison's EV-8 rate, both of which
are awaiting approval.

Efficiency of Electric Vehicles

- Electric vehicles operate more efficiently at lower speeds compared to diesel
- Most vocational vehicles operate at low average speeds under 20 mph


Fuel Economy

- Diesel can be derived from GHG Phase 2 standards
- Battery-electric based on in-use data
 - Passenger van 0.56 kWh/mi.
 - Delivery van 0.7 to 1.0 kWh/mi.
 - Cutaway shuttle 1.0 kWh/mi.
 - Day cab tractor 2.1 kWh/mi
 - Refuse truck 2.5 to 3.0 kWh/mi.
- Hydrogen fuel-cell Apply Low Carbon Fuel Standard Energy Economy Ratios to diesel fuel economy
 - Class 1-3 hydrogen fuel-cell is 2.5 times more efficient than diesel
 - Class 4-8 hydrogen fuel-cell is 1.9 times more efficient than diesel
- BE and HFC fuel economy will improve over time like diesel

Low Carbon Fuel Standard

- The Low Carbon Fuel Standard (LCFS) program requires fuel producers to lower the carbon intensity (CI) of their fuel or purchase credits from low-CI fuel producers
 - Electricity and hydrogen can generate revenue
- LCFS credits for hydrogen will vary based on production method
 - Renewable versus fossil sources, electrolysis vs steam methane reformation
 - \$0.30/kg to \$2.60/kg in 2018

BEV Fuel Cost Saving Opportunities

EV: 0.56 kWh/mi. Diesel: 22 mpg

Airport Shuttle

EV: 1.04 kWh/mi. Diesel: 10 mpg

Package Delivery

EV: 2.1 kWh/mi. Diesel: 3.5 mpg

Local Drayage

vs Diesel

15%

35%

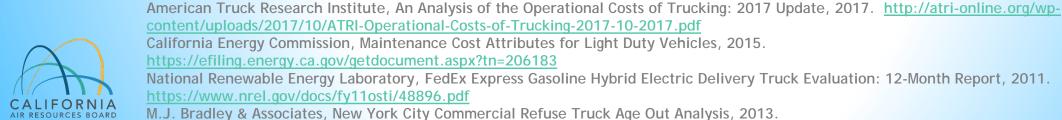
50%

with LCFS

45%

75%*

80%*


Maintenance

- The maintenance cost reflects the cost of labor and parts for routine maintenance, preventative maintenance, and fixing broken components.
- Diesel-powered maintenance costs
 - Passenger Van \$0.17/mi. Average of California Energy Commission and Access LA sources
 - Delivery Van \$0.22/mi. National Renewable Energy Laboratory
 - Cutaway Shuttle \$0.29/mi Access LA
 - Short-haul Tractor \$0.19/mi. American Truck Research Institute Report

Access LA, Access LA Fleet Design, 2017. https://www.sacog.org/sites/main/files/file-attachments/access_la_life_cycle.pdf

Refuse truck - \$0.80/mi. – M. J. Bradley and Associates

https://www.mjbradley.com/sites/default/files/EDF-BIC-Refuse-Truck-Report-2013.pdf

Maintenance (Cont'd)

- Data suggests a battery-electric vehicle's maintenance is 25% lower than diesel
 - Limited truck sources exist, data comes from light-duty and buses
- Limited data suggests hydrogen fuel-cells have similar maintenance to diesel vehicles
 - Ballard estimates a fuel cell bus costs the same as a battery-electric bus plus \$0.20/mi. for maintaining the fuel cell stack. This puts it in-line with a diesel bus.
- Data shows that maintenance costs start lower and increase over the life of the vehicle

Propfe, B. et.al. Cost analysis of Plug-in Hybrid Electric Vehicles including Maintenance & Repair Costs and Resale Values, 2012. http://www.mdpi.com/2032-6653/5/4/886

Taefi, T. et.al. Comparative Analysis of European examples of Freight Electric Vehicle Schemes, 2014.

http://nrl.northumbria.ac.uk/15185/1/Bremen_final_paperShoter.pdf

Electrification Coalition, State of the Plug-in Electric Vehicle Market, 2013. https://www.pwc.com/gx/en/automotive/industry-publications-and-thought-leadership/assets/pwc-ec-state-of-pev-market-final.pdf

Infrastructure

- Electric and hydrogen vehicles new additional infrastructure to operate
- Charging Infrastructure
 - Pacific Gas and Electric and Southern California Edison estimated per-vehicle costs:

 Light trucks: \$3,500-\$5,000 for the charger, \$12,300-\$20,300 for site upgrades
 Heavy trucks: \$15,000 for the charger, \$14,200-\$29,100 for site upgrades
 - Early truck and bus deployments suggest that Class 8 vehicles may have higher infrastructure costs - \$50,000 per charger, \$55,000 for site upgrades
- Hydrogen infrastructure the Trillium hydrogen fuel costs projections include infrastructure costs

How should infrastructure be included in a vehicle TCO analysis?

- Large upfront cost to install infrastructure should be reflected
- For an initial rollout, infrastructure will be rolled out concurrently with vehicles, meaning costs will be tied to vehicles
- Infrastructure lasts multiple vehicle lifetimes, costs generally should be amortized over the total life of infrastructure
- Small deployments need minimal to no site upgrades
- Utilities have programs to pay for infrastructure upgrades today (SB 350)
- Infrastructure upgrades not necessary if public refueling/recharging exists

Other

Discount Rate

Regulations typically assume a discount rate of 2.5%-5%

Taxes

- Sales tax Varies across the state from at least 7.25% to 10.25% in some cities
- Federal Excise Tax 12% tax on purchase of Class 8 trucks

Financing

- Most private vehicles financed, most public vehicles purchased outright
- What interest rate and period to assume?

Registration Fees

- Diesel and ZE vehicles have significantly different fee structures, can be modelled separately
- ZE vehicles may pay slightly less
- Other costs to consider?

Contact Information

Please send any information, feedback, data sources, etc. to:

Paul Arneja, Air Resources Engineer

Paul.Arneja@arb.ca.gov

Craig Duehring, Manager

Craig.Duehring@arb.ca.gov